summaryrefslogtreecommitdiff
path: root/src/mongo/db/query/find.cpp
blob: f64f32d22af9ddd2f27c25794f77a0817c8b6877 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
/**
 *    Copyright (C) 2013-2014 MongoDB Inc.
 *
 *    This program is free software: you can redistribute it and/or  modify
 *    it under the terms of the GNU Affero General Public License, version 3,
 *    as published by the Free Software Foundation.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU Affero General Public License for more details.
 *
 *    You should have received a copy of the GNU Affero General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the GNU Affero General Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kQuery

#include "mongo/platform/basic.h"

#include "mongo/db/query/find.h"

#include <boost/scoped_ptr.hpp>

#include "mongo/client/dbclientinterface.h"
#include "mongo/db/clientcursor.h"
#include "mongo/db/commands.h"
#include "mongo/db/catalog/database_holder.h"
#include "mongo/db/exec/filter.h"
#include "mongo/db/exec/oplogstart.h"
#include "mongo/db/exec/working_set_common.h"
#include "mongo/db/global_environment_experiment.h"
#include "mongo/db/keypattern.h"
#include "mongo/db/query/explain.h"
#include "mongo/db/query/find_constants.h"
#include "mongo/db/query/get_executor.h"
#include "mongo/db/query/internal_plans.h"
#include "mongo/db/query/query_planner_params.h"
#include "mongo/db/repl/replication_coordinator_global.h"
#include "mongo/db/server_options.h"
#include "mongo/db/server_parameters.h"
#include "mongo/db/storage/oplog_hack.h"
#include "mongo/db/storage_options.h"
#include "mongo/db/catalog/collection.h"
#include "mongo/s/chunk_version.h"
#include "mongo/s/d_state.h"
#include "mongo/s/stale_exception.h"
#include "mongo/util/fail_point_service.h"
#include "mongo/util/log.h"
#include "mongo/util/mongoutils/str.h"

using boost::scoped_ptr;
using std::auto_ptr;
using std::endl;

namespace mongo {
    // The .h for this in find_constants.h.
    const int32_t MaxBytesToReturnToClientAtOnce = 4 * 1024 * 1024;
}  // namespace mongo

namespace {

    // TODO: Remove this or use it.
    bool hasIndexSpecifier(const mongo::LiteParsedQuery& pq) {
        return !pq.getHint().isEmpty() || !pq.getMin().isEmpty() || !pq.getMax().isEmpty();
    }

    bool enough(const mongo::LiteParsedQuery& pq, int n) {
        if (0 == pq.getNumToReturn()) { return false; }
        return n >= pq.getNumToReturn();
    }

    /**
     * Returns true if 'me' is a GTE or GE predicate over the "ts" field.
     * Such predicates can be used for the oplog start hack.
     */
    bool isOplogTsPred(const mongo::MatchExpression* me) {
        if (mongo::MatchExpression::GT != me->matchType()
            && mongo::MatchExpression::GTE != me->matchType()) {
            return false;
        }

        return mongoutils::str::equals(me->path().rawData(), "ts");
    }

    mongo::BSONElement extractOplogTsOptime(const mongo::MatchExpression* me) {
        invariant(isOplogTsPred(me));
        return static_cast<const mongo::ComparisonMatchExpression*>(me)->getData();
    }

}  // namespace

namespace mongo {

    // Failpoint for checking whether we've received a getmore.
    MONGO_FP_DECLARE(failReceivedGetmore);

    /**
     * If ntoreturn is zero, we stop generating additional results as soon as we have either 101
     * documents or at least 1MB of data. On subsequent getmores, there is no limit on the number
     * of results; we will stop as soon as we have at least 4 MB of data.  The idea is that on a
     * find() where one doesn't use much results, we don't return much, but once getmore kicks in,
     * we start pushing significant quantities.
     *
     * If ntoreturn is non-zero, the we stop building the first batch once we either have ntoreturn
     * results, or when the result set exceeds 4 MB.
     */
    bool enoughForFirstBatch(const LiteParsedQuery& pq, int numDocs, int bytesBuffered) {
        if (0 == pq.getNumToReturn()) {
            return (bytesBuffered > 1024 * 1024) || numDocs >= 101;
        }
        return numDocs >= pq.getNumToReturn() || bytesBuffered > MaxBytesToReturnToClientAtOnce;
    }

    bool shouldSaveCursor(OperationContext* txn,
                          const Collection* collection,
                          PlanExecutor::ExecState finalState,
                          PlanExecutor* exec) {
        if (PlanExecutor::FAILURE == finalState || PlanExecutor::DEAD == finalState) {
            return false;
        }

