summaryrefslogtreecommitdiff
path: root/src/mongo/db/repl/replication_coordinator_impl.cpp
blob: c402aca5bdd7c7b18a47767765128b2db403abab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */


#define LOGV2_FOR_ELECTION(ID, DLEVEL, MESSAGE, ...) \
    LOGV2_DEBUG_OPTIONS(                             \
        ID, DLEVEL, {logv2::LogComponent::kReplicationElection}, MESSAGE, ##__VA_ARGS__)

#include "mongo/db/repl/replication_coordinator_impl.h"

#include <algorithm>
#include <fmt/format.h>
#include <functional>
#include <limits>

#include "mongo/base/status.h"
#include "mongo/bson/json.h"
#include "mongo/bson/timestamp.h"
#include "mongo/client/fetcher.h"
#include "mongo/client/read_preference.h"
#include "mongo/db/audit.h"
#include "mongo/db/catalog/collection_catalog.h"
#include "mongo/db/catalog/commit_quorum_options.h"
#include "mongo/db/catalog/local_oplog_info.h"
#include "mongo/db/client.h"
#include "mongo/db/commands.h"
#include "mongo/db/commands/feature_compatibility_version.h"
#include "mongo/db/concurrency/d_concurrency.h"
#include "mongo/db/concurrency/lock_state.h"
#include "mongo/db/concurrency/replication_state_transition_lock_guard.h"
#include "mongo/db/curop.h"
#include "mongo/db/curop_failpoint_helpers.h"
#include "mongo/db/dbdirectclient.h"
#include "mongo/db/index/index_descriptor.h"
#include "mongo/db/index_builds_coordinator.h"
#include "mongo/db/mongod_options_storage_gen.h"
#include "mongo/db/prepare_conflict_tracker.h"
#include "mongo/db/read_write_concern_defaults.h"
#include "mongo/db/repl/always_allow_non_local_writes.h"
#include "mongo/db/repl/check_quorum_for_config_change.h"
#include "mongo/db/repl/data_replicator_external_state_initial_sync.h"
#include "mongo/db/repl/hello_response.h"
#include "mongo/db/repl/initial_syncer_factory.h"
#include "mongo/db/repl/isself.h"
#include "mongo/db/repl/last_vote.h"
#include "mongo/db/repl/read_concern_args.h"
#include "mongo/db/repl/repl_client_info.h"
#include "mongo/db/repl/repl_server_parameters_gen.h"
#include "mongo/db/repl/repl_set_config_checks.h"
#include "mongo/db/repl/repl_set_heartbeat_args_v1.h"
#include "mongo/db/repl/repl_set_heartbeat_response.h"
#include "mongo/db/repl/repl_set_request_votes_args.h"
#include "mongo/db/repl/repl_settings.h"
#include "mongo/db/repl/replica_set_aware_service.h"
#include "mongo/db/repl/replication_coordinator_impl_gen.h"
#include "mongo/db/repl/replication_metrics.h"
#include "mongo/db/repl/replication_process.h"
#include "mongo/db/repl/storage_interface.h"
#include "mongo/db/repl/tenant_migration_access_blocker_util.h"
#include "mongo/db/repl/tenant_migration_decoration.h"
#include "mongo/db/repl/transaction_oplog_application.h"
#include "mongo/db/repl/update_position_args.h"
#include "mongo/db/repl/vote_requester.h"
#include "mongo/db/server_options.h"
#include "mongo/db/serverless/serverless_operation_lock_registry.h"
#include "mongo/db/session/kill_sessions_local.h"
#include "mongo/db/session/session_catalog.h"
#include "mongo/db/shutdown_in_progress_quiesce_info.h"
#include "mongo/db/storage/control/journal_flusher.h"
#include "mongo/db/storage/storage_options.h"
#include "mongo/db/transaction/transaction_participant.h"
#include "mongo/db/vector_clock.h"
#include "mongo/db/vector_clock_mutable.h"
#include "mongo/db/write_concern.h"
#include "mongo/db/write_concern_options.h"
#include "mongo/executor/connection_pool_stats.h"
#include "mongo/executor/network_interface.h"
#include "mongo/logv2/log.h"
#include "mongo/platform/mutex.h"
#include "mongo/rpc/metadata/oplog_query_metadata.h"
#include "mongo/rpc/metadata/repl_set_metadata.h"
#include "mongo/transport/hello_metrics.h"
#include "mongo/util/assert_util.h"
#include "mongo/util/fail_point.h"
#include "mongo/util/scopeguard.h"
#include "mongo/util/stacktrace.h"
#include "mongo/util/synchronized_value.h"
#include "mongo/util/testing_proctor.h"
#include "mongo/util/time_support.h"
#include "mongo/util/timer.h"

#define MONGO_LOGV2_DEFAULT_COMPONENT ::mongo::logv2::LogComponent::kReplication


namespace mongo {
namespace repl {

MONGO_FAIL_POINT_DEFINE(stepdownHangBeforePerformingPostMemberStateUpdateActions);
MONGO_FAIL_POINT_DEFINE(stepdownHangBeforeRSTLEnqueue);
// Fail setMaintenanceMode with ErrorCodes::NotSecondary to simulate a concurrent election.
MONGO_FAIL_POINT_DEFINE(setMaintenanceModeFailsWithNotSecondary);
MONGO_FAIL_POINT_DEFINE(forceSyncSourceRetryWaitForInitialSync);
// Signals that a hello request has started waiting.
MONGO_FAIL_POINT_DEFINE(waitForHelloResponse);
// Will cause a hello request to hang as it starts waiting.
MONGO_FAIL_POINT_DEFINE(hangWhileWaitingForHelloResponse);
// Will cause a hello request to hang after it times out waiting for a topology change.
MONGO_FAIL_POINT_DEFINE(hangAfterWaitingForTopologyChangeTimesOut);
MONGO_FAIL_POINT_DEFINE(skipDurableTimestampUpdates);
// Skip sending heartbeats to pre-check that a quorum is available before a reconfig.
MONGO_FAIL_POINT_DEFINE(omitConfigQuorumCheck);
// Will cause signal drain complete to hang right before acquiring the RSTL.
MONGO_FAIL_POINT_DEFINE(hangBeforeRSTLOnDrainComplete);
// Will cause signal drain complete to hang before reconfig.
MONGO_FAIL_POINT_DEFINE(hangBeforeReconfigOnDrainComplete);
// Will cause signal drain complete to hang after reconfig.
MONGO_FAIL_POINT_DEFINE(hangAfterReconfigOnDrainComplete);
MONGO_FAIL_POINT_DEFINE(doNotRemoveNewlyAddedOnHeartbeats);
// Will hang right after setting the currentOp info associated with an automatic reconfig.
MONGO_FAIL_POINT_DEFINE(hangDuringAutomaticReconfig);
// Make reconfig command hang before validating new config.
MONGO_FAIL_POINT_DEFINE(ReconfigHangBeforeConfigValidationCheck);
// Blocks after reconfig runs.
MONGO_FAIL_POINT_DEFINE(hangAfterReconfig);
// Allows skipping fetching the config from ping sender.
MONGO_FAIL_POINT_DEFINE(skipBeforeFetchingConfig);
// Hang after grabbing the RSTL but before we start rejecting writes.
MONGO_FAIL_POINT_DEFINE(stepdownHangAfterGrabbingRSTL);
// Hang before making checks on the new config relative to the current one.
MONGO_FAIL_POINT_DEFINE(hangBeforeNewConfigValidationChecks);
// Simulates returning a specified error in the hello response.
MONGO_FAIL_POINT_DEFINE(setCustomErrorInHelloResponseMongoD);
// Throws right before the call into recoverTenantMigrationAccessBlockers.
MONGO_FAIL_POINT_DEFINE(throwBeforeRecoveringTenantMigrationAccessBlockers);

// Number of times we tried to go live as a secondary.
CounterMetric attemptsToBecomeSecondary("repl.apply.attemptsToBecomeSecondary");

// Tracks the last state transition performed in this replica set.
auto& lastStateTransition =
    makeSynchronizedMetric<std::string>("repl.stateTransition.lastStateTransition");

// Tracks the number of operations killed on state transition.
CounterMetric userOpsKilled("repl.stateTransition.userOperationsKilled");

// Tracks the number of operations left running on state transition.
CounterMetric userOpsRunning("repl.stateTransition.userOperationsRunning");

// Tracks the number of times we have successfully performed automatic reconfigs to remove
// 'newlyAdded' fields.
CounterMetric numAutoReconfigsForRemovalOfNewlyAddedFields(
    "repl.reconfig.numAutoReconfigsForRemovalOfNewlyAddedFields");

using namespace fmt::literals;

using CallbackArgs = executor::TaskExecutor::CallbackArgs;
using CallbackFn = executor::TaskExecutor::CallbackFn;
using CallbackHandle = executor::TaskExecutor::CallbackHandle;
using EventHandle = executor::TaskExecutor::EventHandle;
using executor::NetworkInterface;
using NextAction = Fetcher::NextAction;

namespace {


void lockAndCall(stdx::unique_lock<Latch>* lk, const std::function<void()>& fn) {
    if (!lk->owns_lock()) {
        lk->lock();
    }
    fn();
}

template <typename T>
StatusOrStatusWith<T> futureGetNoThrowWithDeadline(OperationContext* opCtx,
                                                   SharedSemiFuture<T>& f,
                                                   Date_t deadline,
                                                   ErrorCodes::Error error) {
    try {
        return opCtx->runWithDeadline(deadline, error, [&] { return f.getNoThrow(opCtx); });
    } catch (const DBException& e) {
        return e.toStatus();
    }
}

constexpr StringData kQuiesceModeShutdownMessage =
    "The server is in quiesce mode and will shut down"_sd;

}  // namespace

void ReplicationCoordinatorImpl::WaiterList::add_inlock(const OpTime& opTime,
                                                        SharedWaiterHandle waiter) {
    _waiters.emplace(opTime, std::move(waiter));
}

SharedSemiFuture<void> ReplicationCoordinatorImpl::WaiterList::add_inlock(
    const OpTime& opTime, boost::optional<WriteConcernOptions> wc) {
    auto pf = makePromiseFuture<void>();
    _waiters.emplace(opTime, std::make_shared<Waiter>(std::move(pf.promise), std::move(wc)));
    return std::move(pf.future);
}

bool ReplicationCoordinatorImpl::WaiterList::remove_inlock(SharedWaiterHandle waiter) {
    for (auto iter = _waiters.begin(); iter != _waiters.end(); iter++) {
        if (iter->second == waiter) {
            _waiters.erase(iter);
            return true;
        }
    }
    return false;
}

template <typename Func>
void ReplicationCoordinatorImpl::WaiterList::setValueIf_inlock(Func&& func,
                                                               boost::optional<OpTime> opTime) {
    for (auto it = _waiters.begin(); it != _waiters.end() && (!opTime || it->first <= *opTime);) {
        const auto& waiter = it->second;
        try {
            if (func(it->first, waiter)) {
                waiter->promise.emplaceValue();
                it = _waiters.erase(it);
            } else {
                ++it;
            }
        } catch (const DBException& e) {
            waiter->promise.setError(e.toStatus());
            it = _waiters.erase(it);
        }
    }
}

void ReplicationCoordinatorImpl::WaiterList::setValueAll_inlock() {
    for (auto& [opTime, waiter] : _waiters) {
        waiter->promise.emplaceValue();
    }
    _waiters.clear();
}

void ReplicationCoordinatorImpl::WaiterList::setErrorAll_inlock(Status status) {
    invariant(!status.isOK());
    for (auto& [opTime, waiter] : _waiters) {
        waiter->promise.setError(status);
    }
    _waiters.clear();
}

namespace {
ReplicationCoordinator::Mode getReplicationModeFromSettings(const ReplSettings& settings) {
    if (settings.usingReplSets()) {
        return ReplicationCoordinator::modeReplSet;
    }
    return ReplicationCoordinator::modeNone;
}

InitialSyncerInterface::Options createInitialSyncerOptions(
    ReplicationCoordinator* replCoord, ReplicationCoordinatorExternalState* externalState) {
    InitialSyncerInterface::Options options;
    options.getMyLastOptime = [replCoord]() {
        return replCoord->getMyLastAppliedOpTime();
    };
    options.setMyLastOptime = [replCoord,
                               externalState](const OpTimeAndWallTime& opTimeAndWallTime) {
        // Note that setting the last applied opTime forward also advances the global timestamp.
        replCoord->setMyLastAppliedOpTimeAndWallTimeForward(opTimeAndWallTime);
        signalOplogWaiters();
        // The oplog application phase of initial sync starts timestamping writes, causing
        // WiredTiger to pin this data in memory. Advancing the oldest timestamp in step with the
        // last applied optime here will permit WiredTiger to evict this data as it sees fit.
        replCoord->getServiceContext()->getStorageEngine()->setOldestTimestamp(
            opTimeAndWallTime.opTime.getTimestamp());
    };
    options.resetOptimes = [replCoord]() {
        replCoord->resetMyLastOpTimes();
    };
    options.syncSourceSelector = replCoord;
    options.oplogFetcherMaxFetcherRestarts =
        externalState->getOplogFetcherInitialSyncMaxFetcherRestarts();

    // If this failpoint is set, override the default sync source retry interval for initial sync.
    forceSyncSourceRetryWaitForInitialSync.execute([&](const BSONObj& data) {
        auto retryMS = data["retryMS"].numberInt();
        options.syncSourceRetryWait = Milliseconds(retryMS);
    });

    return options;
}
}  // namespace

ReplicationCoordinatorImpl::ReplicationCoordinatorImpl(
    ServiceContext* service,
    const ReplSettings& settings,
    std::unique_ptr<ReplicationCoordinatorExternalState> externalState,
    std::unique_ptr<executor::TaskExecutor> executor,
    std::unique_ptr<TopologyCoordinator> topCoord,
    ReplicationProcess* replicationProcess,
    StorageInterface* storage,
    int64_t prngSeed)
    : _service(service),
      _settings(settings),
      _replMode(getReplicationModeFromSettings(settings)),
      _topCoord(std::move(topCoord)),
      _replExecutor(std::move(executor)),
      _externalState(std::move(externalState)),
      _inShutdown(false),
      _memberState(MemberState::RS_STARTUP),
      _rsConfigState(kConfigPreStart),
      _selfIndex(-1),
      _sleptLastElection(false),
      _readWriteAbility(std::make_unique<ReadWriteAbility>(!settings.usingReplSets())),
      _replicationProcess(replicationProcess),
      _storage(storage),
      _handleLivenessTimeoutCallback(_replExecutor.get(),
                                     [this](const executor::TaskExecutor::CallbackArgs& args) {
                                         _handleLivenessTimeout(args);
                                     }),
      _handleElectionTimeoutCallback(
          _replExecutor.get(),
          [this](const executor::TaskExecutor::CallbackArgs&) {
              _startElectSelfIfEligibleV1(StartElectionReasonEnum::kElectionTimeout);
          },
          [this](int64_t limit) { return _nextRandomInt64_inlock(limit); }),
      _random(prngSeed),
      _splitSessionManager(InternalSessionPool::get(service)) {

    _termShadow.store(OpTime::kUninitializedTerm);

    invariant(_service);

    if (!isReplEnabled()) {
        return;
    }

    // If this is a config server, then we set the periodic no-op interval to 1 second. This is to
    // ensure that the config server will not unduly hold up change streams running on the cluster.
    if (serverGlobalParams.clusterRole.has(ClusterRole::ConfigServer)) {
        periodicNoopIntervalSecs.store(1);
    }

    _externalState->setupNoopWriter(Seconds(periodicNoopIntervalSecs.load()));
}

ReplicationCoordinatorImpl::~ReplicationCoordinatorImpl() = default;

void ReplicationCoordinatorImpl::waitForStartUpComplete_forTest() {
    _waitForStartUpComplete();
}

void ReplicationCoordinatorImpl::_waitForStartUpComplete() {
    CallbackHandle handle;
    {
        stdx::unique_lock<Latch> lk(_mutex);
        while (_rsConfigState == kConfigPreStart || _rsConfigState == kConfigStartingUp) {
            _rsConfigStateChange.wait(lk);
        }
        handle = _finishLoadLocalConfigCbh;
    }
    if (handle.isValid()) {
        _replExecutor->wait(handle);
    }
}

ReplSetConfig ReplicationCoordinatorImpl::getReplicaSetConfig_forTest() {
    stdx::lock_guard<Latch> lk(_mutex);
    return _rsConfig;
}

Date_t ReplicationCoordinatorImpl::getElectionTimeout_forTest() const {
    stdx::lock_guard<Latch> lk(_mutex);
    return _handleElectionTimeoutCallback.getNextCall();
}

Milliseconds ReplicationCoordinatorImpl::getRandomizedElectionOffset_forTest() {
    stdx::lock_guard<Latch> lk(_mutex);
    return _getRandomizedElectionOffset_inlock();
}

boost::optional<Date_t> ReplicationCoordinatorImpl::getPriorityTakeover_forTest() const {
    stdx::lock_guard<Latch> lk(_mutex);
    if (!_priorityTakeoverCbh.isValid()) {
        return boost::none;
    }
    return _priorityTakeoverWhen;
}

boost::optional<Date_t> ReplicationCoordinatorImpl::getCatchupTakeover_forTest() const {
    stdx::lock_guard<Latch> lk(_mutex);
    if (!_catchupTakeoverCbh.isValid()) {
        return boost::none;
    }
    return _catchupTakeoverWhen;
}

executor::TaskExecutor::CallbackHandle ReplicationCoordinatorImpl::getCatchupTakeoverCbh_forTest()
    const {
    return _catchupTakeoverCbh;
}

OpTime ReplicationCoordinatorImpl::getCurrentCommittedSnapshotOpTime() const {
    stdx::lock_guard<Latch> lk(_mutex);
    return _getCurrentCommittedSnapshotOpTime_inlock();
}

OpTime ReplicationCoordinatorImpl::_getCurrentCommittedSnapshotOpTime_inlock() const {
    return _currentCommittedSnapshot.value_or(OpTime());
}

void ReplicationCoordinatorImpl::appendDiagnosticBSON(mongo::BSONObjBuilder* bob) {
    BSONObjBuilder eBuilder(bob->subobjStart("executor"));
    _replExecutor->appendDiagnosticBSON(&eBuilder);
}

void ReplicationCoordinatorImpl::appendConnectionStats(executor::ConnectionPoolStats* stats) const {
    _replExecutor->appendConnectionStats(stats);
}

bool ReplicationCoordinatorImpl::_startLoadLocalConfig(
    OperationContext* opCtx, StorageEngine::LastShutdownState lastShutdownState) {
    LOGV2(4280500, "Attempting to create internal replication collections");
    // Create necessary replication collections to guarantee that if a checkpoint sees data after
    // initial sync has completed, it also sees these collections.
    fassert(50708, _replicationProcess->getConsistencyMarkers()->createInternalCollections(opCtx));

    // Ensure (update if needed) the in-memory count for the oplogTruncateAfterPoint collection
    // matches the collection contents.
    _replicationProcess->getConsistencyMarkers()->ensureFastCountOnOplogTruncateAfterPoint(opCtx);

    _replicationProcess->getConsistencyMarkers()->initializeMinValidDocument(opCtx);

    fassert(51240, _externalState->createLocalLastVoteCollection(opCtx));

    LOGV2(4280501, "Attempting to load local voted for document");
    StatusWith<LastVote> lastVote = _externalState->loadLocalLastVoteDocument(opCtx);
    if (!lastVote.isOK()) {
        LOGV2_FATAL_NOTRACE(40367,
                            "Error loading local voted for document at startup; {error}",
                            "Error loading local voted for document at startup",
                            "error"_attr = lastVote.getStatus());
    }
    if (lastVote.getValue().getTerm() == OpTime::kInitialTerm) {
        // This log line is checked in unit tests.
        LOGV2(21311, "Did not find local initialized voted for document at startup");
    }
    {
        stdx::lock_guard<Latch> lk(_mutex);
        _topCoord->loadLastVote(lastVote.getValue());
    }

    LOGV2(4280502, "Searching for local Rollback ID document");
    // Check that we have a local Rollback ID. If we do not have one, create one.
    auto status = _replicationProcess->refreshRollbackID(opCtx);
    if (!status.isOK()) {
        if (status == ErrorCodes::NamespaceNotFound) {
            LOGV2(21312, "Did not find local Rollback ID document at startup. Creating one");
            auto initializingStatus = _replicationProcess->initializeRollbackID(opCtx);
            fassert(40424, initializingStatus);
        } else {
            LOGV2_FATAL_NOTRACE(40428,
                                "Error loading local Rollback ID document at startup; {error}",
                                "Error loading local Rollback ID document at startup",
                                "error"_attr = status);
        }
    } else if (lastShutdownState == StorageEngine::LastShutdownState::kUnclean) {
        LOGV2(501401, "Incrementing the rollback ID after unclean shutdown");
        fassert(501402, _replicationProcess->incrementRollbackID(opCtx));
    }

    LOGV2_DEBUG(4280503, 1, "Attempting to load local replica set configuration document");
    StatusWith<BSONObj> cfg = _externalState->loadLocalConfigDocument(opCtx);
    if (!cfg.isOK()) {
        LOGV2(21313,
              "Did not find local replica set configuration document at startup;  {error}",
              "Did not find local replica set configuration document at startup",
              "error"_attr = cfg.getStatus());
        return true;
    }
    ReplSetConfig localConfig;
    try {
        localConfig = ReplSetConfig::parse(cfg.getValue());
    } catch (const DBException& e) {
        auto status = e.toStatus();
        if (status.code() == ErrorCodes::RepairedReplicaSetNode) {
            LOGV2_FATAL_NOTRACE(
                50923,
                "This instance has been repaired and may contain modified replicated data that "
                "would not match other replica set members. To see your repaired data, start "
                "mongod without the --replSet option. When you are finished recovering your "
                "data and would like to perform a complete re-sync, please refer to the "
                "documentation here: "
                "https://docs.mongodb.com/manual/tutorial/resync-replica-set-member/");
        }
        LOGV2_FATAL_NOTRACE(
            28545,
            "Locally stored replica set configuration does not parse; See "
            "https://www.mongodb.com/docs/manual/reference/method/rs.reconfig/ "
            "for more information about replica set reconfig. Got \"{error}\" while parsing "
            "{config}",
            "Locally stored replica set configuration does not parse; See "
            "https://www.mongodb.com/docs/manual/reference/method/rs.reconfig/ "
            "for more information about replica set reconfig",
            "error"_attr = status,
            "config"_attr = cfg.getValue());
    }

    LOGV2(4280504, "Cleaning up any partially applied oplog batches & reading last op from oplog");
    // Read the last op from the oplog after cleaning up any partially applied batches.
    auto stableTimestamp =
        _replicationProcess->getReplicationRecovery()->recoverFromOplog(opCtx, boost::none);
    LOGV2(4280505,
          "Creating any necessary TenantMigrationAccessBlockers for unfinished migrations");

    if (MONGO_unlikely(throwBeforeRecoveringTenantMigrationAccessBlockers.shouldFail())) {
        uasserted(6111700,
                  "Failpoint 'throwBeforeRecoveringTenantMigrationAccessBlockers' triggered. "
                  "Throwing exception.");
    }

    tenant_migration_access_blocker::recoverTenantMigrationAccessBlockers(opCtx);
    ServerlessOperationLockRegistry::recoverLocks(opCtx);
    LOGV2(4280506, "Reconstructing prepared transactions");
    reconstructPreparedTransactions(opCtx,
                                    stableTimestamp ? OplogApplication::Mode::kStableRecovering
                                                    : OplogApplication::Mode::kUnstableRecovering);

    const auto lastOpTimeAndWallTimeResult = _externalState->loadLastOpTimeAndWallTime(opCtx);

    // Use a callback here, because _finishLoadLocalConfig calls isself() which requires
    // that the server's networking layer be up and running and accepting connections, which
    // doesn't happen until startReplication finishes.
    auto handle =
        _replExecutor->scheduleWork([=, this](const executor::TaskExecutor::CallbackArgs& args) {
            _finishLoadLocalConfig(args, localConfig, lastOpTimeAndWallTimeResult, lastVote);
        });
    if (handle == ErrorCodes::ShutdownInProgress) {
        handle = CallbackHandle{};
    }
    fassert(40446, handle);
    stdx::lock_guard<Latch> lk(_mutex);
    _finishLoadLocalConfigCbh = std::move(handle.getValue());

    LOGV2(4280507, "Loaded replica set config, scheduled callback to set local config");
    return false;
}

void ReplicationCoordinatorImpl::_createHorizonTopologyChangePromiseMapping(WithLock) {
    auto horizonMappings = _rsConfig.getMemberAt(_selfIndex).getHorizonMappings();
    // Create a new horizon to promise mapping since it is possible for the horizons
    // to change after a replica set reconfig.
    _horizonToTopologyChangePromiseMap.clear();
    for (auto const& [horizon, hostAndPort] : horizonMappings) {
        _horizonToTopologyChangePromiseMap.emplace(
            horizon, std::make_shared<SharedPromise<std::shared_ptr<const HelloResponse>>>());
    }
}

void ReplicationCoordinatorImpl::_finishLoadLocalConfig(
    const executor::TaskExecutor::CallbackArgs& cbData,
    const ReplSetConfig& localConfig,
    const StatusWith<OpTimeAndWallTime>& lastOpTimeAndWallTimeStatus,
    const StatusWith<LastVote>& lastVoteStatus) {
    if (!cbData.status.isOK()) {
        LOGV2_DEBUG(21314,
                    1,
                    "Loading local replica set configuration failed due to {error}",
                    "Loading local replica set configuration failed",
                    "error"_attr = cbData.status);
        return;
    }

    LOGV2(4280508, "Attempting to set local replica set config; validating config for startup");
    StatusWith<int> myIndex =
        validateConfigForStartUp(_externalState.get(), localConfig, getServiceContext());
    if (!myIndex.isOK()) {
        if (myIndex.getStatus() == ErrorCodes::NodeNotFound ||
            myIndex.getStatus() == ErrorCodes::InvalidReplicaSetConfig) {
            LOGV2_WARNING(21405,
                          "Locally stored replica set configuration does not have a valid entry "
                          "for the current node; waiting for reconfig or remote heartbeat; Got "
                          "\"{error}\" while validating {localConfig}",
                          "Locally stored replica set configuration does not have a valid entry "
                          "for the current node; waiting for reconfig or remote heartbeat",
                          "error"_attr = myIndex.getStatus(),
                          "localConfig"_attr = localConfig.toBSON());
            myIndex = StatusWith<int>(-1);
        } else {
            LOGV2_ERROR(21415,
                        "Locally stored replica set configuration is invalid; See "
                        "https://www.mongodb.com/docs/manual/reference/method/rs.reconfig/ "
                        "for more information about replica set reconfig. Got \"{error}\" "
                        "while validating {localConfig}",
                        "Locally stored replica set configuration is invalid; See "
                        "https://www.mongodb.com/docs/manual/reference/method/rs.reconfig/ "
                        "for more information about replica set reconfig",
                        "error"_attr = myIndex.getStatus(),
                        "localConfig"_attr = localConfig.toBSON());
            fassertFailedNoTrace(28544);
        }
    }

    if (!_settings.isServerless() && localConfig.getReplSetName() != _settings.ourSetName()) {
        LOGV2_WARNING(21406,
                      "Local replica set configuration document reports set name of "
                      "{localConfigSetName}, but command line reports "
                      "{commandLineSetName}; waiting for reconfig or remote heartbeat",
                      "Local replica set configuration document set name differs from command line "
                      "set name; waiting for reconfig or remote heartbeat",
                      "localConfigSetName"_attr = localConfig.getReplSetName(),
                      "commandLineSetName"_attr = _settings.ourSetName());
        myIndex = StatusWith<int>(-1);
    }
    LOGV2(4280509, "Local configuration validated for startup");

    // Do not check optime, if this node is an arbiter.
    bool isArbiter =
        myIndex.getValue() != -1 && localConfig.getMemberAt(myIndex.getValue()).isArbiter();
    OpTimeAndWallTime lastOpTimeAndWallTime = OpTimeAndWallTime();
    if (!isArbiter) {
        if (!lastOpTimeAndWallTimeStatus.isOK()) {
            LOGV2_WARNING(
                21407,
                "Failed to load timestamp and/or wall clock time of most recently applied "
                "operation: {error}",
                "Failed to load timestamp and/or wall clock time of most recently applied "
                "operation",
                "error"_attr = lastOpTimeAndWallTimeStatus.getStatus());
        } else {
            lastOpTimeAndWallTime = lastOpTimeAndWallTimeStatus.getValue();
        }
    } else {
        ReplicaSetAwareServiceRegistry::get(_service).onBecomeArbiter();
    }

    const auto lastOpTime = lastOpTimeAndWallTime.opTime;
    // Restore the current term according to the terms of last oplog entry and last vote.
    // The initial term of OpTime() is 0.
    long long term = lastOpTime.getTerm();
    if (lastVoteStatus.isOK()) {
        long long lastVoteTerm = lastVoteStatus.getValue().getTerm();
        if (term < lastVoteTerm) {
            term = lastVoteTerm;
        }
    }

    auto opCtx = cc().makeOperationContext();
    if (!lastOpTime.isNull()) {

        // If we have an oplog, it is still possible that our data is not in a consistent state. For
        // example, if we are starting up after a crash following a post-rollback RECOVERING state.
        // To detect this, we see if our last optime is >= the 'minValid' optime, which
        // should be persistent across node crashes.
        OpTime minValid = _replicationProcess->getConsistencyMarkers()->getMinValid(opCtx.get());

        // It is not safe to take stable checkpoints until we reach minValid, so we set our
        // initialDataTimestamp to prevent this. It is expected that this is only necessary when
        // enableMajorityReadConcern:false.
        if (lastOpTime < minValid) {
            LOGV2_DEBUG(4916700,
                        2,
                        "Setting initialDataTimestamp to minValid since our last optime is less "
                        "than minValid",
                        "lastOpTime"_attr = lastOpTime,
                        "minValid"_attr = minValid);
            _storage->setInitialDataTimestamp(getServiceContext(), minValid.getTimestamp());
        }
    }

    // Update the global timestamp before setting the last applied opTime forward so the last
    // applied optime is never greater than the latest cluster time in the logical clock.
    _externalState->setGlobalTimestamp(getServiceContext(), lastOpTime.getTimestamp());

    stdx::unique_lock<Latch> lock(_mutex);
    invariant(_rsConfigState == kConfigStartingUp);
    const PostMemberStateUpdateAction action =
        _setCurrentRSConfig(lock, opCtx.get(), localConfig, myIndex.getValue());

    // Set our last applied and durable optimes to the top of the oplog, if we have one.
    if (!lastOpTime.isNull()) {
        LOGV2_DEBUG(4280510,
                    1,
                    "Setting this node's last applied and durable opTimes to the top of the oplog");
        bool isRollbackAllowed = false;
        _setMyLastAppliedOpTimeAndWallTime(lock, lastOpTimeAndWallTime, isRollbackAllowed);
        _setMyLastDurableOpTimeAndWallTime(lock, lastOpTimeAndWallTime, isRollbackAllowed);
        _reportUpstream_inlock(std::move(lock));  // unlocks _mutex.
    } else {
        lock.unlock();
    }

