1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
|
/**
* Copyright (C) 2020-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#include "mongo/platform/basic.h"
#include "mongo/db/query/sbe_multi_planner.h"
#include "mongo/db/exec/histogram_server_status_metric.h"
#include "mongo/db/exec/sbe/expressions/expression.h"
#include "mongo/db/exec/sbe/values/bson.h"
#include "mongo/db/query/collection_query_info.h"
#include "mongo/db/query/explain.h"
#include "mongo/db/query/plan_ranker_util.h"
#include "mongo/db/query/query_planner.h"
#include "mongo/db/query/stage_builder_util.h"
#include "mongo/logv2/log.h"
#define MONGO_LOGV2_DEFAULT_COMPONENT ::mongo::logv2::LogComponent::kQuery
namespace mongo::sbe {
namespace {
/**
* An element in this histogram is the number of plans in the candidate set of an invocation (of the
* SBE multiplanner).
*/
HistogramServerStatusMetric sbeNumPlansHistogram("query.multiPlanner.histograms.sbeNumPlans",
HistogramServerStatusMetric::pow(5, 2, 2));
/**
* Aggregation of the total number of invocations (of the SBE multiplanner).
*/
CounterMetric sbeCount("query.multiPlanner.sbeCount");
/**
* Aggregation of the total number of microseconds spent (in SBE multiplanner).
*/
CounterMetric sbeMicrosTotal("query.multiPlanner.sbeMicros");
/**
* Aggregation of the total number of reads done (in SBE multiplanner).
*/
CounterMetric sbeNumReadsTotal("query.multiPlanner.sbeNumReads");
/**
* An element in this histogram is the number of microseconds spent in an invocation (of the SBE
* multiplanner).
*/
HistogramServerStatusMetric sbeMicrosHistogram("query.multiPlanner.histograms.sbeMicros",
HistogramServerStatusMetric::pow(11, 1024, 4));
/**
* An element in this histogram is the number of reads performance during an invocation (of the SBE
* multiplanner).
*/
HistogramServerStatusMetric sbeNumReadsHistogram("query.multiPlanner.histograms.sbeNumReads",
HistogramServerStatusMetric::pow(9, 128, 2));
} // namespace
CandidatePlans MultiPlanner::plan(
std::vector<std::unique_ptr<QuerySolution>> solutions,
std::vector<std::pair<std::unique_ptr<PlanStage>, stage_builder::PlanStageData>> roots) {
auto candidates = collectExecutionStats(
std::move(solutions),
std::move(roots),
trial_period::getTrialPeriodMaxWorks(_opCtx,
_collections.getMainCollection(),
internalQueryPlanEvaluationWorksSbe.load(),
internalQueryPlanEvaluationCollFractionSbe.load()));
auto decision = uassertStatusOK(mongo::plan_ranker::pickBestPlan<PlanStageStats>(candidates));
return finalizeExecutionPlans(std::move(decision), std::move(candidates));
}
bool MultiPlanner::CandidateCmp::operator()(const plan_ranker::CandidatePlan* lhs,
const plan_ranker::CandidatePlan* rhs) const {
size_t lhsReads = lhs->data.tracker->getMetric<TrialRunTracker::TrialRunMetric::kNumReads>();
size_t rhsReads = rhs->data.tracker->getMetric<TrialRunTracker::TrialRunMetric::kNumReads>();
auto lhsProductivity = plan_ranker::calculateProductivity(lhs->results.size(), lhsReads);
auto rhsProductivity = plan_ranker::calculateProductivity(rhs->results.size(), rhsReads);
return lhsProductivity < rhsProductivity;
}
MultiPlanner::PlanQ MultiPlanner::preparePlans(
const std::vector<size_t>& planIndexes,
const size_t trackerResultsBudget,
std::vector<std::unique_ptr<QuerySolution>>& solutions,
std::vector<std::pair<std::unique_ptr<PlanStage>, stage_builder::PlanStageData>>& roots) {
PlanQ planq;
for (auto planIndex : planIndexes) {
auto&& [root, stageData] = roots[planIndex];
// Make a copy of the original plan. This pristine copy will be inserted into the plan
// cache if this candidate becomes the winner.
auto origPlan = std::make_pair<std::unique_ptr<PlanStage>, plan_ranker::CandidatePlanData>(
root->clone(), plan_ranker::CandidatePlanData{stageData});
// Attach a unique TrialRunTracker to the plan, which is configured to use at most
// '_maxNumReads' reads.
auto tracker = std::make_unique<TrialRunTracker>(trackerResultsBudget, _maxNumReads);
root->attachToTrialRunTracker(tracker.get());
plan_ranker::CandidatePlanData data = {std::move(stageData), std::move(tracker)};
_candidates.push_back({std::move(solutions[planIndex]),
std::move(root),
std::move(data),
false /* exitedEarly */,
Status::OK()});
auto* candidatePtr = &_candidates.back();
// Store the original plan in the CandidatePlan.
