summaryrefslogtreecommitdiff
path: root/src/mongo/db/query/plan_executor_impl.cpp
blob: 2f2a6bbc19207679096e9ec5efd972456e04cc7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOGV2_DEFAULT_COMPONENT ::mongo::logv2::LogComponent::kQuery

#include "mongo/platform/basic.h"

#include "mongo/db/query/plan_executor_impl.h"

#include <memory>

#include "mongo/bson/simple_bsonobj_comparator.h"
#include "mongo/db/catalog/collection.h"
#include "mongo/db/catalog/database.h"
#include "mongo/db/catalog/database_holder.h"
#include "mongo/db/concurrency/write_conflict_exception.h"
#include "mongo/db/curop.h"
#include "mongo/db/exec/cached_plan.h"
#include "mongo/db/exec/change_stream_proxy.h"
#include "mongo/db/exec/collection_scan.h"
#include "mongo/db/exec/multi_plan.h"
#include "mongo/db/exec/plan_stage.h"
#include "mongo/db/exec/plan_stats.h"
#include "mongo/db/exec/subplan.h"
#include "mongo/db/exec/trial_stage.h"
#include "mongo/db/exec/working_set.h"
#include "mongo/db/exec/working_set_common.h"
#include "mongo/db/query/find_common.h"
#include "mongo/db/query/mock_yield_policies.h"
#include "mongo/db/query/plan_yield_policy_impl.h"
#include "mongo/db/repl/replication_coordinator.h"
#include "mongo/db/service_context.h"
#include "mongo/logv2/log.h"
#include "mongo/util/fail_point.h"
#include "mongo/util/scopeguard.h"
#include "mongo/util/stacktrace.h"

namespace mongo {

using std::shared_ptr;
using std::string;
using std::unique_ptr;
using std::vector;

const OperationContext::Decoration<repl::OpTime> clientsLastKnownCommittedOpTime =
    OperationContext::declareDecoration<repl::OpTime>();

struct CappedInsertNotifierData {
    shared_ptr<CappedInsertNotifier> notifier;
    uint64_t lastEOFVersion = ~0;
};

namespace {

MONGO_FAIL_POINT_DEFINE(planExecutorAlwaysFails);
MONGO_FAIL_POINT_DEFINE(planExecutorHangBeforeShouldWaitForInserts);
MONGO_FAIL_POINT_DEFINE(planExecutorHangWhileYieldedInWaitForInserts);

/**
 * Constructs a PlanYieldPolicy based on 'policy'.
 */
std::unique_ptr<PlanYieldPolicy> makeYieldPolicy(PlanExecutor* exec,
                                                 PlanYieldPolicy::YieldPolicy policy) {
    switch (policy) {
        case PlanYieldPolicy::YieldPolicy::YIELD_AUTO:
        case PlanYieldPolicy::YieldPolicy::YIELD_MANUAL:
        case PlanYieldPolicy::YieldPolicy::NO_YIELD:
        case PlanYieldPolicy::YieldPolicy::WRITE_CONFLICT_RETRY_ONLY:
        case PlanYieldPolicy::YieldPolicy::INTERRUPT_ONLY: {
            return std::make_unique<PlanYieldPolicyImpl>(exec, policy);
        }
        case PlanYieldPolicy::YieldPolicy::ALWAYS_TIME_OUT: {
            return std::make_unique<AlwaysTimeOutYieldPolicy>(exec);
        }
        case PlanYieldPolicy::YieldPolicy::ALWAYS_MARK_KILLED: {
            return std::make_unique<AlwaysPlanKilledYieldPolicy>(exec);
        }
        default:
            MONGO_UNREACHABLE;
    }
}

