summaryrefslogtreecommitdiff
path: root/src/mongo/db/query/query_solution.h
blob: 20c0c2652455e96b2db72ce8504de02a9c5e865a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
/**
 *    Copyright (C) 2013 10gen Inc.
 *
 *    This program is free software: you can redistribute it and/or  modify
 *    it under the terms of the GNU Affero General Public License, version 3,
 *    as published by the Free Software Foundation.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU Affero General Public License for more details.
 *
 *    You should have received a copy of the GNU Affero General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the GNU Affero General Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#pragma once

#include "mongo/db/jsobj.h"
#include "mongo/db/matcher/expression.h"
#include "mongo/db/geo/geoquery.h"
#include "mongo/db/fts/fts_query.h"
#include "mongo/db/query/index_bounds.h"
#include "mongo/db/query/plan_cache.h"
#include "mongo/db/query/stage_types.h"

namespace mongo {

    using mongo::fts::FTSQuery;

    /**
     * This is an abstract representation of a query plan.  It can be transcribed into a tree of
     * PlanStages, which can then be handed to a PlanRunner for execution.
     */
    struct QuerySolutionNode {
        QuerySolutionNode() { }
        virtual ~QuerySolutionNode() {
            for (size_t i = 0; i < children.size(); ++i) {
                delete children[i];
            }
        }

        /**
         * Return a std::string representation of this node and any children.
         */
        std::string toString() const;

        /**
         * What stage should this be transcribed to?  See stage_types.h.
         */
        virtual StageType getType() const = 0;

        /**
         * Internal function called by toString()
         *
         * TODO: Consider outputting into a BSONObj or builder thereof.
         */
        virtual void appendToString(mongoutils::str::stream* ss, int indent) const = 0;

        //
        // Computed properties
        //

        /**
         * Must be called before any properties are examined.
         */
        virtual void computeProperties() {
            for (size_t i = 0; i < children.size(); ++i) {
                children[i]->computeProperties();
            }
        }

        /**
         * If true, one of these are true:
         *          1. All outputs are already fetched, or
         *          2. There is a projection in place and a fetch is not required.
         *
         * If false, a fetch needs to be placed above the root in order to provide results.
         *
         * Usage: To determine if every possible result that might reach the root
         * will be fully-fetched or not.  We don't want any surplus fetches.
         */
        virtual bool fetched() const = 0;

        /**
         * Returns true if the tree rooted at this node provides data with the field name 'field'.
         * This data can come from any of the types of the WSM.
         *
         * Usage: If an index-only plan has all the fields we're interested in, we don't
         * have to fetch to show results with those fields.
         *
         * TODO: 'field' is probably more appropriate as a FieldRef or string.
         */
        virtual bool hasField(const std::string& field) const = 0;

        /**
         * Returns true if the tree rooted at this node provides data that is sorted by the
         * its location on disk.
         *
         * Usage: If all the children of an STAGE_AND_HASH have this property, we can compute the
         * AND faster by replacing the STAGE_AND_HASH with STAGE_AND_SORTED.
         */
        virtual bool sortedByDiskLoc() const = 0;

        /**
         * Return a BSONObjSet representing the possible sort orders of the data stream from this
         * node.  If the data is not sorted in any particular fashion, returns an empty set.
         *
         * Usage:
         * 1. If our plan gives us a sort order, we don't have to add a sort stage.
         * 2. If all the children of an OR have the same sort order, we can maintain that
         *    sort order with a STAGE_SORT_MERGE instead of STAGE_OR.
         */
        virtual const BSONObjSet& getSort() const = 0;

        /**
         * Make a deep copy.
         */
        virtual QuerySolutionNode* clone() const = 0;

        /**
         * Copy base query solution data from 'this' to 'other'.
         */
        void cloneBaseData(QuerySolutionNode* other) const {
            for (size_t i = 0; i < this->children.size(); i++) {
                other->children.push_back(this->children[i]->clone());
            }
            if (NULL != this->filter) {
                other->filter.reset(this->filter->shallowClone());
            }
        }

        // These are owned here.
        std::vector<QuerySolutionNode*> children;