candidatePtr->clonedPlan.emplace(std::move(origPlan));
prepareCandidate(candidatePtr, false /*preparingFromCache*/);
if (fetchOneDocument(candidatePtr)) {
planq.push(candidatePtr);
}
}
return planq;
}
void MultiPlanner::trialPlans(PlanQ planq) {
while (!planq.empty()) {
plan_ranker::CandidatePlan* bestCandidate = planq.top();
planq.pop();
bestCandidate->data.tracker->updateMaxMetric<TrialRunTracker::TrialRunMetric::kNumReads>(
_maxNumReads);
if (fetchOneDocument(bestCandidate)) {
planq.push(bestCandidate);
}
}
}
bool MultiPlanner::fetchOneDocument(plan_ranker::CandidatePlan* candidate) {
if (!fetchNextDocument(candidate, _maxNumResults)) {
candidate->root->detachFromTrialRunTracker();
if (candidate->status.isOK()) {
_maxNumReads = std::min(
_maxNumReads,
candidate->data.tracker->getMetric<TrialRunTracker::TrialRunMetric::kNumReads>());
}
return false;
}
return true;
}
std::vector<plan_ranker::CandidatePlan> MultiPlanner::collectExecutionStats(
std::vector<std::unique_ptr<QuerySolution>> solutions,
std::vector<std::pair<std::unique_ptr<PlanStage>, stage_builder::PlanStageData>> roots,
size_t maxTrialPeriodNumReads) {
invariant(solutions.size() == roots.size());
_maxNumResults = trial_period::getTrialPeriodNumToReturn(_cq);
_maxNumReads = maxTrialPeriodNumReads;
auto tickSource = _opCtx->getServiceContext()->getTickSource();
auto startTicks = tickSource->getTicks();
sbeNumPlansHistogram.increment(solutions.size());
sbeCount.increment();
// Determine which plans are blocking and which are non blocking. The non blocking plans will
// be run first in order to provide an upper bound on the number of reads allowed for the
// blocking plans.
std::vector<size_t> nonBlockingPlanIndexes;
std::vector<size_t> blockingPlanIndexes;
for (size_t index = 0; index < solutions.size(); ++index) {
if (solutions[index]->hasBlockingStage) {
blockingPlanIndexes.push_back(index);
} else {
nonBlockingPlanIndexes.push_back(index);
}
}
// If all the plans are blocking, then the trial period risks going on for too long. Because the
// plans are blocking, they may not provide '_maxNumResults' within the allotted budget of
// reads. We could end up in a situation where each plan's trial period runs for a long time,
// substantially slowing down the multi-planning process. For this reason, when all the plans
// are blocking, we pass '_maxNumResults' to the trial run tracker. This causes the sort stage
// to exit early as soon as it sees '_maxNumResults' _input_ values, which keeps the trial
// period shorter.
//
// On the other hand, if we have a mix of blocking and non-blocking plans, we don't want the
// sort stage to exit early based on the number of input rows it observes. This could cause the
// trial period for the blocking plans to run for a much shorter timeframe than the non-blocking
// plans. This leads to an apples-to-oranges comparison between the blocking and non-blocking
// plans which could artificially favor the blocking plans.
const size_t trackerResultsBudget = nonBlockingPlanIndexes.empty() ? _maxNumResults : 0;
// Reserve space for the candidates to avoid reallocations and have stable pointers to vector's
// elements.
_candidates.reserve(solutions.size());
// Run the non-blocking plans first.
trialPlans(preparePlans(nonBlockingPlanIndexes, trackerResultsBudget, solutions, roots));
// Run the blocking plans.
trialPlans(preparePlans(blockingPlanIndexes, trackerResultsBudget, solutions, roots));
size_t totalNumReads = 0;
for (const auto& candidate : _candidates) {
totalNumReads +=
candidate.data.tracker->getMetric<TrialRunTracker::TrialRunMetric::kNumReads>();
}
sbeNumReadsHistogram.increment(totalNumReads);
sbeNumReadsTotal.increment(totalNumReads);
auto durationMicros = durationCount<Microseconds>(
tickSource->ticksTo<Microseconds>(tickSource->getTicks() - startTicks));
sbeMicrosHistogram.increment(durationMicros);
sbeMicrosTotal.increment(durationMicros);
return std::move(_candidates);
}
CandidatePlans MultiPlanner::finalizeExecutionPlans(
std::unique_ptr<mongo::plan_ranker::PlanRankingDecision> decision,
std::vector<plan_ranker::CandidatePlan> candidates) const {
invariant(decision);
// Make sure we have at least one plan which hasn't failed.