/**
 * Retrieves the first stage of a given type from the plan tree, or NULL
 * if no such stage is found.
 */
PlanStage* getStageByType(PlanStage* root, StageType type) {
    if (root->stageType() == type) {
        return root;
    }

    const auto& children = root->getChildren();
    for (size_t i = 0; i < children.size(); i++) {
        PlanStage* result = getStageByType(children[i].get(), type);
        if (result) {
            return result;
        }
    }

    return nullptr;
}
}  // namespace

StatusWith<unique_ptr<PlanExecutor, PlanExecutor::Deleter>> PlanExecutor::make(
    std::unique_ptr<CanonicalQuery> cq,
    std::unique_ptr<WorkingSet> ws,
    std::unique_ptr<PlanStage> rt,
    const Collection* collection,
    PlanYieldPolicy::YieldPolicy yieldPolicy,
    NamespaceString nss,
    std::unique_ptr<QuerySolution> qs) {
    auto expCtx = cq->getExpCtx();
    return PlanExecutorImpl::make(expCtx->opCtx,
                                  std::move(ws),
                                  std::move(rt),
                                  std::move(qs),
                                  std::move(cq),
                                  expCtx,
                                  collection,
                                  nss,
                                  yieldPolicy);
}

StatusWith<unique_ptr<PlanExecutor, PlanExecutor::Deleter>> PlanExecutor::make(
    const boost::intrusive_ptr<ExpressionContext>& expCtx,
    std::unique_ptr<WorkingSet> ws,
    std::unique_ptr<PlanStage> rt,
    const Collection* collection,
    PlanYieldPolicy::YieldPolicy yieldPolicy,
    NamespaceString nss,
    std::unique_ptr<QuerySolution> qs) {
    return PlanExecutorImpl::make(expCtx->opCtx,
                                  std::move(ws),
                                  std::move(rt),
                                  std::move(qs),
                                  nullptr,
                                  expCtx,
                                  collection,
                                  nss,
                                  yieldPolicy);
}

StatusWith<unique_ptr<PlanExecutor, PlanExecutor::Deleter>> PlanExecutorImpl::make(
    OperationContext* opCtx,
    unique_ptr<WorkingSet> ws,
    unique_ptr<PlanStage> rt,
    unique_ptr<QuerySolution> qs,
    unique_ptr<CanonicalQuery> cq,
    const boost::intrusive_ptr<ExpressionContext>& expCtx,
    const Collection* collection,
    NamespaceString nss,
    PlanYieldPolicy::YieldPolicy yieldPolicy) {

    auto execImpl = new PlanExecutorImpl(opCtx,
                                         std::move(ws),
                                         std::move(rt),
                                         std::move(qs),
                                         std::move(cq),
                                         expCtx,
                                         collection,
                                         std::move(nss),
                                         yieldPolicy);
    PlanExecutor::Deleter planDeleter(opCtx);
    std::unique_ptr<PlanExecutor, PlanExecutor::Deleter> exec(execImpl, std::move(planDeleter));

    // Perform plan selection, if necessary.
    Status status = execImpl->_pickBestPlan();
    if (!status.isOK()) {
        return status;
    }

    return std::move(exec);
}

PlanExecutorImpl::PlanExecutorImpl(OperationContext* opCtx,
                                   unique_ptr<WorkingSet> ws,
                                   unique_ptr<PlanStage> rt,
                                   unique_ptr<QuerySolution> qs,
                                   unique_ptr<CanonicalQuery> cq,
                                   const boost::intrusive_ptr<ExpressionContext>& expCtx,
                                   const Collection* collection,
                                   NamespaceString nss,
                                   PlanYieldPolicy::YieldPolicy yieldPolicy)
    : _opCtx(opCtx),
      _cq(std::move(cq)),
      _expCtx(_cq ? _cq->getExpCtx() : expCtx),
      _workingSet(std::move(ws)),
      _qs(std::move(qs)),
      _root(std::move(rt)),
      _nss(std::move(nss)),
      // There's no point in yielding if the collection doesn't exist.
      _yieldPolicy(makeYieldPolicy(
          this, collection ? yieldPolicy : PlanYieldPolicy::YieldPolicy::NO_YIELD)) {
    invariant(!_expCtx || _expCtx->opCtx == _opCtx);
    invariant(!_cq || !_expCtx || _cq->getExpCtx() == _expCtx);