        // If a stage has a non-NULL filter all values outputted from that stage must pass that
        // filter.
        scoped_ptr<MatchExpression> filter;

    protected:
        /**
         * Formatting helper used by toString().
         */
        static void addIndent(mongoutils::str::stream* ss, int level);

        /**
         * Every solution node has properties and this adds the debug info for the
         * properties.
         */
        void addCommon(mongoutils::str::stream* ss, int indent) const;

    private:
        MONGO_DISALLOW_COPYING(QuerySolutionNode);
    };

    /**
     * A QuerySolution must be entirely self-contained and own everything inside of it.
     *
     * A tree of stages may be built from a QuerySolution.  The QuerySolution must outlive the tree
     * of stages.
     */
    struct QuerySolution {
        QuerySolution() : hasBlockingStage(false), indexFilterApplied(false) { }

        // Owned here.
        scoped_ptr<QuerySolutionNode> root;

        // Any filters in root or below point into this object.  Must be owned.
        BSONObj filterData;

        // There are two known scenarios in which a query solution might potentially block:
        //
        // Sort stage:
        // If the solution has a sort stage, the sort wasn't provided by an index, so we might want
        // to scan an index to provide that sort in a non-blocking fashion.
        //
        // Hashed AND stage:
        // The hashed AND stage buffers data from multiple index scans and could block. In that case,
        // we would want to fall back on an alternate non-blocking solution.
        bool hasBlockingStage;

        // Runner executing this solution might be interested in knowing
        // if the planning process for this solution was based on filtered indices.
        bool indexFilterApplied;

        // Owned here. Used by the plan cache.
        boost::scoped_ptr<SolutionCacheData> cacheData;

        /**
         * Output a human-readable std::string representing the plan.
         */
        std::string toString() {
            if (NULL == root) {
                return "empty query solution";
            }

            mongoutils::str::stream ss;
            root->appendToString(&ss, 0);
            return ss;
        }
    private:
        MONGO_DISALLOW_COPYING(QuerySolution);
    };

    struct TextNode : public QuerySolutionNode {
        TextNode() { }
        virtual ~TextNode() { }

        virtual StageType getType() const { return STAGE_TEXT; }

        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        // text's return is LOC_AND_UNOWNED_OBJ so it's fetched and has all fields.
        bool fetched() const { return true; }
        bool hasField(const std::string& field) const { return true; }
        bool sortedByDiskLoc() const { return false; }
        const BSONObjSet& getSort() const { return _sort; }

        QuerySolutionNode* clone() const;

        BSONObjSet _sort;

        BSONObj  indexKeyPattern;
        std::string query;
        std::string language;

        // "Prefix" fields of a text index can handle equality predicates.  We group them with the
        // text node while creating the text leaf node and convert them into a BSONObj index prefix
        // when we finish the text leaf node.
        BSONObj indexPrefix;
    };

    struct CollectionScanNode : public QuerySolutionNode {
        CollectionScanNode();
        virtual ~CollectionScanNode() { }

        virtual StageType getType() const { return STAGE_COLLSCAN; }

        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        bool fetched() const { return true; }
        bool hasField(const std::string& field) const { return true; }
        bool sortedByDiskLoc() const { return false; }
        const BSONObjSet& getSort() const { return _sort; }

        QuerySolutionNode* clone() const;

        BSONObjSet _sort;

        // Name of the namespace.
        std::string name;

        // Should we make a tailable cursor?
        bool tailable;

        int direction;

        // maxScan option to .find() limits how many docs we look at.
        int maxScan;
    };

    struct AndHashNode : public QuerySolutionNode {
        AndHashNode();
        virtual ~AndHashNode();

        virtual StageType getType() const { return STAGE_AND_HASH; }

        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        bool fetched() const;
        bool hasField(const std::string& field) const;
        bool sortedByDiskLoc() const { return false; }
        const BSONObjSet& getSort() const { return children.back()->getSort(); }

        QuerySolutionNode* clone() const;

        BSONObjSet _sort;
    };

    struct AndSortedNode : public QuerySolutionNode {
        AndSortedNode();
        virtual ~AndSortedNode();

        virtual StageType getType() const { return STAGE_AND_SORTED; }

        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        bool fetched() const;
        bool hasField(const std::string& field) const;
        bool sortedByDiskLoc() const { return true; }
        const BSONObjSet& getSort() const { return _sort; }