    {
        stdx::lock_guard<Latch> lk(_mutex);
        // Step down is impossible, so we don't need to wait for the returned event.
        _updateTerm_inlock(term);
    }
    LOGV2(21320, "Current term is now {term}", "Updated term", "term"_attr = term);
    ReplicaSetAwareServiceRegistry::get(_service).onSetCurrentConfig(opCtx.get());
    _performPostMemberStateUpdateAction(action);

    if (!isArbiter && myIndex.getValue() != -1) {
        _externalState->startThreads();
        _startDataReplication(opCtx.get());
    }
    LOGV2(4280511, "Set local replica set config");
}

void ReplicationCoordinatorImpl::_startInitialSync(
    OperationContext* opCtx,
    InitialSyncerInterface::OnCompletionFn onCompletion,
    bool fallbackToLogical) {
    std::shared_ptr<InitialSyncerInterface> initialSyncerCopy;

    // Initial sync may take locks during startup; make sure there is no possibility of conflict.
    dassert(!opCtx->lockState()->isLocked());
    try {
        {
            // Must take the lock to set _initialSyncer, but not call it.
            stdx::lock_guard<Latch> lock(_mutex);
            if (_inShutdown || _inTerminalShutdown) {
                LOGV2(21326, "Initial Sync not starting because replication is shutting down");
                return;
            }

            auto initialSyncerFactory = InitialSyncerFactory::get(opCtx->getServiceContext());
            auto createInitialSyncer = [&](const std::string& method) {
                return initialSyncerFactory->makeInitialSyncer(
                    method,
                    createInitialSyncerOptions(this, _externalState.get()),
                    std::make_unique<DataReplicatorExternalStateInitialSync>(this,
                                                                             _externalState.get()),
                    _externalState->getDbWorkThreadPool(),
                    _storage,
                    _replicationProcess,
                    onCompletion);
            };

            if (!fallbackToLogical) {
                auto swInitialSyncer = createInitialSyncer(initialSyncMethod);
                if (swInitialSyncer.getStatus().code() == ErrorCodes::NotImplemented &&
                    initialSyncMethod != "logical") {
                    LOGV2_WARNING(58154,
                                  "No such initial sync method was available. Falling back to "
                                  "logical initial sync.",
                                  "initialSyncMethod"_attr = initialSyncMethod,
                                  "error"_attr = swInitialSyncer.getStatus().reason());
                    swInitialSyncer = createInitialSyncer(std::string("logical"));
                }
                initialSyncerCopy = uassertStatusOK(swInitialSyncer);
            } else {
                auto swInitialSyncer = createInitialSyncer(std::string("logical"));
                initialSyncerCopy = uassertStatusOK(swInitialSyncer);
            }
            _initialSyncer = initialSyncerCopy;
        }
        // InitialSyncer::startup() must be called outside lock because it uses features (eg.
        // setting the initial sync flag) which depend on the ReplicationCoordinatorImpl.
        uassertStatusOK(initialSyncerCopy->startup(opCtx, numInitialSyncAttempts.load()));
        LOGV2(4280514, "Initial sync started");
    } catch (const DBException& e) {
        auto status = e.toStatus();
        LOGV2(21327,
              "Initial Sync failed to start: {error}",
              "Initial Sync failed to start",
              "error"_attr = status);
        if (ErrorCodes::CallbackCanceled == status || ErrorCodes::isShutdownError(status.code())) {
            return;
        }
        fassertFailedWithStatusNoTrace(40354, status);
    }
}

void ReplicationCoordinatorImpl::_initialSyncerCompletionFunction(
    const StatusWith<OpTimeAndWallTime>& opTimeStatus) {
    {
        stdx::unique_lock<Latch> lock(_mutex);
        if (opTimeStatus == ErrorCodes::CallbackCanceled) {
            LOGV2(21324,
                  "Initial Sync has been cancelled: {error}",
                  "Initial Sync has been cancelled",
                  "error"_attr = opTimeStatus.getStatus());
            return;
        } else if (!opTimeStatus.isOK()) {
            if (_inShutdown || _inTerminalShutdown) {
                LOGV2(21325,
                      "Initial Sync failed during shutdown due to {error}",
                      "Initial Sync failed during shutdown",
                      "error"_attr = opTimeStatus.getStatus());
                return;
            } else if (opTimeStatus == ErrorCodes::InvalidSyncSource &&
                       _initialSyncer->getInitialSyncMethod() != "logical") {
                LOGV2(5780600,
                      "Falling back to logical initial sync: {error}",
                      "Falling back to logical initial sync",
                      "error"_attr = opTimeStatus.getStatus());
                lock.unlock();
                clearSyncSourceDenylist();
                _scheduleWorkAt(
                    _replExecutor->now(),
                    [=, this](const mongo::executor::TaskExecutor::CallbackArgs& cbData) {
                        _startInitialSync(
                            cc().makeOperationContext().get(),
                            [this](const StatusWith<OpTimeAndWallTime>& opTimeStatus) {
                                _initialSyncerCompletionFunction(opTimeStatus);
                            },
                            true /* fallbackToLogical */);
                    });
                return;
            } else {
                LOGV2_ERROR(21416,
                            "Initial sync failed, shutting down now. Restart the server "
                            "to attempt a new initial sync");
                fassertFailedWithStatusNoTrace(40088, opTimeStatus.getStatus());
            }
        }


        const auto lastApplied = opTimeStatus.getValue();
        _setMyLastAppliedOpTimeAndWallTime(lock, lastApplied, false);
        signalOplogWaiters();

        _topCoord->resetMaintenanceCount();
    }

    ReplicaSetAwareServiceRegistry::get(_service).onInitialDataAvailable(
        cc().makeOperationContext().get(), false /* isMajorityDataAvailable */);

    // Transition from STARTUP2 to RECOVERING and start the producer and the applier.
    // If the member state is REMOVED, this will do nothing until we receive a config with
    // ourself in it.
    const auto memberState = getMemberState();
    invariant(memberState.startup2() || memberState.removed());
    invariant(setFollowerMode(MemberState::RS_RECOVERING));
    auto opCtxHolder = cc().makeOperationContext();
    _externalState->startSteadyStateReplication(opCtxHolder.get(), this);
    // This log is used in tests to ensure we made it to this point.
    LOGV2_DEBUG(4853000, 1, "initial sync complete.");
}

void ReplicationCoordinatorImpl::_startDataReplication(OperationContext* opCtx) {
    if (_startedSteadyStateReplication.swap(true)) {
        // This is not the first call.
        return;
    }

    // Make sure we're not holding any locks; existing locks might conflict with operations
    // we take during initial sync or replication steady state startup.
    dassert(!opCtx->lockState()->isLocked());

    // Check to see if we need to do an initial sync.
    const auto lastOpTime = getMyLastAppliedOpTime();
    const auto needsInitialSync =
        lastOpTime.isNull() || _externalState->isInitialSyncFlagSet(opCtx);
    if (!needsInitialSync) {
        LOGV2(4280512, "No initial sync required. Attempting to begin steady replication");
        // Start steady replication, since we already have data.
        // ReplSetConfig has been installed, so it's either in STARTUP2 or REMOVED.
        auto memberState = getMemberState();
        invariant(memberState.startup2() || memberState.removed());
        invariant(setFollowerMode(MemberState::RS_RECOVERING));
        // Set an initial sync ID, in case we were upgraded or restored from backup without doing
        // an initial sync.
        _replicationProcess->getConsistencyMarkers()->setInitialSyncIdIfNotSet(opCtx);
        _externalState->startSteadyStateReplication(opCtx, this);
        return;
    }

    LOGV2(4280513, "Initial sync required. Attempting to start initial sync...");
    // Do initial sync.
    if (!_externalState->getTaskExecutor()) {
        LOGV2(21323, "Not running initial sync during test");
        return;
    }

    _startInitialSync(opCtx, [this](const StatusWith<OpTimeAndWallTime>& opTimeStatus) {
        _initialSyncerCompletionFunction(opTimeStatus);
    });
}

void ReplicationCoordinatorImpl::startup(OperationContext* opCtx,
                                         StorageEngine::LastShutdownState lastShutdownState) {
    if (!isReplEnabled()) {
        if (ReplSettings::shouldRecoverFromOplogAsStandalone()) {
            uassert(ErrorCodes::InvalidOptions,
                    str::stream() << "Cannot set parameter 'recoverToOplogTimestamp' "
                                  << "when recovering from the oplog as a standalone",
                    recoverToOplogTimestamp.empty());
            _replicationProcess->getReplicationRecovery()->recoverFromOplogAsStandalone(opCtx);
        }

        if (storageGlobalParams.queryableBackupMode && !recoverToOplogTimestamp.empty()) {
            BSONObj recoverToTimestampObj = fromjson(recoverToOplogTimestamp);
            uassert(ErrorCodes::BadValue,
                    str::stream() << "'recoverToOplogTimestamp' needs to have a 'timestamp' field",
                    recoverToTimestampObj.hasField("timestamp"));

            Timestamp recoverToTimestamp = recoverToTimestampObj.getField("timestamp").timestamp();
            uassert(ErrorCodes::BadValue,
                    str::stream() << "'recoverToOplogTimestamp' needs to be a valid timestamp",
                    !recoverToTimestamp.isNull());

            StatusWith<BSONObj> cfg = _externalState->loadLocalConfigDocument(opCtx);
            uassert(ErrorCodes::InvalidReplicaSetConfig,
                    str::stream()
                        << "No replica set config document was found, 'recoverToOplogTimestamp' "
                        << "must be used with a node that was previously part of a replica set",
                    cfg.isOK());

            // Need to perform replication recovery up to and including the given timestamp.
            _replicationProcess->getReplicationRecovery()->recoverFromOplogUpTo(opCtx,
                                                                                recoverToTimestamp);
        }

        stdx::lock_guard<Latch> lk(_mutex);
        _setConfigState_inlock(kConfigReplicationDisabled);
        return;
    }

    invariant(_settings.usingReplSets());
    invariant(!ReplSettings::shouldRecoverFromOplogAsStandalone());

    // Initialize the cached pointer to the oplog collection.
    acquireOplogCollectionForLogging(opCtx);

    _storage->initializeStorageControlsForReplication(opCtx->getServiceContext());

    // We are expected to be able to transition out of the kConfigStartingUp state by the end
    // of this function. Any uncaught exceptions here leave us in an invalid state and we will
    // not be able to shut down by normal means, as clean shutdown assumes we can leave that state.
    try {
        {
            stdx::lock_guard<Latch> lk(_mutex);
            fassert(18822, !_inShutdown);
            _setConfigState_inlock(kConfigStartingUp);
            _topCoord->setStorageEngineSupportsReadCommitted(
                _externalState->isReadCommittedSupportedByStorageEngine(opCtx));
        }

        _replExecutor->startup();

        LOGV2(6005300, "Starting up replica set aware services");
        ReplicaSetAwareServiceRegistry::get(_service).onStartup(opCtx);

        bool doneLoadingConfig = _startLoadLocalConfig(opCtx, lastShutdownState);
        if (doneLoadingConfig) {
            // If we're not done loading the config, then the config state will be set by
            // _finishLoadLocalConfig.
            stdx::lock_guard<Latch> lk(_mutex);
            invariant(!_rsConfig.isInitialized());
            _setConfigState_inlock(kConfigUninitialized);
        }
    } catch (DBException& e) {
        auto status = e.toStatus();
        LOGV2_FATAL_NOTRACE(
            6111701, "Failed to load local replica set config on startup", "status"_attr = status);
    }
}

void ReplicationCoordinatorImpl::_setImplicitDefaultWriteConcern(OperationContext* opCtx,
                                                                 WithLock lk) {
    auto& rwcDefaults = ReadWriteConcernDefaults::get(opCtx);
    bool isImplicitDefaultWriteConcernMajority = _rsConfig.isImplicitDefaultWriteConcernMajority();
    rwcDefaults.setImplicitDefaultWriteConcernMajority(isImplicitDefaultWriteConcernMajority);
}

void ReplicationCoordinatorImpl::enterTerminalShutdown() {
    std::shared_ptr<InitialSyncerInterface> initialSyncerCopy;
    {
        stdx::lock_guard lk(_mutex);
        _inTerminalShutdown = true;
        initialSyncerCopy = _initialSyncer;
    }
    // Shutting down the initial syncer early works around an issue where an initial syncer may not
    // be able to shut down with an opCtx active.  No opCtx is active when enterTerminalShutdown is
    // called due to a signal.
    if (initialSyncerCopy) {
        const auto status = initialSyncerCopy->shutdown();
        if (!status.isOK()) {
            LOGV2_WARNING(6137700,
                          "InitialSyncer shutdown failed: {error}",
                          "InitialSyncer shutdown failed",
                          "error"_attr = status);
        }
    }
}

bool ReplicationCoordinatorImpl::enterQuiesceModeIfSecondary(Milliseconds quiesceTime) {
    LOGV2_INFO(4794602, "Attempting to enter quiesce mode");

    stdx::lock_guard lk(_mutex);

    if (!_memberState.secondary()) {
        return false;
    }

    // Cancel any ongoing election so that the node cannot become primary once in quiesce mode,
    // and do not wait for cancellation to complete.
    _cancelElectionIfNeeded(lk);

    _inQuiesceMode = true;
    _quiesceDeadline = _replExecutor->now() + quiesceTime;

    // Increment the topology version and respond to all waiting hello requests with an error.
    _fulfillTopologyChangePromise(lk);

    return true;
}

bool ReplicationCoordinatorImpl::inQuiesceMode() const {
    stdx::lock_guard lk(_mutex);
    return _inQuiesceMode;
}

void ReplicationCoordinatorImpl::shutdown(OperationContext* opCtx) {
    // Shutdown must:
    // * prevent new threads from blocking in awaitReplication
    // * wake up all existing threads blocking in awaitReplication
    // * Shut down and join the execution resources it owns.

    if (!_settings.usingReplSets()) {
        return;
    }

    LOGV2(5074000, "Shutting down the replica set aware services.");
    ReplicaSetAwareServiceRegistry::get(_service).onShutdown();

    LOGV2(21328, "Shutting down replication subsystems");

    // Used to shut down outside of the lock.
    std::shared_ptr<InitialSyncerInterface> initialSyncerCopy;
    {
        stdx::unique_lock<Latch> lk(_mutex);
        fassert(28533, !_inShutdown);
        _inShutdown = true;
        if (_rsConfigState == kConfigPreStart) {
            LOGV2_WARNING(21409,
                          "ReplicationCoordinatorImpl::shutdown() called before startup() "
                          "finished. Shutting down without cleaning up the replication system");
            return;
        }
        if (_rsConfigState == kConfigStartingUp) {
            // Wait until we are finished starting up, so that we can cleanly shut everything down.
            lk.unlock();
            _waitForStartUpComplete();
            lk.lock();
            fassert(18823, _rsConfigState != kConfigStartingUp);
        }
        _replicationWaiterList.setErrorAll_inlock(
            {ErrorCodes::ShutdownInProgress, "Replication is being shut down"});
        _opTimeWaiterList.setErrorAll_inlock(
            {ErrorCodes::ShutdownInProgress, "Replication is being shut down"});
        _currentCommittedSnapshotCond.notify_all();
        _initialSyncer.swap(initialSyncerCopy);
    }

    // joining the replication executor is blocking so it must be run outside of the mutex
    if (initialSyncerCopy) {
        LOGV2_DEBUG(
            21329, 1, "ReplicationCoordinatorImpl::shutdown calling InitialSyncer::shutdown");
        const auto status = initialSyncerCopy->shutdown();
        if (!status.isOK()) {
            LOGV2_WARNING(21410,
                          "InitialSyncer shutdown failed: {error}",
                          "InitialSyncer shutdown failed",
                          "error"_attr = status);
        }
        initialSyncerCopy->join();
        initialSyncerCopy.reset();
    }

    {
        stdx::unique_lock<Latch> lk(_mutex);
        if (_finishedDrainingPromise) {
            _finishedDrainingPromise->setError(
                {ErrorCodes::InterruptedAtShutdown,
                 "Cancelling wait for drain mode to complete due to shutdown"});
            _finishedDrainingPromise = boost::none;
        }
    }

    _externalState->shutdown(opCtx);
    _replExecutor->shutdown();
    _replExecutor->join();
}

const ReplSettings& ReplicationCoordinatorImpl::getSettings() const {
    return _settings;
}

ReplicationCoordinator::Mode ReplicationCoordinatorImpl::getReplicationMode() const {
    return _replMode;
}

MemberState ReplicationCoordinatorImpl::getMemberState() const {
    stdx::lock_guard<Latch> lk(_mutex);
    return _getMemberState_inlock();
}

std::vector<MemberData> ReplicationCoordinatorImpl::getMemberData() const {
    stdx::lock_guard<Latch> lk(_mutex);
    return _topCoord->getMemberData();
}

MemberState ReplicationCoordinatorImpl::_getMemberState_inlock() const {
    return _memberState;
}

Status ReplicationCoordinatorImpl::waitForMemberState(Interruptible* interruptible,
                                                      MemberState expectedState,
                                                      Milliseconds timeout) {
    if (timeout < Milliseconds(0)) {
        return Status(ErrorCodes::BadValue, "Timeout duration cannot be negative");
    }

    stdx::unique_lock<Latch> lk(_mutex);
    auto pred = [this, expectedState]() {
        return _memberState == expectedState;
    };
    if (!interruptible->waitForConditionOrInterruptFor(_memberStateChange, lk, timeout, pred)) {
        return Status(ErrorCodes::ExceededTimeLimit,
                      str::stream()
                          << "Timed out waiting for state to become " << expectedState.toString()
                          << ". Current state is " << _memberState.toString());
    }
    return Status::OK();
}

Seconds ReplicationCoordinatorImpl::getSecondaryDelaySecs() const {
    stdx::lock_guard<Latch> lk(_mutex);
    invariant(_rsConfig.isInitialized());
    if (_selfIndex == -1) {
        // We aren't currently in the set. Return 0 seconds so we can clear out the applier's
        // queue of work.
        return Seconds(0);
    }
    return _rsConfig.getMemberAt(_selfIndex).getSecondaryDelay();
}

void ReplicationCoordinatorImpl::clearSyncSourceDenylist() {
    stdx::lock_guard<Latch> lk(_mutex);
    _topCoord->clearSyncSourceDenylist();
}

Status ReplicationCoordinatorImpl::setFollowerModeRollback(OperationContext* opCtx) {
    invariant(opCtx);
    invariant(opCtx->lockState()->isRSTLExclusive());
    return _setFollowerMode(opCtx, MemberState::RS_ROLLBACK);
}

Status ReplicationCoordinatorImpl::setFollowerMode(const MemberState& newState) {
    // Switching to rollback should call setFollowerModeRollback instead.
    invariant(newState != MemberState::RS_ROLLBACK);
    return _setFollowerMode(nullptr, newState);
}

Status ReplicationCoordinatorImpl::_setFollowerMode(OperationContext* opCtx,
                                                    const MemberState& newState) {
    stdx::unique_lock<Latch> lk(_mutex);
    if (newState == _topCoord->getMemberState()) {
        return Status::OK();
    }
    if (_topCoord->getRole() == TopologyCoordinator::Role::kLeader) {
        return Status(ErrorCodes::NotSecondary,
                      "Cannot set follower mode when node is currently the leader");
    }

    if (auto electionFinishedEvent = _cancelElectionIfNeeded(lk)) {
        // We were a candidate, which means _topCoord believed us to be in state RS_SECONDARY, and
        // we know that newState != RS_SECONDARY because we would have returned early, above if
        // the old and new state were equal. So, try again after the election is over to
        // finish setting the follower mode.  We cannot wait for the election to finish here as we
        // may be holding a global X lock, so we return a bad status and rely on the caller to
        // retry.
        return Status(ErrorCodes::ElectionInProgress,
                      str::stream() << "Cannot set follower mode to " << newState.toString()
                                    << " because we are in the middle of running an election");
    }

    _topCoord->setFollowerMode(newState.s);

    if (_memberState.secondary() && newState == MemberState::RS_ROLLBACK) {
        // If we are switching out of SECONDARY and to ROLLBACK, we must make sure that we hold the
        // RSTL in mode X to prevent readers that have the RSTL in intent mode from reading.
        _readWriteAbility->setCanServeNonLocalReads(opCtx, 0U);
    }

    const PostMemberStateUpdateAction action = _updateMemberStateFromTopologyCoordinator(lk);
    lk.unlock();
    _performPostMemberStateUpdateAction(action);

    return Status::OK();
}

ReplicationCoordinator::ApplierState ReplicationCoordinatorImpl::getApplierState() {
    stdx::lock_guard<Latch> lk(_mutex);
    return _applierState;
}

void ReplicationCoordinatorImpl::signalDrainComplete(OperationContext* opCtx,
                                                     long long termWhenBufferIsEmpty) noexcept {
    {
        stdx::unique_lock<Latch> lk(_mutex);
        if (_applierState == ReplicationCoordinator::ApplierState::DrainingForShardSplit) {
            _applierState = ApplierState::Stopped;
            auto memberState = _getMemberState_inlock();
            invariant(memberState.secondary() || memberState.startup());
            _externalState->onDrainComplete(opCtx);

            if (_finishedDrainingPromise) {
                _finishedDrainingPromise->emplaceValue();
                _finishedDrainingPromise = boost::none;
            }

            return;
        }
    }

    // This logic is a little complicated in order to avoid acquiring the RSTL in mode X
    // unnecessarily.  This is important because the applier may call signalDrainComplete()
    // whenever it wants, not only when the ReplicationCoordinator is expecting it.
    //
    // The steps are:
    // 1.) Check to see if we're waiting for this signal.  If not, return early.
    // 2.) Otherwise, release the mutex while acquiring the RSTL in mode X, since that might take a
    //     while (NB there's a deadlock cycle otherwise, too).
    // 3.) Re-check to see if we've somehow left drain mode.  If we have not, clear
    //     producer and applier's states, set the flag allowing non-local database writes and
    //     drop the mutex.  At this point, no writes can occur from other threads, due to the RSTL
    //     in mode X.
    // 4.) Drop all temp collections, and log the drops to the oplog.
    // 5.) Log transition to primary in the oplog and set that OpTime as the floor for what we will
    //     consider to be committed.
    // 6.) Drop the RSTL.
    //
    // Because replicatable writes are forbidden while in drain mode, and we don't exit drain
    // mode until we have the RSTL in mode X, which forbids all other threads from making
    // writes, we know that from the time that _canAcceptNonLocalWrites is set until
    // this method returns, no external writes will be processed.  This is important so that a new
    // temp collection isn't introduced on the new primary before we drop all the temp collections.

    // When we go to drop all temp collections, we must replicate the drops.
    invariant(opCtx->writesAreReplicated());

    stdx::unique_lock<Latch> lk(_mutex);
    if (_applierState != ApplierState::Draining) {
        LOGV2(6015306, "Applier already left draining state, exiting.");
        return;
    }
    lk.unlock();

    _externalState->onDrainComplete(opCtx);
    ReplicaSetAwareServiceRegistry::get(_service).onStepUpBegin(opCtx, termWhenBufferIsEmpty);

    if (MONGO_unlikely(hangBeforeRSTLOnDrainComplete.shouldFail())) {
        LOGV2(4712800, "Hanging due to hangBeforeRSTLOnDrainComplete failpoint");
        hangBeforeRSTLOnDrainComplete.pauseWhileSet(opCtx);
    }

    // Kill all user writes and user reads that encounter a prepare conflict. Also kills select
    // internal operations. Although secondaries cannot accept writes, a step up can kill writes
    // that were blocked behind the RSTL lock held by a step down attempt. These writes will be
    // killed with a retryable error code during step up.
    AutoGetRstlForStepUpStepDown arsu(
        this, opCtx, ReplicationCoordinator::OpsKillingStateTransitionEnum::kStepUp);
    lk.lock();

    // Exit drain mode only if we're actually in draining mode, the apply buffer is empty in the
    // current term, and we're allowed to become the writable primary.
    if (_applierState != ApplierState::Draining ||
        !_topCoord->canCompleteTransitionToPrimary(termWhenBufferIsEmpty)) {
        LOGV2(6015308,
              "Applier left draining state or not allowed to become writeable primary, exiting");
        return;
    }
    _applierState = ApplierState::Stopped;

    invariant(_getMemberState_inlock().primary());
    invariant(!_readWriteAbility->canAcceptNonLocalWrites(opCtx));

    {
        // If the config doesn't have a term, don't change it.
        auto needBumpConfigTerm = _rsConfig.getConfigTerm() != OpTime::kUninitializedTerm;
        auto currConfigVersionAndTerm = _rsConfig.getConfigVersionAndTerm();
        lk.unlock();

        if (needBumpConfigTerm) {
            if (MONGO_unlikely(hangBeforeReconfigOnDrainComplete.shouldFail())) {
                LOGV2(5726200, "Hanging due to hangBeforeReconfigOnDrainComplete failpoint");
                hangBeforeReconfigOnDrainComplete.pauseWhileSet(opCtx);
            }
            // We re-write the term but keep version the same. This conceptually a no-op
            // in the config consensus group, analogous to writing a new oplog entry
            // in Raft log state machine on step up.
            auto getNewConfig = [&](const ReplSetConfig& oldConfig,
                                    long long primaryTerm) -> StatusWith<ReplSetConfig> {
                if (oldConfig.getConfigVersionAndTerm() != currConfigVersionAndTerm) {
                    return {ErrorCodes::ConfigurationInProgress,
                            "reconfig on step up was preempted by another reconfig"};
                }
                auto config = oldConfig.getMutable();
                config.setConfigTerm(primaryTerm);
                return ReplSetConfig(std::move(config));
            };
            LOGV2(4508103, "Increment the config term via reconfig");
            // Since we are only bumping the config term, we can skip the config replication and
            // quorum checks in reconfig.
            auto reconfigStatus = doOptimizedReconfig(opCtx, getNewConfig);
            if (!reconfigStatus.isOK()) {
                LOGV2(4508100,
                      "Automatic reconfig to increment the config term on stepup failed",
                      "error"_attr = reconfigStatus);
                // If the node stepped down after we released the lock, we can just return.
                if (ErrorCodes::isNotPrimaryError(reconfigStatus.code())) {
                    return;
                }
                // Writing this new config with a new term is somewhat "best effort", and if we get
                // preempted by a concurrent reconfig, that is fine since that new config will have
                // occurred after the node became primary and so the concurrent reconfig has updated
                // the term appropriately.
                if (reconfigStatus != ErrorCodes::ConfigurationInProgress) {
                    LOGV2_FATAL_CONTINUE(4508101,
                                         "Reconfig on stepup failed for unknown reasons",
                                         "error"_attr = reconfigStatus);
                    fassertFailedWithStatus(31477, reconfigStatus);
                }
            }
        }
        if (MONGO_unlikely(hangAfterReconfigOnDrainComplete.shouldFail())) {
            LOGV2(4508102, "Hanging due to hangAfterReconfigOnDrainComplete failpoint");
            hangAfterReconfigOnDrainComplete.pauseWhileSet(opCtx);
        }

        LOGV2(6015310, "Starting to transition to primary.");
        AllowNonLocalWritesBlock writesAllowed(opCtx);
        OpTime firstOpTime = _externalState->onTransitionToPrimary(opCtx);
        ReplicaSetAwareServiceRegistry::get(_service).onStepUpComplete(opCtx,
                                                                       firstOpTime.getTerm());
        lk.lock();

        _topCoord->completeTransitionToPrimary(firstOpTime);
        invariant(firstOpTime.getTerm() == _topCoord->getTerm());
        invariant(termWhenBufferIsEmpty == _topCoord->getTerm());
    }

    // Must calculate the commit level again because firstOpTimeOfMyTerm wasn't set when we logged
    // our election in onTransitionToPrimary(), above.
    _updateLastCommittedOpTimeAndWallTime(lk);
    _wakeReadyWaiters(lk);

    // Update _canAcceptNonLocalWrites.
    _updateWriteAbilityFromTopologyCoordinator(lk, opCtx);
    _updateMemberStateFromTopologyCoordinator(lk);

    LOGV2(21331,
          "Transition to primary complete; database writes are now permitted",
          "term"_attr = _termShadow.load());
    _externalState->startNoopWriter(_getMyLastAppliedOpTime_inlock());
}

void ReplicationCoordinatorImpl::signalUpstreamUpdater() {
    _externalState->forwardSecondaryProgress();
}

void ReplicationCoordinatorImpl::setMyHeartbeatMessage(const std::string& msg) {
    stdx::unique_lock<Latch> lock(_mutex);
    _topCoord->setMyHeartbeatMessage(_replExecutor->now(), msg);
}

void ReplicationCoordinatorImpl::setMyLastAppliedOpTimeAndWallTimeForward(
    const OpTimeAndWallTime& opTimeAndWallTime) {
    // Update the global timestamp before setting the last applied opTime forward so the last
    // applied optime is never greater than the latest cluster time in the logical clock.
    const auto opTime = opTimeAndWallTime.opTime;
    _externalState->setGlobalTimestamp(getServiceContext(), opTime.getTimestamp());

    stdx::unique_lock<Latch> lock(_mutex);
    auto myLastAppliedOpTime = _getMyLastAppliedOpTime_inlock();
    if (opTime > myLastAppliedOpTime) {
        _setMyLastAppliedOpTimeAndWallTime(lock, opTimeAndWallTime, false);
        _reportUpstream_inlock(std::move(lock));
    } else {
        if (opTime != myLastAppliedOpTime) {
            // In pv1, oplog entries are ordered by non-decreasing term and strictly increasing
            // timestamp. So, in pv1, its not possible for us to get opTime with lower term and
            // timestamp higher than or equal to our current lastAppliedOptime.
            invariant(opTime.getTerm() == OpTime::kUninitializedTerm ||
                      myLastAppliedOpTime.getTerm() == OpTime::kUninitializedTerm ||
                      opTime.getTimestamp() < myLastAppliedOpTime.getTimestamp());
        }

        if (_readWriteAbility->canAcceptNonLocalWrites(lock) && _rsConfig.getWriteMajority() == 1) {
            // Single vote primaries may have a lagged stable timestamp due to paring back the
            // stable timestamp to the all committed timestamp.
            _setStableTimestampForStorage(lock);
        }
    }
}

void ReplicationCoordinatorImpl::setMyLastDurableOpTimeAndWallTimeForward(
    const OpTimeAndWallTime& opTimeAndWallTime) {
    stdx::unique_lock<Latch> lock(_mutex);

    if (MONGO_unlikely(skipDurableTimestampUpdates.shouldFail())) {
        return;
    }

    if (opTimeAndWallTime.opTime > _getMyLastDurableOpTime_inlock()) {
        _setMyLastDurableOpTimeAndWallTime(lock, opTimeAndWallTime, false);
        _reportUpstream_inlock(std::move(lock));
    }
}

void ReplicationCoordinatorImpl::setMyLastAppliedOpTimeAndWallTime(
    const OpTimeAndWallTime& opTimeAndWallTime) {
    const auto opTime = opTimeAndWallTime.opTime;
    // Update the global timestamp before setting the last applied opTime forward so the last
    // applied optime is never greater than the latest cluster time in the logical clock.
    _externalState->setGlobalTimestamp(getServiceContext(), opTime.getTimestamp());

    stdx::unique_lock<Latch> lock(_mutex);
    // The optime passed to this function is required to represent a consistent database state.
    _setMyLastAppliedOpTimeAndWallTime(lock, opTimeAndWallTime, false);
    signalOplogWaiters();
    _reportUpstream_inlock(std::move(lock));
}

void ReplicationCoordinatorImpl::setMyLastDurableOpTimeAndWallTime(
    const OpTimeAndWallTime& opTimeAndWallTime) {
    stdx::unique_lock<Latch> lock(_mutex);
    _setMyLastDurableOpTimeAndWallTime(lock, opTimeAndWallTime, false);
    _reportUpstream_inlock(std::move(lock));
}

void ReplicationCoordinatorImpl::resetMyLastOpTimes() {
    stdx::unique_lock<Latch> lock(_mutex);
    _resetMyLastOpTimes(lock);
    _reportUpstream_inlock(std::move(lock));
}

void ReplicationCoordinatorImpl::_resetMyLastOpTimes(WithLock lk) {
    LOGV2_DEBUG(21332, 1, "Resetting durable/applied optimes");
    // Reset to uninitialized OpTime
    bool isRollbackAllowed = true;
    _setMyLastAppliedOpTimeAndWallTime(lk, OpTimeAndWallTime(), isRollbackAllowed);
    _setMyLastDurableOpTimeAndWallTime(lk, OpTimeAndWallTime(), isRollbackAllowed);
}

void ReplicationCoordinatorImpl::_reportUpstream_inlock(stdx::unique_lock<Latch> lock) {
    invariant(lock.owns_lock());

    if (getReplicationMode() != modeReplSet) {
        return;
    }

    if (_getMemberState_inlock().primary()) {
        return;
    }

    lock.unlock();

    _externalState->forwardSecondaryProgress();  // Must do this outside _mutex
}

void ReplicationCoordinatorImpl::_setMyLastAppliedOpTimeAndWallTime(
    WithLock lk, const OpTimeAndWallTime& opTimeAndWallTime, bool isRollbackAllowed) {
    const auto opTime = opTimeAndWallTime.opTime;

    // The last applied opTime should never advance beyond the global timestamp (i.e. the latest
    // cluster time). Not enforced if the logical clock is disabled, e.g. for arbiters.
    dassert(!VectorClock::get(getServiceContext())->isEnabled() ||
            _externalState->getGlobalTimestamp(getServiceContext()) >= opTime.getTimestamp());

    _topCoord->setMyLastAppliedOpTimeAndWallTime(
        opTimeAndWallTime, _replExecutor->now(), isRollbackAllowed);
    // If we are using applied times to calculate the commit level, update it now.
    if (!_rsConfig.getWriteConcernMajorityShouldJournal()) {
        _updateLastCommittedOpTimeAndWallTime(lk);
    }
    // No need to wake up replication waiters because there should not be any replication waiters
    // waiting on our own lastApplied.

