1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
|
/**
* Copyright (C) 2018-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kCommand
#include "mongo/db/read_concern.h"
#include "mongo/base/status.h"
#include "mongo/db/concurrency/d_concurrency.h"
#include "mongo/db/concurrency/write_conflict_exception.h"
#include "mongo/db/curop_failpoint_helpers.h"
#include "mongo/db/logical_clock.h"
#include "mongo/db/op_observer.h"
#include "mongo/db/operation_context.h"
#include "mongo/db/read_concern_mongod_gen.h"
#include "mongo/db/repl/optime.h"
#include "mongo/db/repl/repl_client_info.h"
#include "mongo/db/repl/speculative_majority_read_info.h"
#include "mongo/db/s/sharding_state.h"
#include "mongo/db/server_options.h"
#include "mongo/s/grid.h"
#include "mongo/util/concurrency/notification.h"
#include "mongo/util/log.h"
namespace mongo {
namespace {
MONGO_FAIL_POINT_DEFINE(hangBeforeLinearizableReadConcern);
/**
* Synchronize writeRequests
*/
class WriteRequestSynchronizer;
const auto getWriteRequestsSynchronizer =
ServiceContext::declareDecoration<WriteRequestSynchronizer>();
class WriteRequestSynchronizer {
public:
WriteRequestSynchronizer() = default;
/**
* Returns a tuple <false, existingWriteRequest> if it can find the one that happened after or
* at clusterTime.
* Returns a tuple <true, newWriteRequest> otherwise.
*/
std::tuple<bool, std::shared_ptr<Notification<Status>>> getOrCreateWriteRequest(
LogicalTime clusterTime) {
stdx::unique_lock<stdx::mutex> lock(_mutex);
auto lastEl = _writeRequests.rbegin();
if (lastEl != _writeRequests.rend() && lastEl->first >= clusterTime.asTimestamp()) {
return std::make_tuple(false, lastEl->second);
} else {
auto newWriteRequest = std::make_shared<Notification<Status>>();
_writeRequests[clusterTime.asTimestamp()] = newWriteRequest;
return std::make_tuple(true, newWriteRequest);
}
}
/**
* Erases writeRequest that happened at clusterTime
*/
void deleteWriteRequest(LogicalTime clusterTime) {
stdx::unique_lock<stdx::mutex> lock(_mutex);
auto el = _writeRequests.find(clusterTime.asTimestamp());
invariant(el != _writeRequests.end());
invariant(el->second);
el->second.reset();
_writeRequests.erase(el);
}
private:
stdx::mutex _mutex;
std::map<Timestamp, std::shared_ptr<Notification<Status>>> _writeRequests;
};
/**
* Schedule a write via appendOplogNote command to the primary of this replica set.
*/
Status makeNoopWriteIfNeeded(OperationContext* opCtx, LogicalTime clusterTime) {
repl::ReplicationCoordinator* const replCoord = repl::ReplicationCoordinator::get(opCtx);
invariant(replCoord->isReplEnabled());
auto& writeRequests = getWriteRequestsSynchronizer(opCtx->getClient()->getServiceContext());
auto lastAppliedOpTime = LogicalTime(replCoord->getMyLastAppliedOpTime().getTimestamp());
// secondaries may lag primary so wait first to avoid unnecessary noop writes.
if (clusterTime > lastAppliedOpTime && replCoord->getMemberState().secondary()) {
auto deadline = Date_t::now() + Milliseconds(waitForSecondaryBeforeNoopWriteMS.load());
auto readConcernArgs =
repl::ReadConcernArgs(clusterTime, repl::ReadConcernLevel::kLocalReadConcern);
auto waitStatus = replCoord->waitUntilOpTimeForReadUntil(opCtx, readConcernArgs, deadline);
lastAppliedOpTime = LogicalTime(replCoord->getMyLastAppliedOpTime().getTimestamp());
if (!waitStatus.isOK()) {
LOG(1) << "Wait for clusterTime: " << clusterTime.toString()
<< " until deadline: " << deadline << " failed with " << waitStatus.toString();
}
}
auto status = Status::OK();
int remainingAttempts = 3;
// this loop addresses the case when two or more threads need to advance the opLog time but the
// one that waits for the notification gets the later clusterTime, so when the request finishes
// it needs to be repeated with the later time.
while (clusterTime > lastAppliedOpTime) {
// standalone replica set, so there is no need to advance the OpLog on the primary.