        QuerySolutionNode* clone() const;

        BSONObjSet _sort;
    };

    struct OrNode : public QuerySolutionNode {
        OrNode();
        virtual ~OrNode();

        virtual StageType getType() const { return STAGE_OR; }

        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        bool fetched() const;
        bool hasField(const std::string& field) const;
        bool sortedByDiskLoc() const {
            // Even if our children are sorted by their diskloc or other fields, we don't maintain
            // any order on the output.
            return false;
        }
        const BSONObjSet& getSort() const { return _sort; }

        QuerySolutionNode* clone() const;

        BSONObjSet _sort;

        bool dedup;
    };

    struct MergeSortNode : public QuerySolutionNode {
        MergeSortNode();
        virtual ~MergeSortNode();

        virtual StageType getType() const { return STAGE_SORT_MERGE; }

        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        bool fetched() const;
        bool hasField(const std::string& field) const;
        bool sortedByDiskLoc() const { return false; }

        const BSONObjSet& getSort() const { return _sorts; }

        QuerySolutionNode* clone() const;

        virtual void computeProperties() {
            for (size_t i = 0; i < children.size(); ++i) {
                children[i]->computeProperties();
            }
            _sorts.clear();
            _sorts.insert(sort);
        }

        BSONObjSet _sorts;

        BSONObj sort;
        bool dedup;
    };

    struct FetchNode : public QuerySolutionNode {
        FetchNode();
        virtual ~FetchNode() { }

        virtual StageType getType() const { return STAGE_FETCH; }

        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        bool fetched() const { return true; }
        bool hasField(const std::string& field) const { return true; }
        bool sortedByDiskLoc() const { return children[0]->sortedByDiskLoc(); }
        const BSONObjSet& getSort() const { return children[0]->getSort(); }

        QuerySolutionNode* clone() const;

        BSONObjSet _sorts;
    };

    struct IndexScanNode : public QuerySolutionNode {
        IndexScanNode();
        virtual ~IndexScanNode() { }

        virtual void computeProperties();

        virtual StageType getType() const { return STAGE_IXSCAN; }

        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        bool fetched() const { return false; }
        bool hasField(const std::string& field) const;
        bool sortedByDiskLoc() const;
        const BSONObjSet& getSort() const { return _sorts; }

        QuerySolutionNode* clone() const;

        BSONObjSet _sorts;

        BSONObj indexKeyPattern;
        bool indexIsMultiKey;

        int direction;

        // maxScan option to .find() limits how many docs we look at.
        int maxScan;

        // If there's a 'returnKey' projection we add key metadata.
        bool addKeyMetadata;

        // BIG NOTE:
        // If you use simple bounds, we'll use whatever index access method the keypattern implies.
        // If you use the complex bounds, we force Btree access.
        // The complex bounds require Btree access.
        IndexBounds bounds;
    };

    struct ProjectionNode : public QuerySolutionNode {
        /**
         * We have a few implementations of the projection functionality.  The most general
         * implementation 'DEFAULT' is much slower than the fast-path implementations
         * below.  We only really have all the information available to choose a projection
         * implementation at planning time.
         */
        enum ProjectionType {
            // This is the most general implementation of the projection functionality.  It handles
            // every case.
            DEFAULT,

            // This is a fast-path for when the projection is fully covered by one index.
            COVERED_ONE_INDEX,

            // This is a fast-path for when the projection only has inclusions on non-dotted fields.
            SIMPLE_DOC,
        };

        ProjectionNode() : fullExpression(NULL), projType(DEFAULT) { }

        virtual ~ProjectionNode() { }

        virtual StageType getType() const { return STAGE_PROJECTION; }

        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        /**
         * This node changes the type to OWNED_OBJ.  There's no fetching possible after this.
         */
        bool fetched() const { return true; }

        bool hasField(const std::string& field) const {
            // TODO: Returning false isn't always the right answer -- we may either be including
            // certain fields, or we may be dropping fields (in which case hasField returns true).
            //
            // Given that projection sits on top of everything else in .find() it doesn't matter
            // what we do here.
            return false;
        }

        bool sortedByDiskLoc() const {
            // Projections destroy the DiskLoc.  By returning true here, this kind of implies that a
            // fetch could still be done upstream.
            //
            // Perhaps this should be false to not imply that there *is* a DiskLoc?  Kind of a
            // corner case.
            return children[0]->sortedByDiskLoc();
        }

        const BSONObjSet& getSort() const {
            // TODO: If we're applying a projection that maintains sort order, the prefix of the
            // sort order we project is the sort order.
            return _sorts;
        }