    // Update the storage engine's lastApplied snapshot before updating the stable timestamp on the
    // storage engine. New transactions reading from the lastApplied snapshot should start before
    // the oldest timestamp is advanced to avoid races. Additionally, update this snapshot before
    // signaling optime waiters. This avoids a race that would allow optime waiters to open
    // transactions on stale lastApplied values because they do not hold or reacquire the
    // replication coordinator mutex when signaled.
    _externalState->updateLastAppliedSnapshot(opTime);

    // Signal anyone waiting on optime changes.
    _opTimeWaiterList.setValueIf_inlock(
        [opTime](const OpTime& waitOpTime, const SharedWaiterHandle& waiter) {
            return waitOpTime <= opTime;
        },
        opTime);

    if (opTime.isNull()) {
        return;
    }

    // Advance the stable timestamp if necessary. Stable timestamps are used to determine the latest
    // timestamp that it is safe to revert the database to, in the event of a rollback via the
    // 'recover to timestamp' method.
    invariant(opTime.getTimestamp().getInc() > 0,
              str::stream() << "Impossible optime received: " << opTime.toString());
    // If we are lagged behind the commit optime, set a new stable timestamp here. When majority
    // read concern is disabled, the stable timestamp is set to lastApplied.
    if (opTime <= _topCoord->getLastCommittedOpTime() ||
        !serverGlobalParams.enableMajorityReadConcern) {
        _setStableTimestampForStorage(lk);
    }
}

void ReplicationCoordinatorImpl::_setMyLastDurableOpTimeAndWallTime(
    WithLock lk, const OpTimeAndWallTime& opTimeAndWallTime, bool isRollbackAllowed) {
    _topCoord->setMyLastDurableOpTimeAndWallTime(
        opTimeAndWallTime, _replExecutor->now(), isRollbackAllowed);
    // If we are using durable times to calculate the commit level, update it now.
    if (_rsConfig.getWriteConcernMajorityShouldJournal()) {
        _updateLastCommittedOpTimeAndWallTime(lk);
    }
    // There could be replication waiters waiting for our lastDurable for {j: true}, wake up those
    // that now have their write concern satisfied.
    _wakeReadyWaiters(lk, opTimeAndWallTime.opTime);
}

OpTime ReplicationCoordinatorImpl::getMyLastAppliedOpTime() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _getMyLastAppliedOpTime_inlock();
}

OpTimeAndWallTime ReplicationCoordinatorImpl::getMyLastAppliedOpTimeAndWallTime(
    bool rollbackSafe) const {
    stdx::lock_guard<Latch> lock(_mutex);
    if (rollbackSafe && _getMemberState_inlock().rollback()) {
        return {};
    }
    return _getMyLastAppliedOpTimeAndWallTime_inlock();
}

OpTimeAndWallTime ReplicationCoordinatorImpl::getMyLastDurableOpTimeAndWallTime() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _getMyLastDurableOpTimeAndWallTime_inlock();
}

OpTime ReplicationCoordinatorImpl::getMyLastDurableOpTime() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _getMyLastDurableOpTime_inlock();
}

Status ReplicationCoordinatorImpl::_validateReadConcern(OperationContext* opCtx,
                                                        const ReadConcernArgs& readConcern) {
    if (readConcern.getArgsAfterClusterTime() &&
        readConcern.getLevel() != ReadConcernLevel::kMajorityReadConcern &&
        readConcern.getLevel() != ReadConcernLevel::kLocalReadConcern &&
        readConcern.getLevel() != ReadConcernLevel::kSnapshotReadConcern) {
        return {
            ErrorCodes::BadValue,
            "Only readConcern level 'majority', 'local', or 'snapshot' is allowed when specifying "
            "afterClusterTime"};
    }

    if (readConcern.getArgsAtClusterTime() &&
        readConcern.getLevel() != ReadConcernLevel::kSnapshotReadConcern) {
        return {ErrorCodes::BadValue,
                "readConcern level 'snapshot' is required when specifying atClusterTime"};
    }

    // We cannot support read concern 'majority' by means of reading from a historical snapshot if
    // the storage layer doesn't support it. In this case, we can support it by using "speculative"
    // majority reads instead.
    if (readConcern.getLevel() == ReadConcernLevel::kMajorityReadConcern &&
        readConcern.getMajorityReadMechanism() ==
            ReadConcernArgs::MajorityReadMechanism::kMajoritySnapshot &&
        !_externalState->isReadCommittedSupportedByStorageEngine(opCtx)) {
        return {ErrorCodes::ReadConcernMajorityNotEnabled,
                str::stream() << "Storage engine does not support read concern: "
                              << readConcern.toString()};
    }

    if (readConcern.getLevel() == ReadConcernLevel::kSnapshotReadConcern &&
        !_externalState->isReadConcernSnapshotSupportedByStorageEngine(opCtx)) {
        return {ErrorCodes::InvalidOptions,
                str::stream() << "Storage engine does not support read concern: "
                              << readConcern.toString()};
    }

    if (readConcern.getArgsAtClusterTime() && !serverGlobalParams.enableMajorityReadConcern) {
        return {ErrorCodes::InvalidOptions,
                "readConcern level 'snapshot' is not supported in sharded clusters when "
                "enableMajorityReadConcern=false. See "
                "https://dochub.mongodb.org/core/"
                "disabled-read-concern-majority-snapshot-restrictions."};
    }

    return Status::OK();
}

Status ReplicationCoordinatorImpl::waitUntilOpTimeForRead(OperationContext* opCtx,
                                                          const ReadConcernArgs& readConcern) {
    auto verifyStatus = _validateReadConcern(opCtx, readConcern);
    if (!verifyStatus.isOK()) {
        return verifyStatus;
    }

    // nothing to wait for
    if (!readConcern.getArgsAfterClusterTime() && !readConcern.getArgsOpTime() &&
        !readConcern.getArgsAtClusterTime()) {
        return Status::OK();
    }

    // We should never wait for replication if we are holding any locks, because this can
    // potentially block for long time while doing network activity.
    if (opCtx->lockState()->isLocked()) {
        return {ErrorCodes::IllegalOperation,
                "Waiting for replication not allowed while holding a lock"};
    }

    return waitUntilOpTimeForReadUntil(opCtx, readConcern, boost::none);
}

Status ReplicationCoordinatorImpl::waitUntilOpTimeForReadUntil(OperationContext* opCtx,
                                                               const ReadConcernArgs& readConcern,
                                                               boost::optional<Date_t> deadline) {
    if (getReplicationMode() != repl::ReplicationCoordinator::modeReplSet) {
        // 'afterOpTime', 'afterClusterTime', and 'atClusterTime' are only supported for replica
        // sets.
        return {ErrorCodes::NotAReplicaSet,
                "node needs to be a replica set member to use read concern"};
    }

    {
        stdx::lock_guard lock(_mutex);
        if (_rsConfigState == kConfigUninitialized || _rsConfigState == kConfigInitiating ||
            (_rsConfigState == kConfigHBReconfiguring && !_rsConfig.isInitialized())) {
            return {
                ErrorCodes::NotYetInitialized,
                "Cannot use non-local read concern until replica set is finished initializing."};
        }
    }

    if (readConcern.getArgsAfterClusterTime() || readConcern.getArgsAtClusterTime()) {
        return _waitUntilClusterTimeForRead(opCtx, readConcern, deadline);
    } else {
        return _waitUntilOpTimeForReadDeprecated(opCtx, readConcern);
    }
}

Status ReplicationCoordinatorImpl::_waitUntilOpTime(OperationContext* opCtx,
                                                    OpTime targetOpTime,
                                                    boost::optional<Date_t> deadline) {
    if (!_externalState->oplogExists(opCtx)) {
        return {ErrorCodes::NotYetInitialized, "The oplog does not exist."};
    }

    {
        stdx::unique_lock lock(_mutex);
        if (targetOpTime > _getMyLastAppliedOpTime_inlock()) {
            if (_inShutdown) {
                return {ErrorCodes::ShutdownInProgress, "Shutdown in progress"};
            }

            // We just need to wait for the opTime to catch up to what we need (not majority RC).
            auto future = _opTimeWaiterList.add_inlock(targetOpTime);

            LOGV2_DEBUG(21333,
                        3,
                        "waitUntilOpTime: OpID {OpID} is waiting for OpTime "
                        "{targetOpTime} until {deadline}",
                        "waitUntilOpTime is waiting for OpTime",
                        "OpID"_attr = opCtx->getOpID(),
                        "targetOpTime"_attr = targetOpTime,
                        "deadline"_attr = deadline.value_or(opCtx->getDeadline()));

            lock.unlock();
            auto waitStatus = futureGetNoThrowWithDeadline(
                opCtx, future, deadline.value_or(Date_t::max()), opCtx->getTimeoutError());
            if (!waitStatus.isOK()) {
                lock.lock();
                return waitStatus.withContext(
                    str::stream() << "Error waiting for optime " << targetOpTime.toString()
                                  << ", current relevant optime is "
                                  << _getMyLastAppliedOpTime_inlock().toString() << ".");
            }
        }
    }

    // We need to wait for all committed writes to be visible, even in the oplog (which uses
    // special visibility rules).  We must do this after waiting for our target optime, because
    // only then do we know that it will fill in all "holes" before that time.  If we do it
    // earlier, we may return when the requested optime has been reached, but other writes
    // at optimes before that time are not yet visible.
    //
    // We wait only on primaries, because on secondaries, other mechanisms assure that the
    // last applied optime is always hole-free, and waiting for all earlier writes to be visible
    // can deadlock against secondary command application.
    //
    // Note that oplog queries by secondary nodes depend on this behavior to wait for
    // all oplog holes to be filled in, despite providing an afterClusterTime field
    // with Timestamp(0,1).
    _storage->waitForAllEarlierOplogWritesToBeVisible(opCtx, /* primaryOnly =*/true);

    return Status::OK();
}

Status ReplicationCoordinatorImpl::waitUntilMajorityOpTime(mongo::OperationContext* opCtx,
                                                           mongo::repl::OpTime targetOpTime,
                                                           boost::optional<Date_t> deadline) {
    if (!_externalState->snapshotsEnabled()) {
        return {ErrorCodes::CommandNotSupported,
                "Current storage engine does not support majority committed reads"};
    }

    stdx::unique_lock lock(_mutex);

    LOGV2_DEBUG(21334,
                1,
                "waitUntilOpTime: waiting for optime:{targetOpTime} to be in a snapshot -- current "
                "snapshot: {currentCommittedSnapshotOpTime}",
                "waitUntilOpTime: waiting for target OpTime to be in a snapshot",
                "targetOpTime"_attr = targetOpTime,
                "currentCommittedSnapshotOpTime"_attr =
                    _getCurrentCommittedSnapshotOpTime_inlock());

    LOGV2_DEBUG(21335,
                3,
                "waitUntilOpTime: waiting for a new snapshot until {deadline}",
                "waitUntilOpTime: waiting for a new snapshot",
                "deadline"_attr = deadline.value_or(opCtx->getDeadline()));

    try {
        auto ok = opCtx->waitForConditionOrInterruptUntil(
            _currentCommittedSnapshotCond, lock, deadline.value_or(Date_t::max()), [&] {
                return _inShutdown || (targetOpTime <= _getCurrentCommittedSnapshotOpTime_inlock());
            });
        uassert(opCtx->getTimeoutError(), "operation exceeded time limit", ok);
    } catch (const DBException& e) {
        return e.toStatus().withContext(
            str::stream() << "Error waiting for snapshot not less than " << targetOpTime.toString()
                          << ", current relevant optime is "
                          << _getCurrentCommittedSnapshotOpTime_inlock().toString() << ".");
    }

    if (_inShutdown) {
        return {ErrorCodes::ShutdownInProgress, "Shutdown in progress"};
    }

    if (_currentCommittedSnapshot) {
        // It seems that targetOpTime can sometimes be default OpTime{}. When there is no
        // _currentCommittedSnapshot, _getCurrentCommittedSnapshotOpTime_inlock() also returns
        // default OpTime{}. Hence this branch only runs if _currentCommittedSnapshot actually
        // exists.
        LOGV2_DEBUG(21336,
                    3,
                    "Got notified of new snapshot: {currentCommittedSnapshot}",
                    "Got notified of new snapshot",
                    "currentCommittedSnapshot"_attr = _currentCommittedSnapshot->toString());
    }
    return Status::OK();
}

Status ReplicationCoordinatorImpl::_waitUntilClusterTimeForRead(OperationContext* opCtx,
                                                                const ReadConcernArgs& readConcern,
                                                                boost::optional<Date_t> deadline) {
    invariant(readConcern.getArgsAfterClusterTime() || readConcern.getArgsAtClusterTime());
    invariant(!readConcern.getArgsAfterClusterTime() || !readConcern.getArgsAtClusterTime());
    auto clusterTime = readConcern.getArgsAfterClusterTime()
        ? *readConcern.getArgsAfterClusterTime()
        : *readConcern.getArgsAtClusterTime();
    invariant(clusterTime != LogicalTime::kUninitialized);

    // convert clusterTime to opTime so it can be used by the _opTimeWaiterList for wait on
    // readConcern level local.
    auto targetOpTime = OpTime(clusterTime.asTimestamp(), OpTime::kUninitializedTerm);
    invariant(!readConcern.getArgsOpTime());

    // We don't set isMajorityCommittedRead for transactions because snapshots are always
    // speculative; we wait for majority when the transaction commits.
    //
    // Speculative majority reads do not need to wait for the commit point to advance to satisfy
    // afterClusterTime reads. Waiting for the lastApplied to advance past the given target optime
    // ensures the recency guarantee for the afterClusterTime read. At the end of the command, we
    // will wait for the lastApplied optime to become majority committed, which then satisfies the
    // durability guarantee.
    //
    // Majority and snapshot reads outside of transactions should non-speculatively wait for the
    // majority committed snapshot.
    const bool isMajorityCommittedRead = !readConcern.isSpeculativeMajority() &&
        !opCtx->inMultiDocumentTransaction() &&
        (readConcern.getLevel() == ReadConcernLevel::kMajorityReadConcern ||
         readConcern.getLevel() == ReadConcernLevel::kSnapshotReadConcern);

    if (isMajorityCommittedRead) {
        return waitUntilMajorityOpTime(opCtx, targetOpTime, deadline);
    } else {
        return _waitUntilOpTime(opCtx, targetOpTime, deadline);
    }
}

// TODO: remove when SERVER-29729 is done
Status ReplicationCoordinatorImpl::_waitUntilOpTimeForReadDeprecated(
    OperationContext* opCtx, const ReadConcernArgs& readConcern) {
    const bool isMajorityCommittedRead =
        readConcern.getLevel() == ReadConcernLevel::kMajorityReadConcern;

    const auto targetOpTime = readConcern.getArgsOpTime().value_or(OpTime());
    if (isMajorityCommittedRead) {
        return waitUntilMajorityOpTime(opCtx, targetOpTime);
    } else {
        return _waitUntilOpTime(opCtx, targetOpTime);
    }
}

Status ReplicationCoordinatorImpl::awaitTimestampCommitted(OperationContext* opCtx, Timestamp ts) {
    // Using an uninitialized term means that this optime will be compared to other optimes only by
    // its timestamp. This allows us to wait only on the timestamp of the commit point surpassing
    // this timestamp, without worrying about terms.
    OpTime waitOpTime(ts, OpTime::kUninitializedTerm);
    return waitUntilMajorityOpTime(opCtx, waitOpTime);
}

OpTimeAndWallTime ReplicationCoordinatorImpl::_getMyLastAppliedOpTimeAndWallTime_inlock() const {
    return _topCoord->getMyLastAppliedOpTimeAndWallTime();
}

OpTime ReplicationCoordinatorImpl::_getMyLastAppliedOpTime_inlock() const {
    return _topCoord->getMyLastAppliedOpTime();
}

OpTimeAndWallTime ReplicationCoordinatorImpl::_getMyLastDurableOpTimeAndWallTime_inlock() const {
    return _topCoord->getMyLastDurableOpTimeAndWallTime();
}

OpTime ReplicationCoordinatorImpl::_getMyLastDurableOpTime_inlock() const {
    return _topCoord->getMyLastDurableOpTime();
}

Status ReplicationCoordinatorImpl::setLastDurableOptime_forTest(long long cfgVer,
                                                                long long memberId,
                                                                const OpTime& opTime,
                                                                Date_t wallTime) {
    stdx::lock_guard<Latch> lock(_mutex);
    invariant(getReplicationMode() == modeReplSet);

    if (wallTime == Date_t()) {
        wallTime = Date_t() + Seconds(opTime.getSecs());
    }

    const UpdatePositionArgs::UpdateInfo update(
        OpTime(), Date_t(), opTime, wallTime, cfgVer, memberId);
    const auto statusWithOpTime = _setLastOptimeForMember(lock, update);
    _updateStateAfterRemoteOpTimeUpdates(lock, statusWithOpTime.getValue());
    return statusWithOpTime.getStatus();
}

Status ReplicationCoordinatorImpl::setLastAppliedOptime_forTest(long long cfgVer,
                                                                long long memberId,
                                                                const OpTime& opTime,
                                                                Date_t wallTime) {
    stdx::lock_guard<Latch> lock(_mutex);
    invariant(getReplicationMode() == modeReplSet);

    if (wallTime == Date_t()) {
        wallTime = Date_t() + Seconds(opTime.getSecs());
    }

    const UpdatePositionArgs::UpdateInfo update(
        opTime, wallTime, OpTime(), Date_t(), cfgVer, memberId);
    const auto statusWithOpTime = _setLastOptimeForMember(lock, update);
    _updateStateAfterRemoteOpTimeUpdates(lock, statusWithOpTime.getValue());
    return statusWithOpTime.getStatus();
}

StatusWith<OpTime> ReplicationCoordinatorImpl::_setLastOptimeForMember(
    WithLock lk, const UpdatePositionArgs::UpdateInfo& args) {
    auto result = _topCoord->setLastOptimeForMember(args, _replExecutor->now());
    if (!result.isOK())
        return result.getStatus();
    const bool advancedOpTime = result.getValue();
    _rescheduleLivenessUpdate_inlock(args.memberId);
    return advancedOpTime ? std::max(args.appliedOpTime, args.durableOpTime) : OpTime();
}

void ReplicationCoordinatorImpl::_updateStateAfterRemoteOpTimeUpdates(
    WithLock lk, const OpTime& maxRemoteOpTime) {
    // Only update committed optime if the remote optimes increased.
    if (!maxRemoteOpTime.isNull()) {
        _updateLastCommittedOpTimeAndWallTime(lk);
        // Wait up replication waiters on optime changes.
        _wakeReadyWaiters(lk, maxRemoteOpTime);
    }
}

bool ReplicationCoordinatorImpl::isCommitQuorumSatisfied(
    const CommitQuorumOptions& commitQuorum, const std::vector<mongo::HostAndPort>& members) const {
    stdx::lock_guard<Latch> lock(_mutex);

    if (commitQuorum.mode.empty()) {
        return _haveNumNodesSatisfiedCommitQuorum(lock, commitQuorum.numNodes, members);
    }

    StringData patternName;
    if (commitQuorum.mode == CommitQuorumOptions::kMajority) {
        patternName = ReplSetConfig::kMajorityWriteConcernModeName;
    } else if (commitQuorum.mode == CommitQuorumOptions::kVotingMembers) {
        patternName = ReplSetConfig::kVotingMembersWriteConcernModeName;
    } else {
        patternName = commitQuorum.mode;
    }

    auto tagPattern = uassertStatusOK(_rsConfig.findCustomWriteMode(patternName));
    return _haveTaggedNodesSatisfiedCommitQuorum(lock, tagPattern, members);
}

bool ReplicationCoordinatorImpl::_haveNumNodesSatisfiedCommitQuorum(
    WithLock lk, int numNodes, const std::vector<mongo::HostAndPort>& members) const {
    for (auto&& member : members) {
        auto memberConfig = _rsConfig.findMemberByHostAndPort(member);
        // We do not count arbiters and members that aren't part of replica set config,
        // towards the commit quorum.
        if (!memberConfig || memberConfig->isArbiter())
            continue;

        --numNodes;

        if (numNodes <= 0) {
            return true;
        }
    }
    return false;
}

bool ReplicationCoordinatorImpl::_haveTaggedNodesSatisfiedCommitQuorum(
    WithLock lk,
    const ReplSetTagPattern& tagPattern,
    const std::vector<mongo::HostAndPort>& members) const {
    ReplSetTagMatch matcher(tagPattern);

    for (auto&& member : members) {
        auto memberConfig = _rsConfig.findMemberByHostAndPort(member);
        // We do not count arbiters and members that aren't part of replica set config,
        // towards the commit quorum.
        if (!memberConfig || memberConfig->isArbiter())
            continue;
        for (auto&& it = memberConfig->tagsBegin(); it != memberConfig->tagsEnd(); ++it) {
            if (matcher.update(*it)) {
                return true;
            }
        }
    }
    return false;
}

bool ReplicationCoordinatorImpl::_doneWaitingForReplication_inlock(
    const OpTime& opTime, const WriteConcernOptions& writeConcern) {
    // The syncMode cannot be unset.
    invariant(writeConcern.syncMode != WriteConcernOptions::SyncMode::UNSET);

    const bool useDurableOpTime = writeConcern.syncMode == WriteConcernOptions::SyncMode::JOURNAL;
    if (!stdx::holds_alternative<std::string>(writeConcern.w)) {
        if (auto wTags = stdx::get_if<WTags>(&writeConcern.w)) {
            auto tagPattern = uassertStatusOK(_rsConfig.makeCustomWriteMode(*wTags));
            return _topCoord->haveTaggedNodesReachedOpTime(opTime, tagPattern, useDurableOpTime);
        }

        return _topCoord->haveNumNodesReachedOpTime(
            opTime, stdx::get<int64_t>(writeConcern.w), useDurableOpTime);
    }

    StringData patternName;
    auto wMode = stdx::get<std::string>(writeConcern.w);
    if (wMode == WriteConcernOptions::kMajority) {
        if (_externalState->snapshotsEnabled() && !gTestingSnapshotBehaviorInIsolation) {
            // Make sure we have a valid "committed" snapshot up to the needed optime.
            if (!_currentCommittedSnapshot) {
                return false;
            }

            // Wait for the "current" snapshot to advance to/past the opTime.
            const auto haveSnapshot = _currentCommittedSnapshot >= opTime;
            if (!haveSnapshot) {
                LOGV2_DEBUG(
                    21337,
                    1,
                    "Required snapshot optime: {opTime} is not yet part of the current "
                    "'committed' snapshot: {currentCommittedSnapshotOpTime}",
                    "Required snapshot optime is not yet part of the current 'committed' snapshot",
                    "opTime"_attr = opTime,
                    "currentCommittedSnapshotOpTime"_attr = _currentCommittedSnapshot);
                return false;
            }

            // Fallthrough to wait for "majority" write concern.
        }

        // Wait for all drop pending collections with drop optime before and at 'opTime' to be
        // removed from storage.
        if (auto dropOpTime = _externalState->getEarliestDropPendingOpTime()) {
            if (*dropOpTime <= opTime) {
                LOGV2_DEBUG(
                    21338,
                    1,
                    "Unable to satisfy the requested majority write concern at "
                    "'committed' optime {opTime}. There are still drop pending collections "
                    "(earliest drop optime: {earliestDropOpTime}) that have to be removed from "
                    "storage before we can "
                    "satisfy the write concern {writeConcern}",
                    "Unable to satisfy the requested majority write concern at 'committed' optime. "
                    "There are still drop pending collections that have to be removed from storage "
                    "before we can satisfy the write concern",
                    "opTime"_attr = opTime,
                    "earliestDropOpTime"_attr = *dropOpTime,
                    "writeConcern"_attr = writeConcern.toBSON());
                return false;
            }
        }

        // Continue and wait for replication to the majority (of voters).
        // *** Needed for J:True, writeConcernMajorityShouldJournal:False (appliedOpTime snapshot).
        patternName = ReplSetConfig::kMajorityWriteConcernModeName;
    } else {
        patternName = wMode;
    }

    auto tagPattern = uassertStatusOK(_rsConfig.findCustomWriteMode(patternName));
    if (writeConcern.checkCondition == WriteConcernOptions::CheckCondition::OpTime) {
        return _topCoord->haveTaggedNodesReachedOpTime(opTime, tagPattern, useDurableOpTime);
    } else {
        invariant(writeConcern.checkCondition == WriteConcernOptions::CheckCondition::Config);
        auto pred = _topCoord->makeConfigPredicate();
        return _topCoord->haveTaggedNodesSatisfiedCondition(pred, tagPattern);
    }
}

ReplicationCoordinator::StatusAndDuration ReplicationCoordinatorImpl::awaitReplication(
    OperationContext* opCtx, const OpTime& opTime, const WriteConcernOptions& writeConcern) {
    // It is illegal to wait for replication with a session checked out because it can lead to
    // deadlocks.
    invariant(OperationContextSession::get(opCtx) == nullptr);

    Timer timer;
    WriteConcernOptions fixedWriteConcern = populateUnsetWriteConcernOptionsSyncMode(writeConcern);

    // We should never wait for replication if we are holding any locks, because this can
    // potentially block for long time while doing network activity.
    invariant(!opCtx->lockState()->isLocked());

    auto interruptStatus = opCtx->checkForInterruptNoAssert();
    if (!interruptStatus.isOK()) {
        return {interruptStatus, duration_cast<Milliseconds>(timer.elapsed())};
    }

    auto wTimeoutDate = [&]() -> Date_t {
        auto clockSource = opCtx->getServiceContext()->getFastClockSource();
        if (writeConcern.wDeadline != Date_t::max()) {
            return writeConcern.wDeadline;
        }
        if (writeConcern.wTimeout == WriteConcernOptions::kNoTimeout) {
            return Date_t::max();
        }
        return clockSource->now() + clockSource->getPrecision() +
            Milliseconds{writeConcern.wTimeout};
    }();

    const auto opCtxDeadline = opCtx->getDeadline();
    const auto timeoutError = opCtx->getTimeoutError();

    auto future = [&] {
        stdx::lock_guard lock(_mutex);
        return _startWaitingForReplication(lock, opTime, fixedWriteConcern);
    }();
    auto status = futureGetNoThrowWithDeadline(opCtx, future, wTimeoutDate, timeoutError);

    // If we get a timeout error and the opCtx deadline is >= the writeConcern wtimeout, then we
    // know the timeout was due to wtimeout (not opCtx deadline) and thus we return
    // ErrorCodes::WriteConcernFailed.
    if (status.code() == timeoutError && opCtxDeadline >= wTimeoutDate) {
        status = Status{ErrorCodes::WriteConcernFailed, "waiting for replication timed out"};
    }

    if (TestingProctor::instance().isEnabled() && !status.isOK()) {
        stdx::lock_guard lock(_mutex);
        LOGV2(21339,
              "Replication failed for write concern: {writeConcern}, waiting for optime: {opTime}, "
              "opID: {opID}, all_durable: {allDurable}, progress: {progress}",
              "Replication failed for write concern",
              "status"_attr = redact(status),
              "writeConcern"_attr = writeConcern.toBSON(),
              "opTime"_attr = opTime,
              "opID"_attr = opCtx->getOpID(),
              "allDurable"_attr = _storage->getAllDurableTimestamp(_service),
              "progress"_attr = _getReplicationProgress(lock));
    }
    return {std::move(status), duration_cast<Milliseconds>(timer.elapsed())};
}

SharedSemiFuture<void> ReplicationCoordinatorImpl::awaitReplicationAsyncNoWTimeout(
    const OpTime& opTime, const WriteConcernOptions& writeConcern) {
    WriteConcernOptions fixedWriteConcern = populateUnsetWriteConcernOptionsSyncMode(writeConcern);

    // The returned future won't account for wTimeout or wDeadline, so reject any write concerns
    // with either option to avoid misuse.
    invariant(fixedWriteConcern.wDeadline == Date_t::max());
    invariant(fixedWriteConcern.wTimeout == WriteConcernOptions::kNoTimeout);

    stdx::lock_guard lg(_mutex);
    return _startWaitingForReplication(lg, opTime, fixedWriteConcern);
}

BSONObj ReplicationCoordinatorImpl::_getReplicationProgress(WithLock wl) const {
    BSONObjBuilder progress;

    const auto lastCommittedOpTime = _topCoord->getLastCommittedOpTime();
    progress.append("lastCommittedOpTime", lastCommittedOpTime.toBSON());

    const auto currentCommittedSnapshotOpTime = _getCurrentCommittedSnapshotOpTime_inlock();
    progress.append("currentCommittedSnapshotOpTime", currentCommittedSnapshotOpTime.toBSON());

    const auto earliestDropPendingOpTime = _externalState->getEarliestDropPendingOpTime();
    if (earliestDropPendingOpTime) {
        progress.append("earliestDropPendingOpTime", earliestDropPendingOpTime->toBSON());
    }

    _topCoord->fillMemberData(&progress);
    return progress.obj();
}

SharedSemiFuture<void> ReplicationCoordinatorImpl::_startWaitingForReplication(
    WithLock wl, const OpTime& opTime, const WriteConcernOptions& writeConcern) {

    const Mode replMode = getReplicationMode();
    if (replMode == modeNone) {
        // no replication check needed (validated above)
        return Future<void>::makeReady();
    }
    if (opTime.isNull()) {
        // If waiting for the empty optime, always say it's been replicated.
        return Future<void>::makeReady();
    }
    if (_inShutdown) {
        return Future<void>::makeReady(
            Status{ErrorCodes::ShutdownInProgress, "Replication is being shut down"});
    }

    auto checkForStepDown = [&]() -> Status {
        if (replMode == modeReplSet && !_memberState.primary()) {
            return {ErrorCodes::PrimarySteppedDown,
                    "Primary stepped down while waiting for replication"};
        }

        auto term = opTime.getTerm();
        if (term != OpTime::kUninitializedTerm && term != _topCoord->getTerm()) {
            return {
                ErrorCodes::PrimarySteppedDown,
                str::stream() << "Term changed from " << opTime.getTerm() << " to "
                              << _topCoord->getTerm()
                              << " while waiting for replication, indicating that this node must "
                                 "have stepped down."};
        }

        if (_topCoord->isSteppingDown()) {
            return {ErrorCodes::PrimarySteppedDown,
                    "Received stepdown request while waiting for replication"};
        }
        return Status::OK();
    };

