summaryrefslogtreecommitdiff
path: root/src/mongo/db/query/optimizer/algebra/operator.h
blob: dede8effa6cf19f19b6c56e8afd4c564328937d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
/**
 *    Copyright (C) 2022-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#pragma once

#include <cstddef>
#include <utility>
#include <vector>

namespace mongo::optimizer {
namespace algebra {

/**
 * Concrete storage for 'S' items of type 'T'. This class is an alias for a static array, useful in
 * a tree representation to store a node's children.
 */
template <typename T, int S>
struct OpNodeStorage {
    template <typename... Ts>
    OpNodeStorage(Ts&&... vals) : _nodes{std::forward<Ts>(vals)...} {}

protected:
    T _nodes[S];
};

/**
 * Stub for nodes with no children.
 */
template <typename T>
struct OpNodeStorage<T, 0> {};

/**
 * Nodes which have a fixed arity (number of children) should derive from this class. The 'Slot'
 * determines the generic type to hold for each child.
 */
template <typename Slot, int Arity>
class OpFixedArity : public OpNodeStorage<Slot, Arity> {
    using Base = OpNodeStorage<Slot, Arity>;

public:
    template <typename... Ts>
    requires(sizeof...(Ts) == Arity) OpFixedArity(Ts&&... vals)
        : Base({std::forward<Ts>(vals)...}) {}

    template <int I>
    requires(I >= 0 && I < Arity) auto& get() noexcept {
        return this->_nodes[I];
    }

    template <int I>
    requires(I >= 0 && I < Arity) const auto& get() const noexcept {
        return this->_nodes[I];
    }
};

/**
 * Nodes which have dynamic arity with an optional minimum number of children.
 */
template <typename Slot, int Arity>
class OpDynamicArity : public OpFixedArity<Slot, Arity> {
    using Base = OpFixedArity<Slot, Arity>;

    std::vector<Slot> _dyNodes;

public:
    template <typename... Ts>
    OpDynamicArity(std::vector<Slot>&& nodes, Ts&&... vals)
        : Base({std::forward<Ts>(vals)...}), _dyNodes(std::move(nodes)) {}

    auto& nodes() {
        return _dyNodes;
    }
    const auto& nodes() const {
        return _dyNodes;
    }
};

/**
 * Semantic transport interface.
 */
namespace detail {
template <typename D, typename T, typename... Args>
using call_prepare_t =
    decltype(std::declval<D>().prepare(std::declval<T&>(), std::declval<Args>()...));

template <typename N, typename D, typename T, typename... Args>
using call_prepare_slot_t = decltype(std::declval<D>().prepare(
    std::declval<N&>(), std::declval<T&>(), std::declval<Args>()...));

template <typename Void, template <class...> class Op, class... Args>
struct has_prepare : std::false_type {};

template <template <class...> class Op, class... Args>
struct has_prepare<std::void_t<Op<Args...>>, Op, Args...> : std::true_type {};

template <bool withSlot, typename N, typename D, typename T, typename... Args>
inline constexpr auto has_prepare_v =
    std::conditional_t<withSlot,
                       has_prepare<void, call_prepare_slot_t, N, D, T, Args...>,
                       has_prepare<void, call_prepare_t, D, T, Args...>>::value;

template <typename Slot, int Arity>
inline constexpr int get_arity(const OpFixedArity<Slot, Arity>*) {
    return Arity;
}

template <typename Slot, int Arity>
inline constexpr bool is_dynamic(const OpFixedArity<Slot, Arity>*) {
    return false;
}

template <typename Slot, int Arity>
inline constexpr bool is_dynamic(const OpDynamicArity<Slot, Arity>*) {
    return true;
}

template <typename T>
using OpConcreteType = typename std::remove_reference_t<T>::template get_t<0>;