        const LiteParsedQuery& pq = exec->getCanonicalQuery()->getParsed();
        if (!pq.wantMore() && !pq.isTailable()) {
            return false;
        }

        if (pq.getNumToReturn() == 1) {
            return false;
        }

        // We keep a tailable cursor around unless the collection we're tailing has no
        // records.
        //
        // SERVER-13955: we should be able to create a tailable cursor that waits on
        // an empty collection. Right now we do not keep a cursor if the collection
        // has zero records.
        if (pq.isTailable()) {
            return collection && collection->numRecords(txn) != 0U;
        }

        return !exec->isEOF();
    }

    void beginQueryOp(const NamespaceString& nss,
                      const BSONObj& queryObj,
                      int ntoreturn,
                      int ntoskip,
                      CurOp* curop) {
        curop->debug().ns = nss.ns();
        curop->debug().query = queryObj;
        curop->debug().ntoreturn = ntoreturn;
        curop->debug().ntoskip = ntoskip;
        curop->setQuery(queryObj);
    }

    void endQueryOp(const AutoGetCollectionForRead& ctx,
                    PlanExecutor* exec,
                    int numResults,
                    CursorId cursorId,
                    CurOp* curop) {
        invariant(exec);
        invariant(curop);

        // Fill out basic curop query exec properties.
        curop->debug().nreturned = numResults;
        curop->debug().cursorid = (0 == cursorId ? -1 : cursorId);

        // Fill out curop based on explain summary statistics.
        PlanSummaryStats summaryStats;
        Explain::getSummaryStats(exec, &summaryStats);
        curop->debug().scanAndOrder = summaryStats.hasSortStage;
        curop->debug().nscanned = summaryStats.totalKeysExamined;
        curop->debug().nscannedObjects = summaryStats.totalDocsExamined;
        curop->debug().idhack = summaryStats.isIdhack;

        const int dbProfilingLevel = (ctx.getDb() != NULL) ? ctx.getDb()->getProfilingLevel() :
                                                             serverGlobalParams.defaultProfile;
        const logger::LogComponent queryLogComponent = logger::LogComponent::kQuery;
        const logger::LogSeverity logLevelOne = logger::LogSeverity::Debug(1);

        // Set debug information for consumption by the profiler and slow query log.
        if (dbProfilingLevel > 0
                || curop->elapsedMillis() > serverGlobalParams.slowMS
                || logger::globalLogDomain()->shouldLog(queryLogComponent, logLevelOne)) {
            // Generate plan summary string.
            curop->debug().planSummary = Explain::getPlanSummary(exec);
        }

        // Set debug information for consumption by the profiler only.
        if (dbProfilingLevel > 0) {
            // Get BSON stats.
            scoped_ptr<PlanStageStats> execStats(exec->getStats());
            BSONObjBuilder statsBob;
            Explain::statsToBSON(*execStats, &statsBob);
            curop->debug().execStats.set(statsBob.obj());

            // Replace exec stats with plan summary if stats cannot fit into CachedBSONObj.
            if (curop->debug().execStats.tooBig() && !curop->debug().planSummary.empty()) {
                BSONObjBuilder bob;
                bob.append("summary", curop->debug().planSummary.toString());
                curop->debug().execStats.set(bob.done());
            }
        }
    }

    // TODO: Move this and the other command stuff in runQuery outta here and up a level.
    static bool runCommands(OperationContext* txn,
                            const char *ns,
                            BSONObj& jsobj,
                            CurOp& curop,
                            BufBuilder &b,
                            BSONObjBuilder& anObjBuilder,
                            bool fromRepl,
                            int queryOptions) {
        try {
            return _runCommands(txn, ns, jsobj, b, anObjBuilder, fromRepl, queryOptions);
        }
        catch( SendStaleConfigException& ){
            throw;
        }
        catch ( AssertionException& e ) {
            verify( e.getCode() != SendStaleConfigCode && e.getCode() != RecvStaleConfigCode );

            Command::appendCommandStatus(anObjBuilder, e.toStatus());
            curop.debug().exceptionInfo = e.getInfo();
        }
        BSONObj x = anObjBuilder.done();
        b.appendBuf((void*) x.objdata(), x.objsize());
        return true;
    }

    struct ScopedRecoveryUnitSwapper {
        explicit ScopedRecoveryUnitSwapper(ClientCursor* cc, OperationContext* txn)
            : _cc(cc), _txn(txn) {

            // Save this for later.  We restore it upon destruction.
            _txn->recoveryUnit()->commitAndRestart();
            _txnPreviousRecoveryUnit = txn->releaseRecoveryUnit();