if (serverGlobalParams.clusterRole == ClusterRole::None) {
return Status::OK();
}
bool isConfig = (serverGlobalParams.clusterRole == ClusterRole::ConfigServer);
auto myShard = isConfig ? Grid::get(opCtx)->shardRegistry()->getConfigShard()
: Grid::get(opCtx)->shardRegistry()->getShard(
opCtx, ShardingState::get(opCtx)->shardId());
if (!myShard.isOK()) {
return myShard.getStatus();
}
if (!remainingAttempts--) {
std::stringstream ss;
ss << "Requested clusterTime " << clusterTime.toString()
<< " is greater than the last primary OpTime: " << lastAppliedOpTime.toString()
<< " no retries left";
return Status(ErrorCodes::InternalError, ss.str());
}
auto myWriteRequest = writeRequests.getOrCreateWriteRequest(clusterTime);
if (std::get<0>(myWriteRequest)) { // Its a new request
try {
LOG(2) << "New appendOplogNote request on clusterTime: " << clusterTime.toString()
<< " remaining attempts: " << remainingAttempts;
auto swRes = myShard.getValue()->runCommand(
opCtx,
ReadPreferenceSetting(ReadPreference::PrimaryOnly),
"admin",
BSON("appendOplogNote" << 1 << "maxClusterTime" << clusterTime.asTimestamp()
<< "data"
<< BSON("noop write for afterClusterTime read concern"
<< 1)),
Shard::RetryPolicy::kIdempotent);
status = swRes.getStatus();
std::get<1>(myWriteRequest)->set(status);
writeRequests.deleteWriteRequest(clusterTime);
} catch (const DBException& ex) {
status = ex.toStatus();
// signal the writeRequest to unblock waiters
std::get<1>(myWriteRequest)->set(status);
writeRequests.deleteWriteRequest(clusterTime);
}
} else {
LOG(2) << "Join appendOplogNote request on clusterTime: " << clusterTime.toString()
<< " remaining attempts: " << remainingAttempts;
try {
status = std::get<1>(myWriteRequest)->get(opCtx);
} catch (const DBException& ex) {
return ex.toStatus();
}
}
// If the write status is ok need to wait for the oplog to replicate.
if (status.isOK()) {
return status;
}
lastAppliedOpTime = LogicalTime(replCoord->getMyLastAppliedOpTime().getTimestamp());
}
// This is when the noop write failed but the opLog caught up to clusterTime by replicating.
if (!status.isOK()) {
LOG(1) << "Reached clusterTime " << lastAppliedOpTime.toString()
<< " but failed noop write due to " << status.toString();
}
return Status::OK();
}
/**
* Returns whether the command should ignore prepare conflicts or not.
*/
bool shouldIgnorePrepared(PrepareConflictBehavior prepareConflictBehavior,
repl::ReadConcernLevel readConcernLevel,
boost::optional<LogicalTime> afterClusterTime,
boost::optional<LogicalTime> atClusterTime) {
// Only these read concern levels are eligible for ignoring prepare conflicts.
if (readConcernLevel != repl::ReadConcernLevel::kLocalReadConcern &&
readConcernLevel != repl::ReadConcernLevel::kAvailableReadConcern &&
readConcernLevel != repl::ReadConcernLevel::kMajorityReadConcern) {
return false;
}
if (afterClusterTime || atClusterTime) {
return false;
}
return prepareConflictBehavior == PrepareConflictBehavior::kIgnore;
}
} // namespace
MONGO_REGISTER_SHIM(waitForReadConcern)
(OperationContext* opCtx,
const repl::ReadConcernArgs& readConcernArgs,
bool allowAfterClusterTime,
PrepareConflictBehavior prepareConflictBehavior)
->Status {
// If we are in a direct client within a transaction, then we may be holding locks, so it is
// illegal to wait for read concern. This is fine, since the outer operation should have handled
// waiting for read concern. We don't want to ignore prepare conflicts because snapshot reads
// should block on prepared transactions.
if (opCtx->getClient()->isInDirectClient() &&
readConcernArgs.getLevel() == repl::ReadConcernLevel::kSnapshotReadConcern) {
return Status::OK();
}
repl::ReplicationCoordinator* const replCoord = repl::ReplicationCoordinator::get(opCtx);
invariant(replCoord);
if (readConcernArgs.getLevel() == repl::ReadConcernLevel::kLinearizableReadConcern) {
if (replCoord->getReplicationMode() != repl::ReplicationCoordinator::modeReplSet) {
// For standalone nodes, Linearizable Read is not supported.
