1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
|
/**
* Copyright (C) 2022-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#include "mongo/db/exec/sbe/abt/abt_lower.h"
#include "mongo/db/exec/sbe/abt/named_slots.h"
#include "mongo/db/exec/sbe/expressions/expression.h"
#include "mongo/db/exec/sbe/stages/co_scan.h"
#include "mongo/db/exec/sbe/stages/exchange.h"
#include "mongo/db/exec/sbe/stages/filter.h"
#include "mongo/db/exec/sbe/stages/hash_agg.h"
#include "mongo/db/exec/sbe/stages/hash_join.h"
#include "mongo/db/exec/sbe/stages/ix_scan.h"
#include "mongo/db/exec/sbe/stages/limit_skip.h"
#include "mongo/db/exec/sbe/stages/loop_join.h"
#include "mongo/db/exec/sbe/stages/merge_join.h"
#include "mongo/db/exec/sbe/stages/project.h"
#include "mongo/db/exec/sbe/stages/scan.h"
#include "mongo/db/exec/sbe/stages/sort.h"
#include "mongo/db/exec/sbe/stages/sorted_merge.h"
#include "mongo/db/exec/sbe/stages/spool.h"
#include "mongo/db/exec/sbe/stages/union.h"
#include "mongo/db/exec/sbe/stages/unique.h"
#include "mongo/db/exec/sbe/stages/unwind.h"
#include "mongo/db/query/optimizer/utils/utils.h"
namespace mongo::optimizer {
static sbe::EExpression::Vector toInlinedVector(
std::vector<std::unique_ptr<sbe::EExpression>> args) {
sbe::EExpression::Vector inlined;
for (auto&& arg : args) {
inlined.emplace_back(std::move(arg));
}
return inlined;
}
std::unique_ptr<sbe::EExpression> SBEExpressionLowering::optimize(const ABT& n) {
return algebra::transport<false>(n, *this);
}
std::unique_ptr<sbe::EExpression> SBEExpressionLowering::transport(const Constant& c) {
auto [tag, val] = c.get();
auto [copyTag, copyVal] = sbe::value::copyValue(tag, val);
sbe::value::ValueGuard guard(copyTag, copyVal);
auto result = sbe::makeE<sbe::EConstant>(copyTag, copyVal);
guard.reset();
return result;
}
std::unique_ptr<sbe::EExpression> SBEExpressionLowering::transport(const Source&) {
tasserted(6624202, "not yet implemented");
return nullptr;
}
void SBEExpressionLowering::prepare(const Let& let) {
// Assign a frame ID for the local variable bound by this Let expression.
_letMap[&let] = ++_frameCounter;
}
std::unique_ptr<sbe::EExpression> SBEExpressionLowering::transport(
const Let& let, std::unique_ptr<sbe::EExpression> bind, std::unique_ptr<sbe::EExpression> in) {
auto it = _letMap.find(&let);
tassert(6624206, "incorrect let map", it != _letMap.end());
auto frameId = it->second;
_letMap.erase(it);
// ABT let binds only a single variable. When we extend it to support multiple binds then we
// have to revisit how we map variable names to sbe slot ids.
return sbe::makeE<sbe::ELocalBind>(frameId, sbe::makeEs(std::move(bind)), std::move(in));
}
void SBEExpressionLowering::prepare(const LambdaAbstraction& lam) {
// Assign a frame ID for the local variable bound by this LambdaAbstraction.
_lambdaMap[&lam] = ++_frameCounter;
}
std::unique_ptr<sbe::EExpression> SBEExpressionLowering::transport(
const LambdaAbstraction& lam, std::unique_ptr<sbe::EExpression> body) {
auto it = _lambdaMap.find(&lam);
tassert(6624207, "incorrect lambda map", it != _lambdaMap.end());
auto frameId = it->second;
_lambdaMap.erase(it);
return sbe::makeE<sbe::ELocalLambda>(frameId, std::move(body));
}
std::unique_ptr<sbe::EExpression> SBEExpressionLowering::transport(
const LambdaApplication&,
std::unique_ptr<sbe::EExpression> lam,
std::unique_ptr<sbe::EExpression> arg) {
// lambda applications are not directly supported by SBE (yet) and must not be present.
tasserted(6624208, "lambda application is not implemented");
return nullptr;
}
std::unique_ptr<sbe::EExpression> SBEExpressionLowering::transport(const Variable& var) {
auto def = _env.getDefinition(var);
if (!def.definedBy.empty()) {
// If this variable was defined by a Let expression, use the frame ID that was defined in
// the prepare() step for the Let.
if (auto let = def.definedBy.cast<Let>(); let) {
auto it = _letMap.find(let);
tassert(6624203, "incorrect let map", it != _letMap.end());
return sbe::makeE<sbe::EVariable>(it->second, 0, _env.isLastRef(var));
} else if (auto lam = def.definedBy.cast<LambdaAbstraction>(); lam) {
// Similarly if the variable was defined by a lambda abstraction, use a frame ID rather
// than a slot.
auto it = _lambdaMap.find(lam);
tassert(6624204, "incorrect lambda map", it != _lambdaMap.end());
return sbe::makeE<sbe::EVariable>(it->second, 0, _env.isLastRef(var));
}
}
// If variable was not defined in the scope of the local expression via a Let or
// LambdaAbstraction, it must be a reference that will be in the slotMap.
if (auto it = _slotMap.find(var.name()); it != _slotMap.end()) {
// Found the slot.