            // Transfer ownership of the RecoveryUnit from the ClientCursor to the OpCtx.
            RecoveryUnit* ccRecoveryUnit = cc->releaseOwnedRecoveryUnit();
            txn->setRecoveryUnit(ccRecoveryUnit);
        }

        ~ScopedRecoveryUnitSwapper() {
            _txn->recoveryUnit()->commitAndRestart();
            _cc->setOwnedRecoveryUnit(_txn->releaseRecoveryUnit());
            _txn->setRecoveryUnit(_txnPreviousRecoveryUnit);
        }

        ClientCursor* _cc;
        OperationContext* _txn;
        RecoveryUnit* _txnPreviousRecoveryUnit;
    };

    /**
     * Called by db/instance.cpp.  This is the getMore entry point.
     *
     * pass - when QueryOption_AwaitData is in use, the caller will make repeated calls 
     *        when this method returns an empty result, incrementing pass on each call.  
     *        Thus, pass == 0 indicates this is the first "attempt" before any 'awaiting'.
     */
    QueryResult::View getMore(OperationContext* txn,
                              const char* ns,
                              int ntoreturn,
                              long long cursorid,
                              CurOp& curop,
                              int pass,
                              bool& exhaust,
                              bool* isCursorAuthorized) {

        // For testing, we may want to fail if we receive a getmore.
        if (MONGO_FAIL_POINT(failReceivedGetmore)) {
            invariant(0);
        }

        exhaust = false;

        const NamespaceString nss(ns);

        // Depending on the type of cursor being operated on, we hold locks for the whole getMore,
        // or none of the getMore, or part of the getMore.  The three cases in detail:
        //
        // 1) Normal cursor: we lock with "ctx" and hold it for the whole getMore.
        // 2) Cursor owned by global cursor manager: we don't lock anything.  These cursors don't
        //    own any collection state.
        // 3) Agg cursor: we lock with "ctx", then release, then relock with "unpinDBLock" and
        //    "unpinCollLock".  This is because agg cursors handle locking internally (hence the
        //    release), but the pin and unpin of the cursor must occur under the collection lock.
        //    We don't use our AutoGetCollectionForRead "ctx" to relock, because
        //    AutoGetCollectionForRead checks the sharding version (and we want the relock for the
        //    unpin to succeed even if the sharding version has changed).
        //
        // Note that we declare our locks before our ClientCursorPin, in order to ensure that the
        // pin's destructor is called before the lock destructors (so that the unpin occurs under
        // the lock).
        boost::scoped_ptr<AutoGetCollectionForRead> ctx;
        boost::scoped_ptr<Lock::DBLock> unpinDBLock;
        boost::scoped_ptr<Lock::CollectionLock> unpinCollLock;

        CursorManager* cursorManager;
        CursorManager* globalCursorManager = CursorManager::getGlobalCursorManager();
        if (globalCursorManager->ownsCursorId(cursorid)) {
            cursorManager = globalCursorManager;
        }
        else {
            ctx.reset(new AutoGetCollectionForRead(txn, nss));
            Collection* collection = ctx->getCollection();
            uassert( 17356, "collection dropped between getMore calls", collection );
            cursorManager = collection->getCursorManager();
        }

        LOG(5) << "Running getMore, cursorid: " << cursorid << endl;

        // This checks to make sure the operation is allowed on a replicated node.  Since we are not
        // passing in a query object (necessary to check SlaveOK query option), the only state where
        // reads are allowed is PRIMARY (or master in master/slave).  This function uasserts if
        // reads are not okay.
        Status status = repl::getGlobalReplicationCoordinator()->checkCanServeReadsFor(
                txn,
                nss,
                true);
        uassertStatusOK(status);

        // A pin performs a CC lookup and if there is a CC, increments the CC's pin value so it
        // doesn't time out.  Also informs ClientCursor that there is somebody actively holding the
        // CC, so don't delete it.
        ClientCursorPin ccPin(cursorManager, cursorid);
        ClientCursor* cc = ccPin.c();

        // If we're not being called from DBDirectClient we want to associate the RecoveryUnit
        // used to create the execution machinery inside the cursor with our OperationContext.
        // If we throw or otherwise exit this method in a disorderly fashion, we must ensure
        // that further calls to getMore won't fail, and that the provided OperationContext
        // has a valid RecoveryUnit.  As such, we use RAII to accomplish this.
        //
        // This must be destroyed before the ClientCursor is destroyed.
        std::auto_ptr<ScopedRecoveryUnitSwapper> ruSwapper;

        // These are set in the QueryResult msg we return.
        int resultFlags = ResultFlag_AwaitCapable;

        int numResults = 0;
        int startingResult = 0;

        const int InitialBufSize =
            512 + sizeof(QueryResult::Value) + MaxBytesToReturnToClientAtOnce;