    // Both ChangeStreamProxy and CollectionScan stages can provide oplog tracking info, such as
    // post batch resume token, or latest oplog timestamp. If either of these two stages is present
    // in the execution tree, then cache it for fast retrieval of the oplog info, avoiding the need
    // traverse the tree in runtime.
    if (auto changeStreamProxy = getStageByType(_root.get(), STAGE_CHANGE_STREAM_PROXY)) {
        _oplogTrackingStage = static_cast<ChangeStreamProxyStage*>(changeStreamProxy);
    } else if (auto collectionScan = getStageByType(_root.get(), STAGE_COLLSCAN)) {
        _oplogTrackingStage = static_cast<CollectionScan*>(collectionScan);
    }

    // We may still need to initialize _nss from either collection or _cq.
    if (!_nss.isEmpty()) {
        return;  // We already have an _nss set, so there's nothing more to do.
    }

    if (collection) {
        _nss = collection->ns();
    } else {
        invariant(_cq);
        _nss = _cq->getQueryRequest().nss();
    }
}

Status PlanExecutorImpl::_pickBestPlan() {
    invariant(_currentState == kUsable);

    // First check if we need to do subplanning.
    PlanStage* foundStage = getStageByType(_root.get(), STAGE_SUBPLAN);
    if (foundStage) {
        SubplanStage* subplan = static_cast<SubplanStage*>(foundStage);
        return subplan->pickBestPlan(_yieldPolicy.get());
    }

    // If we didn't have to do subplanning, we might still have to do regular
    // multi plan selection...
    foundStage = getStageByType(_root.get(), STAGE_MULTI_PLAN);
    if (foundStage) {
        MultiPlanStage* mps = static_cast<MultiPlanStage*>(foundStage);
        return mps->pickBestPlan(_yieldPolicy.get());
    }

    // ...or, we might have to run a plan from the cache for a trial period, falling back on
    // regular planning if the cached plan performs poorly.
    foundStage = getStageByType(_root.get(), STAGE_CACHED_PLAN);
    if (foundStage) {
        CachedPlanStage* cachedPlan = static_cast<CachedPlanStage*>(foundStage);
        return cachedPlan->pickBestPlan(_yieldPolicy.get());
    }

    // Finally, we might have an explicit TrialPhase. This specifies exactly two candidate plans,
    // one of which is to be evaluated. If it fails the trial, then the backup plan is adopted.
    foundStage = getStageByType(_root.get(), STAGE_TRIAL);
    if (foundStage) {
        TrialStage* trialStage = static_cast<TrialStage*>(foundStage);
        return trialStage->pickBestPlan(_yieldPolicy.get());
    }

    // Either we chose a plan, or no plan selection was required. In both cases,
    // our work has been successfully completed.
    return Status::OK();
}

PlanExecutorImpl::~PlanExecutorImpl() {
    invariant(_currentState == kDisposed);
}

std::string PlanExecutor::statestr(ExecState execState) {
    switch (execState) {
        case PlanExecutor::ADVANCED:
            return "ADVANCED";
        case PlanExecutor::IS_EOF:
            return "IS_EOF";
    }
    MONGO_UNREACHABLE;
}

WorkingSet* PlanExecutorImpl::getWorkingSet() const {
    return _workingSet.get();
}

PlanStage* PlanExecutorImpl::getRootStage() const {
    return _root.get();
}

CanonicalQuery* PlanExecutorImpl::getCanonicalQuery() const {
    return _cq.get();
}

const NamespaceString& PlanExecutorImpl::nss() const {
    return _nss;
}

OperationContext* PlanExecutorImpl::getOpCtx() const {
    return _opCtx;
}

const boost::intrusive_ptr<ExpressionContext>& PlanExecutorImpl::getExpCtx() const {
    return _expCtx;
}

void PlanExecutorImpl::saveState() {
    invariant(_currentState == kUsable || _currentState == kSaved);

    if (!isMarkedAsKilled()) {
        _root->saveState();
    }
    _currentState = kSaved;
}

void PlanExecutorImpl::restoreState() {
    try {
        restoreStateWithoutRetrying();
    } catch (const WriteConflictException&) {
        if (!_yieldPolicy->canAutoYield())
            throw;