return sbe::makeE<sbe::EVariable>(it->second);
}
tasserted(6624205, str::stream() << "undefined variable: " << var.name());
return nullptr;
}
std::unique_ptr<sbe::EExpression> SBEExpressionLowering::transport(
const BinaryOp& op,
std::unique_ptr<sbe::EExpression> lhs,
std::unique_ptr<sbe::EExpression> rhs) {
sbe::EPrimBinary::Op sbeOp = [](const auto abtOp) {
switch (abtOp) {
case Operations::Eq:
return sbe::EPrimBinary::eq;
case Operations::Neq:
return sbe::EPrimBinary::neq;
case Operations::Gt:
return sbe::EPrimBinary::greater;
case Operations::Gte:
return sbe::EPrimBinary::greaterEq;
case Operations::Lt:
return sbe::EPrimBinary::less;
case Operations::Lte:
return sbe::EPrimBinary::lessEq;
case Operations::Add:
return sbe::EPrimBinary::add;
case Operations::Sub:
return sbe::EPrimBinary::sub;
case Operations::FillEmpty:
return sbe::EPrimBinary::fillEmpty;
case Operations::And:
return sbe::EPrimBinary::logicAnd;
case Operations::Or:
return sbe::EPrimBinary::logicOr;
case Operations::Cmp3w:
return sbe::EPrimBinary::cmp3w;
case Operations::Div:
return sbe::EPrimBinary::div;
case Operations::Mult:
return sbe::EPrimBinary::mul;
default:
MONGO_UNREACHABLE;
}
}(op.op());
if (sbe::EPrimBinary::isComparisonOp(sbeOp)) {
boost::optional<sbe::value::SlotId> collatorSlot =
_namedSlots.getSlotIfExists("collator"_sd);
if (collatorSlot) {
return sbe::makeE<sbe::EPrimBinary>(
sbeOp, std::move(lhs), std::move(rhs), sbe::makeE<sbe::EVariable>(*collatorSlot));
}
}
return sbe::makeE<sbe::EPrimBinary>(sbeOp, std::move(lhs), std::move(rhs));
}
std::unique_ptr<sbe::EExpression> SBEExpressionLowering::transport(
const UnaryOp& op, std::unique_ptr<sbe::EExpression> arg) {
sbe::EPrimUnary::Op sbeOp = [](const auto abtOp) {
switch (abtOp) {
case Operations::Neg:
return sbe::EPrimUnary::negate;
case Operations::Not:
return sbe::EPrimUnary::logicNot;
default:
MONGO_UNREACHABLE;
}
}(op.op());
return sbe::makeE<sbe::EPrimUnary>(sbeOp, std::move(arg));
}
std::unique_ptr<sbe::EExpression> SBEExpressionLowering::transport(
const If&,
std::unique_ptr<sbe::EExpression> cond,
std::unique_ptr<sbe::EExpression> thenBranch,
std::unique_ptr<sbe::EExpression> elseBranch) {
return sbe::makeE<sbe::EIf>(std::move(cond), std::move(thenBranch), std::move(elseBranch));
}
std::unique_ptr<sbe::EExpression> SBEExpressionLowering::transport(
const FunctionCall& fn, std::vector<std::unique_ptr<sbe::EExpression>> args) {
auto name = fn.name();
if (name == "fail") {
uassert(6250200, "Invalid number of arguments to fail()", fn.nodes().size() == 2);
const auto* codeConstPtr = fn.nodes().at(0).cast<Constant>();
const auto* messageConstPtr = fn.nodes().at(1).cast<Constant>();
uassert(6250201,
"First argument to fail() must be a 32-bit integer constant",
codeConstPtr != nullptr && codeConstPtr->isValueInt32());
uassert(6250202,
"Second argument to fail() must be a string constant",
messageConstPtr != nullptr && messageConstPtr->isString());
return sbe::makeE<sbe::EFail>(static_cast<ErrorCodes::Error>(codeConstPtr->getValueInt32()),
messageConstPtr->getString());
}
if (name == "convert") {
uassert(6250203, "Invalid number of arguments to convert()", fn.nodes().size() == 2);
const auto* constPtr = fn.nodes().at(1).cast<Constant>();
uassert(6250204,
"Second argument to convert() must be a 32-bit integer constant",
constPtr != nullptr && constPtr->isValueInt32());
int32_t constVal = constPtr->getValueInt32();
uassert(6250205,
"Second argument to convert() must be a numeric type tag",
constVal >= static_cast<int32_t>(std::numeric_limits<uint8_t>::min()) &&
constVal <= static_cast<int32_t>(std::numeric_limits<uint8_t>::max()) &&
sbe::value::isNumber(static_cast<sbe::value::TypeTags>(constVal)));
return sbe::makeE<sbe::ENumericConvert>(std::move(args.at(0)),
static_cast<sbe::value::TypeTags>(constVal));
}
if (name == "typeMatch") {
uassert(6250206, "Invalid number of arguments to typeMatch()", fn.nodes().size() == 2);
const auto* constPtr = fn.nodes().at(1).cast<Constant>();
uassert(6250207,
"Second argument to typeMatch() must be a 32-bit integer constant",
constPtr != nullptr && constPtr->isValueInt32());
return sbe::makeE<sbe::EFunction>(
"typeMatch",
sbe::makeEs(std::move(args.at(0)),
sbe::makeE<sbe::EConstant>(
sbe::value::TypeTags::NumberInt64,
sbe::value::bitcastFrom<int64_t>(constPtr->getValueInt32()))));
}
// TODO - this is an open question how to do the name mappings.