        BufBuilder bb(InitialBufSize);
        bb.skip(sizeof(QueryResult::Value));

        if (NULL == cc) {
            cursorid = 0;
            resultFlags = ResultFlag_CursorNotFound;
        }
        else {
            // Check for spoofing of the ns such that it does not match the one originally
            // there for the cursor.
            uassert(ErrorCodes::Unauthorized,
                    str::stream() << "Requested getMore on namespace " << ns << ", but cursor "
                                  << cursorid << " belongs to namespace " << cc->ns(),
                    ns == cc->ns());
            *isCursorAuthorized = true;

            // Restore the RecoveryUnit if we need to.
            if (txn->getClient()->isInDirectClient()) {
                if (cc->hasRecoveryUnit())
                    invariant(txn->recoveryUnit() == cc->getUnownedRecoveryUnit());
            }
            else {
                if (!cc->hasRecoveryUnit()) {
                    // Start using a new RecoveryUnit
                    cc->setOwnedRecoveryUnit(
                        getGlobalEnvironment()->getGlobalStorageEngine()->newRecoveryUnit());

                }
                // Swap RecoveryUnit(s) between the ClientCursor and OperationContext.
                ruSwapper.reset(new ScopedRecoveryUnitSwapper(cc, txn));
            }

            // Reset timeout timer on the cursor since the cursor is still in use.
            cc->setIdleTime(0);

            // TODO: fail point?

            // If the operation that spawned this cursor had a time limit set, apply leftover
            // time to this getmore.
            curop.setMaxTimeMicros(cc->getLeftoverMaxTimeMicros());
            txn->checkForInterrupt(); // May trigger maxTimeAlwaysTimeOut fail point.

            if (0 == pass) { 
                cc->updateSlaveLocation(txn, curop); 
            }

            if (cc->isAggCursor()) {
                // Agg cursors handle their own locking internally.
                ctx.reset(); // unlocks
            }

            CollectionMetadataPtr collMetadata = cc->getCollMetadata();

            // If we're replaying the oplog, we save the last time that we read.
            OpTime slaveReadTill;

            // What number result are we starting at?  Used to fill out the reply.
            startingResult = cc->pos();

            // What gives us results.
            PlanExecutor* exec = cc->getExecutor();
            const int queryOptions = cc->queryOptions();

            // Get results out of the executor.
            exec->restoreState(txn);

            BSONObj obj;
            PlanExecutor::ExecState state;
            while (PlanExecutor::ADVANCED == (state = exec->getNext(&obj, NULL))) {
                // Add result to output buffer.
                bb.appendBuf((void*)obj.objdata(), obj.objsize());

                // Count the result.
                ++numResults;

                // Possibly note slave's position in the oplog.
                if (queryOptions & QueryOption_OplogReplay) {
                    BSONElement e = obj["ts"];
                    if (Date == e.type() || Timestamp == e.type()) {
                        slaveReadTill = e._opTime();
                    }
                }

                if ((ntoreturn && numResults >= ntoreturn)
                    || bb.len() > MaxBytesToReturnToClientAtOnce) {
                    break;
                }
            }

            // We save the client cursor when there might be more results, and hence we may receive
            // another getmore. If we receive a EOF or an error, or 'exec' is dead, then we know
            // that we will not be producing more results. We indicate that the cursor is closed by
            // sending a cursorId of 0 back to the client.
            //
            // On the other hand, if we retrieve all results necessary for this batch, then
            // 'saveClientCursor' is true and we send a valid cursorId back to the client. In
            // this case, there may or may not actually be more results (for example, the next call
            // to getNext(...) might just return EOF).
            bool saveClientCursor = false;

            if (PlanExecutor::DEAD == state || PlanExecutor::FAILURE == state) {
                // Propagate this error to caller.
                if (PlanExecutor::FAILURE == state) {
                    scoped_ptr<PlanStageStats> stats(exec->getStats());
                    error() << "Plan executor error, stats: "
                            << Explain::statsToBSON(*stats);
                    uasserted(17406, "getMore executor error: " +
                              WorkingSetCommon::toStatusString(obj));
                }

                // If we're dead there's no way to get more results.
                saveClientCursor = false;

                // In the old system tailable capped cursors would be killed off at the
                // cursorid level.  If a tailable capped cursor is nuked the cursorid
                // would vanish.
                //
                // In the new system they die and are cleaned up later (or time out).
                // So this is where we get to remove the cursorid.
                if (0 == numResults) {
                    resultFlags = ResultFlag_CursorNotFound;
                }
            }
            else if (PlanExecutor::IS_EOF == state) {
                // EOF is also end of the line unless it's tailable.
                saveClientCursor = queryOptions & QueryOption_CursorTailable;
            }
            else {
                verify(PlanExecutor::ADVANCED == state);
                saveClientCursor = true;
            }