        QuerySolutionNode* clone() const;

        BSONObjSet _sorts;

        // The full query tree.  Needed when we have positional operators.
        // Owned in the CanonicalQuery, not here.
        MatchExpression* fullExpression;

        // Given that we don't yet have a MatchExpression analogue for the expression language, we
        // use a BSONObj.
        BSONObj projection;

        // What implementation of the projection algorithm should we use?
        ProjectionType projType;

        // Only meaningful if projType == COVERED_ONE_INDEX.  This is the key pattern of the index
        // supplying our covered data.  We can pre-compute which fields to include and cache that
        // data for later if we know we only have one index.
        BSONObj coveredKeyObj;
    };

    struct SortNode : public QuerySolutionNode {
        SortNode() : limit(0) { }
        virtual ~SortNode() { }

        virtual StageType getType() const { return STAGE_SORT; }

        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        bool fetched() const { return children[0]->fetched(); }
        bool hasField(const std::string& field) const { return children[0]->hasField(field); }
        bool sortedByDiskLoc() const { return false; }

        const BSONObjSet& getSort() const { return _sorts; }

        QuerySolutionNode* clone() const;

        virtual void computeProperties() {
            for (size_t i = 0; i < children.size(); ++i) {
                children[i]->computeProperties();
            }
            _sorts.clear();
            _sorts.insert(pattern);
        }

        BSONObjSet _sorts;

        BSONObj pattern;

        BSONObj query;

        // Sum of both limit and skip count in the parsed query.
        size_t limit;
    };

    struct LimitNode : public QuerySolutionNode {
        LimitNode() { }
        virtual ~LimitNode() { }

        virtual StageType getType() const { return STAGE_LIMIT; }

        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        bool fetched() const { return children[0]->fetched(); }
        bool hasField(const std::string& field) const { return children[0]->hasField(field); }
        bool sortedByDiskLoc() const { return children[0]->sortedByDiskLoc(); }
        const BSONObjSet& getSort() const { return children[0]->getSort(); }

        QuerySolutionNode* clone() const;

        int limit;
    };

    struct SkipNode : public QuerySolutionNode {
        SkipNode() { }
        virtual ~SkipNode() { }

        virtual StageType getType() const { return STAGE_SKIP; }
        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        bool fetched() const { return children[0]->fetched(); }
        bool hasField(const std::string& field) const { return children[0]->hasField(field); }
        bool sortedByDiskLoc() const { return children[0]->sortedByDiskLoc(); }
        const BSONObjSet& getSort() const { return children[0]->getSort(); }

        QuerySolutionNode* clone() const;

        int skip;
    };

    // This is a standalone stage.
    struct GeoNear2DNode : public QuerySolutionNode {
        GeoNear2DNode() : numToReturn(0), addPointMeta(false), addDistMeta(false) { }
        virtual ~GeoNear2DNode() { }

        virtual StageType getType() const { return STAGE_GEO_NEAR_2D; }
        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        bool fetched() const { return true; }
        bool hasField(const std::string& field) const { return true; }
        bool sortedByDiskLoc() const { return false; }
        const BSONObjSet& getSort() const { return _sorts; }

        QuerySolutionNode* clone() const;

        BSONObjSet _sorts;

        NearQuery nq;
        IndexBounds baseBounds;

        // TODO: Remove both of these
        int numToReturn;
        // A full match expression for the query with geoNear removed is currently needed -
        // since 2D geoNear has a default limit not set in the query, we must limit ourselves and
        // so generate only valid results.
        scoped_ptr<MatchExpression> fullFilterExcludingNear;

        BSONObj indexKeyPattern;
        bool addPointMeta;
        bool addDistMeta;
    };