if (name == "$sum") {
name = "sum";
} else if (name == "$first") {
name = "first";
} else if (name == "$last") {
name = "last";
} else if (name == "$min") {
name = "min";
} else if (name == "$max") {
name = "max";
} else if (name == "$addToSet") {
name = "addToSet";
} else if (name == "$push") {
name = "addToArray";
}
return sbe::makeE<sbe::EFunction>(name, toInlinedVector(std::move(args)));
}
sbe::value::SlotVector SBENodeLowering::convertProjectionsToSlots(
const SlotVarMap& slotMap, const ProjectionNameVector& projectionNames) {
sbe::value::SlotVector result;
for (const ProjectionName& projectionName : projectionNames) {
auto it = slotMap.find(projectionName);
tassert(6624211,
str::stream() << "undefined variable: " << projectionName,
it != slotMap.end());
result.push_back(it->second);
}
return result;
}
sbe::value::SlotVector SBENodeLowering::convertRequiredProjectionsToSlots(
const SlotVarMap& slotMap, const NodeProps& props, const sbe::value::SlotVector& toExclude) {
using namespace properties;
sbe::value::SlotSet toExcludeSet;
for (const auto slot : toExclude) {
toExcludeSet.insert(slot);
}
sbe::value::SlotVector result;
const auto& projections =
getPropertyConst<ProjectionRequirement>(props._physicalProps).getProjections();
for (const auto slot : convertProjectionsToSlots(slotMap, projections.getVector())) {
if (toExcludeSet.count(slot) == 0) {
result.push_back(slot);
}
}
return result;
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::optimize(
const ABT& n, SlotVarMap& slotMap, boost::optional<sbe::value::SlotId>& ridSlot) {
return generateInternal(n, slotMap, ridSlot);
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::generateInternal(
const ABT& n, SlotVarMap& slotMap, boost::optional<sbe::value::SlotId>& ridSlot) {
tassert(
7239200, "Should not be lowering only logical ABT node", !n.cast<ExclusivelyLogicalNode>());
return algebra::walk<false>(n, *this, slotMap, ridSlot);
}
void SBENodeLowering::mapProjToSlot(SlotVarMap& slotMap,
const ProjectionName& projName,
const sbe::value::SlotId slot,
const bool canOverwrite) {
const bool inserted = slotMap.insert_or_assign(projName, slot).second;
if (!canOverwrite) {
tassert(6624263, "Cannot overwrite slot map", inserted);
}
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const RootNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& child,
const ABT& refs) {
using namespace properties;
auto input = generateInternal(child, slotMap, ridSlot);
auto output = refs.cast<References>();
tassert(6624212, "refs expected", output);
SlotVarMap finalMap;
for (auto& o : output->nodes()) {
auto var = o.cast<Variable>();
tassert(6624213, "var expected", var);
if (auto it = slotMap.find(var->name()); it != slotMap.end()) {
finalMap.emplace(var->name(), it->second);
}
}
if (const auto& props = _nodeToGroupPropsMap.at(&n);
hasProperty<ProjectionRequirement>(props._physicalProps)) {
if (const auto& ridProjName = props._ridProjName) {
// If we required rid on the Root node, populate ridSlot.
const auto& projections =
getPropertyConst<ProjectionRequirement>(props._physicalProps).getProjections();
if (projections.find(*ridProjName)) {
// Deliver the ridSlot separate from the slotMap.
ridSlot = slotMap.at(*ridProjName);
finalMap.erase(*ridProjName);
}
}
}
std::swap(slotMap, finalMap);
return input;
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const EvaluationNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& child,
const ABT& binds) {
auto input = generateInternal(child, slotMap, ridSlot);
// If the evaluation node is only renaming a variable, do not place a project stage.
if (auto varPtr = n.getProjection().cast<Variable>(); varPtr != nullptr) {
mapProjToSlot(slotMap, n.getProjectionName(), slotMap.at(varPtr->name()));
return input;
}
auto& binder = n.binder();
auto& names = binder.names();
auto& exprs = binder.exprs();
sbe::value::SlotMap<std::unique_ptr<sbe::EExpression>> projects;
for (size_t idx = 0; idx < exprs.size(); ++idx) {
auto expr = lowerExpression(exprs[idx], slotMap);
auto slot = _slotIdGenerator.generate();
mapProjToSlot(slotMap, names[idx], slot);
projects.emplace(slot, std::move(expr));
}
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
return sbe::makeS<sbe::ProjectStage>(std::move(input), std::move(projects), planNodeId);
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const FilterNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& child,
const ABT& filter) {
auto input = generateInternal(child, slotMap, ridSlot);
auto expr = lowerExpression(filter, slotMap);
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
// Check if the filter expression is 'constant' (i.e., does not depend on any variables); then
// create FilterStage<true> if it is constant, or FilterStage<false> otherwise.
bool isConstant = true;
VariableEnvironment::walkVariables(filter, [&](const Variable&) { isConstant = false; });
if (isConstant) {
return sbe::makeS<sbe::FilterStage<true>>(std::move(input), std::move(expr), planNodeId);
} else {
return sbe::makeS<sbe::FilterStage<false>>(std::move(input), std::move(expr), planNodeId);
}
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const LimitSkipNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& child) {
auto input = generateInternal(child, slotMap, ridSlot);
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
return sbe::makeS<sbe::LimitSkipStage>(
std::move(input), n.getProperty().getLimit(), n.getProperty().getSkip(), planNodeId);
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const ExchangeNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& child,
const ABT& refs) {
using namespace std::literals;
using namespace properties;
// The DOP is obtained from the child (number of producers).