        // Handles retries by calling restoreStateWithoutRetrying() in a loop.
        uassertStatusOK(_yieldPolicy->yieldOrInterrupt(getOpCtx()));
    }
}

void PlanExecutorImpl::restoreStateWithoutRetrying() {
    invariant(_currentState == kSaved);

    if (!isMarkedAsKilled()) {
        _root->restoreState();
    }

    _currentState = kUsable;
    uassertStatusOK(_killStatus);
}

void PlanExecutorImpl::detachFromOperationContext() {
    invariant(_currentState == kSaved);
    _opCtx = nullptr;
    _root->detachFromOperationContext();
    if (_expCtx) {
        _expCtx->opCtx = nullptr;
    }
    _currentState = kDetached;
    _everDetachedFromOperationContext = true;
}

void PlanExecutorImpl::reattachToOperationContext(OperationContext* opCtx) {
    invariant(_currentState == kDetached);

    // We're reattaching for a getMore now.  Reset the yield timer in order to prevent from
    // yielding again right away.
    _yieldPolicy->resetTimer();

    _opCtx = opCtx;
    _root->reattachToOperationContext(opCtx);
    if (_expCtx) {
        _expCtx->opCtx = opCtx;
    }
    _currentState = kSaved;
}

PlanExecutor::ExecState PlanExecutorImpl::getNext(BSONObj* objOut, RecordId* dlOut) {
    const auto state = getNext(&_docOutput, dlOut);
    if (objOut) {
        *objOut = _docOutput.toBson();
    }
    return state;
}

PlanExecutor::ExecState PlanExecutorImpl::getNext(Document* objOut, RecordId* dlOut) {
    Snapshotted<Document> snapshotted;
    if (objOut) {
        snapshotted.value() = std::move(*objOut);
    }
    ExecState state = _getNextImpl(objOut ? &snapshotted : nullptr, dlOut);

    if (objOut) {
        *objOut = std::move(snapshotted.value());
    }

    return state;
}

PlanExecutor::ExecState PlanExecutorImpl::getNextSnapshotted(Snapshotted<Document>* objOut,
                                                             RecordId* dlOut) {
    // Detaching from the OperationContext means that the returned snapshot ids could be invalid.
    invariant(!_everDetachedFromOperationContext);
    return _getNextImpl(objOut, dlOut);
}

PlanExecutor::ExecState PlanExecutorImpl::getNextSnapshotted(Snapshotted<BSONObj>* objOut,
                                                             RecordId* dlOut) {
    // Detaching from the OperationContext means that the returned snapshot ids could be invalid.
    invariant(!_everDetachedFromOperationContext);
    Snapshotted<Document> docOut;
    docOut.value() = std::move(_docOutput);
    const auto status = _getNextImpl(&docOut, dlOut);
    if (objOut) {
        *objOut = {docOut.snapshotId(), docOut.value().toBson()};
    }
    _docOutput = std::move(docOut.value());
    return status;
}

bool PlanExecutorImpl::_shouldListenForInserts() {
    return _cq && _cq->getQueryRequest().isTailableAndAwaitData() &&
        awaitDataState(_opCtx).shouldWaitForInserts && _opCtx->checkForInterruptNoAssert().isOK() &&
        awaitDataState(_opCtx).waitForInsertsDeadline >
        _opCtx->getServiceContext()->getPreciseClockSource()->now();
}

bool PlanExecutorImpl::_shouldWaitForInserts() {
    // If this is an awaitData-respecting operation and we have time left and we're not interrupted,
    // we should wait for inserts.
    if (_shouldListenForInserts()) {
        // We expect awaitData cursors to be yielding.
        invariant(_yieldPolicy->canReleaseLocksDuringExecution());