    // This is actually its own standalone stage.
    struct GeoNear2DSphereNode : public QuerySolutionNode {
        GeoNear2DSphereNode() : addPointMeta(false), addDistMeta(false) { }
        virtual ~GeoNear2DSphereNode() { }

        virtual StageType getType() const { return STAGE_GEO_NEAR_2DSPHERE; }
        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        bool fetched() const { return true; }
        bool hasField(const std::string& field) const { return true; }
        bool sortedByDiskLoc() const { return false; }
        const BSONObjSet& getSort() const { return _sorts; }

        QuerySolutionNode* clone() const;

        BSONObjSet _sorts;

        NearQuery nq;
        IndexBounds baseBounds;

        BSONObj indexKeyPattern;
        bool addPointMeta;
        bool addDistMeta;
    };

    //
    // Internal nodes used to provide functionality
    //

    /**
     * If we're answering a query on a sharded cluster, docs must be checked against the shard key
     * to ensure that we don't return data that shouldn't be there.  This must be done prior to
     * projection, and in fact should be done as early as possible to avoid propagating stale data
     * through the pipeline.
     */
    struct ShardingFilterNode : public QuerySolutionNode {
        ShardingFilterNode() { }
        virtual ~ShardingFilterNode() { }

        virtual StageType getType() const { return STAGE_SHARDING_FILTER; }
        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        bool fetched() const { return children[0]->fetched(); }
        bool hasField(const std::string& field) const { return children[0]->hasField(field); }
        bool sortedByDiskLoc() const { return children[0]->sortedByDiskLoc(); }
        const BSONObjSet& getSort() const { return children[0]->getSort(); }

        QuerySolutionNode* clone() const;
    };

    /**
     * If documents mutate or are deleted during a query, we can (in some cases) fetch them
     * and still return them.  This stage merges documents that have been mutated or deleted
     * into the query result stream.
     */
    struct KeepMutationsNode : public QuerySolutionNode {
        KeepMutationsNode() { }
        virtual ~KeepMutationsNode() { }

        virtual StageType getType() const { return STAGE_KEEP_MUTATIONS; }
        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        // Any flagged results are OWNED_OBJ and therefore we're covered if our child is.
        bool fetched() const { return children[0]->fetched(); }

        // Any flagged results are OWNED_OBJ and as such they'll have any field we need.
        bool hasField(const std::string& field) const { return children[0]->hasField(field); }

        bool sortedByDiskLoc() const { return false; }
        const BSONObjSet& getSort() const { return sorts; }

        QuerySolutionNode* clone() const;

        // Since we merge in flagged results we have no sort order.
        BSONObjSet sorts;
    };

    /**
     * Distinct queries only want one value for a given field.  We run an index scan but
     * *always* skip over the current key to the next key.
     */
    struct DistinctNode : public QuerySolutionNode {
        DistinctNode() { }
        virtual ~DistinctNode() { }

        virtual StageType getType() const { return STAGE_DISTINCT; }
        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        // This stage is created "on top" of normal planning and as such the properties
        // below don't really matter.
        bool fetched() const { return false; }
        bool hasField(const std::string& field) const { return !indexKeyPattern[field].eoo(); }
        bool sortedByDiskLoc() const { return false; }
        const BSONObjSet& getSort() const { return sorts; }

        QuerySolutionNode* clone() const;

        BSONObjSet sorts;

        BSONObj indexKeyPattern;
        int direction;
        IndexBounds bounds;
        // We are distinct-ing over the 'fieldNo'-th field of 'indexKeyPattern'.
        int fieldNo;
    };

    /**
     * Some count queries reduce to counting how many keys are between two entries in a
     * Btree.
     */
    struct CountNode : public QuerySolutionNode {
        CountNode() { }
        virtual ~CountNode() { }

        virtual StageType getType() const { return STAGE_COUNT; }
        virtual void appendToString(mongoutils::str::stream* ss, int indent) const;

        bool fetched() const { return true; }
        bool hasField(const std::string& field) const { return true; }
        bool sortedByDiskLoc() const { return false; }
        const BSONObjSet& getSort() const { return sorts; }

        QuerySolutionNode* clone() const;

        BSONObjSet sorts;

        BSONObj indexKeyPattern;

        BSONObj startKey;
        bool startKeyInclusive;

        BSONObj endKey;
        bool endKeyInclusive;
    };

}  // namespace mongo