            // If we are operating on an aggregation cursor, then we dropped our collection lock
            // earlier and need to reacquire it in order to clean up our ClientCursorPin.
            //
            // TODO: We need to ensure that this relock happens if we release the pin above in
            // response to PlanExecutor::getNext() throwing an exception.
            if (cc->isAggCursor()) {
                invariant(NULL == ctx.get());
                unpinDBLock.reset(new Lock::DBLock(txn->lockState(), nss.db(), MODE_IS));
                unpinCollLock.reset(new Lock::CollectionLock(txn->lockState(), nss.ns(), MODE_IS));
            }

            // Our two possible ClientCursorPin cleanup paths are:
            // 1) If the cursor is not going to be saved, we call deleteUnderlying() on the pin.
            // 2) If the cursor is going to be saved, we simply let the pin go out of scope.  In
            //    this case, the pin's destructor will be invoked, which will call release() on the
            //    pin.  Because our ClientCursorPin is declared after our lock is declared, this
            //    will happen under the lock.
            if (!saveClientCursor) {
                ruSwapper.reset();
                ccPin.deleteUnderlying();
                // cc is now invalid, as is the executor
                cursorid = 0;
                cc = NULL;
                LOG(5) << "getMore NOT saving client cursor, ended with state "
                       << PlanExecutor::statestr(state)
                       << endl;
            }
            else {
                // Continue caching the ClientCursor.
                cc->incPos(numResults);
                exec->saveState();
                LOG(5) << "getMore saving client cursor ended with state "
                       << PlanExecutor::statestr(state)
                       << endl;

                if (PlanExecutor::IS_EOF == state && (queryOptions & QueryOption_CursorTailable)) {
                    if (!txn->getClient()->isInDirectClient()) {
                        // Don't stash the RU. Get a new one on the next getMore.
                        ruSwapper.reset();
                        delete cc->releaseOwnedRecoveryUnit();
                    }

                    if ((queryOptions & QueryOption_AwaitData)
                            && (numResults == 0)
                            && (pass < 1000)) {
                        // Bubble up to the AwaitData handling code in receivedGetMore which will
                        // try again.
                        return NULL;
                    }
                }

                // Possibly note slave's position in the oplog.
                if ((queryOptions & QueryOption_OplogReplay) && !slaveReadTill.isNull()) {
                    cc->slaveReadTill(slaveReadTill);
                }

                exhaust = (queryOptions & QueryOption_Exhaust);

                // If the getmore had a time limit, remaining time is "rolled over" back to the
                // cursor (for use by future getmore ops).
                cc->setLeftoverMaxTimeMicros( curop.getRemainingMaxTimeMicros() );
            }
        }

        QueryResult::View qr = bb.buf();
        qr.msgdata().setLen(bb.len());
        qr.msgdata().setOperation(opReply);
        qr.setResultFlags(resultFlags);
        qr.setCursorId(cursorid);
        qr.setStartingFrom(startingResult);
        qr.setNReturned(numResults);
        bb.decouple();
        LOG(5) << "getMore returned " << numResults << " results\n";
        return qr;
    }

    Status getOplogStartHack(OperationContext* txn,
                             Collection* collection,
                             CanonicalQuery* cq,
                             PlanExecutor** execOut) {
        invariant(cq);
        auto_ptr<CanonicalQuery> autoCq(cq);

        if ( collection == NULL )
            return Status(ErrorCodes::InternalError,
                          "getOplogStartHack called with a NULL collection" );

        // A query can only do oplog start finding if it has a top-level $gt or $gte predicate over
        // the "ts" field (the operation's timestamp). Find that predicate and pass it to
        // the OplogStart stage.
        MatchExpression* tsExpr = NULL;
        if (MatchExpression::AND == cq->root()->matchType()) {
            // The query has an AND at the top-level. See if any of the children
            // of the AND are $gt or $gte predicates over 'ts'.
            for (size_t i = 0; i < cq->root()->numChildren(); ++i) {
                MatchExpression* me = cq->root()->getChild(i);
                if (isOplogTsPred(me)) {
                    tsExpr = me;
                    break;
                }
            }
        }
        else if (isOplogTsPred(cq->root())) {
            // The root of the tree is a $gt or $gte predicate over 'ts'.
            tsExpr = cq->root();
        }

        if (NULL == tsExpr) {
            return Status(ErrorCodes::OplogOperationUnsupported,
                          "OplogReplay query does not contain top-level "
                          "$gt or $gte over the 'ts' field.");
        }

        boost::optional<RecordId> startLoc = boost::none;