    Status stepdownStatus = checkForStepDown();
    if (!stepdownStatus.isOK()) {
        return Future<void>::makeReady(stepdownStatus);
    }

    // Check if the given write concern is satisfiable before we add ourself to
    // _replicationWaiterList. On replSetReconfig, waiters that are no longer satisfiable will be
    // notified. See _setCurrentRSConfig.
    auto satisfiableStatus = _checkIfWriteConcernCanBeSatisfied_inlock(writeConcern);
    if (!satisfiableStatus.isOK()) {
        return Future<void>::makeReady(satisfiableStatus);
    }

    try {
        if (_doneWaitingForReplication_inlock(opTime, writeConcern)) {
            return Future<void>::makeReady();
        }
    } catch (const DBException& e) {
        return Future<void>::makeReady(e.toStatus());
    }

    if (!writeConcern.needToWaitForOtherNodes() &&
        writeConcern.syncMode != WriteConcernOptions::SyncMode::JOURNAL) {
        // We are only waiting for our own lastApplied, add this to _opTimeWaiterList instead. This
        // is because waiters in _replicationWaiterList are not notified on self's lastApplied
        // updates.
        return _opTimeWaiterList.add_inlock(opTime);
    }

    // From now on, we are either waiting for replication or local journaling. And waiters in
    // _replicationWaiterList will be checked and notified on remote opTime updates and on self's
    // lastDurable updates (but not on self's lastApplied updates, in which case use
    // _opTimeWaiterList instead).
    return _replicationWaiterList.add_inlock(opTime, writeConcern);
}

void ReplicationCoordinatorImpl::waitForStepDownAttempt_forTest() {
    auto isSteppingDown = [&]() {
        stdx::unique_lock<Latch> lk(_mutex);
        // If true, we know that a stepdown is underway.
        return (_topCoord->isSteppingDown());
    };

    while (!isSteppingDown()) {
        sleepFor(Milliseconds{10});
    }
}

void ReplicationCoordinatorImpl::updateAndLogStateTransitionMetrics(
    const ReplicationCoordinator::OpsKillingStateTransitionEnum stateTransition,
    const size_t numOpsKilled,
    const size_t numOpsRunning) const {

    // Clear the current metrics before setting.
    userOpsKilled.decrement(userOpsKilled.get());
    userOpsRunning.decrement(userOpsRunning.get());

    switch (stateTransition) {
        case ReplicationCoordinator::OpsKillingStateTransitionEnum::kStepUp:
            lastStateTransition = "stepUp";
            break;
        case ReplicationCoordinator::OpsKillingStateTransitionEnum::kStepDown:
            lastStateTransition = "stepDown";
            break;
        case ReplicationCoordinator::OpsKillingStateTransitionEnum::kRollback:
            lastStateTransition = "rollback";
            break;
        default:
            MONGO_UNREACHABLE;
    }

    userOpsKilled.increment(numOpsKilled);
    userOpsRunning.increment(numOpsRunning);

    BSONObjBuilder bob;
    bob.append("lastStateTransition", **lastStateTransition);
    bob.appendNumber("userOpsKilled", userOpsKilled.get());
    bob.appendNumber("userOpsRunning", userOpsRunning.get());

    LOGV2(21340,
          "State transition ops metrics: {metrics}",
          "State transition ops metrics",
          "metrics"_attr = bob.obj());
}

long long ReplicationCoordinatorImpl::_calculateRemainingQuiesceTimeMillis() const {
    auto remainingQuiesceTimeMillis =
        std::max(Milliseconds::zero(), _quiesceDeadline - _replExecutor->now());
    // Turn remainingQuiesceTimeMillis into an int64 so that it's a supported BSONElement.
    long long remainingQuiesceTimeLong = durationCount<Milliseconds>(remainingQuiesceTimeMillis);
    return remainingQuiesceTimeLong;
}

std::shared_ptr<HelloResponse> ReplicationCoordinatorImpl::_makeHelloResponse(
    boost::optional<StringData> horizonString, WithLock lock, const bool hasValidConfig) const {

    uassert(ShutdownInProgressQuiesceInfo(_calculateRemainingQuiesceTimeMillis()),
            kQuiesceModeShutdownMessage,
            !_inQuiesceMode);

    if (!hasValidConfig) {
        auto response = std::make_shared<HelloResponse>();
        response->setTopologyVersion(_topCoord->getTopologyVersion());
        response->markAsNoConfig();
        return response;
    }

    // horizonString must be passed in if we are a valid member of the config.
    invariant(horizonString);
    auto response = std::make_shared<HelloResponse>();
    invariant(isReplEnabled());
    _topCoord->fillHelloForReplSet(response, *horizonString);

    OpTime lastOpTime = _getMyLastAppliedOpTime_inlock();

    response->setLastWrite(lastOpTime, lastOpTime.getTimestamp().getSecs());
    if (_currentCommittedSnapshot) {
        response->setLastMajorityWrite(*_currentCommittedSnapshot,
                                       _currentCommittedSnapshot->getTimestamp().getSecs());
    }

    if (response->isWritablePrimary() && !_readWriteAbility->canAcceptNonLocalWrites(lock)) {
        // Report that we are secondary and not accepting writes until drain completes.
        response->setIsWritablePrimary(false);
        response->setIsSecondary(true);
    }

    if (_waitingForRSTLAtStepDown) {
        response->setIsWritablePrimary(false);
    }

    if (_inShutdown) {
        response->setIsWritablePrimary(false);
        response->setIsSecondary(false);
    }
    return response;
}

SharedSemiFuture<ReplicationCoordinatorImpl::SharedHelloResponse>
ReplicationCoordinatorImpl::_getHelloResponseFuture(
    WithLock lk,
    const SplitHorizon::Parameters& horizonParams,
    boost::optional<StringData> horizonString,
    boost::optional<TopologyVersion> clientTopologyVersion) {

    uassert(ShutdownInProgressQuiesceInfo(_calculateRemainingQuiesceTimeMillis()),
            kQuiesceModeShutdownMessage,
            !_inQuiesceMode);

    const bool hasValidConfig = horizonString != boost::none;

    if (!clientTopologyVersion) {
        // The client is not using awaitable hello so we respond immediately.
        return SharedSemiFuture<SharedHelloResponse>(
            SharedHelloResponse(_makeHelloResponse(horizonString, lk, hasValidConfig)));
    }

    const TopologyVersion topologyVersion = _topCoord->getTopologyVersion();
    if (clientTopologyVersion->getProcessId() != topologyVersion.getProcessId()) {
        // Getting a different process id indicates that the server has restarted so we return
        // immediately with the updated process id.
        return SharedSemiFuture<SharedHelloResponse>(
            SharedHelloResponse(_makeHelloResponse(horizonString, lk, hasValidConfig)));
    }

    auto prevCounter = clientTopologyVersion->getCounter();
    auto topologyVersionCounter = topologyVersion.getCounter();
    uassert(31382,
            str::stream() << "Received a topology version with counter: " << prevCounter
                          << " which is greater than the server topology version counter: "
                          << topologyVersionCounter,
            prevCounter <= topologyVersionCounter);

    if (prevCounter < topologyVersionCounter) {
        // The received hello command contains a stale topology version so we respond
        // immediately with a more current topology version.
        return SharedSemiFuture<SharedHelloResponse>(
            SharedHelloResponse(_makeHelloResponse(horizonString, lk, hasValidConfig)));
    }

    if (!hasValidConfig) {
        // An empty SNI will correspond to kDefaultHorizon.
        const auto sni = horizonParams.sniName ? *horizonParams.sniName : "";
        auto sniIter =
            _sniToValidConfigPromiseMap
                .emplace(sni,
                         std::make_shared<SharedPromise<std::shared_ptr<const HelloResponse>>>())
                .first;
        return sniIter->second->getFuture();
    }
    // Each awaitable hello will wait on their specific horizon. We always expect horizonString
    // to exist in _horizonToTopologyChangePromiseMap.
    auto horizonIter = _horizonToTopologyChangePromiseMap.find(*horizonString);
    invariant(horizonIter != end(_horizonToTopologyChangePromiseMap));
    return horizonIter->second->getFuture();
}

SharedSemiFuture<ReplicationCoordinatorImpl::SharedHelloResponse>
ReplicationCoordinatorImpl::getHelloResponseFuture(
    const SplitHorizon::Parameters& horizonParams,
    boost::optional<TopologyVersion> clientTopologyVersion) {
    stdx::lock_guard lk(_mutex);
    const auto horizonString = _getHorizonString(lk, horizonParams);
    return _getHelloResponseFuture(lk, horizonParams, horizonString, clientTopologyVersion);
}

boost::optional<StringData> ReplicationCoordinatorImpl::_getHorizonString(
    WithLock, const SplitHorizon::Parameters& horizonParams) const {
    const auto myState = _topCoord->getMemberState();
    const bool hasValidConfig = _rsConfig.isInitialized() && !myState.removed();
    boost::optional<StringData> horizonString;
    if (hasValidConfig) {
        const auto& self = _rsConfig.getMemberAt(_selfIndex);
        horizonString = self.determineHorizon(horizonParams);
    }
    // A horizonString that is boost::none indicates that we do not have a valid config.
    return horizonString;
}

std::shared_ptr<const HelloResponse> ReplicationCoordinatorImpl::awaitHelloResponse(
    OperationContext* opCtx,
    const SplitHorizon::Parameters& horizonParams,
    boost::optional<TopologyVersion> clientTopologyVersion,
    boost::optional<Date_t> deadline) {
    stdx::unique_lock lk(_mutex);

    const auto horizonString = _getHorizonString(lk, horizonParams);
    auto future = _getHelloResponseFuture(lk, horizonParams, horizonString, clientTopologyVersion);
    if (future.isReady()) {
        return future.get();
    }

    // If clientTopologyVersion is not none, deadline must also be not none.
    invariant(deadline);
    const TopologyVersion topologyVersion = _topCoord->getTopologyVersion();

    HelloMetrics::get(opCtx)->incrementNumAwaitingTopologyChanges();
    lk.unlock();

    if (MONGO_unlikely(waitForHelloResponse.shouldFail())) {
        // Used in tests that wait for this failpoint to be entered before triggering a topology
        // change.
        LOGV2(31464, "waitForHelloResponse failpoint enabled");
    }
    if (MONGO_unlikely(hangWhileWaitingForHelloResponse.shouldFail())) {
        LOGV2(21341, "Hanging due to hangWhileWaitingForHelloResponse failpoint");
        hangWhileWaitingForHelloResponse.pauseWhileSet(opCtx);
    }

    // Wait for a topology change with timeout set to deadline.
    LOGV2_DEBUG(21342,
                1,
                "Waiting for a hello response from a topology change or until deadline: "
                "{deadline}. Current TopologyVersion counter is {currentTopologyVersionCounter}",
                "Waiting for a hello response from a topology change or until deadline",
                "deadline"_attr = deadline.value(),
                "currentTopologyVersionCounter"_attr = topologyVersion.getCounter());
    auto statusWithHello =
        futureGetNoThrowWithDeadline(opCtx, future, deadline.value(), opCtx->getTimeoutError());
    auto status = statusWithHello.getStatus();

    if (MONGO_unlikely(hangAfterWaitingForTopologyChangeTimesOut.shouldFail())) {
        LOGV2(4783200, "Hanging due to hangAfterWaitingForTopologyChangeTimesOut failpoint");
        hangAfterWaitingForTopologyChangeTimesOut.pauseWhileSet(opCtx);
    }

    setCustomErrorInHelloResponseMongoD.execute([&](const BSONObj& data) {
        auto errorCode = data["errorType"].safeNumberInt();
        LOGV2(6208200,
              "Triggered setCustomErrorInHelloResponseMongoD fail point.",
              "errorCode"_attr = errorCode);

        status = Status(ErrorCodes::Error(errorCode),
                        "Set by setCustomErrorInHelloResponseMongoD fail point.");
    });

    if (!status.isOK()) {
        LOGV2_DEBUG(6208204, 1, "Error while waiting for hello response", "status"_attr = status);

        // We decrement the counter on most errors. Note that some errors may already be covered
        // by calls to resetNumAwaitingTopologyChanges(), which sets the counter to zero, so we
        // only decrement non-zero counters. This is safe so long as:
        // 1) Increment + decrement calls always occur at a 1:1 ratio and in that order.
        // 2) All callers to increment/decrement/reset take locks.
        stdx::lock_guard lk(_mutex);
        if (status != ErrorCodes::SplitHorizonChange &&
            HelloMetrics::get(opCtx)->getNumAwaitingTopologyChanges() > 0) {
            HelloMetrics::get(opCtx)->decrementNumAwaitingTopologyChanges();
        }

        // Return a HelloResponse with the current topology version on timeout when waiting for
        // a topology change.
        if (status == ErrorCodes::ExceededTimeLimit) {
            // A topology change has not occured within the deadline so horizonString is still a
            // good indicator of whether we have a valid config.
            const bool hasValidConfig = horizonString != boost::none;
            return _makeHelloResponse(horizonString, lk, hasValidConfig);
        }
    }

    // A topology change has happened so we return a HelloResponse with the updated
    // topology version.
    uassertStatusOK(status);
    return statusWithHello.getValue();
}

StatusWith<OpTime> ReplicationCoordinatorImpl::getLatestWriteOpTime(
    OperationContext* opCtx) const noexcept try {
    ShouldNotConflictWithSecondaryBatchApplicationBlock noPBWMBlock(opCtx->lockState());
    Lock::GlobalLock globalLock(opCtx, MODE_IS);
    // Check if the node is primary after acquiring global IS lock.
    if (!canAcceptNonLocalWrites()) {
        return {ErrorCodes::NotWritablePrimary, "Not primary so can't get latest write optime"};
    }
    const auto& oplog = LocalOplogInfo::get(opCtx)->getCollection();
    if (!oplog) {
        return {ErrorCodes::NamespaceNotFound, "oplog collection does not exist"};
    }
    auto latestOplogTimestampSW = oplog->getRecordStore()->getLatestOplogTimestamp(opCtx);
    if (!latestOplogTimestampSW.isOK()) {
        return latestOplogTimestampSW.getStatus();
    }
    return OpTime(latestOplogTimestampSW.getValue(), getTerm());
} catch (const DBException& e) {
    return e.toStatus();
}

HostAndPort ReplicationCoordinatorImpl::getCurrentPrimaryHostAndPort() const {
    stdx::lock_guard<Latch> lock(_mutex);
    auto primary = _topCoord->getCurrentPrimaryMember();
    return primary ? primary->getHostAndPort() : HostAndPort();
}

void ReplicationCoordinatorImpl::cancelCbkHandle(CallbackHandle activeHandle) {
    _replExecutor->cancel(activeHandle);
}

BSONObj ReplicationCoordinatorImpl::runCmdOnPrimaryAndAwaitResponse(
    OperationContext* opCtx,
    const std::string& dbName,
    const BSONObj& cmdObj,
    OnRemoteCmdScheduledFn onRemoteCmdScheduled,
    OnRemoteCmdCompleteFn onRemoteCmdComplete) {
    // About to make network and DBDirectClient (recursive) calls, so we should not hold any locks.
    invariant(!opCtx->lockState()->isLocked());

    const auto primaryHostAndPort = getCurrentPrimaryHostAndPort();
    if (primaryHostAndPort.empty()) {
        uassertStatusOK(Status{ErrorCodes::NoConfigPrimary, "Primary is unknown/down."});
    }

    // Run the command via AsyncDBClient which performs a network call. This is also the desired
    // behaviour when running this command locally as to avoid using the DBDirectClient which would
    // provide additional management when trying to cancel the request with differing clients.
    executor::RemoteCommandRequest request(primaryHostAndPort, dbName, cmdObj, nullptr);
    executor::RemoteCommandResponse cbkResponse(
        Status{ErrorCodes::InternalError, "Uninitialized value"});

    // Schedule the remote command.
    auto&& scheduleResult = _replExecutor->scheduleRemoteCommand(
        request, [&cbkResponse](const executor::TaskExecutor::RemoteCommandCallbackArgs& cbk) {
            cbkResponse = cbk.response;
        });

    uassertStatusOK(scheduleResult.getStatus());
    CallbackHandle cbkHandle = scheduleResult.getValue();

    try {
        onRemoteCmdScheduled(cbkHandle);

        // Wait for the response in an interruptible mode.
        _replExecutor->wait(cbkHandle, opCtx);
    } catch (const DBException&) {
        // If waiting for the response is interrupted, then we still have a callback out and
        // registered with the TaskExecutor to run when the response finally does come back. Since
        // the callback references local state, cbkResponse, it would be invalid for the callback to
        // run after leaving the this function. Therefore, we cancel the callback and wait
        // uninterruptably for the callback to be run.
        _replExecutor->cancel(cbkHandle);
        _replExecutor->wait(cbkHandle);
        throw;
    }

    onRemoteCmdComplete(cbkHandle);
    uassertStatusOK(cbkResponse.status);
    return cbkResponse.data;
}

void ReplicationCoordinatorImpl::_killConflictingOpsOnStepUpAndStepDown(
    AutoGetRstlForStepUpStepDown* arsc, ErrorCodes::Error reason) {
    const OperationContext* rstlOpCtx = arsc->getOpCtx();
    ServiceContext* serviceCtx = rstlOpCtx->getServiceContext();
    invariant(serviceCtx);

    for (ServiceContext::LockedClientsCursor cursor(serviceCtx); Client* client = cursor.next();) {
        stdx::lock_guard<Client> lk(*client);
        if (client->isFromSystemConnection() && !client->canKillSystemOperationInStepdown(lk)) {
            continue;
        }

        OperationContext* toKill = client->getOperationContext();

        // Don't kill step up/step down thread.
        if (toKill && !toKill->isKillPending() && toKill->getOpID() != rstlOpCtx->getOpID()) {
            auto locker = toKill->lockState();
            if (toKill->shouldAlwaysInterruptAtStepDownOrUp() ||
                locker->wasGlobalLockTakenInModeConflictingWithWrites() ||
                PrepareConflictTracker::get(toKill).isWaitingOnPrepareConflict()) {
                serviceCtx->killOperation(lk, toKill, reason);
                arsc->incrementUserOpsKilled();
            } else {
                arsc->incrementUserOpsRunning();
            }
        }
    }
}

ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::AutoGetRstlForStepUpStepDown(
    ReplicationCoordinatorImpl* repl,
    OperationContext* opCtx,
    const ReplicationCoordinator::OpsKillingStateTransitionEnum stateTransition,
    Date_t deadline)
    : _replCord(repl), _opCtx(opCtx), _stateTransition(stateTransition) {
    invariant(_replCord && _opCtx);

    // The state transition should never be rollback within this class.
    invariant(_stateTransition != ReplicationCoordinator::OpsKillingStateTransitionEnum::kRollback);

    int rstlTimeout = fassertOnLockTimeoutForStepUpDown.load();
    Date_t start{Date_t::now()};
    if (rstlTimeout > 0 && deadline - start > Seconds(rstlTimeout)) {
        deadline = start + Seconds(rstlTimeout);  // cap deadline
    }

    _rstlLock.emplace(_opCtx, MODE_X, ReplicationStateTransitionLockGuard::EnqueueOnly());

    ON_BLOCK_EXIT([&] { _stopAndWaitForKillOpThread(); });
    _startKillOpThread();

    // Wait for RSTL to be acquired.
    _rstlLock->waitForLockUntil(deadline, [opCtx, rstlTimeout, start] {
        if (rstlTimeout <= 0 || Date_t::now() - start < Seconds{rstlTimeout}) {
            return;
        }

        // Dump all locks to identify which thread(s) are holding RSTL.
        getGlobalLockManager()->dump();

        auto lockerInfo = opCtx->lockState()->getLockerInfo(CurOp::get(opCtx)->getLockStatsBase());
        BSONObjBuilder lockRep;
        lockerInfo->stats.report(&lockRep);
        LOGV2_FATAL(5675600,
                    "Time out exceeded waiting for RSTL, stepUp/stepDown is not possible thus "
                    "calling abort() to allow cluster to progress",
                    "lockRep"_attr = lockRep.obj());
    });
};

void ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::_startKillOpThread() {
    invariant(!_killOpThread);
    _killOpThread = std::make_unique<stdx::thread>([this] { _killOpThreadFn(); });
}

void ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::_killOpThreadFn() {
    Client::initThread("RstlKillOpThread");

    invariant(!cc().isFromUserConnection());

    {
        stdx::lock_guard<Client> lk(cc());
        cc().setSystemOperationUnkillableByStepdown(lk);
    }

    LOGV2(21343, "Starting to kill user operations");
    auto uniqueOpCtx = cc().makeOperationContext();
    OperationContext* opCtx = uniqueOpCtx.get();

    // Set the reason for killing operations.
    ErrorCodes::Error killReason = ErrorCodes::InterruptedDueToReplStateChange;

    while (true) {
        // Reset the value before killing user operations as we only want to track the number
        // of operations that's running after step down.
        _userOpsRunning = 0;
        _replCord->_killConflictingOpsOnStepUpAndStepDown(this, killReason);

        // Destroy all stashed transaction resources, in order to release locks.
        SessionKiller::Matcher matcherAllSessions(
            KillAllSessionsByPatternSet{makeKillAllSessionsByPattern(opCtx)});
        killSessionsAbortUnpreparedTransactions(opCtx, matcherAllSessions, killReason);

        // Operations (like batch insert) that have currently yielded the global lock during step
        // down can reacquire global lock in IX mode when this node steps back up after a brief
        // network partition. And, this can lead to data inconsistency (see SERVER-27534). So,
        // its important we mark operations killed at least once after enqueuing the RSTL lock in
        // X mode for the first time. This ensures that no writing operations will continue
        // after the node's term change.
        {
            stdx::unique_lock<Latch> lock(_mutex);
            if (_stopKillingOps.wait_for(
                    lock, Milliseconds(10).toSystemDuration(), [this] { return _killSignaled; })) {
                LOGV2(21344, "Stopped killing user operations");
                _replCord->updateAndLogStateTransitionMetrics(
                    _stateTransition, getUserOpsKilled(), getUserOpsRunning());
                _killSignaled = false;
                return;
            }
        }
    }
}

void ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::_stopAndWaitForKillOpThread() {
    if (!(_killOpThread && _killOpThread->joinable()))
        return;

    {
        stdx::unique_lock<Latch> lock(_mutex);
        _killSignaled = true;
        _stopKillingOps.notify_all();
    }
    _killOpThread->join();
    _killOpThread.reset();
}

size_t ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::getUserOpsKilled() const {
    return _userOpsKilled;
}

void ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::incrementUserOpsKilled(size_t val) {
    _userOpsKilled += val;
}

size_t ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::getUserOpsRunning() const {
    return _userOpsRunning;
}

void ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::incrementUserOpsRunning(size_t val) {
    _userOpsRunning += val;
}

void ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::rstlRelease() {
    _rstlLock->release();
}

void ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::rstlReacquire() {
    // Ensure that we are not holding the RSTL lock in any mode.
    invariant(!_opCtx->lockState()->isRSTLLocked());

    // Since we have released the RSTL lock at this point, there can be some conflicting
    // operations sneaked in here. We need to kill those operations to acquire the RSTL lock.
    // Also, its ok to start "RstlKillOpthread" thread before RSTL lock enqueue as we kill
    // operations in a loop.
    ON_BLOCK_EXIT([&] { _stopAndWaitForKillOpThread(); });
    _startKillOpThread();
    _rstlLock->reacquire();
}

const OperationContext* ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::getOpCtx() const {
    return _opCtx;
}

void ReplicationCoordinatorImpl::stepDown(OperationContext* opCtx,
                                          const bool force,
                                          const Milliseconds& waitTime,
                                          const Milliseconds& stepdownTime) {
    const Date_t startTime = _replExecutor->now();
    const Date_t stepDownUntil = startTime + stepdownTime;
    const Date_t waitUntil = startTime + waitTime;

    // Note this check is inherently racy - it's always possible for the node to stepdown from some
    // other path before we acquire the global exclusive lock.  This check is just to try to save us
    // from acquiring the global X lock unnecessarily.
    uassert(ErrorCodes::NotWritablePrimary,
            "not primary so can't step down",
            getMemberState().primary());

    // This makes us tell the 'hello' command we can't accept writes (though in fact we can,
    // it is not valid to disable writes until we actually acquire the RSTL).
    {
        stdx::lock_guard lk(_mutex);
        _waitingForRSTLAtStepDown++;
        _fulfillTopologyChangePromise(lk);
    }
    ScopeGuard clearStepDownFlag([&] {
        stdx::lock_guard lk(_mutex);
        _waitingForRSTLAtStepDown--;
        _fulfillTopologyChangePromise(lk);
    });

    CurOpFailpointHelpers::waitWhileFailPointEnabled(
        &stepdownHangBeforeRSTLEnqueue, opCtx, "stepdownHangBeforeRSTLEnqueue");

    // Using 'force' sets the default for the wait time to zero, which means the stepdown will
    // fail if it does not acquire the lock immediately. In such a scenario, we use the
    // stepDownUntil deadline instead.
    auto deadline = force ? stepDownUntil : waitUntil;
    AutoGetRstlForStepUpStepDown arsd(
        this, opCtx, ReplicationCoordinator::OpsKillingStateTransitionEnum::kStepDown, deadline);

    stepdownHangAfterGrabbingRSTL.pauseWhileSet();

    stdx::unique_lock<Latch> lk(_mutex);

    opCtx->checkForInterrupt();

    const long long termAtStart = _topCoord->getTerm();

    // This will cause us to fail if we're already in the process of stepping down, or if we've
    // already successfully stepped down via another path.
    auto abortFn = uassertStatusOK(_topCoord->prepareForStepDownAttempt());

    // Update _canAcceptNonLocalWrites from the TopologyCoordinator now that we're in the middle
    // of a stepdown attempt.  This will prevent us from accepting writes so that if our stepdown
    // attempt fails later we can release the RSTL and go to sleep to allow secondaries to
    // catch up without allowing new writes in.
    _updateWriteAbilityFromTopologyCoordinator(lk, opCtx);
    auto action = _updateMemberStateFromTopologyCoordinator(lk);
    invariant(action == PostMemberStateUpdateAction::kActionNone);
    invariant(!_readWriteAbility->canAcceptNonLocalWrites(lk));

    // We truly cannot accept writes now, and we've updated the topology version to say so, so
    // no need for this flag any more, nor to increment the topology version again.
    _waitingForRSTLAtStepDown--;
    clearStepDownFlag.dismiss();

    auto updateMemberState = [&] {
        invariant(lk.owns_lock());
        invariant(opCtx->lockState()->isRSTLExclusive());

        // Make sure that we leave _canAcceptNonLocalWrites in the proper state.
        _updateWriteAbilityFromTopologyCoordinator(lk, opCtx);
        auto action = _updateMemberStateFromTopologyCoordinator(lk);
        lk.unlock();

        if (MONGO_unlikely(stepdownHangBeforePerformingPostMemberStateUpdateActions.shouldFail())) {
            LOGV2(21345,
                  "stepping down from primary - "
                  "stepdownHangBeforePerformingPostMemberStateUpdateActions fail point enabled. "
                  "Blocking until fail point is disabled");
            while (MONGO_unlikely(
                stepdownHangBeforePerformingPostMemberStateUpdateActions.shouldFail())) {
                mongo::sleepsecs(1);
                {
                    stdx::lock_guard<Latch> lock(_mutex);
                    if (_inShutdown) {
                        break;
                    }
                }
            }
        }

        _performPostMemberStateUpdateAction(action);
    };
    ScopeGuard onExitGuard([&] {
        abortFn();
        updateMemberState();
    });

    auto waitTimeout = std::min(waitTime, stepdownTime);

    // Set up a waiter which will be signaled when we process a heartbeat or updatePosition
    // and have a majority of nodes at our optime.
    const WriteConcernOptions waiterWriteConcern(
        WriteConcernOptions::kMajority, WriteConcernOptions::SyncMode::NONE, waitTimeout);

    // If attemptStepDown() succeeds, we are guaranteed that no concurrent step up or
    // step down can happen afterwards. So, it's safe to release the mutex before
    // yieldLocksForPreparedTransactions().
    while (!_topCoord->tryToStartStepDown(
        termAtStart, _replExecutor->now(), waitUntil, stepDownUntil, force)) {

        // The stepdown attempt failed. We now release the RSTL to allow secondaries to read the
        // oplog, then wait until enough secondaries are caught up for us to finish stepdown.
        arsd.rstlRelease();
        invariant(!opCtx->lockState()->isLocked());

        // Make sure we re-acquire the RSTL before returning so that we're always holding the
        // RSTL when the onExitGuard set up earlier runs.
        ON_BLOCK_EXIT([&] {
            // Need to release _mutex before re-acquiring the RSTL to preserve lock acquisition
            // order rules.
            lk.unlock();

            // Need to re-acquire the RSTL before re-attempting stepdown. We use no timeout here
            // even though that means the lock acquisition could take longer than the stepdown
            // window. Since we'll need the RSTL no matter what to clean up a failed stepdown
            // attempt, we might as well spend whatever time we need to acquire it now.  For
            // the same reason, we also disable lock acquisition interruption, to guarantee that
            // we get the lock eventually.
            UninterruptibleLockGuard noInterrupt(opCtx->lockState());  // NOLINT.