const auto& childProps = _nodeToGroupPropsMap.at(n.getChild().cast<Node>())._physicalProps;
const auto& childDistribution = getPropertyConst<DistributionRequirement>(childProps);
tassert(6624330,
"Parent and child distributions are the same",
!(childDistribution == n.getProperty()));
const size_t localDOP =
(childDistribution.getDistributionAndProjections()._type == DistributionType::Centralized)
? 1
: _metadata._numberOfPartitions;
tassert(6624215, "invalid DOP", localDOP >= 1);
auto input = generateInternal(child, slotMap, ridSlot);
// Initialized to arbitrary placeholder
sbe::ExchangePolicy localPolicy{};
std::unique_ptr<sbe::EExpression> partitionExpr;
const auto& distribAndProjections = n.getProperty().getDistributionAndProjections();
switch (distribAndProjections._type) {
case DistributionType::Centralized:
case DistributionType::Replicated:
localPolicy = sbe::ExchangePolicy::broadcast;
break;
case DistributionType::RoundRobin:
localPolicy = sbe::ExchangePolicy::roundrobin;
break;
case DistributionType::RangePartitioning:
// We set 'localPolicy' to 'ExchangePolicy::rangepartition' here, but there is more
// that we need to do to actually support the RangePartitioning distribution.
// TODO SERVER-62523: Implement real support for the RangePartitioning distribution
// and add some test coverage.
localPolicy = sbe::ExchangePolicy::rangepartition;
break;
case DistributionType::HashPartitioning: {
localPolicy = sbe::ExchangePolicy::hashpartition;
std::vector<std::unique_ptr<sbe::EExpression>> args;
for (const ProjectionName& proj : distribAndProjections._projectionNames) {
auto it = slotMap.find(proj);
tassert(6624216, str::stream() << "undefined var: " << proj, it != slotMap.end());
args.emplace_back(sbe::makeE<sbe::EVariable>(it->second));
}
partitionExpr = sbe::makeE<sbe::EFunction>("hash"_sd, toInlinedVector(std::move(args)));
break;
}
case DistributionType::UnknownPartitioning:
tasserted(6624217, "Cannot partition into unknown distribution");
default:
MONGO_UNREACHABLE;
}
const auto& nodeProps = _nodeToGroupPropsMap.at(&n);
auto fields = convertRequiredProjectionsToSlots(slotMap, nodeProps);
return sbe::makeS<sbe::ExchangeConsumer>(std::move(input),
localDOP,
std::move(fields),
localPolicy,
std::move(partitionExpr),
nullptr,
nodeProps._planNodeId);
}
static sbe::value::SortDirection collationOpToSBESortDirection(const CollationOp collOp) {
switch (collOp) {
// TODO: is there a more efficient way to compute clustered collation op than sort?
case CollationOp::Ascending:
case CollationOp::Clustered:
return sbe::value::SortDirection::Ascending;
case CollationOp::Descending:
return sbe::value::SortDirection::Descending;
}
MONGO_UNREACHABLE;
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const CollationNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& child,
const ABT& refs) {
auto input = generateInternal(child, slotMap, ridSlot);
sbe::value::SlotVector orderBySlots;
std::vector<sbe::value::SortDirection> directions;
for (const auto& entry : n.getProperty().getCollationSpec()) {
auto it = slotMap.find(entry.first);
tassert(6624219,
str::stream() << "undefined orderBy var: " << entry.first,
it != slotMap.end());
orderBySlots.push_back(it->second);
directions.push_back(collationOpToSBESortDirection(entry.second));
}
const auto& nodeProps = _nodeToGroupPropsMap.at(&n);
const auto& physProps = nodeProps._physicalProps;
size_t limit = std::numeric_limits<std::size_t>::max();
if (properties::hasProperty<properties::LimitSkipRequirement>(physProps)) {
const auto& limitSkipReq =
properties::getPropertyConst<properties::LimitSkipRequirement>(physProps);
tassert(6624221, "We should not have skip set here", limitSkipReq.getSkip() == 0);
limit = limitSkipReq.getLimit();
}
// TODO: obtain defaults for these.
const size_t memoryLimit = 100 * (1ul << 20); // 100MB
const bool allowDiskUse = false;
auto vals = convertRequiredProjectionsToSlots(slotMap, nodeProps, orderBySlots);
return sbe::makeS<sbe::SortStage>(std::move(input),
std::move(orderBySlots),
std::move(directions),
std::move(vals),
limit,
memoryLimit,
allowDiskUse,
nodeProps._planNodeId);
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const UniqueNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& child,
const ABT& refs) {
auto input = generateInternal(child, slotMap, ridSlot);
sbe::value::SlotVector keySlots;
for (const ProjectionName& projectionName : n.getProjections()) {
auto it = slotMap.find(projectionName);
tassert(6624222,
str::stream() << "undefined variable: " << projectionName,
it != slotMap.end());
keySlots.push_back(it->second);
}
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
return sbe::makeS<sbe::UniqueStage>(std::move(input), std::move(keySlots), planNodeId);
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const SpoolProducerNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& child,
const ABT& filter,
const ABT& binder,
const ABT& refs) {
auto input = generateInternal(child, slotMap, ridSlot);
sbe::value::SlotVector vals;
for (const ProjectionName& projectionName : n.binder().names()) {
auto it = slotMap.find(projectionName);
tassert(6624139,
str::stream() << "undefined variable: " << projectionName,
it != slotMap.end());
vals.push_back(it->second);
}
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
switch (n.getType()) {
case SpoolProducerType::Eager:
return sbe::makeS<sbe::SpoolEagerProducerStage>(
std::move(input), n.getSpoolId(), std::move(vals), planNodeId);
case SpoolProducerType::Lazy: {
auto expr = lowerExpression(filter, slotMap);
return sbe::makeS<sbe::SpoolLazyProducerStage>(
std::move(input), n.getSpoolId(), std::move(vals), std::move(expr), planNodeId);
}
}
MONGO_UNREACHABLE;
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const SpoolConsumerNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& binder) {
sbe::value::SlotVector vals;
for (const ProjectionName& projectionName : n.binder().names()) {
auto slot = _slotIdGenerator.generate();
mapProjToSlot(slotMap, projectionName, slot);
vals.push_back(slot);
}
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
switch (n.getType()) {
case SpoolConsumerType::Stack:
return sbe::makeS<sbe::SpoolConsumerStage<true /*isStack*/>>(
n.getSpoolId(), std::move(vals), planNodeId);
case SpoolConsumerType::Regular:
return sbe::makeS<sbe::SpoolConsumerStage<false /*isStack*/>>(
n.getSpoolId(), std::move(vals), planNodeId);
}
MONGO_UNREACHABLE;
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const GroupByNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& child,
const ABT& aggBinds,
const ABT& aggRefs,
const ABT& gbBind,
const ABT& gbRefs) {
auto input = generateInternal(child, slotMap, ridSlot);
// Ideally, we should make a distinction between gbBind and gbRefs; i.e. internal references
// used by the hash agg to determinte the group by values from its input and group by values as
// outputted by the hash agg after the grouping. However, SBE hash agg uses the same slot it to
// represent both so that distinction is kind of moot.