}  // namespace detail

/**
 * A transporter is similar to a tree walker that utilizes knowledge of the underlying Operator
 * types to visit each node of an Operator tree in a bottom-up fashion. The Domain class
 * 'D' is used as a callback mechanism by matching the relevant 'transport' overload with
 * the particular node type and children results.
 *
 * The caller may optionally supply 'withSlot' to include a reference to the base PolyValue type as
 * a first argument to the transport callbacks.
 */
template <typename D, bool withSlot>
class OpTransporter {
    D& _domain;

    template <typename T, bool B, typename... Args>
    struct Deducer {};
    template <typename T, typename... Args>
    struct Deducer<T, true, Args...> {
        using type =
            decltype(std::declval<D>().transport(std::declval<T>(),
                                                 std::declval<detail::OpConcreteType<T>&>(),
                                                 std::declval<Args>()...));
    };
    template <typename T, typename... Args>
    struct Deducer<T, false, Args...> {
        using type = decltype(std::declval<D>().transport(
            std::declval<detail::OpConcreteType<T>&>(), std::declval<Args>()...));
    };
    template <typename T, typename... Args>
    using deduced_t = typename Deducer<T, withSlot, Args...>::type;

    template <typename N, typename T, typename... Ts>
    auto transformStep(N&& slot, T&& op, Ts&&... args) {
        if constexpr (withSlot) {
            return _domain.transport(
                std::forward<N>(slot), std::forward<T>(op), std::forward<Ts>(args)...);
        } else {
            return _domain.transport(std::forward<T>(op), std::forward<Ts>(args)...);
        }
    }

    template <typename N, typename T, typename... Args, size_t... I>
    auto transportUnpack(N&& slot, T&& op, std::index_sequence<I...>, Args&&... args) {
        return transformStep(std::forward<N>(slot),
                             std::forward<T>(op),
                             std::forward<Args>(args)...,
                             op.template get<I>().visit(*this, std::forward<Args>(args)...)...);
    }
    template <typename N, typename T, typename... Args, size_t... I>
    auto transportDynamicUnpack(N&& slot, T&& op, std::index_sequence<I...>, Args&&... args) {
        std::vector<decltype(slot.visit(*this, std::forward<Args>(args)...))> v;
        for (auto& node : op.nodes()) {
            v.emplace_back(node.visit(*this, std::forward<Args>(args)...));
        }
        return transformStep(std::forward<N>(slot),
                             std::forward<T>(op),
                             std::forward<Args>(args)...,
                             std::move(v),
                             op.template get<I>().visit(*this, std::forward<Args>(args)...)...);
    }
    template <typename N, typename T, typename... Args, size_t... I>
    void transportUnpackVoid(N&& slot, T&& op, std::index_sequence<I...>, Args&&... args) {
        (op.template get<I>().visit(*this, std::forward<Args>(args)...), ...);
        return transformStep(std::forward<N>(slot),
                             std::forward<T>(op),
                             std::forward<Args>(args)...,
                             op.template get<I>()...);
    }
    template <typename N, typename T, typename... Args, size_t... I>
    void transportDynamicUnpackVoid(N&& slot, T&& op, std::index_sequence<I...>, Args&&... args) {
        for (auto& node : op.nodes()) {
            node.visit(*this, std::forward<Args>(args)...);
        }
        (op.template get<I>().visit(*this, std::forward<Args>(args)...), ...);
        return transformStep(std::forward<N>(slot),
                             std::forward<T>(op),
                             std::forward<Args>(args)...,
                             op.nodes(),
                             op.template get<I>()...);
    }

public:
    OpTransporter(D& domain) : _domain(domain) {}

    template <typename N, typename T, typename... Args, typename R = deduced_t<N, Args...>>
    R operator()(N&& slot, T&& op, Args&&... args) {
        // N is either `PolyValue<Ts...>&` or `const PolyValue<Ts...>&` i.e. reference
        // T is either `A&` or `const A&` where A is one of Ts
        using type = std::remove_reference_t<T>;

        constexpr int arity = detail::get_arity(static_cast<type*>(nullptr));
        constexpr bool is_dynamic = detail::is_dynamic(static_cast<type*>(nullptr));

        if constexpr (detail::has_prepare_v<withSlot, N, D, type, Args...>) {
            if constexpr (withSlot) {
                _domain.prepare(
                    std::forward<N>(slot), std::forward<T>(op), std::forward<Args>(args)...);
            } else {
                _domain.prepare(std::forward<T>(op), std::forward<Args>(args)...);
            }
        }

        if constexpr (is_dynamic) {
            if constexpr (std::is_same_v<R, void>) {
                return transportDynamicUnpackVoid(std::forward<N>(slot),
                                                  std::forward<T>(op),
                                                  std::make_index_sequence<arity>{},
                                                  std::forward<Args>(args)...);
            } else {
                return transportDynamicUnpack(std::forward<N>(slot),
                                              std::forward<T>(op),
                                              std::make_index_sequence<arity>{},
                                              std::forward<Args>(args)...);
            }
        } else {
            if constexpr (std::is_same_v<R, void>) {
                return transportUnpackVoid(std::forward<N>(slot),
                                           std::forward<T>(op),
                                           std::make_index_sequence<arity>{},
                                           std::forward<Args>(args)...);
            } else {
                return transportUnpack(std::forward<N>(slot),
                                       std::forward<T>(op),
                                       std::make_index_sequence<arity>{},
                                       std::forward<Args>(args)...);
            }
        }
    }
};