            // Since we have released the RSTL lock at this point, there can be some read
            // operations sneaked in here, that might hold global lock in S mode or blocked on
            // prepare conflict. We need to kill those operations to avoid 3-way deadlock
            // between read, prepared transaction and step down thread. And, any write
            // operations that gets sneaked in here will fail as we have updated
            // _canAcceptNonLocalWrites to false after our first successful RSTL lock
            // acquisition. So, we won't get into problems like SERVER-27534.
            arsd.rstlReacquire();
            lk.lock();
        });

        auto lastAppliedOpTime = _getMyLastAppliedOpTime_inlock();
        auto currentTerm = _topCoord->getTerm();
        // If termAtStart != currentTerm, tryToStartStepDown would have thrown.
        invariant(termAtStart == currentTerm);
        // As we should not wait for secondaries to catch up if this node has not yet written in
        // this term, invariant that the lastAppliedOpTime we will wait for has the same term as the
        // current term. Also see TopologyCoordinator::isSafeToStepDown.
        invariant(lastAppliedOpTime.getTerm() == currentTerm);

        auto future = _replicationWaiterList.add_inlock(lastAppliedOpTime, waiterWriteConcern);

        lk.unlock();
        auto status = futureGetNoThrowWithDeadline(
            opCtx, future, std::min(stepDownUntil, waitUntil), ErrorCodes::ExceededTimeLimit);
        lk.lock();

        // We ignore the case where runWithDeadline returns timeoutError because in that case
        // coming back around the loop and calling tryToStartStepDown again will cause
        // tryToStartStepDown to return ExceededTimeLimit with the proper error message.
        if (!status.isOK() && status.code() != ErrorCodes::ExceededTimeLimit) {
            opCtx->checkForInterrupt();
        }
    }

    // Prepare for unconditional stepdown success!
    // We need to release the mutex before yielding locks for prepared transactions, which might
    // check out sessions, to avoid deadlocks with checked-out sessions accessing this mutex.
    lk.unlock();

    yieldLocksForPreparedTransactions(opCtx);
    invalidateSessionsForStepdown(opCtx);

    lk.lock();

    // Clear the node's election candidate metrics since it is no longer primary.
    ReplicationMetrics::get(opCtx).clearElectionCandidateMetrics();

    _topCoord->finishUnconditionalStepDown();

    onExitGuard.dismiss();
    updateMemberState();

    // Schedule work to (potentially) step back up once the stepdown period has ended.
    _scheduleWorkAt(stepDownUntil, [=, this](const executor::TaskExecutor::CallbackArgs& cbData) {
        _handleTimePassing(cbData);
    });

    // If election handoff is enabled, schedule a step-up immediately instead of waiting for the
    // election timeout to expire.
    if (!force && enableElectionHandoff.load()) {
        _performElectionHandoff();
    }
}

void ReplicationCoordinatorImpl::_performElectionHandoff() {
    stdx::lock_guard<Latch> lock(_mutex);
    auto candidateIndex = _topCoord->chooseElectionHandoffCandidate();

    if (candidateIndex < 0) {
        LOGV2(21346, "Could not find node to hand off election to");
        return;
    }

    auto target = _rsConfig.getMemberAt(candidateIndex).getHostAndPort();
    executor::RemoteCommandRequest request(
        target, "admin", BSON("replSetStepUp" << 1 << "skipDryRun" << true), nullptr);
    LOGV2(
        21347, "Handing off election to {target}", "Handing off election", "target"_attr = target);

    auto callbackHandleSW = _replExecutor->scheduleRemoteCommand(
        request, [target](const executor::TaskExecutor::RemoteCommandCallbackArgs& callbackData) {
            auto status = callbackData.response.status;

            if (status.isOK()) {
                LOGV2_DEBUG(21348,
                            1,
                            "replSetStepUp request to {target} succeeded with response -- "
                            "{response}",
                            "replSetStepUp request succeeded",
                            "target"_attr = target,
                            "response"_attr = callbackData.response.data);
            } else {
                LOGV2(21349,
                      "replSetStepUp request to {target} failed due to {error}",
                      "replSetStepUp request failed",
                      "target"_attr = target,
                      "error"_attr = status);
            }
        });

    auto callbackHandleStatus = callbackHandleSW.getStatus();
    if (!callbackHandleStatus.isOK()) {
        LOGV2_ERROR(21417,
                    "Failed to schedule ReplSetStepUp request to {target} for election handoff: "
                    "{error}",
                    "Failed to schedule replSetStepUp request for election handoff",
                    "target"_attr = target,
                    "error"_attr = callbackHandleStatus);
    }
}

void ReplicationCoordinatorImpl::_handleTimePassing(
    const executor::TaskExecutor::CallbackArgs& cbData) {
    if (!cbData.status.isOK()) {
        return;
    }

    // For election protocol v1, call _startElectSelfIfEligibleV1 to avoid race
    // against other elections caused by events like election timeout, replSetStepUp etc.
    _startElectSelfIfEligibleV1(StartElectionReasonEnum::kSingleNodePromptElection);
}

bool ReplicationCoordinatorImpl::isWritablePrimaryForReportingPurposes() {
    if (!_settings.usingReplSets()) {
        return true;
    }

    stdx::lock_guard<Latch> lock(_mutex);
    invariant(getReplicationMode() == modeReplSet);
    return _getMemberState_inlock().primary();
}

bool ReplicationCoordinatorImpl::canAcceptWritesForDatabase(OperationContext* opCtx,
                                                            const DatabaseName& dbName) {
    // The answer isn't meaningful unless we hold the ReplicationStateTransitionLock.
    invariant(opCtx->lockState()->isRSTLLocked() || opCtx->isLockFreeReadsOp());
    return canAcceptWritesForDatabase_UNSAFE(opCtx, dbName);
}

bool ReplicationCoordinatorImpl::canAcceptWritesForDatabase_UNSAFE(OperationContext* opCtx,
                                                                   const DatabaseName& dbName) {
    // _canAcceptNonLocalWrites is always true for standalone nodes, and adjusted based on
    // primary+drain state in replica sets.
    //
    // Stand-alone nodes and drained replica set primaries can always accept writes.  Writes are
    // always permitted to the "local" database.
    if (_readWriteAbility->canAcceptNonLocalWrites_UNSAFE() || alwaysAllowNonLocalWrites(opCtx)) {
        return true;
    }
    if (dbName == DatabaseName::kLocal) {
        return true;
    }
    return false;
}

bool ReplicationCoordinatorImpl::canAcceptNonLocalWrites() const {
    stdx::lock_guard<Latch> lk(_mutex);
    return _readWriteAbility->canAcceptNonLocalWrites(lk);
}

namespace {
bool isSystemDotProfile(OperationContext* opCtx, const NamespaceStringOrUUID& nsOrUUID) {
    if (auto ns = nsOrUUID.nss()) {
        return ns->isSystemDotProfile();
    } else {
        auto uuid = nsOrUUID.uuid();
        invariant(uuid, nsOrUUID.toString());
        if (auto ns = CollectionCatalog::get(opCtx)->lookupNSSByUUID(opCtx, *uuid)) {
            return ns->isSystemDotProfile();
        }
    }
    return false;
}
}  // namespace

bool ReplicationCoordinatorImpl::canAcceptWritesFor(OperationContext* opCtx,
                                                    const NamespaceStringOrUUID& nsOrUUID) {
    if (!isReplEnabled() || nsOrUUID.dbName().db() == DatabaseName::kLocal.db()) {
        // Writes on stand-alone nodes or "local" database are always permitted.
        return true;
    }

    // Writes to the system.profile collection are always permitted as it is an unreplicated
    // collection
    if (isSystemDotProfile(opCtx, nsOrUUID)) {
        return true;
    }

    invariant(opCtx->lockState()->isRSTLLocked(), nsOrUUID.toString());
    return canAcceptWritesFor_UNSAFE(opCtx, nsOrUUID);
}

bool ReplicationCoordinatorImpl::canAcceptWritesFor_UNSAFE(OperationContext* opCtx,
                                                           const NamespaceStringOrUUID& nsOrUUID) {
    bool canWriteToDB = canAcceptWritesForDatabase_UNSAFE(opCtx, nsOrUUID.dbName());

    if (!canWriteToDB && !isSystemDotProfile(opCtx, nsOrUUID)) {
        return false;
    }

    // Even if we think we can write to the database we need to make sure we're not trying
    // to write to the oplog in ROLLBACK.
    // If we can accept non local writes (ie we're PRIMARY) then we must not be in ROLLBACK.
    // This check is redundant of the check of _memberState below, but since this can be checked
    // without locking, we do it as an optimization.
    if (_readWriteAbility->canAcceptNonLocalWrites_UNSAFE() || alwaysAllowNonLocalWrites(opCtx)) {
        return true;
    }

    if (auto ns = nsOrUUID.nss()) {
        if (!ns->isOplog()) {
            return true;
        }
    } else if (const auto& oplogCollection = LocalOplogInfo::get(opCtx)->getCollection()) {
        auto uuid = nsOrUUID.uuid();
        invariant(uuid, nsOrUUID.toString());
        if (oplogCollection->uuid() != *uuid) {
            return true;
        }
    }

    stdx::lock_guard<Latch> lock(_mutex);
    if (_memberState.rollback()) {
        return false;
    }
    return true;
}

Status ReplicationCoordinatorImpl::checkCanServeReadsFor(OperationContext* opCtx,
                                                         const NamespaceString& ns,
                                                         bool secondaryOk) {
    invariant(opCtx->lockState()->isRSTLLocked() || opCtx->isLockFreeReadsOp());
    return checkCanServeReadsFor_UNSAFE(opCtx, ns, secondaryOk);
}

Status ReplicationCoordinatorImpl::checkCanServeReadsFor_UNSAFE(OperationContext* opCtx,
                                                                const NamespaceString& ns,
                                                                bool secondaryOk) {
    auto client = opCtx->getClient();
    bool isPrimaryOrSecondary = _readWriteAbility->canServeNonLocalReads_UNSAFE();

    // Always allow reads from the direct client, no matter what.
    if (client->isInDirectClient()) {
        return Status::OK();
    }

    // Oplog reads are not allowed during STARTUP state, but we make an exception for internal
    // reads. Internal reads are required for cleaning up unfinished apply batches.
    if (!isPrimaryOrSecondary && getReplicationMode() == modeReplSet && ns.isOplog()) {
        stdx::lock_guard<Latch> lock(_mutex);
        if ((_memberState.startup() && client->isFromUserConnection()) || _memberState.startup2() ||
            _memberState.rollback()) {
            return Status{ErrorCodes::NotPrimaryOrSecondary,
                          "Oplog collection reads are not allowed while in the rollback or "
                          "startup state."};
        }
    }

    // Non-oplog local reads from the user are not allowed during initial sync when the initial
    // sync method disallows it.  "isFromUserConnection" means DBDirectClient reads are not blocked;
    // "isInternalClient" means reads from other cluster members are not blocked.
    if (!isPrimaryOrSecondary && getReplicationMode() == modeReplSet && ns.isLocalDB() &&
        client->isFromUserConnection()) {
        stdx::lock_guard<Latch> lock(_mutex);
        auto isInternalClient = !client->session() ||
            (client->session()->getTags() & transport::Session::kInternalClient);
        if (!isInternalClient && _memberState.startup2() && _initialSyncer &&
            !_initialSyncer->allowLocalDbAccess()) {
            return Status{ErrorCodes::NotPrimaryOrSecondary,
                          str::stream() << "Local reads are not allowed during initial sync with "
                                           "current initial sync method: "
                                        << _initialSyncer->getInitialSyncMethod()};
        }
    }


    if (canAcceptWritesFor_UNSAFE(opCtx, ns)) {
        return Status::OK();
    }

    if (opCtx->inMultiDocumentTransaction()) {
        if (!_readWriteAbility->canAcceptNonLocalWrites_UNSAFE()) {
            return Status(ErrorCodes::NotWritablePrimary,
                          "Multi-document transactions are only allowed on replica set primaries.");
        }
    }

    if (secondaryOk) {
        if (isPrimaryOrSecondary) {
            return Status::OK();
        }
        const auto msg = client->supportsHello()
            ? "not primary or secondary; cannot currently read from this replSet member"_sd
            : "not master or secondary; cannot currently read from this replSet member"_sd;
        return Status(ErrorCodes::NotPrimaryOrSecondary, msg);
    }

    const auto msg = client->supportsHello() ? "not primary and secondaryOk=false"_sd
                                             : "not master and slaveOk=false"_sd;
    return Status(ErrorCodes::NotPrimaryNoSecondaryOk, msg);
}

bool ReplicationCoordinatorImpl::isInPrimaryOrSecondaryState(OperationContext* opCtx) const {
    return _readWriteAbility->canServeNonLocalReads(opCtx);
}

bool ReplicationCoordinatorImpl::isInPrimaryOrSecondaryState_UNSAFE() const {
    return _readWriteAbility->canServeNonLocalReads_UNSAFE();
}

bool ReplicationCoordinatorImpl::shouldRelaxIndexConstraints(OperationContext* opCtx,
                                                             const NamespaceString& ns) {
    if (ReplSettings::shouldRecoverFromOplogAsStandalone() || !recoverToOplogTimestamp.empty() ||
        tenantMigrationInfo(opCtx)) {
        return true;
    }
    return !canAcceptWritesFor(opCtx, ns);
}

OID ReplicationCoordinatorImpl::getElectionId() {
    stdx::lock_guard<Latch> lock(_mutex);
    return _electionId;
}

int ReplicationCoordinatorImpl::getMyId() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _getMyId_inlock();
}

HostAndPort ReplicationCoordinatorImpl::getMyHostAndPort() const {
    stdx::unique_lock<Latch> lk(_mutex);
    if (_selfIndex == -1) {
        return HostAndPort();
    }
    return _rsConfig.getMemberAt(_selfIndex).getHostAndPort();
}

int ReplicationCoordinatorImpl::_getMyId_inlock() const {
    const MemberConfig& self = _rsConfig.getMemberAt(_selfIndex);
    return self.getId().getData();
}

StatusWith<BSONObj> ReplicationCoordinatorImpl::prepareReplSetUpdatePositionCommand() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _topCoord->prepareReplSetUpdatePositionCommand(
        _getCurrentCommittedSnapshotOpTime_inlock());
}

Status ReplicationCoordinatorImpl::processReplSetGetStatus(
    OperationContext* opCtx,
    BSONObjBuilder* response,
    ReplSetGetStatusResponseStyle responseStyle) {

    BSONObj initialSyncProgress;
    if (responseStyle == ReplSetGetStatusResponseStyle::kInitialSync) {
        std::shared_ptr<InitialSyncerInterface> initialSyncerCopy;
        {
            stdx::lock_guard<Latch> lk(_mutex);
            initialSyncerCopy = _initialSyncer;
        }

        // getInitialSyncProgress must be called outside the ReplicationCoordinatorImpl::_mutex
        // lock. Else it might deadlock with InitialSyncer::_multiApplierCallback where it first
        // acquires InitialSyncer::_mutex and then ReplicationCoordinatorImpl::_mutex.
        if (initialSyncerCopy) {
            initialSyncProgress = initialSyncerCopy->getInitialSyncProgress();
        }
    }

    BSONObj electionCandidateMetrics =
        ReplicationMetrics::get(getServiceContext()).getElectionCandidateMetricsBSON();
    BSONObj electionParticipantMetrics =
        ReplicationMetrics::get(getServiceContext()).getElectionParticipantMetricsBSON();

    boost::optional<Timestamp> lastStableRecoveryTimestamp = boost::none;
    try {
        // Retrieving last stable recovery timestamp should not be blocked by oplog
        // application.
        ShouldNotConflictWithSecondaryBatchApplicationBlock shouldNotConflictBlock(
            opCtx->lockState());
        opCtx->lockState()->setAdmissionPriority(AdmissionContext::Priority::kImmediate);
        // We need to hold the lock so that we don't run when storage is being shutdown.
        Lock::GlobalLock lk(opCtx,
                            MODE_IS,
                            Date_t::now() + Milliseconds(5),
                            Lock::InterruptBehavior::kLeaveUnlocked,
                            [] {
                                Lock::GlobalLockSkipOptions options;
                                options.skipRSTLLock = true;
                                return options;
                            }());
        if (lk.isLocked()) {
            lastStableRecoveryTimestamp = _storage->getLastStableRecoveryTimestamp(_service);
        } else {
            LOGV2_WARNING(6100702,
                          "Failed to get last stable recovery timestamp due to {error}. Note this "
                          "is expected if shutdown is in progress.",
                          "error"_attr = "lock acquire timeout"_sd);
        }
    } catch (const ExceptionForCat<ErrorCategory::CancellationError>& ex) {
        LOGV2_WARNING(6100703,
                      "Failed to get last stable recovery timestamp due to {error}. Note this is "
                      "expected if shutdown is in progress.",
                      "error"_attr = redact(ex));
    }

    stdx::lock_guard<Latch> lk(_mutex);
    if (_inShutdown) {
        return Status(ErrorCodes::ShutdownInProgress, "shutdown in progress");
    }

    Status result(ErrorCodes::InternalError, "didn't set status in prepareStatusResponse");
    _topCoord->prepareStatusResponse(
        TopologyCoordinator::ReplSetStatusArgs{
            _replExecutor->now(),
            static_cast<unsigned>(time(nullptr) - serverGlobalParams.started),
            _getCurrentCommittedSnapshotOpTime_inlock(),
            initialSyncProgress,
            electionCandidateMetrics,
            electionParticipantMetrics,
            lastStableRecoveryTimestamp,
            _externalState->tooStale()},
        response,
        &result);
    return result;
}

void ReplicationCoordinatorImpl::appendSecondaryInfoData(BSONObjBuilder* result) {
    stdx::lock_guard<Latch> lock(_mutex);
    _topCoord->fillMemberData(result);
}

ReplSetConfig ReplicationCoordinatorImpl::getConfig() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig;
}

ConnectionString ReplicationCoordinatorImpl::getConfigConnectionString() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.getConnectionString();
}

Milliseconds ReplicationCoordinatorImpl::getConfigElectionTimeoutPeriod() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.getElectionTimeoutPeriod();
}

std::vector<MemberConfig> ReplicationCoordinatorImpl::getConfigVotingMembers() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.votingMembers();
}

std::int64_t ReplicationCoordinatorImpl::getConfigTerm() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.getConfigTerm();
}

std::int64_t ReplicationCoordinatorImpl::getConfigVersion() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.getConfigVersion();
}

ConfigVersionAndTerm ReplicationCoordinatorImpl::getConfigVersionAndTerm() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.getConfigVersionAndTerm();
}

int ReplicationCoordinatorImpl::getConfigNumMembers() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.getNumMembers();
}

Milliseconds ReplicationCoordinatorImpl::getConfigHeartbeatTimeoutPeriodMillis() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.getHeartbeatTimeoutPeriodMillis();
}

BSONObj ReplicationCoordinatorImpl::getConfigBSON() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.toBSON();
}

const MemberConfig* ReplicationCoordinatorImpl::findConfigMemberByHostAndPort(
    const HostAndPort& hap) const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.findMemberByHostAndPort(hap);
}

bool ReplicationCoordinatorImpl::isConfigLocalHostAllowed() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.isLocalHostAllowed();
}

Milliseconds ReplicationCoordinatorImpl::getConfigHeartbeatInterval() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.getHeartbeatInterval();
}

Status ReplicationCoordinatorImpl::validateWriteConcern(
    const WriteConcernOptions& writeConcern) const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.validateWriteConcern(writeConcern);
}

WriteConcernOptions ReplicationCoordinatorImpl::_getOplogCommitmentWriteConcern(WithLock lk) {
    auto syncMode = getWriteConcernMajorityShouldJournal_inlock()
        ? WriteConcernOptions::SyncMode::JOURNAL
        : WriteConcernOptions::SyncMode::NONE;
    WriteConcernOptions oplogWriteConcern(
        ReplSetConfig::kMajorityWriteConcernModeName, syncMode, WriteConcernOptions::kNoTimeout);
    return oplogWriteConcern;
}

WriteConcernOptions ReplicationCoordinatorImpl::_getConfigReplicationWriteConcern() {
    WriteConcernOptions configWriteConcern(ReplSetConfig::kConfigMajorityWriteConcernModeName,
                                           WriteConcernOptions::SyncMode::NONE,
                                           WriteConcernOptions::kNoTimeout);
    configWriteConcern.checkCondition = WriteConcernOptions::CheckCondition::Config;
    return configWriteConcern;
}

void ReplicationCoordinatorImpl::processReplSetGetConfig(BSONObjBuilder* result,
                                                         bool commitmentStatus,
                                                         bool includeNewlyAdded) {
    stdx::lock_guard<Latch> lock(_mutex);
    if (includeNewlyAdded) {
        result->append("config", _rsConfig.toBSON());
    } else {
        result->append("config", _rsConfig.toBSONWithoutNewlyAdded());
    }

    if (commitmentStatus) {
        uassert(ErrorCodes::NotWritablePrimary,
                "commitmentStatus is only supported on primary.",
                _readWriteAbility->canAcceptNonLocalWrites(lock));
        auto configWriteConcern = _getConfigReplicationWriteConcern();
        auto configOplogCommitmentOpTime = _topCoord->getConfigOplogCommitmentOpTime();
        auto oplogWriteConcern = _getOplogCommitmentWriteConcern(lock);

        // OpTime isn't used when checking for config replication.
        OpTime ignored;
        auto committed = _doneWaitingForReplication_inlock(ignored, configWriteConcern) &&
            _doneWaitingForReplication_inlock(configOplogCommitmentOpTime, oplogWriteConcern);
        result->append("commitmentStatus", committed);
    }
}

void ReplicationCoordinatorImpl::processReplSetMetadata(const rpc::ReplSetMetadata& replMetadata) {
    EventHandle evh;

    if (_needToUpdateTerm(replMetadata.getTerm())) {
        {
            stdx::lock_guard<Latch> lock(_mutex);
            evh = _processReplSetMetadata_inlock(replMetadata);
        }

        if (evh) {
            _replExecutor->waitForEvent(evh);
        }
    }
}

void ReplicationCoordinatorImpl::cancelAndRescheduleElectionTimeout() {
    stdx::lock_guard<Latch> lock(_mutex);
    _cancelAndRescheduleElectionTimeout_inlock();
}

EventHandle ReplicationCoordinatorImpl::_processReplSetMetadata_inlock(
    const rpc::ReplSetMetadata& replMetadata) {
    // Note that public method processReplSetMetadata() above depends on this method not needing
    // to do anything when the term is up to date.  If that changes, be sure to update that
    // method as well.
    return _updateTerm_inlock(replMetadata.getTerm());
}

bool ReplicationCoordinatorImpl::getMaintenanceMode() {
    stdx::lock_guard<Latch> lk(_mutex);
    return _topCoord->getMaintenanceCount() > 0;
}

Status ReplicationCoordinatorImpl::setMaintenanceMode(OperationContext* opCtx, bool activate) {
    if (getReplicationMode() != modeReplSet) {
        return Status(ErrorCodes::NoReplicationEnabled,
                      "can only set maintenance mode on replica set members");
    }

    // It is possible that we change state to or from RECOVERING. Thus, we need the RSTL in X mode.
    ReplicationStateTransitionLockGuard transitionGuard(opCtx, MODE_X);

    stdx::unique_lock<Latch> lk(_mutex);
    if (_topCoord->getRole() == TopologyCoordinator::Role::kCandidate ||
        MONGO_unlikely(setMaintenanceModeFailsWithNotSecondary.shouldFail())) {
        return Status(ErrorCodes::NotSecondary, "currently running for election");
    }

    if (_getMemberState_inlock().primary()) {
        return Status(ErrorCodes::NotSecondary, "primaries can't modify maintenance mode");
    }

    int curMaintenanceCalls = _topCoord->getMaintenanceCount();
    if (activate) {
        LOGV2(21350,
              "going into maintenance mode with {otherMaintenanceModeTasksInProgress} "
              "other maintenance mode tasks in progress",
              "Going into maintenance mode",
              "otherMaintenanceModeTasksInProgress"_attr = curMaintenanceCalls);
        _topCoord->adjustMaintenanceCountBy(1);
    } else if (curMaintenanceCalls > 0) {
        invariant(_topCoord->getRole() == TopologyCoordinator::Role::kFollower);

        _topCoord->adjustMaintenanceCountBy(-1);

        LOGV2(21351,
              "leaving maintenance mode ({otherMaintenanceModeTasksOngoing} other maintenance mode "
              "tasks ongoing)",
              "Leaving maintenance mode",
              "otherMaintenanceModeTasksOngoing"_attr = curMaintenanceCalls - 1);
    } else {
        LOGV2_WARNING(21411, "Attempted to leave maintenance mode but it is not currently active");
        return Status(ErrorCodes::OperationFailed, "already out of maintenance mode");
    }

    const PostMemberStateUpdateAction action = _updateMemberStateFromTopologyCoordinator(lk);
    lk.unlock();
    _performPostMemberStateUpdateAction(action);
    return Status::OK();
}

bool ReplicationCoordinatorImpl::shouldDropSyncSourceAfterShardSplit(const OID replicaSetId) const {
    if (!_settings.isServerless()) {
        return false;
    }

    stdx::lock_guard<Latch> lg(_mutex);

    return replicaSetId != _rsConfig.getReplicaSetId();
}

Status ReplicationCoordinatorImpl::processReplSetSyncFrom(OperationContext* opCtx,
                                                          const HostAndPort& target,
                                                          BSONObjBuilder* resultObj) {
    Status result(ErrorCodes::InternalError, "didn't set status in prepareSyncFromResponse");
    std::shared_ptr<InitialSyncerInterface> initialSyncerCopy;
    {
        stdx::lock_guard<Latch> lk(_mutex);
        _topCoord->prepareSyncFromResponse(target, resultObj, &result);
        // _initialSyncer must not be called with repl mutex held.
        initialSyncerCopy = _initialSyncer;
    }

    // If we are in the middle of an initial sync, do a resync.
    if (result.isOK() && initialSyncerCopy) {
        initialSyncerCopy->cancelCurrentAttempt();
    }
    return result;
}

Status ReplicationCoordinatorImpl::processReplSetFreeze(int secs, BSONObjBuilder* resultObj) {
    auto result = [=, this]() {
        stdx::lock_guard<Latch> lock(_mutex);
        return _topCoord->prepareFreezeResponse(_replExecutor->now(), secs, resultObj);
    }();
    if (!result.isOK()) {
        return result.getStatus();
    }

    if (TopologyCoordinator::PrepareFreezeResponseResult::kSingleNodeSelfElect ==
        result.getValue()) {
        // For election protocol v1, call _startElectSelfIfEligibleV1 to avoid race
        // against other elections caused by events like election timeout, replSetStepUp etc.
        _startElectSelfIfEligibleV1(StartElectionReasonEnum::kSingleNodePromptElection);
    }

    return Status::OK();
}

Status ReplicationCoordinatorImpl::processReplSetReconfig(OperationContext* opCtx,
                                                          const ReplSetReconfigArgs& args,
                                                          BSONObjBuilder* resultObj) {
    LOGV2(21352,
          "replSetReconfig admin command received from client; new config: {newConfig}",
          "replSetReconfig admin command received from client",
          "newConfig"_attr = args.newConfigObj);

    auto getNewConfig = [&](const ReplSetConfig& oldConfig,
                            long long currentTerm) -> StatusWith<ReplSetConfig> {
        ReplSetConfig newConfig;

        // Only explicitly set configTerm to this node's term for non-force reconfigs.
        // Otherwise, use -1.
        auto term = (!args.force) ? currentTerm : OpTime::kUninitializedTerm;

        // When initializing a new config through the replSetReconfig command, ignore the term
        // field passed in through its args. Instead, use this node's term.
        try {
            newConfig = ReplSetConfig::parse(args.newConfigObj, term, oldConfig.getReplicaSetId());
        } catch (const DBException& e) {
            auto status = e.toStatus();
            LOGV2_ERROR(21418,
                        "replSetReconfig got {error} while parsing {newConfig}",
                        "replSetReconfig error parsing new config",
                        "error"_attr = status,
                        "newConfig"_attr = args.newConfigObj);
            return Status(ErrorCodes::InvalidReplicaSetConfig, status.reason());
        }

        if (newConfig.getReplSetName() != oldConfig.getReplSetName()) {
            static constexpr char errmsg[] =
                "Rejecting reconfig where new config set name differs from command line set name";
            LOGV2_ERROR(21419,
                        errmsg,
                        "newConfigSetName"_attr = newConfig.getReplSetName(),
                        "oldConfigSetName"_attr = oldConfig.getReplSetName());
            return Status(ErrorCodes::InvalidReplicaSetConfig,
                          str::stream()
                              << errmsg << ", new config set name: " << newConfig.getReplSetName()
                              << ", old config set name: " << oldConfig.getReplSetName());
        }

        if (args.force) {
            // Increase the config version for force reconfig.
            auto version = std::max(oldConfig.getConfigVersion(), newConfig.getConfigVersion());
            version += 10'000 + SecureRandom().nextInt32(100'000);
            auto newMutableConfig = newConfig.getMutable();
            newMutableConfig.setConfigVersion(version);
            newConfig = ReplSetConfig(std::move(newMutableConfig));
        }

        boost::optional<MutableReplSetConfig> newMutableConfig;

        // Set the 'newlyAdded' field to true for all new voting nodes.
        for (int i = 0; i < newConfig.getNumMembers(); i++) {
            const auto newMem = newConfig.getMemberAt(i);

            // In a reconfig, the 'newlyAdded' flag should never already be set for
            // this member. If it is set, throw an error.
            if (newMem.isNewlyAdded()) {
                str::stream errmsg;
                errmsg << "Cannot provide " << MemberConfig::kNewlyAddedFieldName
                       << " field to member config during reconfig.";
                LOGV2_ERROR(4634900,
                            "Initializing 'newlyAdded' field to member has failed with bad status.",
                            "errmsg"_attr = std::string(errmsg));
                return Status(ErrorCodes::InvalidReplicaSetConfig, errmsg);
            }

            // We should never set the 'newlyAdded' field for arbiters or during force reconfigs.
            if (newMem.isArbiter() || args.force) {
                continue;
            }

            const auto newMemId = newMem.getId();
            const auto oldMem = oldConfig.findMemberByID(newMemId.getData());

            const bool isNewVotingMember = (oldMem == nullptr && newMem.isVoter());
            const bool isCurrentlyNewlyAdded = (oldMem != nullptr && oldMem->isNewlyAdded());

            // Append the 'newlyAdded' field if the node:
            // 1) Is a new, voting node
            // 2) Already has a 'newlyAdded' field in the old config
            if (isNewVotingMember || isCurrentlyNewlyAdded) {
                if (!newMutableConfig) {
                    newMutableConfig = newConfig.getMutable();
                }
                newMutableConfig->addNewlyAddedFieldForMember(newMemId);
            }
        }

        if (newMutableConfig) {
            newConfig = ReplSetConfig(*std::move(newMutableConfig));
            LOGV2(4634400,
                  "Appended the 'newlyAdded' field to a node in the new config. Nodes with "
                  "the 'newlyAdded' field will be considered to have 'votes:0'. Upon "
                  "transition to SECONDARY, this field will be automatically removed.",
                  "newConfigObj"_attr = newConfig.toBSON(),
                  "userProvidedConfig"_attr = args.newConfigObj,
                  "oldConfig"_attr = oldConfig.toBSON());
        }

        return newConfig;
    };

    return doReplSetReconfig(opCtx, getNewConfig, args.force);
}

Status ReplicationCoordinatorImpl::doOptimizedReconfig(OperationContext* opCtx,
                                                       GetNewConfigFn getNewConfig) {
    return _doReplSetReconfig(opCtx, getNewConfig, false /* force */, true /* skipSafetyChecks*/);
}

Status ReplicationCoordinatorImpl::doReplSetReconfig(OperationContext* opCtx,
                                                     GetNewConfigFn getNewConfig,
                                                     bool force) {
    return _doReplSetReconfig(opCtx, getNewConfig, force, false /* skipSafetyChecks*/);
}

Status ReplicationCoordinatorImpl::_doReplSetReconfig(OperationContext* opCtx,
                                                      GetNewConfigFn getNewConfig,
                                                      bool force,
                                                      bool skipSafetyChecks) {
    stdx::unique_lock<Latch> lk(_mutex);

    while (_rsConfigState == kConfigPreStart || _rsConfigState == kConfigStartingUp) {
        _rsConfigStateChange.wait(lk);
    }

    switch (_rsConfigState) {
        case kConfigSteady:
            break;
        case kConfigUninitialized:
            return Status(ErrorCodes::NotYetInitialized,
                          "Node not yet initialized; use the replSetInitiate command");
        case kConfigReplicationDisabled:
            invariant(
                false);       // should be unreachable due to !_settings.usingReplSets() check above
            [[fallthrough]];  // Placate clang.
        case kConfigInitiating:
        case kConfigReconfiguring:
        case kConfigHBReconfiguring:
            return Status(ErrorCodes::ConfigurationInProgress,
                          "Cannot run replSetReconfig because the node is currently updating "
                          "its configuration");
        default:
            LOGV2_FATAL(18914,
                        "Unexpected _rsConfigState {_rsConfigState}",
                        "Unexpected _rsConfigState",
                        "_rsConfigState"_attr = int(_rsConfigState));
    }