sbe::value::SlotVector gbs;
auto gbCols = gbRefs.cast<References>();
tassert(6624223, "refs expected", gbCols);
for (auto& o : gbCols->nodes()) {
auto var = o.cast<Variable>();
tassert(6624224, "var expected", var);
auto it = slotMap.find(var->name());
tassert(6624225, str::stream() << "undefined var: " << var->name(), it != slotMap.end());
gbs.push_back(it->second);
}
// Similar considerations apply to the agg expressions as to the group by columns.
auto& names = n.binderAgg().names();
auto refsAgg = aggRefs.cast<References>();
tassert(6624227, "refs expected", refsAgg);
auto& exprs = refsAgg->nodes();
sbe::SlotExprPairVector aggs;
aggs.reserve(exprs.size());
for (size_t idx = 0; idx < exprs.size(); ++idx) {
auto expr = lowerExpression(exprs[idx], slotMap);
auto slot = _slotIdGenerator.generate();
mapProjToSlot(slotMap, names[idx], slot);
aggs.push_back({slot, std::move(expr)});
}
boost::optional<sbe::value::SlotId> collatorSlot = _namedSlots.getSlotIfExists("collator"_sd);
// Unused
sbe::value::SlotVector seekKeysSlots;
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
return sbe::makeS<sbe::HashAggStage>(std::move(input),
std::move(gbs),
std::move(aggs),
std::move(seekKeysSlots),
true /*optimizedClose*/,
collatorSlot,
false /*allowDiskUse*/,
// Since we are always disallowing disk use for this stage,
// we need not provide merging expressions. Once spilling
// is permitted here, we will need to generate merging
// expressions during lowering.
sbe::makeSlotExprPairVec() /*mergingExprs*/,
planNodeId);
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const NestedLoopJoinNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& leftChild,
const ABT& rightChild,
const ABT& filter) {
auto outerStage = generateInternal(leftChild, slotMap, ridSlot);
auto innerStage = generateInternal(rightChild, slotMap, ridSlot);
// List of correlated projections (bound in outer side and referred to in the inner side).
sbe::value::SlotVector correlatedSlots;
for (const ProjectionName& projectionName : n.getCorrelatedProjectionNames()) {
correlatedSlots.push_back(slotMap.at(projectionName));
}
// Soring is not essential. Here we sort only for SBE plan stability.
std::sort(correlatedSlots.begin(), correlatedSlots.end());
auto expr = lowerExpression(filter, slotMap);
const auto& leftChildProps = _nodeToGroupPropsMap.at(n.getLeftChild().cast<Node>());
auto outerProjects = convertRequiredProjectionsToSlots(slotMap, leftChildProps);
const auto& rightChildProps = _nodeToGroupPropsMap.at(n.getRightChild().cast<Node>());
auto innerProjects = convertRequiredProjectionsToSlots(slotMap, rightChildProps);
sbe::JoinType joinType = [&]() {
switch (n.getJoinType()) {
case JoinType::Inner:
return sbe::JoinType::Inner;
case JoinType::Left:
return sbe::JoinType::Left;
default:
MONGO_UNREACHABLE;
}
}();
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
return sbe::makeS<sbe::LoopJoinStage>(std::move(outerStage),
std::move(innerStage),
std::move(outerProjects),
std::move(correlatedSlots),
std::move(innerProjects),
std::move(expr),
joinType,
planNodeId);
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const HashJoinNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& leftChild,
const ABT& rightChild,
const ABT& refs) {
// Note the inner and outer sides here are reversed. The HashJoinNode assumes the build side is
// the inner side while sbe hash join stage assumes the build side is the outer side.
auto innerStage = generateInternal(leftChild, slotMap, ridSlot);
auto outerStage = generateInternal(rightChild, slotMap, ridSlot);
tassert(6624228, "Only inner joins supported for now", n.getJoinType() == JoinType::Inner);
const auto& leftProps = _nodeToGroupPropsMap.at(n.getLeftChild().cast<Node>());
const auto& rightProps = _nodeToGroupPropsMap.at(n.getRightChild().cast<Node>());
// Add RID projection only from outer side.