return {ErrorCodes::NotAReplicaSet,
"node needs to be a replica set member to use read concern"};
}
if (readConcernArgs.getArgsOpTime()) {
return {ErrorCodes::FailedToParse,
"afterOpTime not compatible with linearizable read concern"};
}
if (!replCoord->getMemberState().primary()) {
return {ErrorCodes::NotMaster,
"cannot satisfy linearizable read concern on non-primary node"};
}
}
auto afterClusterTime = readConcernArgs.getArgsAfterClusterTime();
auto atClusterTime = readConcernArgs.getArgsAtClusterTime();
if (afterClusterTime) {
if (!allowAfterClusterTime) {
return {ErrorCodes::InvalidOptions, "afterClusterTime is not allowed for this command"};
}
}
if (!readConcernArgs.isEmpty()) {
invariant(!afterClusterTime || !atClusterTime);
auto targetClusterTime = afterClusterTime ? afterClusterTime : atClusterTime;
if (targetClusterTime) {
std::string readConcernName = afterClusterTime ? "afterClusterTime" : "atClusterTime";
if (!replCoord->isReplEnabled()) {
return {ErrorCodes::IllegalOperation,
str::stream() << "Cannot specify " << readConcernName
<< " readConcern without replication enabled"};
}
auto currentTime = LogicalClock::get(opCtx)->getClusterTime();
if (currentTime < *targetClusterTime) {
return {ErrorCodes::InvalidOptions,
str::stream() << "readConcern " << readConcernName
<< " value must not be greater than the current clusterTime. "
"Requested clusterTime: "
<< targetClusterTime->toString()
<< "; current clusterTime: "
<< currentTime.toString()};
}
auto status = makeNoopWriteIfNeeded(opCtx, *targetClusterTime);
if (!status.isOK()) {
LOG(0) << "Failed noop write at clusterTime: " << targetClusterTime->toString()
<< " due to " << status.toString();
}
}
if (replCoord->isReplEnabled() || !afterClusterTime) {
auto status = replCoord->waitUntilOpTimeForRead(opCtx, readConcernArgs);
if (!status.isOK()) {
return status;
}
}
}
if (readConcernArgs.getLevel() == repl::ReadConcernLevel::kSnapshotReadConcern) {
if (replCoord->getReplicationMode() != repl::ReplicationCoordinator::modeReplSet) {
return {ErrorCodes::NotAReplicaSet,
"node needs to be a replica set member to use readConcern: snapshot"};
}
}
if (atClusterTime) {
opCtx->recoveryUnit()->setTimestampReadSource(RecoveryUnit::ReadSource::kProvided,
atClusterTime->asTimestamp());
} else if (readConcernArgs.getLevel() == repl::ReadConcernLevel::kMajorityReadConcern &&
replCoord->getReplicationMode() == repl::ReplicationCoordinator::Mode::modeReplSet) {
// This block is not used for kSnapshotReadConcern because snapshots are always speculative;
// we wait for majority when the transaction commits.
// It is not used for atClusterTime because waitUntilOpTimeForRead handles waiting for
// the majority snapshot in that case.
// Handle speculative majority reads.
if (readConcernArgs.getMajorityReadMechanism() ==
repl::ReadConcernArgs::MajorityReadMechanism::kSpeculative) {
// For speculative majority reads, we utilize the "no overlap" read source as a means of
// always reading at the minimum of the all-committed and lastApplied timestamps. This
// allows for safe behavior on both primaries and secondaries, where the behavior of the
// all-committed and lastApplied timestamps differ significantly.
opCtx->recoveryUnit()->setTimestampReadSource(RecoveryUnit::ReadSource::kNoOverlap);
auto& speculativeReadInfo = repl::SpeculativeMajorityReadInfo::get(opCtx);
speculativeReadInfo.setIsSpeculativeRead();
return Status::OK();
}
const int debugLevel = serverGlobalParams.clusterRole == ClusterRole::ConfigServer ? 1 : 2;
LOG(debugLevel) << "Waiting for 'committed' snapshot to be available for reading: "
<< readConcernArgs;
opCtx->recoveryUnit()->setTimestampReadSource(RecoveryUnit::ReadSource::kMajorityCommitted);
Status status = opCtx->recoveryUnit()->obtainMajorityCommittedSnapshot();
// Wait until a snapshot is available.
while (status == ErrorCodes::ReadConcernMajorityNotAvailableYet) {
LOG(debugLevel) << "Snapshot not available yet.";
replCoord->waitUntilSnapshotCommitted(opCtx, Timestamp());
status = opCtx->recoveryUnit()->obtainMajorityCommittedSnapshot();
}
if (!status.isOK()) {
return status;
}
LOG(debugLevel) << "Using 'committed' snapshot: " << CurOp::get(opCtx)->opDescription()
<< " with readTs: " << opCtx->recoveryUnit()->getPointInTimeReadTimestamp();
}
// DBDirectClient should inherit whether or not to ignore prepare conflicts from its parent.