    LOGV2(6015313, "Replication config state is Steady, starting reconfig");
    invariant(_rsConfig.isInitialized());

    if (!force && !_readWriteAbility->canAcceptNonLocalWrites(lk) && !skipSafetyChecks) {
        return Status(
            ErrorCodes::NotWritablePrimary,
            str::stream()
                << "Safe reconfig is only allowed on a writable PRIMARY. Current state is "
                << _getMemberState_inlock().toString());
    }
    auto topCoordTerm = _topCoord->getTerm();

    if (!force && !skipSafetyChecks) {
        // For safety of reconfig, since we must commit a config in our own term before executing a
        // reconfig, so we should never have a config in an older term. If the current config was
        // installed via a force reconfig, we aren't concerned about this safety guarantee.
        invariant(_rsConfig.getConfigTerm() == OpTime::kUninitializedTerm ||
                  _rsConfig.getConfigTerm() == topCoordTerm);
    }

    auto configWriteConcern = _getConfigReplicationWriteConcern();
    // Construct a fake OpTime that can be accepted but isn't used.
    OpTime fakeOpTime(Timestamp(1, 1), topCoordTerm);

    if (!force && !skipSafetyChecks) {
        if (!_doneWaitingForReplication_inlock(fakeOpTime, configWriteConcern)) {
            return Status(ErrorCodes::CurrentConfigNotCommittedYet,
                          str::stream()
                              << "Cannot run replSetReconfig because the current config: "
                              << _rsConfig.getConfigVersionAndTerm().toString() << " is not "
                              << "majority committed.");
        }

        // Make sure that the latest committed optime from the previous config is committed in the
        // current config. If this is the initial reconfig, then we don't need to check this
        // condition, since there were no prior configs. Also, for force reconfigs we bypass this
        // safety check condition.
        auto isInitialReconfig = (_rsConfig.getConfigVersion() == 1);
        // If our config was installed via a "force" reconfig, we bypass the oplog commitment check.
        auto leavingForceConfig = (_rsConfig.getConfigTerm() == OpTime::kUninitializedTerm);
        auto configOplogCommitmentOpTime = _topCoord->getConfigOplogCommitmentOpTime();
        auto oplogWriteConcern = _getOplogCommitmentWriteConcern(lk);

        if (!leavingForceConfig && !isInitialReconfig &&
            !_doneWaitingForReplication_inlock(configOplogCommitmentOpTime, oplogWriteConcern)) {
            LOGV2(51816,
                  "Oplog config commitment condition failed to be satisfied. The last committed "
                  "optime in the previous config ({configOplogCommitmentOpTime}) is not committed "
                  "in current config",
                  "Oplog config commitment condition failed to be satisfied. The last committed "
                  "optime in the previous config is not committed in current config",
                  "configOplogCommitmentOpTime"_attr = configOplogCommitmentOpTime);
            return Status(ErrorCodes::CurrentConfigNotCommittedYet,
                          str::stream() << "Last committed optime from previous config ("
                                        << configOplogCommitmentOpTime.toString()
                                        << ") is not committed in the current config.");
        }
    }

    _setConfigState_inlock(kConfigReconfiguring);
    auto configStateGuard =
        ScopeGuard([&] { lockAndCall(&lk, [=, this] { _setConfigState_inlock(kConfigSteady); }); });

    ReplSetConfig oldConfig = _rsConfig;
    int myIndex = _selfIndex;
    lk.unlock();

    // Call the callback to get the new config given the old one.
    auto newConfigStatus = getNewConfig(oldConfig, topCoordTerm);
    Status status = newConfigStatus.getStatus();
    if (!status.isOK())
        return status;
    ReplSetConfig newConfig = newConfigStatus.getValue();

    // Synchronize this change with potential changes to the default write concern.
    auto wcChanges = getWriteConcernTagChanges();
    auto mustReleaseWCChange = false;
    if (!oldConfig.areWriteConcernModesTheSame(&newConfig)) {
        if (!wcChanges->reserveConfigWriteConcernTagChange()) {
            return Status(
                ErrorCodes::ConflictingOperationInProgress,
                "Default write concern change(s) in progress. Please retry the reconfig later.");
        }
        // Reservation OK.
        mustReleaseWCChange = true;
    }

    ON_BLOCK_EXIT([&] {
        if (mustReleaseWCChange) {
            wcChanges->releaseConfigWriteConcernTagChange();
        }
    });

    hangBeforeNewConfigValidationChecks.pauseWhileSet();

    // Excluding reconfigs that bump the config term during step-up from checking against changing
    // the implicit default write concern, as it is not needed.
    if (!skipSafetyChecks /* skipping step-up reconfig */) {
        bool currIDWC = oldConfig.isImplicitDefaultWriteConcernMajority();
        bool newIDWC = newConfig.isImplicitDefaultWriteConcernMajority();

        // If the new config changes the replica set's implicit default write concern, we fail the
        // reconfig command. This includes force reconfigs.
        // The user should set a cluster-wide write concern and attempt the reconfig command again.
        if (!serverGlobalParams.clusterRole.has(ClusterRole::ShardServer)) {
            if (!repl::enableDefaultWriteConcernUpdatesForInitiate.load() && currIDWC != newIDWC &&
                !ReadWriteConcernDefaults::get(opCtx).isCWWCSet(opCtx)) {
                return Status(
                    ErrorCodes::NewReplicaSetConfigurationIncompatible,
                    str::stream()
                        << "Reconfig attempted to install a config that would change the implicit "
                           "default write concern. Use the setDefaultRWConcern command to set a "
                           "cluster-wide write concern and try the reconfig again.");
            }
        } else {
            // Allow all reconfigs if the shard is not part of a sharded cluster yet, however
            // prevent changing the implicit default write concern to (w: 1) after it becomes part
            // of a sharded cluster and CWWC is not set on the cluster.
            // Remote call to the configServer should be done to check if CWWC is set on the
            // cluster.
            if (_externalState->isShardPartOfShardedCluster(opCtx) && currIDWC != newIDWC &&
                !newIDWC) {
                try {
                    // Initiates a remote call to the config server.
                    if (!_externalState->isCWWCSetOnConfigShard(opCtx)) {
                        return Status(
                            ErrorCodes::NewReplicaSetConfigurationIncompatible,
                            str::stream()
                                << "Reconfig attempted to install a config that would change the "
                                   "implicit default write concern on the shard to {w: 1}. Use the "
                                   "setDefaultRWConcern command to set a cluster-wide write "
                                   "concern on the cluster and try the reconfig again.");
                    }
                } catch (const DBException& ex) {
                    return Status(
                        ErrorCodes::ConfigServerUnreachable,
                        str::stream()
                            << "Reconfig attempted to install a config that would change the "
                               "implicit default write concern on the shard to {w: 1}, but the "
                               "shard can not check if CWWC is set on the cluster, as the request "
                               "to the config server is failing with error: " +
                                ex.toString());
                }
            }
        }

        // If we are currently using a custom write concern as the default, check that the
        // corresponding definition still exists in the new config.
        if (serverGlobalParams.clusterRole.has(ClusterRole::None)) {
            try {
                const auto rwcDefaults =
                    ReadWriteConcernDefaults::get(opCtx->getServiceContext()).getDefault(opCtx);
                const auto wcDefault = rwcDefaults.getDefaultWriteConcern();
                if (wcDefault) {
                    auto validateWCStatus = newConfig.validateWriteConcern(wcDefault.value());
                    if (!validateWCStatus.isOK()) {
                        return Status(ErrorCodes::NewReplicaSetConfigurationIncompatible,
                                      str::stream() << "May not remove custom write concern "
                                                       "definition from config while it is in "
                                                       "use as the default write concern. "
                                                       "Change the default write concern to a "
                                                       "non-conflicting setting and try the "
                                                       "reconfig again.");
                    }
                }
            } catch (const DBException& e) {
                return e.toStatus("Exception while loading write concern default during reconfig");
            }
        }
    }

    BSONObj oldConfigObj = oldConfig.toBSON();
    BSONObj newConfigObj = newConfig.toBSON();
    audit::logReplSetReconfig(opCtx->getClient(), &oldConfigObj, &newConfigObj);

    bool allowSplitHorizonIP = !opCtx->getClient()->hasRemote();

    Status validateStatus =
        validateConfigForReconfig(oldConfig, newConfig, force, allowSplitHorizonIP);
    if (!validateStatus.isOK()) {
        LOGV2_ERROR(21420,
                    "replSetReconfig got {error} while validating {newConfig}",
                    "replSetReconfig error while validating new config",
                    "error"_attr = validateStatus,
                    "newConfig"_attr = newConfigObj,
                    "oldConfig"_attr = oldConfigObj);
        return Status(ErrorCodes::NewReplicaSetConfigurationIncompatible, validateStatus.reason());
    }

    if (MONGO_unlikely(ReconfigHangBeforeConfigValidationCheck.shouldFail())) {
        LOGV2(4637900,
              "ReconfigHangBeforeConfigValidationCheck fail point "
              "enabled. Blocking until fail point is disabled.");
        ReconfigHangBeforeConfigValidationCheck.pauseWhileSet(opCtx);
    }

    // Make sure we can find ourselves in the config. If the config contents have not changed, then
    // we bypass the check for finding ourselves in the config, since we know it should already be
    // satisfied. There is also one further optimization here: if we have a valid _selfIndex, we can
    // do a quick and cheap pass first to see if host and port exist in the new config. This is safe
    // as we are not allowed to have the same HostAndPort in the config twice. Matching HostandPort
    // implies matching isSelf, and it is actually preferrable to avoid checking the latter as it is
    // succeptible to transient DNS errors.
    auto quickIndex =
        _selfIndex >= 0 ? findOwnHostInConfigQuick(newConfig, getMyHostAndPort()) : -1;
    if (quickIndex >= 0) {
        if (!force) {
            auto electableStatus = checkElectable(newConfig, quickIndex);
            if (!electableStatus.isOK()) {
                LOGV2_ERROR(6475002,
                            "Not electable in new config and force=false, rejecting",
                            "error"_attr = electableStatus,
                            "newConfig"_attr = newConfigObj);
                return electableStatus;
            }
        }
        LOGV2(6475000,
              "Was able to quickly find new index in config. Skipping full checks.",
              "index"_attr = quickIndex,
              "force"_attr = force);
        myIndex = quickIndex;
    } else {
        // Either our HostAndPort changed in the config or we didn't have a _selfIndex.
        if (skipSafetyChecks) {
            LOGV2_ERROR(5986700,
                        "Configuration changed substantially in a config change that should have "
                        "only changed term",
                        "oldConfig"_attr = oldConfig,
                        "newConfig"_attr = newConfig);
            // Always debug assert if we reach this point.
            dassert(!skipSafetyChecks);
        }
        LOGV2(6015314, "Finding self in new config");
        StatusWith<int> myIndexSw = force
            ? findSelfInConfig(_externalState.get(), newConfig, opCtx->getServiceContext())
            : findSelfInConfigIfElectable(
                  _externalState.get(), newConfig, opCtx->getServiceContext());
        if (!myIndexSw.getStatus().isOK()) {
            LOGV2_ERROR(4751504,
                        "replSetReconfig error while trying to find self in config",
                        "error"_attr = myIndexSw.getStatus(),
                        "force"_attr = force,
                        "newConfig"_attr = newConfigObj);
            return myIndexSw.getStatus();
        }
        myIndex = myIndexSw.getValue();
    }

    LOGV2(21353,
          "replSetReconfig config object with {numMembers} members parses ok",
          "replSetReconfig config object parses ok",
          "numMembers"_attr = newConfig.getNumMembers());

    if (!force && !skipSafetyChecks && !MONGO_unlikely(omitConfigQuorumCheck.shouldFail())) {
        LOGV2(4509600, "Executing quorum check for reconfig");
        status =
            checkQuorumForReconfig(_replExecutor.get(), newConfig, myIndex, _topCoord->getTerm());
        if (!status.isOK()) {
            LOGV2_ERROR(21421,
                        "replSetReconfig failed; {error}",
                        "replSetReconfig failed",
                        "error"_attr = status);
            return status;
        }
    }

    LOGV2(51814, "Persisting new config to disk");
    {
        Lock::GlobalLock globalLock(opCtx, LockMode::MODE_IX);
        if (!force && !_readWriteAbility->canAcceptNonLocalWrites(opCtx) && !skipSafetyChecks) {
            return {ErrorCodes::NotWritablePrimary, "Stepped down when persisting new config"};
        }

        // Don't write no-op for internal and external force reconfig.
        // For non-force reconfigs with 'skipSafetyChecks' set to false, we are guaranteed that the
        // node is a writable primary.
        // When 'skipSafetyChecks' is true, it is possible the node is not yet a writable primary
        // (eg. in the case where reconfig is called during stepup). In all other cases, we should
        // still do the no-op write when possible.
        status = _externalState->storeLocalConfigDocument(
            opCtx,
            newConfig.toBSON(),
            !force && _readWriteAbility->canAcceptNonLocalWrites(opCtx) /* writeOplog */);
        if (!status.isOK()) {
            LOGV2_ERROR(21422,
                        "replSetReconfig failed to store config document; {error}",
                        "replSetReconfig failed to store config document",
                        "error"_attr = status);
            return status;
        }
    }
    // Wait for durability of the new config document.
    JournalFlusher::get(opCtx)->waitForJournalFlush();
    LOGV2(6015315, "Persisted new config to disk");

    configStateGuard.dismiss();
    _finishReplSetReconfig(opCtx, newConfig, force, myIndex);

    if (MONGO_unlikely(hangAfterReconfig.shouldFail())) {
        LOGV2(5940904, "Hanging after reconfig on fail point");
        hangAfterReconfig.pauseWhileSet();
    }

    return Status::OK();
}

void ReplicationCoordinatorImpl::_finishReplSetReconfig(OperationContext* opCtx,
                                                        const ReplSetConfig& newConfig,
                                                        const bool isForceReconfig,
                                                        int myIndex) {
    // Do not conduct an election during a reconfig, as the node may not be electable post-reconfig.
    executor::TaskExecutor::EventHandle electionFinishedEvent;
    {
        stdx::lock_guard<Latch> lk(_mutex);
        electionFinishedEvent = _cancelElectionIfNeeded(lk);
    }

    // If there is an election in-progress, there can be at most one. No new election can happen as
    // we have already set our ReplicationCoordinatorImpl::_rsConfigState state to
    // "kConfigReconfiguring" which prevents new elections from happening.
    if (electionFinishedEvent) {
        LOGV2(21354,
              "Waiting for election to complete before finishing reconfig to config with "
              "{configVersionAndTerm}",
              "Waiting for election to complete before finishing reconfig",
              "configVersionAndTerm"_attr = newConfig.getConfigVersionAndTerm());
        // Wait for the election to complete and the node's Role to be set to follower.
        _replExecutor->waitForEvent(electionFinishedEvent);
    }

    boost::optional<AutoGetRstlForStepUpStepDown> arsd;
    stdx::unique_lock<Latch> lk(_mutex);
    if (isForceReconfig && _shouldStepDownOnReconfig(lk, newConfig, myIndex)) {
        _topCoord->prepareForUnconditionalStepDown();
        lk.unlock();

        // Primary node won't be electable or removed after the configuration change.
        // So, finish the reconfig under RSTL, so that the step down occurs safely.
        arsd.emplace(this, opCtx, ReplicationCoordinator::OpsKillingStateTransitionEnum::kStepDown);

        lk.lock();
        if (_topCoord->isSteppingDownUnconditionally()) {
            invariant(opCtx->lockState()->isRSTLExclusive());
            LOGV2(21355, "Stepping down from primary, because we received a new config");
            // We need to release the mutex before yielding locks for prepared transactions, which
            // might check out sessions, to avoid deadlocks with checked-out sessions accessing
            // this mutex.
            lk.unlock();

            yieldLocksForPreparedTransactions(opCtx);
            invalidateSessionsForStepdown(opCtx);

            lk.lock();

            // Clear the node's election candidate metrics since it is no longer primary.
            ReplicationMetrics::get(opCtx).clearElectionCandidateMetrics();

            // Update _canAcceptNonLocalWrites.
            _updateWriteAbilityFromTopologyCoordinator(lk, opCtx);
        } else {
            // Release the rstl lock as the node might have stepped down due to
            // other unconditional step down code paths like learning new term via heartbeat &
            // liveness timeout. And, no new election can happen as we have already set our
            // ReplicationCoordinatorImpl::_rsConfigState state to "kConfigReconfiguring" which
            // prevents new elections from happening. So, its safe to release the RSTL lock.
            arsd.reset();
        }
    }

    invariant(_rsConfigState == kConfigReconfiguring);
    invariant(_rsConfig.isInitialized());

    const ReplSetConfig oldConfig = _rsConfig;
    const PostMemberStateUpdateAction action = _setCurrentRSConfig(lk, opCtx, newConfig, myIndex);

    // Record the latest committed optime in the current config atomically with the new config
    // taking effect. Once we have acquired the replication mutex above, we are ensured that no new
    // writes will be committed in the previous config, since any other system operation must
    // acquire the mutex to advance the commit point.
    _topCoord->updateLastCommittedInPrevConfig();

    // Safe reconfig guarantees that all committed entries are safe, so we can keep our commit
    // point. One exception is when we change the meaning of the "committed" snapshot from applied
    // -> durable. We have to drop all snapshots so we don't mistakenly read from the wrong one.
    auto defaultDurableChanged = oldConfig.getWriteConcernMajorityShouldJournal() !=
        newConfig.getWriteConcernMajorityShouldJournal();
    // If the new config has the same content but different version and term, like on stepup, we
    // don't need to drop snapshots either, since the quorum condition is still the same.
    auto newConfigCopy = newConfig.getMutable();
    newConfigCopy.setConfigTerm(oldConfig.getConfigTerm());
    newConfigCopy.setConfigVersion(oldConfig.getConfigVersion());
    auto contentChanged =
        SimpleBSONObjComparator::kInstance.evaluate(oldConfig.toBSON() != newConfigCopy.toBSON());
    if (defaultDurableChanged || (isForceReconfig && contentChanged)) {
        _clearCommittedSnapshot_inlock();
    }

    // If we have a split config, schedule heartbeats to each recipient member. It informs them of
    // the new split config.
    if (newConfig.isSplitConfig()) {
        const auto now = _replExecutor->now();
        const auto recipientConfig = newConfig.getRecipientConfig();
        for (const auto& member : recipientConfig->members()) {
            _scheduleHeartbeatToTarget_inlock(
                member.getHostAndPort(), now, newConfig.getReplSetName().toString());
        }
    }

    lk.unlock();
    ReplicaSetAwareServiceRegistry::get(_service).onSetCurrentConfig(opCtx);
    _performPostMemberStateUpdateAction(action);
}

Status ReplicationCoordinatorImpl::awaitConfigCommitment(OperationContext* opCtx,
                                                         bool waitForOplogCommitment,
                                                         long long term) {
    stdx::unique_lock<Latch> lk(_mutex);
    // Check writable primary before waiting.
    if (!_readWriteAbility->canAcceptNonLocalWrites(lk)) {
        return {
            ErrorCodes::PrimarySteppedDown,
            "replSetReconfig should only be run on a writable PRIMARY. Current state {};"_format(
                _memberState.toString())};
    }
    auto configOplogCommitmentOpTime = _topCoord->getConfigOplogCommitmentOpTime();
    auto oplogWriteConcern = _getOplogCommitmentWriteConcern(lk);
    auto currConfig = _rsConfig;
    lk.unlock();

    OpTime fakeOpTime(Timestamp(1, 1), term);
    // Wait for the config document to be replicated to a majority of nodes in the current config.
    LOGV2(4508702, "Waiting for the current config to propagate to a majority of nodes");
    StatusAndDuration configAwaitStatus =
        awaitReplication(opCtx, fakeOpTime, _getConfigReplicationWriteConcern());

    logv2::DynamicAttributes attr;
    attr.add("configVersion", currConfig.getConfigVersion());
    attr.add("configTerm", currConfig.getConfigTerm());
    attr.add("configWaitDuration", configAwaitStatus.duration);
    if (!configAwaitStatus.status.isOK()) {
        LOGV2_WARNING(4714200, "Current config hasn't propagated to a majority of nodes", attr);
        std::stringstream ss;
        ss << "Current config with " << currConfig.getConfigVersionAndTerm().toString()
           << " has not yet propagated to a majority of nodes";
        return configAwaitStatus.status.withContext(ss.str());
    }

    // In an edge case, if this node has received and installed new config with a higher term via
    // a heartbeat reconfig while still waiting for an earlier config to propagate, we can
    // erroneously return the earlier reconfig request successfully. Therefore, if a node sees that
    // its installed config term is higher than the config term it is waiting on, it means a new
    // primary has been elected, and we should fail the original reconfig request.
    auto currTerm = getConfigTerm();
    if (term != OpTime::kUninitializedTerm && term < currTerm) {
        return Status(ErrorCodes::PrimarySteppedDown,
                      str::stream()
                          << "Term changed from " << term << " to " << currTerm
                          << " while waiting for replication, indicating that this node must "
                             "have stepped down.");
    }
    if (!waitForOplogCommitment) {
        LOGV2(4689401, "Propagated current replica set config to a majority of nodes", attr);
        return Status::OK();
    }

    // Wait for the latest committed optime in the previous config to be committed in the
    // current config.
    LOGV2(51815,
          "Waiting for the last committed optime in the previous config "
          "to be committed in the current config",
          "configOplogCommitmentOpTime"_attr = configOplogCommitmentOpTime);
    StatusAndDuration oplogAwaitStatus =
        awaitReplication(opCtx, configOplogCommitmentOpTime, oplogWriteConcern);
    attr.add("oplogWaitDuration", oplogAwaitStatus.duration);
    attr.add("configOplogCommitmentOpTime", configOplogCommitmentOpTime);
    if (!oplogAwaitStatus.status.isOK()) {
        LOGV2_WARNING(4714201,
                      "Last committed optime in previous config isn't committed in current config",
                      attr);
        std::stringstream ss;
        ss << "Last committed optime in the previous config ("
           << configOplogCommitmentOpTime.toString()
           << ") has not yet become committed in the current config with "
           << currConfig.getConfigVersionAndTerm().toString();
        return oplogAwaitStatus.status.withContext(ss.str());
    }
    LOGV2(4508701, "The current replica set config is committed", attr);
    return Status::OK();
}


void ReplicationCoordinatorImpl::_reconfigToRemoveNewlyAddedField(
    const executor::TaskExecutor::CallbackArgs& cbData,
    MemberId memberId,
    ConfigVersionAndTerm versionAndTerm) {
    if (cbData.status == ErrorCodes::CallbackCanceled) {
        LOGV2_DEBUG(4634502,
                    2,
                    "Failed to remove 'newlyAdded' config field",
                    "memberId"_attr = memberId.getData(),
                    "error"_attr = cbData.status);
        // We will retry on the next heartbeat.
        return;
    }

    if (MONGO_unlikely(doNotRemoveNewlyAddedOnHeartbeats.shouldFail())) {
        LOGV2(
            4709200,
            "Not removing 'newlyAdded' field due to 'doNotremoveNewlyAddedOnHeartbeats' failpoint",
            "memberId"_attr = memberId.getData());
        return;
    }

    LOGV2(4634505,
          "Beginning automatic reconfig to remove 'newlyAdded' config field",
          "memberId"_attr = memberId.getData());

    auto getNewConfig = [&](const repl::ReplSetConfig& oldConfig,
                            long long term) -> StatusWith<ReplSetConfig> {
        // Even though memberIds should properly identify nodes across config changes, to be safe we
        // only want to do an automatic reconfig where the base config is the one that specified
        // this memberId.
        if (oldConfig.getConfigVersionAndTerm() != versionAndTerm) {
            return Status(ErrorCodes::NewReplicaSetConfigurationIncompatible,
                          str::stream()
                              << "Current config is no longer consistent with heartbeat "
                                 "data. Current config version: "
                              << oldConfig.getConfigVersionAndTerm().toString()
                              << ", heartbeat data config version: " << versionAndTerm.toString());
        }

        auto newConfig = oldConfig.getMutable();
        newConfig.setConfigVersion(newConfig.getConfigVersion() + 1);

        const auto hasNewlyAddedField =
            oldConfig.findMemberByID(memberId.getData())->isNewlyAdded();
        if (!hasNewlyAddedField) {
            return Status(ErrorCodes::NoSuchKey, "Old config no longer has 'newlyAdded' field");
        }

        newConfig.removeNewlyAddedFieldForMember(memberId);
        return ReplSetConfig(std::move(newConfig));
    };

    auto opCtx = cc().makeOperationContext();

    // Set info for currentOp to display if called while this is still running.
    {
        stdx::unique_lock<Client> lk(*opCtx->getClient());
        auto curOp = CurOp::get(opCtx.get());
        curOp->setLogicalOp_inlock(LogicalOp::opCommand);
        BSONObjBuilder bob;
        bob.append("replSetReconfig", "automatic");
        bob.append("memberId", memberId.getData());
        bob.append("configVersionAndTerm", versionAndTerm.toString());
        bob.append("info",
                   "An automatic reconfig. Used to remove a 'newlyAdded' config field for a "
                   "replica set member.");
        curOp->setOpDescription_inlock(bob.obj());
        curOp->setNS_inlock(NamespaceString::kSystemReplSetNamespace);
        curOp->ensureStarted();
    }

    if (MONGO_unlikely(hangDuringAutomaticReconfig.shouldFail())) {
        LOGV2(4635700,
              "Failpoint 'hangDuringAutomaticReconfig' enabled. Blocking until it is disabled.");
        hangDuringAutomaticReconfig.pauseWhileSet();
    }

    auto status = doReplSetReconfig(opCtx.get(), getNewConfig, false /* force */);

    if (!status.isOK()) {
        LOGV2_DEBUG(4634503,
                    2,
                    "Failed to remove 'newlyAdded' config field",
                    "memberId"_attr = memberId.getData(),
                    "error"_attr = status);
        // It is safe to do nothing here as we will retry this on the next heartbeat, or we may
        // instead find out the reconfig already took place and is no longer necessary.
        return;
    }

    numAutoReconfigsForRemovalOfNewlyAddedFields.increment(1);

    // We intentionally do not wait for config commitment. If the config does not get committed, we
    // will try again on the next heartbeat.
    LOGV2(4634504, "Removed 'newlyAdded' config field", "memberId"_attr = memberId.getData());
}

Status ReplicationCoordinatorImpl::processReplSetInitiate(OperationContext* opCtx,
                                                          const BSONObj& configObj,
                                                          BSONObjBuilder* resultObj) {
    LOGV2(21356, "replSetInitiate admin command received from client");

    stdx::unique_lock<Latch> lk(_mutex);
    if (!isReplEnabled()) {
        return Status(ErrorCodes::NoReplicationEnabled, "server is not running with --replSet");
    }
    while (_rsConfigState == kConfigPreStart || _rsConfigState == kConfigStartingUp) {
        _rsConfigStateChange.wait(lk);
    }

    if (_rsConfigState != kConfigUninitialized) {
        resultObj->append("info", "try querying local.system.replset to see current configuration");
        return Status(ErrorCodes::AlreadyInitialized, "already initialized");
    }
    invariant(!_rsConfig.isInitialized());
    _setConfigState_inlock(kConfigInitiating);

    ScopeGuard configStateGuard = [&] {
        lockAndCall(&lk, [=, this] { _setConfigState_inlock(kConfigUninitialized); });
    };

    // When writing our first oplog entry below, disable advancement of the stable timestamp so that
    // we don't set it before setting our initial data timestamp. We will set it after we set our
    // initialDataTimestamp. This will ensure we trigger an initial stable checkpoint properly.
    if (!serverGlobalParams.enableMajorityReadConcern) {
        _shouldSetStableTimestamp = false;
    }

    lk.unlock();

    // Initiate FCV in local storage. This will propagate to other nodes via initial sync.
    FeatureCompatibilityVersion::setIfCleanStartup(opCtx, _storage);

    ReplSetConfig newConfig;
    try {
        newConfig = ReplSetConfig::parseForInitiate(configObj, OID::gen());
    } catch (const DBException& e) {
        Status status = e.toStatus();
        LOGV2_ERROR(21423,
                    "replSet initiate got {error} while parsing {config}",
                    "replSetInitiate error while parsing config",
                    "error"_attr = status,
                    "config"_attr = configObj);
        return Status(ErrorCodes::InvalidReplicaSetConfig, status.reason());
    }

    // The setname is not provided as a command line argument in serverless mode.
    if (!_settings.isServerless() && newConfig.getReplSetName() != _settings.ourSetName()) {
        static constexpr char errmsg[] =
            "Rejecting initiate with a set name that differs from command line set name";
        LOGV2_ERROR(21424,
                    errmsg,
                    "initiateSetName"_attr = newConfig.getReplSetName(),
                    "commandLineSetName"_attr = _settings.ourSetName());
        return Status(ErrorCodes::InvalidReplicaSetConfig,
                      str::stream()
                          << errmsg << ", initiate set name: " << newConfig.getReplSetName()
                          << ", command line set name: " << _settings.ourSetName());
    }

    StatusWith<int> myIndex =
        validateConfigForInitiate(_externalState.get(), newConfig, opCtx->getServiceContext());
    if (!myIndex.isOK()) {
        LOGV2_ERROR(21425,
                    "replSet initiate got {error} while validating {config}",
                    "replSetInitiate error while validating config",
                    "error"_attr = myIndex.getStatus(),
                    "config"_attr = configObj);
        return Status(ErrorCodes::InvalidReplicaSetConfig, myIndex.getStatus().reason());
    }

    LOGV2(21357,
          "replSetInitiate config object with {numMembers} members parses ok",
          "replSetInitiate config object parses ok",
          "numMembers"_attr = newConfig.getNumMembers());

    // In pv1, the TopologyCoordinator has not set the term yet. It will be set to kInitialTerm if
    // the initiate succeeds so we pass that here.
    auto status = checkQuorumForInitiate(
        _replExecutor.get(), newConfig, myIndex.getValue(), OpTime::kInitialTerm);

    if (!status.isOK()) {
        LOGV2_ERROR(21426,
                    "replSetInitiate failed; {error}",
                    "replSetInitiate failed",
                    "error"_attr = status);
        return status;
    }

    status = _externalState->initializeReplSetStorage(opCtx, newConfig.toBSON());
    if (!status.isOK()) {
        LOGV2_ERROR(21427,
                    "replSetInitiate failed to store config document or create the oplog; {error}",
                    "replSetInitiate failed to store config document or create the oplog",
                    "error"_attr = status);
        return status;
    }

    _replicationProcess->getConsistencyMarkers()->initializeMinValidDocument(opCtx);

    auto lastAppliedOpTimeAndWallTime = getMyLastAppliedOpTimeAndWallTime();

    // Since the JournalListener has not yet been set up, we must manually set our
    // durableOpTime.
    setMyLastDurableOpTimeAndWallTime(lastAppliedOpTimeAndWallTime);

    // Sets the initial data timestamp on the storage engine so it can assign a timestamp
    // to data on disk. We do this after writing the "initiating set" oplog entry.
    _storage->setInitialDataTimestamp(getServiceContext(),
                                      lastAppliedOpTimeAndWallTime.opTime.getTimestamp());

    // Set our stable timestamp for storage and re-enable stable timestamp advancement after we have
    // set our initial data timestamp.
    if (!serverGlobalParams.enableMajorityReadConcern) {
        stdx::unique_lock<Latch> lk(_mutex);
        _shouldSetStableTimestamp = true;
        _setStableTimestampForStorage(lk);
    }