auto innerKeys = convertProjectionsToSlots(slotMap, n.getLeftKeys());
auto innerProjects = convertRequiredProjectionsToSlots(slotMap, leftProps, innerKeys);
auto outerKeys = convertProjectionsToSlots(slotMap, n.getRightKeys());
auto outerProjects = convertRequiredProjectionsToSlots(slotMap, rightProps, outerKeys);
boost::optional<sbe::value::SlotId> collatorSlot = _namedSlots.getSlotIfExists("collator"_sd);
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
return sbe::makeS<sbe::HashJoinStage>(std::move(outerStage),
std::move(innerStage),
std::move(outerKeys),
std::move(outerProjects),
std::move(innerKeys),
std::move(innerProjects),
collatorSlot,
planNodeId);
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const MergeJoinNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& leftChild,
const ABT& rightChild,
const ABT& refs) {
auto outerStage = generateInternal(leftChild, slotMap, ridSlot);
auto innerStage = generateInternal(rightChild, slotMap, ridSlot);
const auto& leftProps = _nodeToGroupPropsMap.at(n.getLeftChild().cast<Node>());
const auto& rightProps = _nodeToGroupPropsMap.at(n.getRightChild().cast<Node>());
std::vector<sbe::value::SortDirection> sortDirs;
for (const CollationOp op : n.getCollation()) {
sortDirs.push_back(collationOpToSBESortDirection(op));
}
// Add RID projection only from outer side.
auto outerKeys = convertProjectionsToSlots(slotMap, n.getLeftKeys());
auto outerProjects = convertRequiredProjectionsToSlots(slotMap, leftProps, outerKeys);
auto innerKeys = convertProjectionsToSlots(slotMap, n.getRightKeys());
auto innerProjects = convertRequiredProjectionsToSlots(slotMap, rightProps, innerKeys);
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
return sbe::makeS<sbe::MergeJoinStage>(std::move(outerStage),
std::move(innerStage),
std::move(outerKeys),
std::move(outerProjects),
std::move(innerKeys),
std::move(innerProjects),
std::move(sortDirs),
planNodeId);
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const SortedMergeNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABTVector& children,
const ABT& binder,
const ABT& /*refs*/) {
const auto& names = n.binder().names();
const ProjectionCollationSpec& collSpec = n.getCollationReq().getCollationSpec();
std::vector<sbe::value::SortDirection> keyDirs;
for (const auto& collEntry : collSpec) {
keyDirs.push_back(collationOpToSBESortDirection(collEntry.second));
}
sbe::PlanStage::Vector loweredChildren;
std::vector<sbe::value::SlotVector> inputKeys;
std::vector<sbe::value::SlotVector> inputVals;
for (const ABT& child : children) {
// Use a fresh map to prevent same projections for every child being overwritten. We
// initialize with the current map in order to be able to use correlated slots.
SlotVarMap localMap = slotMap;
boost::optional<sbe::value::SlotId> localRIDSlot;
auto loweredChild = optimize(child, localMap, localRIDSlot);
tassert(7063700, "Unexpected rid slot", !localRIDSlot);
loweredChildren.push_back(std::move(loweredChild));
// Find the slots for the collation keys. Also find slots for other values passed.
sbe::value::SlotVector childKeys(collSpec.size());
sbe::value::SlotVector childVals;
// Note that lowering for SortedMergeNode does not take into account required projections
// from the Cascade props for this node. Like UnionNode, it's expected that all fields that
// should be visible above a SortedMergeNode should be added to the exprBinder explicitly
// before lowering.
for (const auto& name : names) {
const auto it = std::find_if(
collSpec.begin(), collSpec.end(), [&](const auto& x) { return x.first == name; });
if (it != collSpec.end()) {
const size_t index = std::distance(collSpec.begin(), it);
childKeys.at(index) = localMap.at(name);
}
childVals.push_back(localMap.at(name));
}
inputKeys.emplace_back(std::move(childKeys));
inputVals.emplace_back(std::move(childVals));
}
sbe::value::SlotVector outputVals;
for (const auto& name : names) {
const auto outputSlot = _slotIdGenerator.generate();
mapProjToSlot(slotMap, name, outputSlot);
outputVals.push_back(outputSlot);
}
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
return sbe::makeS<sbe::SortedMergeStage>(std::move(loweredChildren),
std::move(inputKeys),
std::move(keyDirs),
std::move(inputVals),
std::move(outputVals),
planNodeId);
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const UnionNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABTVector& children,
const ABT& binder,
const ABT& /*refs*/) {
const auto& names = n.binder().names();
sbe::PlanStage::Vector loweredChildren;
std::vector<sbe::value::SlotVector> inputVals;
for (const ABT& child : children) {
// Use a fresh map to prevent same projections for every child being overwritten. We
// initialize with the current map in order to be able to use correlated slots.