        // For operations with a last committed opTime, we should not wait if the replication
        // coordinator's lastCommittedOpTime has progressed past the client's lastCommittedOpTime.
        // In that case, we will return early so that we can inform the client of the new
        // lastCommittedOpTime immediately.
        if (!clientsLastKnownCommittedOpTime(_opCtx).isNull()) {
            auto replCoord = repl::ReplicationCoordinator::get(_opCtx);
            return clientsLastKnownCommittedOpTime(_opCtx) >= replCoord->getLastCommittedOpTime();
        }
        return true;
    }
    return false;
}

std::shared_ptr<CappedInsertNotifier> PlanExecutorImpl::_getCappedInsertNotifier() {
    // We don't expect to need a capped insert notifier for non-yielding plans.
    invariant(_yieldPolicy->canReleaseLocksDuringExecution());

    // We can only wait if we have a collection; otherwise we should retry immediately when
    // we hit EOF.
    dassert(_opCtx->lockState()->isCollectionLockedForMode(_nss, MODE_IS));
    auto databaseHolder = DatabaseHolder::get(_opCtx);
    auto db = databaseHolder->getDb(_opCtx, _nss.db());
    invariant(db);
    auto collection = CollectionCatalog::get(_opCtx).lookupCollectionByNamespace(_opCtx, _nss);
    invariant(collection);

    return collection->getCappedInsertNotifier();
}

void PlanExecutorImpl::_waitForInserts(CappedInsertNotifierData* notifierData) {
    invariant(notifierData->notifier);

    // The notifier wait() method will not wait unless the version passed to it matches the
    // current version of the notifier.  Since the version passed to it is the current version
    // of the notifier at the time of the previous EOF, we require two EOFs in a row with no
    // notifier version change in order to wait.  This is sufficient to ensure we never wait
    // when data is available.
    auto curOp = CurOp::get(_opCtx);
    curOp->pauseTimer();
    ON_BLOCK_EXIT([curOp] { curOp->resumeTimer(); });
    auto opCtx = _opCtx;
    uint64_t currentNotifierVersion = notifierData->notifier->getVersion();
    auto yieldResult = _yieldPolicy->yieldOrInterrupt(opCtx, [opCtx, notifierData] {
        const auto deadline = awaitDataState(opCtx).waitForInsertsDeadline;
        notifierData->notifier->waitUntil(notifierData->lastEOFVersion, deadline);
        if (MONGO_unlikely(planExecutorHangWhileYieldedInWaitForInserts.shouldFail())) {
            LOGV2(4452903,
                  "PlanExecutor - planExecutorHangWhileYieldedInWaitForInserts fail point enabled. "
                  "Blocking until fail point is disabled");
            planExecutorHangWhileYieldedInWaitForInserts.pauseWhileSet();
        }
    });
    notifierData->lastEOFVersion = currentNotifierVersion;

    uassertStatusOK(yieldResult);
}

PlanExecutor::ExecState PlanExecutorImpl::_getNextImpl(Snapshotted<Document>* objOut,
                                                       RecordId* dlOut) {
    if (MONGO_unlikely(planExecutorAlwaysFails.shouldFail())) {
        uasserted(ErrorCodes::Error(4382101),
                  "PlanExecutor hit planExecutorAlwaysFails fail point");
    }

    invariant(_currentState == kUsable);
    if (isMarkedAsKilled()) {
        uassertStatusOK(_killStatus);
    }

    if (!_stash.empty()) {
        invariant(objOut && !dlOut);
        *objOut = {SnapshotId(), _stash.front()};
        _stash.pop();
        return PlanExecutor::ADVANCED;
    }

    // Incremented on every writeConflict, reset to 0 on any successful call to _root->work.
    size_t writeConflictsInARow = 0;