if (!opCtx->getClient()->isInDirectClient()) {
// Set whether this command should ignore prepare conflicts or not.
opCtx->recoveryUnit()->setIgnorePrepared(shouldIgnorePrepared(
prepareConflictBehavior, readConcernArgs.getLevel(), afterClusterTime, atClusterTime));
}
return Status::OK();
}
MONGO_REGISTER_SHIM(waitForLinearizableReadConcern)
(OperationContext* opCtx, const int readConcernTimeout)->Status {
CurOpFailpointHelpers::waitWhileFailPointEnabled(
&hangBeforeLinearizableReadConcern, opCtx, "hangBeforeLinearizableReadConcern", [opCtx]() {
log() << "batch update - hangBeforeLinearizableReadConcern fail point enabled. "
"Blocking until fail point is disabled.";
});
repl::ReplicationCoordinator* replCoord =
repl::ReplicationCoordinator::get(opCtx->getClient()->getServiceContext());
{
Lock::DBLock lk(opCtx, "local", MODE_IX);
Lock::CollectionLock lock(opCtx, NamespaceString("local.oplog.rs"), MODE_IX);
if (!replCoord->canAcceptWritesForDatabase(opCtx, "admin")) {
return {ErrorCodes::NotMaster,
"No longer primary when waiting for linearizable read concern"};
}
writeConflictRetry(opCtx, "waitForLinearizableReadConcern", "local.rs.oplog", [&opCtx] {
WriteUnitOfWork uow(opCtx);
opCtx->getClient()->getServiceContext()->getOpObserver()->onOpMessage(
opCtx,
BSON("msg"
<< "linearizable read"));
uow.commit();
});
}
WriteConcernOptions wc = WriteConcernOptions(
WriteConcernOptions::kMajority, WriteConcernOptions::SyncMode::UNSET, readConcernTimeout);
repl::OpTime lastOpApplied = repl::ReplClientInfo::forClient(opCtx->getClient()).getLastOp();
auto awaitReplResult = replCoord->awaitReplication(opCtx, lastOpApplied, wc);
if (awaitReplResult.status == ErrorCodes::WriteConcernFailed) {
return Status(ErrorCodes::LinearizableReadConcernError,
"Failed to confirm that read was linearizable.");
}
return awaitReplResult.status;
}
MONGO_REGISTER_SHIM(waitForSpeculativeMajorityReadConcern)
(OperationContext* opCtx, repl::SpeculativeMajorityReadInfo speculativeReadInfo)->Status {
invariant(speculativeReadInfo.isSpeculativeRead());
// Select the timestamp to wait on. A command may have selected a specific timestamp to wait on.
// If not, then we use the timestamp selected by the read source.
auto replCoord = repl::ReplicationCoordinator::get(opCtx);
Timestamp waitTs;
auto speculativeReadTimestamp = speculativeReadInfo.getSpeculativeReadTimestamp();
if (speculativeReadTimestamp) {
waitTs = *speculativeReadTimestamp;
} else {
// Speculative majority reads are required to use the 'kNoOverlap' read source.
invariant(opCtx->recoveryUnit()->getTimestampReadSource() ==
RecoveryUnit::ReadSource::kNoOverlap);
boost::optional<Timestamp> readTs = opCtx->recoveryUnit()->getPointInTimeReadTimestamp();
invariant(readTs);
waitTs = *readTs;
}
// Block to make sure returned data is majority committed.
LOG(1) << "Servicing speculative majority read, waiting for timestamp " << waitTs
<< " to become committed, current commit point: " << replCoord->getLastCommittedOpTime();
if (!opCtx->hasDeadline()) {
// This hard-coded value represents the maximum time we are willing to wait for a timestamp
// to majority commit when doing a speculative majority read if no maxTimeMS value has been
// set for the command. We make this value rather conservative. This exists primarily to
// address the fact that getMore commands do not respect maxTimeMS properly. In this case,
// we still want speculative majority reads to time out after some period if a timestamp
// cannot majority commit.
auto timeout = Seconds(15);
opCtx->setDeadlineAfterNowBy(timeout, ErrorCodes::MaxTimeMSExpired);
}
Timer t;
auto waitStatus = replCoord->awaitTimestampCommitted(opCtx, waitTs);
if (waitStatus.isOK()) {
LOG(1) << "Timestamp " << waitTs << " became majority committed, waited " << t.millis()
<< "ms for speculative majority read to be satisfied.";
}
return waitStatus;
}
} // namespace mongo
|