        // See if the RecordStore supports the oplogStartHack
        const BSONElement tsElem = extractOplogTsOptime(tsExpr);
        if (tsElem.type() == Timestamp) {
            StatusWith<RecordId> goal = oploghack::keyForOptime(tsElem._opTime());
            if (goal.isOK()) {
                startLoc = collection->getRecordStore()->oplogStartHack(txn, goal.getValue());
            }
        }

        if (startLoc) {
            LOG(3) << "Using direct oplog seek";
        }
        else {
            LOG(3) << "Using OplogStart stage";

            // Fallback to trying the OplogStart stage.
            WorkingSet* oplogws = new WorkingSet();
            OplogStart* stage = new OplogStart(txn, collection, tsExpr, oplogws);
            PlanExecutor* rawExec;

            // Takes ownership of oplogws and stage.
            Status execStatus = PlanExecutor::make(txn, oplogws, stage, collection,
                                                   PlanExecutor::YIELD_AUTO, &rawExec);
            invariant(execStatus.isOK());
            scoped_ptr<PlanExecutor> exec(rawExec);

            // The stage returns a RecordId of where to start.
            startLoc = RecordId();
            PlanExecutor::ExecState state = exec->getNext(NULL, startLoc.get_ptr());

            // This is normal.  The start of the oplog is the beginning of the collection.
            if (PlanExecutor::IS_EOF == state) {
                return getExecutor(txn, collection, autoCq.release(), PlanExecutor::YIELD_AUTO,
                                   execOut);
            }

            // This is not normal.  An error was encountered.
            if (PlanExecutor::ADVANCED != state) {
                return Status(ErrorCodes::InternalError,
                              "quick oplog start location had error...?");
            }
        }

        // Build our collection scan...
        CollectionScanParams params;
        params.collection = collection;
        params.start = *startLoc;
        params.direction = CollectionScanParams::FORWARD;
        params.tailable = cq->getParsed().isTailable();

        WorkingSet* ws = new WorkingSet();
        CollectionScan* cs = new CollectionScan(txn, params, ws, cq->root());
        // Takes ownership of 'ws', 'cs', and 'cq'.
        return PlanExecutor::make(txn, ws, cs, autoCq.release(), collection,
                                  PlanExecutor::YIELD_AUTO, execOut);
    }

    std::string runQuery(OperationContext* txn,
                         Message& m,
                         QueryMessage& q,
                         const NamespaceString& nss,
                         CurOp& curop,
                         Message &result) {
        // Validate the namespace.
        uassert(16256, str::stream() << "Invalid ns [" << nss.ns() << "]", nss.isValid());

        // Set curop information.
        beginQueryOp(nss, q.query, q.ntoreturn, q.ntoskip, &curop);

        // If the query is really a command, run it.
        if (nss.isCommand()) {
            int nToReturn = q.ntoreturn;
            uassert(16979, str::stream() << "bad numberToReturn (" << nToReturn
                                         << ") for $cmd type ns - can only be 1 or -1",
                    nToReturn == 1 || nToReturn == -1);

            curop.markCommand();

            BufBuilder bb;
            bb.skip(sizeof(QueryResult::Value));

            BSONObjBuilder cmdResBuf;
            if (!runCommands(txn, q.ns, q.query, curop, bb, cmdResBuf, false, q.queryOptions)) {
                uasserted(13530, "bad or malformed command request?");
            }

            curop.debug().iscommand = true;
            // TODO: Does this get overwritten/do we really need to set this twice?
            curop.debug().query = q.query;

            QueryResult::View qr = bb.buf();
            bb.decouple();
            qr.setResultFlagsToOk();
            qr.msgdata().setLen(bb.len());
            curop.debug().responseLength = bb.len();
            qr.msgdata().setOperation(opReply);
            qr.setCursorId(0);
            qr.setStartingFrom(0);
            qr.setNReturned(1);
            result.setData(qr.view2ptr(), true);
            return "";
        }

        // Parse the qm into a CanonicalQuery.
        std::auto_ptr<CanonicalQuery> cq;
        {
            CanonicalQuery* cqRaw;
            Status canonStatus = CanonicalQuery::canonicalize(q,
                                                              &cqRaw,
                                                              WhereCallbackReal(txn, nss.db()));
            if (!canonStatus.isOK()) {
                uasserted(17287, str::stream() << "Can't canonicalize query: "
                                               << canonStatus.toString());
            }
            cq.reset(cqRaw);
        }
        invariant(cq.get());

        LOG(5) << "Running query:\n" << cq->toString();
        LOG(2) << "Running query: " << cq->toStringShort();