    // In the EMRC=true case, we need to advance the commit point and take a stable checkpoint,
    // to make sure that we can recover if we happen to roll back our first entries after
    // replSetInitiate.
    if (serverGlobalParams.enableMajorityReadConcern) {
        LOGV2_INFO(5872101, "Taking a stable checkpoint for replSetInitiate");
        stdx::unique_lock<Latch> lk(_mutex);
        // Will call _setStableTimestampForStorage() on success.
        _advanceCommitPoint(
            lk, lastAppliedOpTimeAndWallTime, false /* fromSyncSource */, true /* forInitiate */);
        opCtx->recoveryUnit()->waitUntilUnjournaledWritesDurable(opCtx,
                                                                 /*stableCheckpoint*/ true);
    }

    _finishReplSetInitiate(opCtx, newConfig, myIndex.getValue());
    // A configuration passed to replSetInitiate() with the current node as an arbiter
    // will fail validation with a "replSet initiate got ... while validating" reason.
    invariant(!newConfig.getMemberAt(myIndex.getValue()).isArbiter());
    _externalState->startThreads();
    _startDataReplication(opCtx);

    configStateGuard.dismiss();
    return Status::OK();
}

void ReplicationCoordinatorImpl::_finishReplSetInitiate(OperationContext* opCtx,
                                                        const ReplSetConfig& newConfig,
                                                        int myIndex) {
    stdx::unique_lock<Latch> lk(_mutex);
    invariant(_rsConfigState == kConfigInitiating);
    invariant(!_rsConfig.isInitialized());
    auto action = _setCurrentRSConfig(lk, opCtx, newConfig, myIndex);
    lk.unlock();
    ReplicaSetAwareServiceRegistry::get(_service).onSetCurrentConfig(opCtx);
    _performPostMemberStateUpdateAction(action);
}

void ReplicationCoordinatorImpl::_setConfigState_inlock(ConfigState newState) {
    if (newState != _rsConfigState) {
        LOGV2(6015317,
              "Setting new configuration state",
              "newState"_attr = getConfigStateString(newState),
              "oldState"_attr = getConfigStateString(_rsConfigState));
        _rsConfigState = newState;
        _rsConfigStateChange.notify_all();
    }
}

std::string ReplicationCoordinatorImpl::getConfigStateString(ConfigState state) {
    switch (state) {
        case kConfigPreStart:
            return "ConfigPreStart";
        case kConfigStartingUp:
            return "ConfigStartingUp";
        case kConfigReplicationDisabled:
            return "ConfigReplicationDisabled";
        case kConfigUninitialized:
            return "ConfigUninitialized";
        case kConfigSteady:
            return "ConfigSteady";
        case kConfigInitiating:
            return "ConfigInitiating";
        case kConfigReconfiguring:
            return "ConfigReconfiguring";
        case kConfigHBReconfiguring:
            return "ConfigHBReconfiguring";
        default:
            MONGO_UNREACHABLE;
    }
}

void ReplicationCoordinatorImpl::_errorOnPromisesIfHorizonChanged(WithLock lk,
                                                                  OperationContext* opCtx,
                                                                  const ReplSetConfig& oldConfig,
                                                                  const ReplSetConfig& newConfig,
                                                                  int oldIndex,
                                                                  int newIndex) {
    if (newIndex < 0) {
        // When a node is removed, always return a hello response indicating the server has no
        // config set.
        return;
    }

    // We were previously removed but are now rejoining the replica set.
    if (_memberState.removed()) {
        // Reply with an error to hello requests received while the node had an invalid config.
        invariant(_horizonToTopologyChangePromiseMap.empty());

        for (const auto& [sni, promise] : _sniToValidConfigPromiseMap) {
            promise->setError({ErrorCodes::SplitHorizonChange,
                               "Received a reconfig that changed the horizon mappings."});
        }
        _sniToValidConfigPromiseMap.clear();
        HelloMetrics::get(opCtx)->resetNumAwaitingTopologyChanges();
    }

    if (oldIndex >= 0) {
        invariant(_sniToValidConfigPromiseMap.empty());

        const auto oldHorizonMappings = oldConfig.getMemberAt(oldIndex).getHorizonMappings();
        const auto newHorizonMappings = newConfig.getMemberAt(newIndex).getHorizonMappings();
        if (oldHorizonMappings != newHorizonMappings) {
            for (const auto& [horizon, promise] : _horizonToTopologyChangePromiseMap) {
                promise->setError({ErrorCodes::SplitHorizonChange,
                                   "Received a reconfig that changed the horizon mappings."});
            }
            _createHorizonTopologyChangePromiseMapping(lk);
            HelloMetrics::get(opCtx)->resetNumAwaitingTopologyChanges();
        }
    }
}

void ReplicationCoordinatorImpl::_fulfillTopologyChangePromise(WithLock lock) {
    _topCoord->incrementTopologyVersion();
    _cachedTopologyVersionCounter.store(_topCoord->getTopologyVersion().getCounter());
    const auto myState = _topCoord->getMemberState();
    const bool hasValidConfig = _rsConfig.isInitialized() && !myState.removed();
    // Create a hello response for each horizon the server is knowledgeable about.
    for (auto iter = _horizonToTopologyChangePromiseMap.begin();
         iter != _horizonToTopologyChangePromiseMap.end();
         iter++) {
        if (_inQuiesceMode) {
            iter->second->setError(
                Status(ShutdownInProgressQuiesceInfo(_calculateRemainingQuiesceTimeMillis()),
                       kQuiesceModeShutdownMessage));
        } else {
            StringData horizonString = iter->first;
            auto response = _makeHelloResponse(horizonString, lock, hasValidConfig);
            // Fulfill the promise and replace with a new one for future waiters.
            iter->second->emplaceValue(response);
            iter->second = std::make_shared<SharedPromise<std::shared_ptr<const HelloResponse>>>();
        }
    }
    if (_selfIndex >= 0 && !_sniToValidConfigPromiseMap.empty()) {
        // We are joining the replica set for the first time. Send back an error to hello
        // requests that are waiting on a horizon that does not exist in the new config. Otherwise,
        // reply with an updated hello response.
        const auto& reverseHostMappings =
            _rsConfig.getMemberAt(_selfIndex).getHorizonReverseHostMappings();
        for (const auto& [sni, promise] : _sniToValidConfigPromiseMap) {
            const auto iter = reverseHostMappings.find(sni);
            if (!sni.empty() && iter == end(reverseHostMappings)) {
                promise->setError({ErrorCodes::SplitHorizonChange,
                                   "The original request horizon parameter does not exist in the "
                                   "current replica set config"});
            } else {
                const auto horizon = sni.empty() ? SplitHorizon::kDefaultHorizon : iter->second;
                const auto response = _makeHelloResponse(horizon, lock, hasValidConfig);
                promise->emplaceValue(response);
            }
        }
        _sniToValidConfigPromiseMap.clear();
    }
    HelloMetrics::get(getGlobalServiceContext())->resetNumAwaitingTopologyChanges();

    if (_inQuiesceMode) {
        // No more hello requests will wait for a topology change, so clear _horizonToPromiseMap.
        _horizonToTopologyChangePromiseMap.clear();
    }
}

void ReplicationCoordinatorImpl::incrementTopologyVersion() {
    stdx::lock_guard lk(_mutex);
    _fulfillTopologyChangePromise(lk);
}

void ReplicationCoordinatorImpl::_updateWriteAbilityFromTopologyCoordinator(
    WithLock lk, OperationContext* opCtx) {
    bool canAcceptWrites = _topCoord->canAcceptWrites();
    _readWriteAbility->setCanAcceptNonLocalWrites(lk, opCtx, canAcceptWrites);
}

ReplicationCoordinatorImpl::PostMemberStateUpdateAction
ReplicationCoordinatorImpl::_updateMemberStateFromTopologyCoordinator(WithLock lk) {
    // We want to respond to any waiting hellos even if our current and target state are the
    // same as it is possible writes have been disabled during a stepDown but the primary has yet
    // to transition to SECONDARY state.  We do not do so when _waitingForRSTLAtStepDown is true
    // because in that case we have already said we cannot accept writes in the hello response
    // and explictly incremented the toplogy version.
    ON_BLOCK_EXIT([&] {
        if (_rsConfig.isInitialized() && !_waitingForRSTLAtStepDown) {
            _fulfillTopologyChangePromise(lk);
        }
    });

    const MemberState newState = _topCoord->getMemberState();

    if (newState == _memberState) {
        return kActionNone;
    }

    PostMemberStateUpdateAction result;
    if (_memberState.primary() || newState.removed() || newState.rollback()) {
        // Wake up any threads blocked in awaitReplication, close connections, etc.
        _replicationWaiterList.setErrorAll_inlock(
            {ErrorCodes::PrimarySteppedDown, "Primary stepped down while waiting for replication"});
        // Wake up the optime waiter that is waiting for primary catch-up to finish.
        _opTimeWaiterList.setErrorAll_inlock(
            {ErrorCodes::PrimarySteppedDown, "Primary stepped down while waiting for replication"});

        // _canAcceptNonLocalWrites should already be set.
        invariant(!_readWriteAbility->canAcceptNonLocalWrites(lk));

        serverGlobalParams.validateFeaturesAsPrimary.store(false);
        result = (newState.removed() || newState.rollback()) ? kActionRollbackOrRemoved
                                                             : kActionSteppedDown;
    } else {
        result = kActionFollowerModeStateChange;
    }

    // Exit catchup mode if we're in it and enable replication producer and applier on stepdown.
    if (_memberState.primary()) {
        if (_catchupState) {
            // _pendingTermUpdateDuringStepDown is set before stepping down due to hearing about a
            // higher term, so that we can remember the term we heard and update our term as part of
            // finishing stepdown. It is then unset toward the end of stepdown, after the function
            // we are in is called. Thus we must be stepping down due to seeing a higher term if and
            // only if _pendingTermUpdateDuringStepDown is set here.
            if (_pendingTermUpdateDuringStepDown) {
                _catchupState->abort_inlock(PrimaryCatchUpConclusionReason::kFailedWithNewTerm);
            } else {
                _catchupState->abort_inlock(PrimaryCatchUpConclusionReason::kFailedWithError);
            }
        }
        _applierState = ApplierState::Running;
        _externalState->startProducerIfStopped();
    }

    if (_memberState.secondary() && !newState.primary() && !newState.rollback()) {
        // Switching out of SECONDARY, but not to PRIMARY or ROLLBACK. Note that ROLLBACK case is
        // handled separately and requires RSTL lock held, see setFollowerModeRollback.
        _readWriteAbility->setCanServeNonLocalReads_UNSAFE(0U);
    } else if (!_memberState.primary() && newState.secondary()) {
        // Switching into SECONDARY, but not from PRIMARY.
        _readWriteAbility->setCanServeNonLocalReads_UNSAFE(1U);
    }

    if (newState.secondary() && result != kActionSteppedDown &&
        _topCoord->isElectableNodeInSingleNodeReplicaSet()) {
        // When transitioning from other follower states to SECONDARY, run for election on a
        // single-node replica set.
        result = kActionStartSingleNodeElection;
    }

    // If we are transitioning from secondary, cancel any scheduled takeovers.
    if (_memberState.secondary()) {
        _cancelCatchupTakeover_inlock();
        _cancelPriorityTakeover_inlock();
    }

    // Ensure replication is running if we are no longer REMOVED.
    if (_memberState.removed() && !newState.arbiter()) {
        LOGV2(5268000, "Scheduling a task to begin or continue replication");
        _scheduleWorkAt(_replExecutor->now(),
                        [=, this](const mongo::executor::TaskExecutor::CallbackArgs& cbData) {
                            _externalState->startThreads();
                            auto opCtx = cc().makeOperationContext();
                            _startDataReplication(opCtx.get());
                        });
    }

    LOGV2(21358,
          "transition to {newState} from {oldState}",
          "Replica set state transition",
          "newState"_attr = newState,
          "oldState"_attr = _memberState);

    // Initializes the featureCompatibilityVersion to the latest value, because arbiters do not
    // receive the replicated version. This is to avoid bugs like SERVER-32639.
    if (newState.arbiter()) {
        // (Generic FCV reference): This FCV check should exist across LTS binary versions.
        serverGlobalParams.mutableFeatureCompatibility.setVersion(
            multiversion::GenericFCV::kLatest);
        serverGlobalParams.featureCompatibility.logFCVWithContext("arbiter"_sd);
    }

    _memberState = newState;

    _cancelAndRescheduleElectionTimeout_inlock();

    // Notifies waiters blocked in waitForMemberState().
    // For testing only.
    _memberStateChange.notify_all();

    return result;
}

void ReplicationCoordinatorImpl::_performPostMemberStateUpdateAction(
    PostMemberStateUpdateAction action) {
    switch (action) {
        case kActionNone:
            break;
        case kActionFollowerModeStateChange:
            _onFollowerModeStateChange();
            break;
        case kActionRollbackOrRemoved:
            _externalState->closeConnections();
            [[fallthrough]];
        case kActionSteppedDown:
            _externalState->onStepDownHook();
            ReplicaSetAwareServiceRegistry::get(_service).onStepDown();
            break;
        case kActionStartSingleNodeElection:
            _startElectSelfIfEligibleV1(StartElectionReasonEnum::kElectionTimeout);
            break;
        default:
            LOGV2_FATAL(26010,
                        "Unknown post member state update action {action}",
                        "Unknown post member state update action",
                        "action"_attr = static_cast<int>(action));
    }
}

void ReplicationCoordinatorImpl::_postWonElectionUpdateMemberState(WithLock lk) {
    invariant(_topCoord->getTerm() != OpTime::kUninitializedTerm);
    _electionId = OID::fromTerm(_topCoord->getTerm());
    auto ts = VectorClockMutable::get(getServiceContext())->tickClusterTime(1).asTimestamp();
    _topCoord->processWinElection(_electionId, ts);
    const PostMemberStateUpdateAction nextAction = _updateMemberStateFromTopologyCoordinator(lk);

    invariant(nextAction == kActionFollowerModeStateChange,
              str::stream() << "nextAction == " << static_cast<int>(nextAction));
    invariant(_getMemberState_inlock().primary());
    // Clear the sync source.
    _onFollowerModeStateChange();

    // Notify all secondaries of the election win by cancelling all current heartbeats and sending
    // new heartbeat requests to all nodes. We must cancel and start instead of restarting scheduled
    // heartbeats because all heartbeats must be restarted upon election succeeding.
    _cancelHeartbeats_inlock();
    _startHeartbeats_inlock();

    invariant(!_catchupState);
    _catchupState = std::make_unique<CatchupState>(this);
    _catchupState->start_inlock();
}

void ReplicationCoordinatorImpl::_onFollowerModeStateChange() {
    _externalState->signalApplierToChooseNewSyncSource();
}

void ReplicationCoordinatorImpl::CatchupState::start_inlock() {
    LOGV2(21359, "Entering primary catch-up mode");

    // Reset the number of catchup operations performed before starting catchup.
    _numCatchUpOps = 0;

    // No catchup in single node replica set.
    if (_repl->_rsConfig.getNumMembers() == 1) {
        LOGV2(6015304, "Skipping primary catchup since we are the only node in the replica set.");
        abort_inlock(PrimaryCatchUpConclusionReason::kSkipped);
        return;
    }

    auto catchupTimeout = _repl->_rsConfig.getCatchUpTimeoutPeriod();

    // When catchUpTimeoutMillis is 0, we skip doing catchup entirely.
    if (catchupTimeout == ReplSetConfig::kCatchUpDisabled) {
        LOGV2(21360, "Skipping primary catchup since the catchup timeout is 0");
        abort_inlock(PrimaryCatchUpConclusionReason::kSkipped);
        return;
    }

    auto mutex = &_repl->_mutex;
    auto timeoutCB = [this, mutex](const CallbackArgs& cbData) {
        if (!cbData.status.isOK()) {
            return;
        }
        stdx::lock_guard<Latch> lk(*mutex);
        // Check whether the callback has been cancelled while holding mutex.
        if (cbData.myHandle.isCanceled()) {
            return;
        }
        LOGV2(21361, "Catchup timed out after becoming primary");
        abort_inlock(PrimaryCatchUpConclusionReason::kTimedOut);
    };

    // Deal with infinity and overflow - no timeout.
    if (catchupTimeout == ReplSetConfig::kInfiniteCatchUpTimeout ||
        Date_t::max() - _repl->_replExecutor->now() <= catchupTimeout) {
        return;
    }
    // Schedule timeout callback.
    auto timeoutDate = _repl->_replExecutor->now() + catchupTimeout;
    auto status = _repl->_replExecutor->scheduleWorkAt(timeoutDate, std::move(timeoutCB));
    if (!status.isOK()) {
        LOGV2(21362, "Failed to schedule catchup timeout work");
        abort_inlock(PrimaryCatchUpConclusionReason::kFailedWithError);
        return;
    }
    _timeoutCbh = status.getValue();
}

void ReplicationCoordinatorImpl::CatchupState::abort_inlock(PrimaryCatchUpConclusionReason reason) {
    invariant(_repl->_getMemberState_inlock().primary());

    ReplicationMetrics::get(getGlobalServiceContext())
        .incrementNumCatchUpsConcludedForReason(reason);

    LOGV2(21363, "Exited primary catch-up mode");
    // Clean up its own members.
    if (_timeoutCbh) {
        _repl->_replExecutor->cancel(_timeoutCbh);
    }
    if (reason != PrimaryCatchUpConclusionReason::kSucceeded && _waiter) {
        _repl->_opTimeWaiterList.remove_inlock(_waiter);
        _waiter.reset();
    }

    // Enter primary drain mode.
    _repl->_enterDrainMode_inlock();
    // Destroy the state itself.
    _repl->_catchupState.reset();
}

void ReplicationCoordinatorImpl::CatchupState::signalHeartbeatUpdate_inlock() {
    auto targetOpTime = _repl->_topCoord->latestKnownOpTimeSinceHeartbeatRestart();
    // Haven't collected all heartbeat responses.
    if (!targetOpTime) {
        LOGV2_DEBUG(
            6015305,
            1,
            "Not updating target optime for catchup, we haven't collected all heartbeat responses");
        return;
    }

    // We've caught up.
    const auto myLastApplied = _repl->_getMyLastAppliedOpTime_inlock();
    if (*targetOpTime <= myLastApplied) {
        LOGV2(21364,
              "Caught up to the latest optime known via heartbeats after becoming primary. Target "
              "optime: {targetOpTime}. My Last Applied: {myLastApplied}",
              "Caught up to the latest optime known via heartbeats after becoming primary",
              "targetOpTime"_attr = *targetOpTime,
              "myLastApplied"_attr = myLastApplied);
        // Report the number of ops applied during catchup in replSetGetStatus once the primary is
        // caught up.
        ReplicationMetrics::get(getGlobalServiceContext()).setNumCatchUpOps(_numCatchUpOps);
        abort_inlock(PrimaryCatchUpConclusionReason::kAlreadyCaughtUp);
        return;
    }

    // Reset the target optime if it has changed.
    if (_waiter && _targetOpTime == *targetOpTime) {
        return;
    }
    _targetOpTime = *targetOpTime;

    ReplicationMetrics::get(getGlobalServiceContext()).setTargetCatchupOpTime(_targetOpTime);

    LOGV2(21365,
          "Heartbeats updated catchup target optime to {targetOpTime}",
          "Heartbeats updated catchup target optime",
          "targetOpTime"_attr = _targetOpTime);
    LOGV2(21366, "Latest known optime per replica set member");
    auto opTimesPerMember = _repl->_topCoord->latestKnownOpTimeSinceHeartbeatRestartPerMember();
    for (auto&& pair : opTimesPerMember) {
        LOGV2(21367,
              "Member ID: {memberId}, latest known optime: {latestKnownOpTime}",
              "Latest known optime",
              "memberId"_attr = pair.first,
              "latestKnownOpTime"_attr = (pair.second ? (*pair.second).toString() : "unknown"));
    }

    if (_waiter) {
        _repl->_opTimeWaiterList.remove_inlock(_waiter);
        _waiter.reset();
    } else {
        // Only increment the 'numCatchUps' election metric the first time we add a waiter, so that
        // we only increment it once each time a primary has to catch up. If there is already an
        // existing waiter, then the node is catching up and has already been counted.
        ReplicationMetrics::get(getGlobalServiceContext()).incrementNumCatchUps();
    }

    auto targetOpTimeCB = [this](Status status) {
        // Double check the target time since stepdown may signal us too.
        const auto myLastApplied = _repl->_getMyLastAppliedOpTime_inlock();
        if (_targetOpTime <= myLastApplied) {
            LOGV2(21368,
                  "Caught up to the latest known optime successfully after becoming primary. "
                  "Target optime: {targetOpTime}. My Last Applied: {myLastApplied}",
                  "Caught up to the latest known optime successfully after becoming primary",
                  "targetOpTime"_attr = _targetOpTime,
                  "myLastApplied"_attr = myLastApplied);
            // Report the number of ops applied during catchup in replSetGetStatus once the primary
            // is caught up.
            ReplicationMetrics::get(getGlobalServiceContext()).setNumCatchUpOps(_numCatchUpOps);
            abort_inlock(PrimaryCatchUpConclusionReason::kSucceeded);
        }
    };
    auto pf = makePromiseFuture<void>();
    _waiter = std::make_shared<Waiter>(std::move(pf.promise));
    auto future = std::move(pf.future).onCompletion(targetOpTimeCB);
    _repl->_opTimeWaiterList.add_inlock(_targetOpTime, _waiter);
}

void ReplicationCoordinatorImpl::CatchupState::incrementNumCatchUpOps_inlock(long numOps) {
    _numCatchUpOps += numOps;
}

Status ReplicationCoordinatorImpl::abortCatchupIfNeeded(PrimaryCatchUpConclusionReason reason) {
    stdx::lock_guard<Latch> lk(_mutex);
    if (_catchupState) {
        _catchupState->abort_inlock(reason);
        return Status::OK();
    }
    return Status(ErrorCodes::IllegalOperation, "The node is not in catch-up mode.");
}

void ReplicationCoordinatorImpl::incrementNumCatchUpOpsIfCatchingUp(long numOps) {
    stdx::lock_guard<Latch> lk(_mutex);
    if (_catchupState) {
        _catchupState->incrementNumCatchUpOps_inlock(numOps);
    }
}

void ReplicationCoordinatorImpl::signalDropPendingCollectionsRemovedFromStorage() {
    stdx::lock_guard<Latch> lock(_mutex);
    _wakeReadyWaiters(lock, _externalState->getEarliestDropPendingOpTime());
}

boost::optional<Timestamp> ReplicationCoordinatorImpl::getRecoveryTimestamp() {
    return _storage->getRecoveryTimestamp(getServiceContext());
}

void ReplicationCoordinatorImpl::_enterDrainMode_inlock() {
    _applierState = ApplierState::Draining;
    _externalState->stopProducer();
}

Future<void> ReplicationCoordinatorImpl::_drainForShardSplit() {
    stdx::lock_guard<Latch> lk(_mutex);
    invariant(!_finishedDrainingPromise.has_value());
    auto [promise, future] = makePromiseFuture<void>();
    _finishedDrainingPromise = std::move(promise);
    _applierState = ApplierState::DrainingForShardSplit;
    _externalState->stopProducer();
    return std::move(future);
}

ReplicationCoordinatorImpl::PostMemberStateUpdateAction
ReplicationCoordinatorImpl::_setCurrentRSConfig(WithLock lk,
                                                OperationContext* opCtx,
                                                const ReplSetConfig& newConfig,
                                                int myIndex) {
    invariant(newConfig.getProtocolVersion() == 1);
    invariant(_settings.usingReplSets());
    _cancelHeartbeats_inlock();
    _setConfigState_inlock(kConfigSteady);

    _topCoord->updateConfig(newConfig, myIndex, _replExecutor->now());

    // It is only necessary to check if an arbiter is running on a quarterly binary version when a
    // fresh node is added to the replica set as an arbiter and when an old secondary node is
    // removed and then re-added to the replica set as an arbiter. That's why we only need to warn
    // once per process as converting from secondary to arbiter normally requires a server shutdown.
    static std::once_flag checkArbiterOnQuarterlyBinaryVersion;
    std::call_once(checkArbiterOnQuarterlyBinaryVersion, [this] {
        // Warn if an arbiter is running on a quarterly binary version.
        if (_topCoord->getMemberState().arbiter() && !ServerGlobalParams::kIsLTSBinaryVersion) {
            LOGV2_WARNING_OPTIONS(
                4906901,
                {logv2::LogTag::kStartupWarnings},
                "** WARNING: Arbiters are not supported in quarterly binary versions");
        }
    });

    // updateConfig() can change terms, so update our term shadow to match.
    _termShadow.store(_topCoord->getTerm());

    const ReplSetConfig oldConfig = _rsConfig;
    _rsConfig = newConfig;
    _protVersion.store(_rsConfig.getProtocolVersion());

    if (!oldConfig.isInitialized()) {
        // We allow the IDWC to be set only once after initial configuration is loaded.
        _setImplicitDefaultWriteConcern(opCtx, lk);
        _validateDefaultWriteConcernOnShardStartup(lk);
    } else {
        // If 'enableDefaultWriteConcernUpdatesForInitiate' is enabled, we allow the IDWC to be
        // recalculated after a reconfig. However, this logic is only relevant for testing,
        // and should not be executed outside of our test infrastructure. This is needed due to an
        // optimization in our ReplSetTest jstest fixture that initiates replica sets with only the
        // primary, and then reconfigs the full membership set in. As a result, we must calculate
        // the final IDWC only after the last node has been added to the set.
        if (repl::enableDefaultWriteConcernUpdatesForInitiate.load()) {
            _setImplicitDefaultWriteConcern(opCtx, lk);
        }
    }

    // Warn if using the in-memory (ephemeral) storage engine with
    // writeConcernMajorityJournalDefault=true.
    StorageEngine* storageEngine = opCtx->getServiceContext()->getStorageEngine();
    if (storageEngine && newConfig.getWriteConcernMajorityShouldJournal() &&
        (!oldConfig.isInitialized() || !oldConfig.getWriteConcernMajorityShouldJournal())) {
        if (storageEngine->isEphemeral()) {
            LOGV2_OPTIONS(21378, {logv2::LogTag::kStartupWarnings}, "");
            LOGV2_OPTIONS(21379,
                          {logv2::LogTag::kStartupWarnings},
                          "** WARNING: This replica set node is using in-memory (ephemeral) "
                          "storage with the");
            LOGV2_OPTIONS(
                21380,
                {logv2::LogTag::kStartupWarnings},
                "**          writeConcernMajorityJournalDefault option to the replica set config ");
            LOGV2_OPTIONS(
                21381,
                {logv2::LogTag::kStartupWarnings},
                "**          set to true. The writeConcernMajorityJournalDefault option to the ");
            LOGV2_OPTIONS(21382,
                          {logv2::LogTag::kStartupWarnings},
                          "**          replica set config must be set to false ");
            LOGV2_OPTIONS(21383,
                          {logv2::LogTag::kStartupWarnings},
                          "**          or w:majority write concerns will never complete.");
            LOGV2_OPTIONS(
                21384,
                {logv2::LogTag::kStartupWarnings},
                "**          In addition, this node's memory consumption may increase until all");
            LOGV2_OPTIONS(21385,
                          {logv2::LogTag::kStartupWarnings},
                          "**          available free RAM is exhausted.");
            LOGV2_OPTIONS(21386, {logv2::LogTag::kStartupWarnings}, "");
        }
    }

    // Check that getLastErrorDefaults has not been changed from the default settings of
    // { w: 1, wtimeout: 0 }.
    if (newConfig.containsCustomizedGetLastErrorDefaults()) {
        LOGV2_OPTIONS(21387, {logv2::LogTag::kStartupWarnings}, "");
        LOGV2_OPTIONS(21388,
                      {logv2::LogTag::kStartupWarnings},
                      "** WARNING: Replica set config contains customized getLastErrorDefaults,");
        LOGV2_OPTIONS(21389,
                      {logv2::LogTag::kStartupWarnings},
                      "**          which have been deprecated and are now ignored. Use "
                      "setDefaultRWConcern instead to set a");
        LOGV2_OPTIONS(21390,
                      {logv2::LogTag::kStartupWarnings},
                      "**          cluster-wide default writeConcern.");
        LOGV2_OPTIONS(21391, {logv2::LogTag::kStartupWarnings}, "");
    }

    // Emit a warning at startup if there are IP addresses in the SplitHorizon field of the
    // replset config.
    std::vector<std::string> offendingConfigs;
    for (const MemberConfig& member : oldConfig.members()) {
        // Check that no horizon mappings contain IP addresses
        for (auto& mapping : member.getHorizonMappings()) {
            // Emit a startup warning for any SplitHorizon mapping that can be parsed as
            // a valid CIDR range, except for the default horizon.
            if (mapping.first != SplitHorizon::kDefaultHorizon &&
                CIDR::parse(mapping.second.host()).isOK()) {
                offendingConfigs.emplace_back(str::stream() << mapping.second.host() << ":"
                                                            << mapping.second.port());
            }
        }
    }
    if (!offendingConfigs.empty()) {
        LOGV2_WARNING_OPTIONS(4907900,
                              {logv2::LogTag::kStartupWarnings},
                              "Found split horizon configuration using IP "
                              "address(es), which is disallowed.",
                              "offendingConfigs"_attr = offendingConfigs);
    }

    // If the SplitHorizon has changed, reply to all waiting hellos with an error.
    _errorOnPromisesIfHorizonChanged(lk, opCtx, oldConfig, newConfig, _selfIndex, myIndex);

    LOGV2(21392,
          "New replica set config in use: {config}",
          "New replica set config in use",
          "config"_attr = _rsConfig.toBSON());
    _selfIndex = myIndex;
    if (_selfIndex >= 0) {
        LOGV2(21393,
              "This node is {hostAndPort} in the config",
              "Found self in config",
              "hostAndPort"_attr = _rsConfig.getMemberAt(_selfIndex).getHostAndPort());
    } else {
        LOGV2(21394, "This node is not a member of the config");
    }

    // Wake up writeConcern waiters that are no longer satisfiable due to the rsConfig change.
    _replicationWaiterList.setValueIf_inlock([this](const OpTime& opTime,
                                                    const SharedWaiterHandle& waiter) {
        invariant(waiter->writeConcern);
        // This throws if a waiter's writeConcern is no longer satisfiable, in which case
        // setValueIf_inlock will fulfill the waiter's promise with the error status.
        uassertStatusOK(_checkIfWriteConcernCanBeSatisfied_inlock(waiter->writeConcern.value()));
        // Return false meaning that the waiter is still satisfiable and thus can remain in the
        // waiter list.
        return false;
    });

    _cancelCatchupTakeover_inlock();
    _cancelPriorityTakeover_inlock();
    _cancelAndRescheduleElectionTimeout_inlock();

    PostMemberStateUpdateAction action = _updateMemberStateFromTopologyCoordinator(lk);
    if (_topCoord->isElectableNodeInSingleNodeReplicaSet()) {
        // If the new config describes an electable one-node replica set, we need to start an
        // election.
        action = PostMemberStateUpdateAction::kActionStartSingleNodeElection;
    }

    if (_selfIndex >= 0) {
        // Don't send heartbeats if we're not in the config, if we get re-added one of the
        // nodes in the set will contact us.
        _startHeartbeats_inlock();

        if (_horizonToTopologyChangePromiseMap.empty()) {
            // We should only create a new horizon-to-promise mapping for nodes that are members of
            // the config.
            _createHorizonTopologyChangePromiseMapping(lk);
        }
    } else {
        // Clear the horizon promise mappings of removed nodes so they can be recreated if the
        // node later rejoins the set.
        _horizonToTopologyChangePromiseMap.clear();