/**
 * Walker for the Operator* types. Accepts a domain 'D' of 'walk' callback overloads.
 *
 * The caller may optionally supply 'withSlot' to include a reference to base PolyValue as a first
 * argument to the walk callbacks.
 */
template <typename D, bool withSlot>
class OpWalker {
    D& _domain;

    template <typename N, typename T, typename... Ts>
    auto walkStep(N&& slot, T&& op, Ts&&... args) {
        if constexpr (withSlot) {
            return _domain.walk(
                std::forward<N>(slot), std::forward<T>(op), std::forward<Ts>(args)...);
        } else {
            return _domain.walk(std::forward<T>(op), std::forward<Ts>(args)...);
        }
    }

    template <typename N, typename T, typename... Args, size_t... I>
    auto walkUnpack(N&& slot, T&& op, std::index_sequence<I...>, Args&&... args) {
        return walkStep(std::forward<N>(slot),
                        std::forward<T>(op),
                        std::forward<Args>(args)...,
                        op.template get<I>()...);
    }
    template <typename N, typename T, typename... Args, size_t... I>
    auto walkDynamicUnpack(N&& slot, T&& op, std::index_sequence<I...>, Args&&... args) {
        return walkStep(std::forward<N>(slot),
                        std::forward<T>(op),
                        std::forward<Args>(args)...,
                        op.nodes(),
                        op.template get<I>()...);
    }

public:
    OpWalker(D& domain) : _domain(domain) {}

    template <typename N, typename T, typename... Args>
    auto operator()(N&& slot, T&& op, Args&&... args) {
        // N is either `PolyValue<Ts...>&` or `const PolyValue<Ts...>&` i.e. reference
        // T is either `A&` or `const A&` where A is one of Ts
        using type = std::remove_reference_t<T>;

        constexpr int arity = detail::get_arity(static_cast<type*>(nullptr));
        constexpr bool is_dynamic = detail::is_dynamic(static_cast<type*>(nullptr));

        if constexpr (is_dynamic) {
            return walkDynamicUnpack(std::forward<N>(slot),
                                     std::forward<T>(op),
                                     std::make_index_sequence<arity>{},
                                     std::forward<Args>(args)...);
        } else {
            return walkUnpack(std::forward<N>(slot),
                              std::forward<T>(op),
                              std::make_index_sequence<arity>{},
                              std::forward<Args>(args)...);
        }
    }
};

/**
 * Post-order traversal over the tree given by 'node', with domain D of 'transport' callbacks for
 * each node type. The domain may optionally contain 'prepare' method overloads to pre-visit a node
 * before traversing its children.
 *
 * This method also allows propagating results from the traversal implicitly via the return type of
 * the methods in D. For instance, to return an integer after traversal and a node which has two
 * children, the signature would look something like this:
 *
 *      int transport(const NodeType&, int childResult0, int childResult1)
 *
 * This method guarantees depth-first, left-to-right order.
 */
template <bool withSlot = false, typename D, typename N, typename... Args>
auto transport(N&& node, D& domain, Args&&... args) {
    return node.visit(OpTransporter<D, withSlot>{domain}, std::forward<Args>(args)...);
}

/**
 * Visits 'node' by invoking the appropriate 'walk' overload in domain D. The 'walk' methods should
 * accept the node as the first argument and its children as subsequent arguments with generic type
 * N.
 *
 * Note that this method does not actually traverse the tree given in 'node'; the caller is
 * responsible for manually walking.
 */
template <bool withSlot = false, typename D, typename N, typename... Args>
auto walk(N&& node, D& domain, Args&&... args) {
    return node.visit(OpWalker<D, withSlot>{domain}, std::forward<Args>(args)...);
}

}  // namespace algebra
}  // namespace mongo::optimizer