        // Parse, canonicalize, plan, transcribe, and get a plan executor.
        PlanExecutor* rawExec = NULL;

        AutoGetCollectionForRead ctx(txn, nss);
        Collection* collection = ctx.getCollection();

        // We'll now try to get the query executor that will execute this query for us. There
        // are a few cases in which we know upfront which executor we should get and, therefore,
        // we shortcut the selection process here.
        //
        // (a) If the query is over a collection that doesn't exist, we use an EOFStage.
        //
        // (b) if the query is a replication's initial sync one, we use a specifically designed
        // stage that skips extents faster (see details in exec/oplogstart.h).
        //
        // Otherwise we go through the selection of which executor is most suited to the
        // query + run-time context at hand.
        Status status = Status::OK();
        if (NULL != collection && cq->getParsed().isOplogReplay()) {
            status = getOplogStartHack(txn, collection, cq.release(), &rawExec);
        }
        else {
            size_t options = QueryPlannerParams::DEFAULT;
            if (shardingState.needCollectionMetadata(nss.ns())) {
                options |= QueryPlannerParams::INCLUDE_SHARD_FILTER;
            }
            status = getExecutor(txn, collection, cq.release(), PlanExecutor::YIELD_AUTO, &rawExec,
                                 options);
        }
        invariant(cq.get() == NULL); // cq has been released above.

        if (!status.isOK()) {
            uasserted(17007, "Unable to execute query: " + status.reason());
        }

        verify(NULL != rawExec);
        auto_ptr<PlanExecutor> exec(rawExec);

        const LiteParsedQuery& pq = exec->getCanonicalQuery()->getParsed();

        // If it's actually an explain, do the explain and return rather than falling through
        // to the normal query execution loop.
        if (pq.isExplain()) {
            BufBuilder bb;
            bb.skip(sizeof(QueryResult::Value));

            BSONObjBuilder explainBob;
            Explain::explainStages(exec.get(), ExplainCommon::EXEC_ALL_PLANS, &explainBob);

            // Add the resulting object to the return buffer.
            BSONObj explainObj = explainBob.obj();
            bb.appendBuf((void*)explainObj.objdata(), explainObj.objsize());

            // TODO: Does this get overwritten/do we really need to set this twice?
            curop.debug().query = q.query;

            // Set query result fields.
            QueryResult::View qr = bb.buf();
            bb.decouple();
            qr.setResultFlagsToOk();
            qr.msgdata().setLen(bb.len());
            curop.debug().responseLength = bb.len();
            qr.msgdata().setOperation(opReply);
            qr.setCursorId(0);
            qr.setStartingFrom(0);
            qr.setNReturned(1);
            result.setData(qr.view2ptr(), true);
            return "";
        }

        // We freak out later if this changes before we're done with the query.
        const ChunkVersion shardingVersionAtStart = shardingState.getVersion(nss.ns());

        // Handle query option $maxTimeMS (not used with commands).
        curop.setMaxTimeMicros(static_cast<unsigned long long>(pq.getMaxTimeMS()) * 1000);
        txn->checkForInterrupt(); // May trigger maxTimeAlwaysTimeOut fail point.

        // uassert if we are not on a primary, and not a secondary with SlaveOk query parameter set.
        bool slaveOK = pq.isSlaveOk() || pq.hasReadPref();
        status = repl::getGlobalReplicationCoordinator()->checkCanServeReadsFor(
                txn,
                nss,
                slaveOK);
        uassertStatusOK(status);

        // If this exists, the collection is sharded.
        // If it doesn't exist, we can assume we're not sharded.
        // If we're sharded, we might encounter data that is not consistent with our sharding state.
        // We must ignore this data.
        CollectionMetadataPtr collMetadata;
        if (!shardingState.needCollectionMetadata(nss.ns())) {
            collMetadata = CollectionMetadataPtr();
        }
        else {
            collMetadata = shardingState.getCollectionMetadata(nss.ns());
        }

        // Run the query.
        // bb is used to hold query results
        // this buffer should contain either requested documents per query or
        // explain information, but not both
        BufBuilder bb(32768);
        bb.skip(sizeof(QueryResult::Value));

        // How many results have we obtained from the executor?
        int numResults = 0;

        // If we're replaying the oplog, we save the last time that we read.
        OpTime slaveReadTill;

        BSONObj obj;
        PlanExecutor::ExecState state;
        // uint64_t numMisplacedDocs = 0;

        // Get summary info about which plan the executor is using.
        curop.debug().planSummary = Explain::getPlanSummary(exec.get());

        while (PlanExecutor::ADVANCED == (state = exec->getNext(&obj, NULL))) {
            // Add result to output buffer.
            bb.appendBuf((void*)obj.objdata(), obj.objsize());