    // Capped insert data; declared outside the loop so we hold a shared pointer to the capped
    // insert notifier the entire time we are in the loop.  Holding a shared pointer to the capped
    // insert notifier is necessary for the notifierVersion to advance.
    CappedInsertNotifierData cappedInsertNotifierData;
    if (_shouldListenForInserts()) {
        // We always construct the CappedInsertNotifier for awaitData cursors.
        cappedInsertNotifierData.notifier = _getCappedInsertNotifier();
    }
    for (;;) {
        // These are the conditions which can cause us to yield:
        //   1) The yield policy's timer elapsed, or
        //   2) some stage requested a yield, or
        //   3) we need to yield and retry due to a WriteConflictException.
        // In all cases, the actual yielding happens here.
        if (_yieldPolicy->shouldYieldOrInterrupt(_opCtx)) {
            uassertStatusOK(_yieldPolicy->yieldOrInterrupt(_opCtx));
        }

        WorkingSetID id = WorkingSet::INVALID_ID;
        PlanStage::StageState code = _root->work(&id);

        if (code != PlanStage::NEED_YIELD)
            writeConflictsInARow = 0;

        if (PlanStage::ADVANCED == code) {
            WorkingSetMember* member = _workingSet->get(id);
            bool hasRequestedData = true;

            if (nullptr != objOut) {
                if (WorkingSetMember::RID_AND_IDX == member->getState()) {
                    if (1 != member->keyData.size()) {
                        _workingSet->free(id);
                        hasRequestedData = false;
                    } else {
                        // TODO: currently snapshot ids are only associated with documents, and
                        // not with index keys.
                        *objOut = Snapshotted<Document>(SnapshotId(),
                                                        Document{member->keyData[0].keyData});
                    }
                } else if (member->hasObj()) {
                    std::swap(*objOut, member->doc);
                } else {
                    _workingSet->free(id);
                    hasRequestedData = false;
                }
            }

            if (nullptr != dlOut) {
                if (member->hasRecordId()) {
                    *dlOut = member->recordId;
                } else {
                    _workingSet->free(id);
                    hasRequestedData = false;
                }
            }

            if (hasRequestedData) {
                // transfer the metadata from the WSM to Document.
                if (objOut && member->metadata()) {
                    MutableDocument md(std::move(objOut->value()));
                    md.setMetadata(member->releaseMetadata());
                    objOut->setValue(md.freeze());
                }
                _workingSet->free(id);
                return PlanExecutor::ADVANCED;
            }
            // This result didn't have the data the caller wanted, try again.
        } else if (PlanStage::NEED_YIELD == code) {
            invariant(id == WorkingSet::INVALID_ID);
            if (!_yieldPolicy->canAutoYield() ||
                MONGO_unlikely(skipWriteConflictRetries.shouldFail())) {
                throw WriteConflictException();
            }

            CurOp::get(_opCtx)->debug().additiveMetrics.incrementWriteConflicts(1);
            writeConflictsInARow++;
            WriteConflictException::logAndBackoff(
                writeConflictsInARow, "plan execution", _nss.ns());

            // If we're allowed to, we will yield next time through the loop.
            if (_yieldPolicy->canAutoYield()) {
                _yieldPolicy->forceYield();
            }
        } else if (PlanStage::NEED_TIME == code) {
            // Fall through to yield check at end of large conditional.
        } else {
            invariant(PlanStage::IS_EOF == code);
            if (MONGO_unlikely(planExecutorHangBeforeShouldWaitForInserts.shouldFail(
                    [this](const BSONObj& data) {
                        if (data.hasField("namespace") &&
                            _nss != NamespaceString(data.getStringField("namespace"))) {
                            return false;
                        }
                        return true;
                    }))) {
                LOGV2(20946,
                      "PlanExecutor - planExecutorHangBeforeShouldWaitForInserts fail point "
                      "enabled. Blocking until fail point is disabled");
                planExecutorHangBeforeShouldWaitForInserts.pauseWhileSet();
            }
            if (!_shouldWaitForInserts()) {
                return PlanExecutor::IS_EOF;
            }
            _waitForInserts(&cappedInsertNotifierData);
            // There may be more results, keep going.
            continue;
        }
    }
}