SlotVarMap localMap = slotMap;
boost::optional<sbe::value::SlotId> localRIDSlot;
auto loweredChild = optimize(child, localMap, localRIDSlot);
tassert(6624258, "Unexpected rid slot", !localRIDSlot);
if (children.size() == 1) {
// Union with one child is used to restrict projections. Do not place a union stage.
for (const auto& name : names) {
mapProjToSlot(slotMap, name, localMap.at(name));
}
return loweredChild;
}
loweredChildren.push_back(std::move(loweredChild));
sbe::value::SlotVector childSlots;
for (const auto& name : names) {
childSlots.push_back(localMap.at(name));
}
inputVals.emplace_back(std::move(childSlots));
}
sbe::value::SlotVector outputVals;
for (const auto& name : names) {
const auto outputSlot = _slotIdGenerator.generate();
mapProjToSlot(slotMap, name, outputSlot);
outputVals.push_back(outputSlot);
}
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
return sbe::makeS<sbe::UnionStage>(
std::move(loweredChildren), std::move(inputVals), std::move(outputVals), planNodeId);
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const UnwindNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& child,
const ABT& pidBind,
const ABT& refs) {
auto input = generateInternal(child, slotMap, ridSlot);
auto it = slotMap.find(n.getProjectionName());
tassert(6624230,
str::stream() << "undefined unwind variable: " << n.getProjectionName(),
it != slotMap.end());
auto inputSlot = it->second;
auto outputSlot = _slotIdGenerator.generate();
auto outputPidSlot = _slotIdGenerator.generate();
// The unwind is overwriting the output projection.
mapProjToSlot(slotMap, n.getProjectionName(), outputSlot, true /*canOverwrite*/);
mapProjToSlot(slotMap, n.getPIDProjectionName(), outputPidSlot);
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
return sbe::makeS<sbe::UnwindStage>(
std::move(input), inputSlot, outputSlot, outputPidSlot, n.getRetainNonArrays(), planNodeId);
}
void SBENodeLowering::generateSlots(SlotVarMap& slotMap,
const FieldProjectionMap& fieldProjectionMap,
boost::optional<sbe::value::SlotId>& ridSlot,
boost::optional<sbe::value::SlotId>& rootSlot,
std::vector<std::string>& fields,
sbe::value::SlotVector& vars) {
if (const auto& projName = fieldProjectionMap._ridProjection) {
ridSlot = _slotIdGenerator.generate();
// Allow overwriting slots for rid projections only. We have a single rid projection per
// collection.
mapProjToSlot(slotMap, *projName, ridSlot.value(), true /*canOverwrite*/);
}
if (const auto& projName = fieldProjectionMap._rootProjection) {
rootSlot = _slotIdGenerator.generate();
mapProjToSlot(slotMap, *projName, rootSlot.value());
}
// Soring is not essential. Here we sort only for SBE plan stability.
std::map<FieldNameType, ProjectionName> ordered;
for (const auto& entry : fieldProjectionMap._fieldProjections) {
ordered.insert(entry);
}
for (const auto& [fieldName, projectionName] : ordered) {
vars.push_back(_slotIdGenerator.generate());
mapProjToSlot(slotMap, projectionName, vars.back());
fields.push_back(fieldName.value().toString());
}
}
static NamespaceStringOrUUID parseFromScanDef(const ScanDefinition& def) {
const auto& dbName = def.getOptionsMap().at("database");
const auto& uuidStr = def.getOptionsMap().at("uuid");
return {dbName, UUID::parse(uuidStr).getValue()};
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const PhysicalScanNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& /*binds*/) {
const ScanDefinition& def = _metadata._scanDefs.at(n.getScanDefName());
tassert(6624231, "Collection must exist to lower Scan", def.exists());
auto& typeSpec = def.getOptionsMap().at("type");
boost::optional<sbe::value::SlotId> scanRidSlot;
boost::optional<sbe::value::SlotId> rootSlot;
std::vector<std::string> fields;
sbe::value::SlotVector vars;
generateSlots(slotMap, n.getFieldProjectionMap(), scanRidSlot, rootSlot, fields, vars);
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
if (typeSpec == "mongod") {
NamespaceStringOrUUID nss = parseFromScanDef(def);
// Unused.
boost::optional<sbe::value::SlotId> seekKeySlot;
sbe::ScanCallbacks callbacks({}, {}, {});
if (n.useParallelScan()) {
return sbe::makeS<sbe::ParallelScanStage>(nss.uuid().value(),
rootSlot,
scanRidSlot,
boost::none,
boost::none,
boost::none,
boost::none,
fields,
vars,
nullptr /*yieldPolicy*/,
planNodeId,
callbacks);
}
bool forwardScan = [&]() {
switch (_scanOrder) {
case ScanOrder::Forward:
case ScanOrder::Random:
return true;
case ScanOrder::Reverse:
return false;
}
MONGO_UNREACHABLE;
}();
return sbe::makeS<sbe::ScanStage>(nss.uuid().value(),
rootSlot,
scanRidSlot,
boost::none,
boost::none,
boost::none,
boost::none,
boost::none,
fields,
vars,
seekKeySlot,
forwardScan,
nullptr /*yieldPolicy*/,
planNodeId,
callbacks,
_scanOrder == ScanOrder::Random);
} else {
tasserted(6624355, "Unknown scan type.");
}
return nullptr;
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(
const CoScanNode& n, SlotVarMap& slotMap, boost::optional<sbe::value::SlotId>& ridSlot) {
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
return sbe::makeS<sbe::CoScanStage>(planNodeId);
}
std::unique_ptr<sbe::EExpression> SBENodeLowering::convertBoundsToExpr(
SlotVarMap& slotMap,
const bool isLower,
const bool reversed,
const IndexDefinition& indexDef,
const CompoundBoundRequirement& bound) {
std::vector<std::unique_ptr<sbe::EExpression>> ksFnArgs;
ksFnArgs.emplace_back(
sbe::makeE<sbe::EConstant>(sbe::value::TypeTags::NumberInt64,
sbe::value::bitcastFrom<int64_t>(indexDef.getVersion())));
// TODO: ordering is unsigned int32??