            // Count the result.
            ++numResults;

            // Possibly note slave's position in the oplog.
            if (pq.isOplogReplay()) {
                BSONElement e = obj["ts"];
                if (Date == e.type() || Timestamp == e.type()) {
                    slaveReadTill = e._opTime();
                }
            }

            if (enoughForFirstBatch(pq, numResults, bb.len())) {
                LOG(5) << "Enough for first batch, wantMore=" << pq.wantMore()
                       << " numToReturn=" << pq.getNumToReturn()
                       << " numResults=" << numResults
                       << endl;
                break;
            }
        }

        // If we cache the executor later, we want to deregister it as it receives notifications
        // anyway by virtue of being cached.
        //
        // If we don't cache the executor later, we are deleting it, so it must be deregistered.
        //
        // So, no matter what, deregister the executor.
        exec->deregisterExec();

        // Caller expects exceptions thrown in certain cases.
        if (PlanExecutor::FAILURE == state) {
            scoped_ptr<PlanStageStats> stats(exec->getStats());
            error() << "Plan executor error, stats: "
                    << Explain::statsToBSON(*stats);
            uasserted(17144, "Executor error: " + WorkingSetCommon::toStatusString(obj));
        }

        // TODO(greg): This will go away soon.
        if (!shardingState.getVersion(nss.ns()).isWriteCompatibleWith(shardingVersionAtStart)) {
            // if the version changed during the query we might be missing some data and its safe to
            // send this as mongos can resend at this point
            throw SendStaleConfigException(nss.ns(), "version changed during initial query",
                                           shardingVersionAtStart,
                                           shardingState.getVersion(nss.ns()));
        }

        // Fill out curop based on query results. If we have a cursorid, we will fill out curop with
        // this cursorid later.
        long long ccId = 0;
        endQueryOp(ctx, exec.get(), numResults, ccId, &curop);

        if (shouldSaveCursor(txn, collection, state, exec.get())) {
            // We won't use the executor until it's getMore'd.
            exec->saveState();

            // Allocate a new ClientCursor.  We don't have to worry about leaking it as it's
            // inserted into a global map by its ctor.
            ClientCursor* cc = new ClientCursor(collection->getCursorManager(),
                                                exec.release(),
                                                nss.ns(),
                                                pq.getOptions(),
                                                pq.getFilter());
            ccId = cc->cursorid();

            if (txn->getClient()->isInDirectClient()) {
                cc->setUnownedRecoveryUnit(txn->recoveryUnit());
            }
            else if (state == PlanExecutor::IS_EOF && pq.isTailable()) {
                // Don't stash the RU for tailable cursors at EOF, let them get a new RU on their
                // next getMore.
            }
            else {
                // We stash away the RecoveryUnit in the ClientCursor.  It's used for subsequent
                // getMore requests.  The calling OpCtx gets a fresh RecoveryUnit.
                txn->recoveryUnit()->commitAndRestart();
                cc->setOwnedRecoveryUnit(txn->releaseRecoveryUnit());
                StorageEngine* storageEngine = getGlobalEnvironment()->getGlobalStorageEngine();
                txn->setRecoveryUnit(storageEngine->newRecoveryUnit());
            }

            LOG(5) << "caching executor with cursorid " << ccId
                   << " after returning " << numResults << " results" << endl;

            // TODO document
            if (pq.isOplogReplay() && !slaveReadTill.isNull()) {
                cc->slaveReadTill(slaveReadTill);
            }

            // TODO document
            if (pq.isExhaust()) {
                curop.debug().exhaust = true;
            }

            // Set attributes for getMore.
            cc->setCollMetadata(collMetadata);
            cc->setPos(numResults);

            // If the query had a time limit, remaining time is "rolled over" to the cursor (for
            // use by future getmore ops).
            cc->setLeftoverMaxTimeMicros(curop.getRemainingMaxTimeMicros());
        }
        else {
            LOG(5) << "Not caching executor but returning " << numResults << " results.\n";
        }

        // Add the results from the query into the output buffer.
        result.appendData(bb.buf(), bb.len());
        bb.decouple();

        // Fill out the output buffer's header.
        QueryResult::View qr = result.header().view2ptr();
        qr.setCursorId(ccId);
        curop.debug().cursorid = (0 == ccId ? -1 : ccId);
        qr.setResultFlagsToOk();
        qr.msgdata().setOperation(opReply);
        qr.setStartingFrom(0);
        qr.setNReturned(numResults);

        // curop.debug().exhaust is set above.
        return curop.debug().exhaust ? nss.ns() : "";
    }

}  // namespace mongo