uassert(4822873,
"all candidate plans failed during multi planning",
std::count_if(candidates.begin(), candidates.end(), [](auto&& candidate) {
return candidate.status.isOK();
}) > 0);
auto&& stats = decision->getStats<sbe::PlanStageStats>();
const auto winnerIdx = decision->candidateOrder[0];
tassert(5323801,
str::stream() << "winner index is out of candidate plans bounds: " << winnerIdx << ", "
<< candidates.size(),
winnerIdx < candidates.size());
tassert(5323802,
str::stream() << "winner index is out of candidate plan stats bounds: " << winnerIdx
<< ", " << stats.candidatePlanStats.size(),
winnerIdx < stats.candidatePlanStats.size());
auto& winner = candidates[winnerIdx];
tassert(5323803,
str::stream() << "winning candidate returned an error: " << winner.status,
winner.status.isOK());
LOGV2_DEBUG(
4822875, 5, "Winning solution", "bestSolution"_attr = redact(winner.solution->toString()));
auto explainer = plan_explainer_factory::make(
winner.root.get(), &winner.data.stageData, winner.solution.get());
LOGV2_DEBUG(4822876, 2, "Winning plan", "planSummary"_attr = explainer->getPlanSummary());
// Close all candidate plans but the winner.
for (size_t ix = 1; ix < decision->candidateOrder.size(); ++ix) {
const auto planIdx = decision->candidateOrder[ix];
invariant(planIdx < candidates.size());
candidates[planIdx].root->close();
}
// An SBE tree that exited early by throwing an exception cannot be reused by design. To work
// around this limitation, we clone the tree from the original tree. If there is a pipeline in
// "_cq" the winning candidate will be extended by building a new SBE tree below, so we don't
// need to clone a new copy here if the winner exited early.
if (winner.exitedEarly && _cq.pipeline().empty()) {
// Remove all the registered plans from _yieldPolicy's list of trees.
_yieldPolicy->clearRegisteredPlans();
tassert(6142204,
"The winning CandidatePlan should contain the original plan",
winner.clonedPlan);
// Clone a new copy of the original plan to use for execution so that the 'clonedPlan' in
// 'winner' can be inserted into the plan cache while in a clean state.
winner.data.stageData = stage_builder::PlanStageData(winner.clonedPlan->second.stageData);
// When we clone the tree below, the new tree's stats will be zeroed out. If this is an
// explain operation, save the stats from the old tree before we discard it.
if (_cq.getExplain()) {
winner.data.stageData.savedStatsOnEarlyExit =
winner.root->getStats(true /* includeDebugInfo */);
}
winner.root = winner.clonedPlan->first->clone();
stage_builder::prepareSlotBasedExecutableTree(
_opCtx, winner.root.get(), &winner.data.stageData, _cq, _collections, _yieldPolicy);
// Clear the results queue.
winner.results = {};
winner.root->open(false);
}
// Extend the winning candidate with the agg pipeline and rebuild the execution tree. Because
// the trial was done with find-only part of the query, we cannot reuse the results. The
// non-winning plans are only used in 'explain()' so, to save on unnecessary work, we extend
// them only if this is an 'explain()' request.
if (!_cq.pipeline().empty()) {
winner.root->close();
_yieldPolicy->clearRegisteredPlans();
auto solution = QueryPlanner::extendWithAggPipeline(
_cq, std::move(winner.solution), _queryParams.secondaryCollectionsInfo);
auto [rootStage, data] = stage_builder::buildSlotBasedExecutableTree(
_opCtx, _collections, _cq, *solution, _yieldPolicy);
// The winner might have been replanned. So, pass through the replanning reason to the new
// plan.
data.replanReason = std::move(winner.data.stageData.replanReason);
// We need to clone the plan here for the plan cache to use. The clone will be stored in the
// cache prior to preparation, whereas the original copy of the tree will be prepared and
// used to execute this query.
auto clonedPlan = std::make_pair(rootStage->clone(), plan_ranker::CandidatePlanData{data});
stage_builder::prepareSlotBasedExecutableTree(
_opCtx, rootStage.get(), &data, _cq, _collections, _yieldPolicy);
candidates[winnerIdx] =
sbe::plan_ranker::CandidatePlan{std::move(solution),
std::move(rootStage),
plan_ranker::CandidatePlanData{std::move(data)}};
candidates[winnerIdx].clonedPlan.emplace(std::move(clonedPlan));
candidates[winnerIdx].root->open(false);
if (_cq.getExplain()) {
for (size_t i = 0; i < candidates.size(); ++i) {
if (i == winnerIdx)
continue; // have already done the winner
auto solution = QueryPlanner::extendWithAggPipeline(
_cq, std::move(candidates[i].solution), _queryParams.secondaryCollectionsInfo);
auto&& [rootStage, data] = stage_builder::buildSlotBasedExecutableTree(
_opCtx, _collections, _cq, *solution, _yieldPolicy);
candidates[i] = sbe::plan_ranker::CandidatePlan{
std::move(solution), std::move(rootStage), std::move(data)};
}
}
}
// Writes a cache entry for the winning plan to the plan cache if possible.
plan_cache_util::updatePlanCacheFromCandidates(
_opCtx, _collections, _cachingMode, _cq, std::move(decision), candidates);
return {std::move(candidates), winnerIdx};
}
} // namespace mongo::sbe
|