ksFnArgs.emplace_back(
sbe::makeE<sbe::EConstant>(sbe::value::TypeTags::NumberInt32,
sbe::value::bitcastFrom<uint32_t>(indexDef.getOrdering())));
auto exprLower = getExpressionLowering(slotMap);
for (const auto& expr : bound.getBound()) {
ksFnArgs.emplace_back(exprLower.optimize(expr));
}
if (!isLower && (bound.isMinusInf() || bound.isPlusInf())) {
// We can skip if fully infinite only for upper bound. For lower bound we need to generate
// minkeys.
return nullptr;
};
KeyString::Discriminator discriminator;
// For a reverse scan, we start from the high bound and iterate until the low bound.
if (isLower != reversed) {
// For the start point, we want to seek ExclusiveBefore iff the bound is inclusive,
// so that values equal to the seek value are included.
discriminator = bound.isInclusive() ? KeyString::Discriminator::kExclusiveBefore
: KeyString::Discriminator::kExclusiveAfter;
} else {
// For the end point we want the opposite.
discriminator = bound.isInclusive() ? KeyString::Discriminator::kExclusiveAfter
: KeyString::Discriminator::kExclusiveBefore;
}
ksFnArgs.emplace_back(sbe::makeE<sbe::EConstant>(
sbe::value::TypeTags::NumberInt64,
sbe::value::bitcastFrom<int64_t>(static_cast<int64_t>(discriminator))));
return sbe::makeE<sbe::EFunction>("ks", toInlinedVector(std::move(ksFnArgs)));
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const IndexScanNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT&) {
const auto& fieldProjectionMap = n.getFieldProjectionMap();
const std::string& indexDefName = n.getIndexDefName();
const ScanDefinition& scanDef = _metadata._scanDefs.at(n.getScanDefName());
tassert(6624232, "Collection must exist to lower IndexScan", scanDef.exists());
const IndexDefinition& indexDef = scanDef.getIndexDefs().at(indexDefName);
NamespaceStringOrUUID nss = parseFromScanDef(scanDef);
boost::optional<sbe::value::SlotId> scanRidSlot;
boost::optional<sbe::value::SlotId> rootSlot;
std::vector<std::string> fields;
sbe::value::SlotVector vars;
generateSlots(slotMap, fieldProjectionMap, scanRidSlot, rootSlot, fields, vars);
tassert(6624233, "Cannot deliver root projection in this context", !rootSlot.has_value());
std::vector<std::pair<size_t, sbe::value::SlotId>> indexVars;
sbe::IndexKeysInclusionSet indexKeysToInclude;
for (size_t index = 0; index < fields.size(); index++) {
const size_t indexFieldPos = decodeIndexKeyName(fields.at(index));
indexVars.emplace_back(indexFieldPos, vars.at(index));
indexKeysToInclude.set(indexFieldPos, true);
}
// Make sure vars are in sorted order on index field position.
std::sort(indexVars.begin(), indexVars.end());
vars.clear();
for (const auto& [indexFieldPos, slot] : indexVars) {
vars.push_back(slot);
}
const auto& interval = n.getIndexInterval();
const auto* lowBoundPtr = &interval.getLowBound();
const auto* highBoundPtr = &interval.getHighBound();
const bool reverse = n.isIndexReverseOrder();
if (reverse) {
std::swap(lowBoundPtr, highBoundPtr);
}
auto lowerBoundExpr =
convertBoundsToExpr(slotMap, true /*isLower*/, reverse, indexDef, *lowBoundPtr);
auto upperBoundExpr =
convertBoundsToExpr(slotMap, false /*isLower*/, reverse, indexDef, *highBoundPtr);
tassert(6624234,
"Invalid bounds combination",
lowerBoundExpr != nullptr || upperBoundExpr == nullptr);
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
// Unused.
boost::optional<sbe::value::SlotId> resultSlot;
return sbe::makeS<sbe::SimpleIndexScanStage>(nss.uuid().value(),
indexDefName,
!reverse,
resultSlot,
scanRidSlot,
boost::none,
indexKeysToInclude,
vars,
std::move(lowerBoundExpr),
std::move(upperBoundExpr),
nullptr /*yieldPolicy*/,
planNodeId);
}
std::unique_ptr<sbe::PlanStage> SBENodeLowering::walk(const SeekNode& n,
SlotVarMap& slotMap,
boost::optional<sbe::value::SlotId>& ridSlot,
const ABT& /*binds*/,
const ABT& /*refs*/) {
const ScanDefinition& def = _metadata._scanDefs.at(n.getScanDefName());
tassert(6624235, "Collection must exist to lower Seek", def.exists());
auto& typeSpec = def.getOptionsMap().at("type");
tassert(6624236, "SeekNode only supports mongod collections", typeSpec == "mongod");
NamespaceStringOrUUID nss = parseFromScanDef(def);
boost::optional<sbe::value::SlotId> seekRidSlot;
boost::optional<sbe::value::SlotId> rootSlot;
std::vector<std::string> fields;
sbe::value::SlotVector vars;
generateSlots(slotMap, n.getFieldProjectionMap(), seekRidSlot, rootSlot, fields, vars);
boost::optional<sbe::value::SlotId> seekKeySlot = slotMap.at(n.getRIDProjectionName());
sbe::ScanCallbacks callbacks({}, {}, {});
const PlanNodeId planNodeId = _nodeToGroupPropsMap.at(&n)._planNodeId;
return sbe::makeS<sbe::ScanStage>(nss.uuid().value(),
rootSlot,
seekRidSlot,
boost::none,
boost::none,
boost::none,
boost::none,
boost::none,
fields,
vars,
seekKeySlot,
true /*forward*/,
nullptr /*yieldPolicy*/,
planNodeId,
callbacks);
}
} // namespace mongo::optimizer
|