bool PlanExecutorImpl::isEOF() {
    invariant(_currentState == kUsable);
    return isMarkedAsKilled() || (_stash.empty() && _root->isEOF());
}

void PlanExecutorImpl::markAsKilled(Status killStatus) {
    invariant(!killStatus.isOK());
    // If killed multiple times, only retain the first status.
    if (_killStatus.isOK()) {
        _killStatus = killStatus;
    }
}

void PlanExecutorImpl::dispose(OperationContext* opCtx) {
    if (_currentState == kDisposed) {
        return;
    }

    _root->dispose(opCtx);
    _currentState = kDisposed;
}

void PlanExecutorImpl::executePlan() {
    invariant(_currentState == kUsable);
    Document obj;
    PlanExecutor::ExecState state = PlanExecutor::ADVANCED;
    while (PlanExecutor::ADVANCED == state) {
        state = this->getNext(&obj, nullptr);
    }

    if (isMarkedAsKilled()) {
        uassertStatusOK(_killStatus);
    }

    invariant(!isMarkedAsKilled());
    invariant(PlanExecutor::IS_EOF == state);
}

void PlanExecutorImpl::enqueue(const Document& obj) {
    _stash.push(obj.getOwned());
}

void PlanExecutorImpl::enqueue(const BSONObj& obj) {
    enqueue(Document{obj});
}

bool PlanExecutorImpl::isMarkedAsKilled() const {
    return !_killStatus.isOK();
}

Status PlanExecutorImpl::getKillStatus() {
    invariant(isMarkedAsKilled());
    return _killStatus;
}

bool PlanExecutorImpl::isDisposed() const {
    return _currentState == kDisposed;
}

bool PlanExecutorImpl::isDetached() const {
    return _currentState == kDetached;
}

Timestamp PlanExecutorImpl::getLatestOplogTimestamp() const {
    if (!_oplogTrackingStage) {
        return {};
    }

    const auto stageType = _oplogTrackingStage->stageType();
    if (stageType == STAGE_COLLSCAN) {
        return static_cast<const CollectionScan*>(_oplogTrackingStage)->getLatestOplogTimestamp();
    } else {
        invariant(stageType == STAGE_CHANGE_STREAM_PROXY);
        return static_cast<const ChangeStreamProxyStage*>(_oplogTrackingStage)
            ->getLatestOplogTimestamp();
    }
}

BSONObj PlanExecutorImpl::getPostBatchResumeToken() const {
    static const BSONObj kEmptyPBRT;
    if (!_oplogTrackingStage) {
        return kEmptyPBRT;
    }

    const auto stageType = _oplogTrackingStage->stageType();
    if (stageType == STAGE_COLLSCAN) {
        return static_cast<const CollectionScan*>(_oplogTrackingStage)->getPostBatchResumeToken();
    } else {
        invariant(stageType == STAGE_CHANGE_STREAM_PROXY);
        return static_cast<const ChangeStreamProxyStage*>(_oplogTrackingStage)
            ->getPostBatchResumeToken();
    }
}

PlanExecutor::LockPolicy PlanExecutorImpl::lockPolicy() const {
    if (isPipelineExecutor()) {
        return LockPolicy::kLocksInternally;
    }

    // If this PlanExecutor is simply unspooling queued data, then there is no need to acquire
    // locks.
    if (_root->stageType() == StageType::STAGE_QUEUED_DATA) {
        return LockPolicy::kLocksInternally;
    }

    return LockPolicy::kLockExternally;
}

bool PlanExecutorImpl::isPipelineExecutor() const {
    return _root->stageType() == StageType::STAGE_PIPELINE_PROXY ||
        _root->stageType() == StageType::STAGE_CHANGE_STREAM_PROXY;
}
}  // namespace mongo