        // If we're still REMOVED, clear the seedList.
        _seedList.clear();
    }

    _updateLastCommittedOpTimeAndWallTime(lk);
    _wakeReadyWaiters(lk);

    return action;
}

void ReplicationCoordinatorImpl::_wakeReadyWaiters(WithLock lk, boost::optional<OpTime> opTime) {
    _replicationWaiterList.setValueIf_inlock(
        [this](const OpTime& opTime, const SharedWaiterHandle& waiter) {
            invariant(waiter->writeConcern);
            return _doneWaitingForReplication_inlock(opTime, waiter->writeConcern.value());
        },
        opTime);
}

Status ReplicationCoordinatorImpl::processReplSetUpdatePosition(const UpdatePositionArgs& updates) {
    stdx::unique_lock<Latch> lock(_mutex);
    Status status = Status::OK();
    bool gotValidUpdate = false;
    OpTime maxRemoteOpTime;
    for (UpdatePositionArgs::UpdateIterator update = updates.updatesBegin();
         update != updates.updatesEnd();
         ++update) {
        auto statusWithOpTime = _setLastOptimeForMember(lock, *update);
        if (!statusWithOpTime.isOK()) {
            status = statusWithOpTime.getStatus();
            break;
        }
        maxRemoteOpTime = std::max(maxRemoteOpTime, statusWithOpTime.getValue());
        gotValidUpdate = true;
    }
    _updateStateAfterRemoteOpTimeUpdates(lock, maxRemoteOpTime);

    if (gotValidUpdate) {
        // If we become primary after the unlock below, the forwardSecondaryProgress will do nothing
        // (slightly expensively).  If we become secondary after the unlock below, BackgroundSync
        // will take care of forwarding our progress by calling signalUpstreamUpdater() once we
        // select a new sync source.  So it's OK to depend on the stale value of wasPrimary here.
        bool wasPrimary = _getMemberState_inlock().primary();
        lock.unlock();
        // maxRemoteOpTime is null here if we got valid updates but no downstream node had
        // actually advanced any optime.
        if (!maxRemoteOpTime.isNull())
            _externalState->notifyOtherMemberDataChanged();
        if (!wasPrimary) {
            // Must do this outside _mutex
            _externalState->forwardSecondaryProgress();
        }
    }
    return status;
}

bool ReplicationCoordinatorImpl::buildsIndexes() {
    stdx::lock_guard<Latch> lk(_mutex);
    if (_selfIndex == -1) {
        return true;
    }
    const MemberConfig& self = _rsConfig.getMemberAt(_selfIndex);
    return self.shouldBuildIndexes();
}

std::vector<HostAndPort> ReplicationCoordinatorImpl::getHostsWrittenTo(const OpTime& op,
                                                                       bool durablyWritten) {
    stdx::lock_guard<Latch> lk(_mutex);
    return _topCoord->getHostsWrittenTo(op, durablyWritten);
}

Status ReplicationCoordinatorImpl::checkIfWriteConcernCanBeSatisfied(
    const WriteConcernOptions& writeConcern) const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _checkIfWriteConcernCanBeSatisfied_inlock(writeConcern);
}

Status ReplicationCoordinatorImpl::_checkIfWriteConcernCanBeSatisfied_inlock(
    const WriteConcernOptions& writeConcern) const {
    if (getReplicationMode() == modeNone) {
        return Status(ErrorCodes::NoReplicationEnabled,
                      "No replication enabled when checking if write concern can be satisfied");
    }

    invariant(getReplicationMode() == modeReplSet);
    return _rsConfig.checkIfWriteConcernCanBeSatisfied(writeConcern);
}

Status ReplicationCoordinatorImpl::checkIfCommitQuorumCanBeSatisfied(
    const CommitQuorumOptions& commitQuorum) const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _checkIfCommitQuorumCanBeSatisfied(lock, commitQuorum);
}

Status ReplicationCoordinatorImpl::_checkIfCommitQuorumCanBeSatisfied(
    WithLock, const CommitQuorumOptions& commitQuorum) const {
    if (getReplicationMode() == modeNone) {
        return Status(ErrorCodes::NoReplicationEnabled,
                      "No replication enabled when checking if commit quorum can be satisfied");
    }

    invariant(getReplicationMode() == modeReplSet);

    // We need to ensure that the 'commitQuorum' can be satisfied by all the members of this
    // replica set.
    return _topCoord->checkIfCommitQuorumCanBeSatisfied(commitQuorum);
}

WriteConcernOptions ReplicationCoordinatorImpl::getGetLastErrorDefault() {
    stdx::lock_guard<Latch> lock(_mutex);
    if (_rsConfig.isInitialized()) {
        return _rsConfig.getDefaultWriteConcern();
    }
    return WriteConcernOptions();
}

Status ReplicationCoordinatorImpl::checkReplEnabledForCommand(BSONObjBuilder* result) {
    if (!_settings.usingReplSets()) {
        if (serverGlobalParams.clusterRole.has(ClusterRole::ConfigServer)) {
            result->append("info", "configsvr");  // for shell prompt
        }
        return Status(ErrorCodes::NoReplicationEnabled, "not running with --replSet");
    }

    if (getMemberState().startup()) {
        result->append("info", "run rs.initiate(...) if not yet done for the set");
        return Status(ErrorCodes::NotYetInitialized, "no replset config has been received");
    }

    return Status::OK();
}

bool ReplicationCoordinatorImpl::isReplEnabled() const {
    return getReplicationMode() != modeNone;
}

ReadPreference ReplicationCoordinatorImpl::_getSyncSourceReadPreference(WithLock) const {
    // Always allow chaining while in catchup and drain mode.
    auto memberState = _getMemberState_inlock();
    ReadPreference readPreference = ReadPreference::Nearest;

    bool parsedSyncSourceFromInitialSync = false;
    // Handle special case of initial sync source read preference.
    // This sync source will be cleared when we go to secondary mode, because we will perform
    // a postMemberState action of kOnFollowerModeStateChange which calls chooseNewSyncSource().
    if (memberState.startup2() && _selfIndex != -1) {
        if (!initialSyncSourceReadPreference.empty()) {
            try {
                readPreference =
                    ReadPreference_parse(IDLParserContext("initialSyncSourceReadPreference"),
                                         initialSyncSourceReadPreference);
                parsedSyncSourceFromInitialSync = true;
            } catch (const DBException& e) {
                fassertFailedWithStatus(3873100, e.toStatus());
            }
        } else if (_rsConfig.getMemberAt(_selfIndex).getNumVotes() > 0) {
            // Voting nodes prefer to sync from the primary.  A voting node that is initial syncing
            // may have acknowledged writes which are part of the set's write majority; if it then
            // resyncs from a node which does not have those writes, and (before it replicates them
            // again) helps elect a new primary which also does not have those writes, the writes
            // may be lost.  By resyncing from the primary (if possible), which always has the
            // majority-commited writes, the probability of this scenario is reduced.
            readPreference = ReadPreference::PrimaryPreferred;
        }
    }
    if (!parsedSyncSourceFromInitialSync && !memberState.primary() &&
        !_rsConfig.isChainingAllowed() && !enableOverrideClusterChainingSetting.load()) {
        // If we are not the primary and chaining is disabled in the config (without overrides), we
        // should only be syncing from the primary.
        readPreference = ReadPreference::PrimaryOnly;
    }
    return readPreference;
}

HostAndPort ReplicationCoordinatorImpl::chooseNewSyncSource(const OpTime& lastOpTimeFetched) {
    stdx::lock_guard<Latch> lk(_mutex);

    HostAndPort oldSyncSource = _topCoord->getSyncSourceAddress();

    const auto readPreference = _getSyncSourceReadPreference(lk);

    HostAndPort newSyncSource =
        _topCoord->chooseNewSyncSource(_replExecutor->now(), lastOpTimeFetched, readPreference);
    auto primary = _topCoord->getCurrentPrimaryMember();
    // If read preference is SecondaryOnly, we should never choose the primary.
    invariant(readPreference != ReadPreference::SecondaryOnly || !primary ||
              primary->getHostAndPort() != newSyncSource);

    // If we lost our sync source, schedule new heartbeats immediately to update our knowledge
    // of other members's state, allowing us to make informed sync source decisions.
    if (newSyncSource.empty() && !oldSyncSource.empty() && _selfIndex >= 0 &&
        !_getMemberState_inlock().primary()) {
        _restartScheduledHeartbeats_inlock(_rsConfig.getReplSetName().toString());
    }

    return newSyncSource;
}

void ReplicationCoordinatorImpl::_undenylistSyncSource(
    const executor::TaskExecutor::CallbackArgs& cbData, const HostAndPort& host) {
    if (cbData.status == ErrorCodes::CallbackCanceled)
        return;

    stdx::lock_guard<Latch> lock(_mutex);
    _topCoord->undenylistSyncSource(host, _replExecutor->now());
}

void ReplicationCoordinatorImpl::denylistSyncSource(const HostAndPort& host, Date_t until) {
    stdx::lock_guard<Latch> lock(_mutex);
    _topCoord->denylistSyncSource(host, until);
    _scheduleWorkAt(until, [=, this](const executor::TaskExecutor::CallbackArgs& cbData) {
        _undenylistSyncSource(cbData, host);
    });
}

void ReplicationCoordinatorImpl::resetLastOpTimesFromOplog(OperationContext* opCtx) {
    auto lastOpTimeAndWallTimeStatus = _externalState->loadLastOpTimeAndWallTime(opCtx);
    OpTimeAndWallTime lastOpTimeAndWallTime = {OpTime(), Date_t()};
    if (!lastOpTimeAndWallTimeStatus.getStatus().isOK()) {
        LOGV2_WARNING(21412,
                      "Failed to load timestamp and/or wall clock time of most recently applied "
                      "operation; {error}",
                      "Failed to load timestamp and/or wall clock time of most recently applied "
                      "operation",
                      "error"_attr = lastOpTimeAndWallTimeStatus.getStatus());
    } else {
        lastOpTimeAndWallTime = lastOpTimeAndWallTimeStatus.getValue();
    }

    // Update the global timestamp before setting last applied opTime forward so the last applied
    // optime is never greater than the latest in-memory cluster time.
    _externalState->setGlobalTimestamp(opCtx->getServiceContext(),
                                       lastOpTimeAndWallTime.opTime.getTimestamp());

    stdx::unique_lock<Latch> lock(_mutex);
    bool isRollbackAllowed = true;
    _setMyLastAppliedOpTimeAndWallTime(lock, lastOpTimeAndWallTime, isRollbackAllowed);
    _setMyLastDurableOpTimeAndWallTime(lock, lastOpTimeAndWallTime, isRollbackAllowed);
    _reportUpstream_inlock(std::move(lock));
}

ChangeSyncSourceAction ReplicationCoordinatorImpl::shouldChangeSyncSource(
    const HostAndPort& currentSource,
    const rpc::ReplSetMetadata& replMetadata,
    const rpc::OplogQueryMetadata& oqMetadata,
    const OpTime& previousOpTimeFetched,
    const OpTime& lastOpTimeFetched) const {
    if (shouldDropSyncSourceAfterShardSplit(replMetadata.getReplicaSetId())) {
        // Drop the last batch of message following a change of replica set due to a shard split.
        LOGV2(6394902,
              "Choosing new sync source because we left the replica set due to a shard split.",
              "currentReplicaSetId"_attr = _rsConfig.getReplicaSetId(),
              "otherReplicaSetId"_attr = replMetadata.getReplicaSetId());
        return ChangeSyncSourceAction::kStopSyncingAndDropLastBatchIfPresent;
    }

    stdx::lock_guard<Latch> lock(_mutex);
    const auto now = _replExecutor->now();

    if (_topCoord->shouldChangeSyncSource(
            currentSource, replMetadata, oqMetadata, lastOpTimeFetched, now)) {
        return ChangeSyncSourceAction::kStopSyncingAndEnqueueLastBatch;
    }

    const auto readPreference = _getSyncSourceReadPreference(lock);
    if (_topCoord->shouldChangeSyncSourceDueToPingTime(
            currentSource, _getMemberState_inlock(), previousOpTimeFetched, now, readPreference)) {
        // We should drop the last batch if we find a significantly closer node. This is to
        // avoid advancing our 'lastFetched', which makes it more likely that we will be able to
        // choose the closer node as our sync source.
        return ChangeSyncSourceAction::kStopSyncingAndDropLastBatchIfPresent;
    }

    return ChangeSyncSourceAction::kContinueSyncing;
}

ChangeSyncSourceAction ReplicationCoordinatorImpl::shouldChangeSyncSourceOnError(
    const HostAndPort& currentSource, const OpTime& lastOpTimeFetched) const {
    stdx::lock_guard<Latch> lock(_mutex);
    const auto now = _replExecutor->now();

    if (_topCoord->shouldChangeSyncSourceOnError(currentSource, lastOpTimeFetched, now)) {
        return ChangeSyncSourceAction::kStopSyncingAndDropLastBatchIfPresent;
    }

    const auto readPreference = _getSyncSourceReadPreference(lock);
    if (_topCoord->shouldChangeSyncSourceDueToPingTime(
            currentSource, _getMemberState_inlock(), lastOpTimeFetched, now, readPreference)) {
        return ChangeSyncSourceAction::kStopSyncingAndDropLastBatchIfPresent;
    }

    return ChangeSyncSourceAction::kContinueSyncing;
}

void ReplicationCoordinatorImpl::_updateLastCommittedOpTimeAndWallTime(WithLock lk) {
    if (_topCoord->updateLastCommittedOpTimeAndWallTime()) {
        _setStableTimestampForStorage(lk);
    }
}

void ReplicationCoordinatorImpl::attemptToAdvanceStableTimestamp() {
    stdx::unique_lock<Latch> lk(_mutex);
    _setStableTimestampForStorage(lk);
}

OpTime ReplicationCoordinatorImpl::_recalculateStableOpTime(WithLock lk) {
    auto commitPoint = _topCoord->getLastCommittedOpTime();
    auto lastApplied = _topCoord->getMyLastAppliedOpTime();
    if (_currentCommittedSnapshot) {
        invariant(_currentCommittedSnapshot->getTimestamp() <= commitPoint.getTimestamp(),
                  str::stream() << "currentCommittedSnapshot: "
                                << _currentCommittedSnapshot->toString()
                                << " commitPoint: " << commitPoint.toString());
        invariant(*_currentCommittedSnapshot <= commitPoint,
                  str::stream() << "currentCommittedSnapshot: "
                                << _currentCommittedSnapshot->toString()
                                << " commitPoint: " << commitPoint.toString());
    }

    //
    // The stable timestamp must be a "consistent" timestamp with respect to the oplog. Intuitively,
    // it must be a timestamp at which the oplog history is "set in stone" i.e. no writes will
    // commit at earlier timestamps. More precisely, it must be a timestamp T such that future
    // writers only commit at times greater than T and readers only read at, or earlier than, T.  We
    // refer to this timestamp as the "no-overlap" point, since it is the timestamp that delineates
    // these non overlapping readers and writers. The calculation of this value differs on primary
    // and secondary nodes due to their distinct behaviors, as described below.
    //

    // On a primary node, oplog writes may commit out of timestamp order, which can lead to the
    // creation of oplog "holes". On a primary the all_durable timestamp tracks the newest timestamp
    // T such that no future transactions will commit behind T. Since all_durable is a timestamp,
    // however, without a term, we need to construct an optime with a proper term. If we are
    // primary, then the all_durable should always correspond to a timestamp at or newer than the
    // first write completed by this node as primary, since we write down a new oplog entry before
    // allowing writes as a new primary. Thus, it can be assigned the current term of this primary.
    OpTime allDurableOpTime = OpTime::max();
    if (_readWriteAbility->canAcceptNonLocalWrites(lk)) {
        allDurableOpTime =
            OpTime(_storage->getAllDurableTimestamp(getServiceContext()), _topCoord->getTerm());
    }

    // On a secondary, oplog entries are written in parallel, and so may be written out of timestamp
    // order. Because of this, the stable timestamp must not fall in the middle of a batch while it
    // is being applied. To prevent this we ensure the no-overlap point does not surpass the
    // lastApplied, which is only advanced at the end of secondary batch application.
    OpTime noOverlap = std::min(lastApplied, allDurableOpTime);

    // The stable optime must always be less than or equal to the no overlap point. When majority
    // reads are enabled, the stable optime must also not surpass the majority commit point. When
    // majority reads are disabled, the stable optime is not required to be majority committed.
    OpTime stableOpTime;
    auto maximumStableOpTime =
        serverGlobalParams.enableMajorityReadConcern ? commitPoint : lastApplied;

    // Make sure the stable optime does not surpass its maximum.
    stableOpTime = std::min(noOverlap, maximumStableOpTime);

    // Check that the selected stable optime does not exceed our maximum and that it does not
    // surpass the no-overlap point.
    invariant(stableOpTime.getTimestamp() <= maximumStableOpTime.getTimestamp(),
              str::stream() << "stableOpTime: " << stableOpTime.toString()
                            << " maximumStableOpTime: " << maximumStableOpTime.toString());
    invariant(stableOpTime <= maximumStableOpTime,
              str::stream() << "stableOpTime: " << stableOpTime.toString()
                            << " maximumStableOpTime: " << maximumStableOpTime.toString());
    invariant(stableOpTime.getTimestamp() <= noOverlap.getTimestamp(),
              str::stream() << "stableOpTime: " << stableOpTime.toString() << " noOverlap: "
                            << noOverlap.toString() << " lastApplied: " << lastApplied.toString()
                            << " allDurableOpTime: " << allDurableOpTime.toString());
    invariant(stableOpTime <= noOverlap,
              str::stream() << "stableOpTime: " << stableOpTime.toString() << " noOverlap: "
                            << noOverlap.toString() << " lastApplied: " << lastApplied.toString()
                            << " allDurableOpTime: " << allDurableOpTime.toString());

    return stableOpTime;
}

MONGO_FAIL_POINT_DEFINE(disableSnapshotting);

void ReplicationCoordinatorImpl::_setStableTimestampForStorage(WithLock lk) {
    if (!_shouldSetStableTimestamp) {
        LOGV2_DEBUG(21395, 2, "Not setting stable timestamp for storage");
        return;
    }

    // Don't update the stable optime if we are in initial sync. We advance the oldest timestamp
    // continually to the lastApplied optime during initial sync oplog application, so if we learned
    // about an earlier commit point during this period, we would risk setting the stable timestamp
    // behind the oldest timestamp, which is prohibited in the storage engine. Note that we don't
    // take stable checkpoints during initial sync, so the stable timestamp during this period
    // doesn't play a functionally important role anyway.
    auto memberState = _getMemberState_inlock();
    if (memberState.startup2()) {
        LOGV2_DEBUG(
            2139501, 2, "Not updating stable timestamp", "state"_attr = memberState.toString());
        return;
    }

    // Get the current stable optime.
    OpTime stableOpTime = _recalculateStableOpTime(lk);

    // Don't update the stable timestamp if it is earlier than the initial data timestamp.
    // Timestamps before the initialDataTimestamp are not consistent and so are not safe to use for
    // the stable timestamp or the committed snapshot, which is the timestamp used by majority
    // readers. This also prevents us from setting the stable timestamp behind the oldest timestamp
    // after leaving initial sync, since the initialDataTimestamp and oldest timestamp will be equal
    // after initial sync oplog application has completed.
    auto initialDataTimestamp = _service->getStorageEngine()->getInitialDataTimestamp();
    if (stableOpTime.getTimestamp() < initialDataTimestamp) {
        LOGV2_DEBUG(2139504,
                    2,
                    "Not updating stable timestamp since it is less than the initialDataTimestamp",
                    "stableTimestamp"_attr = stableOpTime.getTimestamp(),
                    "initialDataTimestamp"_attr = initialDataTimestamp);
        return;
    }

    if (stableOpTime.getTimestamp().isNull()) {
        LOGV2_DEBUG(2139502, 2, "Not updating stable timestamp to a null timestamp");
        return;
    }

    if (gTestingSnapshotBehaviorInIsolation) {
        return;
    }

    // Set the stable timestamp and update the committed snapshot.
    LOGV2_DEBUG(21396,
                2,
                "Setting replication's stable optime to {stableOpTime}",
                "Setting replication's stable optime",
                "stableOpTime"_attr = stableOpTime);

    // As arbiters aren't data bearing nodes, the all durable timestamp does not get advanced. To
    // advance the all durable timestamp when setting the stable timestamp we use 'force=true'.
    const bool force = _getMemberState_inlock().arbiter();

    // Update committed snapshot and wake up any threads waiting on read concern or
    // write concern.
    if (serverGlobalParams.enableMajorityReadConcern) {
        // When majority read concern is enabled, the committed snapshot is set to the new
        // stable optime. The wall time of the committed snapshot is not used for anything so we can
        // create a fake one.
        if (_updateCommittedSnapshot(lk, stableOpTime)) {
            // Update the stable timestamp for the storage engine.
            _storage->setStableTimestamp(getServiceContext(), stableOpTime.getTimestamp(), force);
        }
    } else {
        const auto lastCommittedOpTime = _topCoord->getLastCommittedOpTime();
        if (!lastCommittedOpTime.isNull()) {
            // When majority read concern is disabled, we set the stable timestamp to be less than
            // or equal to the all-durable timestamp. This makes sure that the committed snapshot is
            // not past the all-durable timestamp to guarantee we can always read our own majority
            // committed writes. This problem is specific to the case where we have a single node
            // replica set and the lastCommittedOpTime is set to be the lastApplied which can be
            // ahead of the all-durable.
            OpTime newCommittedSnapshot = std::min(lastCommittedOpTime, stableOpTime);
            // The wall clock time of the committed snapshot is not used for anything so we can
            // create a fake one.
            _updateCommittedSnapshot(lk, newCommittedSnapshot);
        }
        // Set the stable timestamp regardless of whether the majority commit point moved
        // forward. If we are in rollback state, however, do not alter the stable timestamp,
        // since it may be moved backwards explicitly by the rollback-via-refetch process.
        if (!MONGO_unlikely(disableSnapshotting.shouldFail()) && !_memberState.rollback()) {
            _storage->setStableTimestamp(getServiceContext(), stableOpTime.getTimestamp(), force);
        }
    }
}

void ReplicationCoordinatorImpl::finishRecoveryIfEligible(OperationContext* opCtx) {
    // Check to see if we can immediately return without taking any locks.
    if (isInPrimaryOrSecondaryState_UNSAFE()) {
        return;
    }

    // This needs to happen after the attempt so readers can be sure we've already tried.
    ON_BLOCK_EXIT([] { attemptsToBecomeSecondary.increment(); });

    // Need the RSTL in mode X to transition to SECONDARY
    ReplicationStateTransitionLockGuard transitionGuard(opCtx, MODE_X);

    // We can only transition to SECONDARY from RECOVERING state.
    MemberState state(getMemberState());
    if (!state.recovering()) {
        LOGV2_DEBUG(21397,
                    2,
                    "We cannot transition to SECONDARY state since we are not currently in "
                    "RECOVERING state. Current state: {currentState}",
                    "We cannot transition to SECONDARY state since we are not currently in "
                    "RECOVERING state",
                    "currentState"_attr = state.toString());
        return;
    }

    // Maintenance mode will force us to remain in RECOVERING state, no matter what.
    if (getMaintenanceMode()) {
        LOGV2_DEBUG(21398, 1, "We cannot transition to SECONDARY state while in maintenance mode");
        return;
    }

    // We can't go to SECONDARY state until we reach 'minValid', since the data may be in an
    // inconsistent state before this point. If our state is inconsistent, we need to disallow reads
    // from clients, which is why we stay in RECOVERING state.
    auto lastApplied = getMyLastAppliedOpTime();
    auto minValid = _replicationProcess->getConsistencyMarkers()->getMinValid(opCtx);
    if (lastApplied < minValid) {
        LOGV2_DEBUG(21399,
                    2,
                    "We cannot transition to SECONDARY state because our 'lastApplied' optime"
                    " is less than the 'minValid' optime. minValid optime: {minValid}, lastApplied "
                    "optime: {lastApplied}",
                    "We cannot transition to SECONDARY state because our 'lastApplied' optime"
                    " is less than the 'minValid' optime",
                    "minValid"_attr = minValid,
                    "lastApplied"_attr = lastApplied);
        return;
    }

    // Rolling back with eMRC false, we set initialDataTimestamp to max(local oplog top, source's
    // oplog top), then rollback via refetch. Data is inconsistent until lastApplied >=
    // initialDataTimestamp.
    auto initialTs = opCtx->getServiceContext()->getStorageEngine()->getInitialDataTimestamp();
    if (lastApplied.getTimestamp() < initialTs) {
        invariant(!serverGlobalParams.enableMajorityReadConcern);
        LOGV2_DEBUG(4851800,
                    2,
                    "We cannot transition to SECONDARY state because our 'lastApplied' optime is "
                    "less than the initial data timestamp and enableMajorityReadConcern = false",
                    "minValid"_attr = minValid,
                    "lastApplied"_attr = lastApplied,
                    "initialDataTimestamp"_attr = initialTs);
        return;
    }

    // Execute the transition to SECONDARY.
    auto status = setFollowerMode(MemberState::RS_SECONDARY);
    if (!status.isOK()) {
        LOGV2_WARNING(21413,
                      "Failed to transition into {targetState}. Current "
                      "state: {currentState} {error}",
                      "Failed to perform replica set state transition",
                      "targetState"_attr = MemberState(MemberState::RS_SECONDARY),
                      "currentState"_attr = getMemberState(),
                      "error"_attr = causedBy(status));
    }
}

void ReplicationCoordinatorImpl::advanceCommitPoint(
    const OpTimeAndWallTime& committedOpTimeAndWallTime, bool fromSyncSource) {
    stdx::unique_lock<Latch> lk(_mutex);
    _advanceCommitPoint(lk, committedOpTimeAndWallTime, fromSyncSource);
}

void ReplicationCoordinatorImpl::_advanceCommitPoint(
    WithLock lk,
    const OpTimeAndWallTime& committedOpTimeAndWallTime,
    bool fromSyncSource,
    bool forInitiate) {
    if (_topCoord->advanceLastCommittedOpTimeAndWallTime(
            committedOpTimeAndWallTime, fromSyncSource, forInitiate)) {
        if (_getMemberState_inlock().arbiter()) {
            // Arbiters do not store replicated data, so we consider their data trivially
            // consistent.
            _setMyLastAppliedOpTimeAndWallTime(lk, committedOpTimeAndWallTime, false);
        }

        _setStableTimestampForStorage(lk);
        // Even if we have no new snapshot, we need to notify waiters that the commit point moved.
        _externalState->notifyOplogMetadataWaiters(committedOpTimeAndWallTime.opTime);
    }
}

OpTime ReplicationCoordinatorImpl::getLastCommittedOpTime() const {
    stdx::unique_lock<Latch> lk(_mutex);
    return _topCoord->getLastCommittedOpTime();
}

OpTimeAndWallTime ReplicationCoordinatorImpl::getLastCommittedOpTimeAndWallTime() const {
    stdx::unique_lock<Latch> lk(_mutex);
    return _topCoord->getLastCommittedOpTimeAndWallTime();
}

Status ReplicationCoordinatorImpl::processReplSetRequestVotes(
    OperationContext* opCtx,
    const ReplSetRequestVotesArgs& args,
    ReplSetRequestVotesResponse* response) {

    auto termStatus = updateTerm(opCtx, args.getTerm());
    if (!termStatus.isOK() && termStatus.code() != ErrorCodes::StaleTerm)
        return termStatus;

    {
        stdx::lock_guard<Latch> lk(_mutex);

        // We should only enter terminal shutdown from global terminal exit.  In that case, rather
        // than voting in a term we don't plan to stay alive in, refuse to vote.
        if (_inTerminalShutdown) {
            return Status(ErrorCodes::ShutdownInProgress, "In the process of shutting down");
        }

        const int candidateIndex = args.getCandidateIndex();
        if (candidateIndex < 0 || candidateIndex >= _rsConfig.getNumMembers()) {
            return Status(ErrorCodes::BadValue,
                          str::stream() << "Invalid candidateIndex: " << candidateIndex
                                        << ". Must be between 0 and "
                                        << _rsConfig.getNumMembers() - 1 << " inclusive");
        }

        if (_selfIndex == -1) {
            return Status(ErrorCodes::InvalidReplicaSetConfig,
                          "Invalid replica set config, or this node is not a member");
        }

        _topCoord->processReplSetRequestVotes(args, response);

        if (!args.isADryRun()) {
            const bool votedForCandidate = response->getVoteGranted();
            const long long electionTerm = args.getTerm();
            const Date_t lastVoteDate = _replExecutor->now();
            const int electionCandidateMemberId =
                _rsConfig.getMemberAt(candidateIndex).getId().getData();
            const std::string voteReason = response->getReason();
            const OpTime lastAppliedOpTime = _topCoord->getMyLastAppliedOpTime();
            const OpTime maxAppliedOpTime = _topCoord->latestKnownOpTime();
            const double priorityAtElection = _rsConfig.getMemberAt(_selfIndex).getPriority();
            ReplicationMetrics::get(getServiceContext())
                .setElectionParticipantMetrics(votedForCandidate,
                                               electionTerm,
                                               lastVoteDate,
                                               electionCandidateMemberId,
                                               voteReason,
                                               lastAppliedOpTime,
                                               maxAppliedOpTime,
                                               priorityAtElection);
        }
    }

    // It's safe to store lastVote outside of _mutex. The topology coordinator grants only one
    // vote per term, and storeLocalLastVoteDocument does nothing unless lastVote has a higher term
    // than the previous lastVote, so threads racing to store votes from different terms will
    // eventually store the latest vote.
    if (!args.isADryRun() && response->getVoteGranted()) {
        LastVote lastVote{args.getTerm(), args.getCandidateIndex()};
        Status status = _externalState->storeLocalLastVoteDocument(opCtx, lastVote);
        if (!status.isOK()) {
            // Note the topology coordinator has already advanced its last vote at this point,
            // so this node will not be able to vote in this election; this is a "spoiled" vote.
            LOGV2_ERROR(21428,
                        "replSetRequestVotes failed to store LastVote document",
                        "error"_attr = status);
            return status;
        }
    }
    return Status::OK();
}

void ReplicationCoordinatorImpl::prepareReplMetadata(const BSONObj& metadataRequestObj,
                                                     const OpTime& lastOpTimeFromClient,
                                                     BSONObjBuilder* builder) const {

    bool hasReplSetMetadata = metadataRequestObj.hasField(rpc::kReplSetMetadataFieldName);
    bool hasOplogQueryMetadata = metadataRequestObj.hasField(rpc::kOplogQueryMetadataFieldName);
    // Don't take any locks if we do not need to.
    if (!hasReplSetMetadata && !hasOplogQueryMetadata) {
        return;
    }

    // Avoid retrieving Rollback ID if we do not need it for _prepareOplogQueryMetadata_inlock().
    int rbid = -1;
    if (hasOplogQueryMetadata) {
        rbid = _replicationProcess->getRollbackID();
        invariant(-1 != rbid);
    }

    boost::optional<rpc::ReplSetMetadata> replSetMetadata;
    boost::optional<rpc::OplogQueryMetadata> oplogQueryMetadata;
    {
        stdx::lock_guard<Latch> lk(_mutex);

        if (hasReplSetMetadata) {
            OpTime lastVisibleOpTime =
                std::max(lastOpTimeFromClient, _getCurrentCommittedSnapshotOpTime_inlock());
            replSetMetadata = _topCoord->prepareReplSetMetadata(lastVisibleOpTime);
        }

        if (hasOplogQueryMetadata) {
            oplogQueryMetadata = _topCoord->prepareOplogQueryMetadata(rbid);
        }
    }

    // Do BSON serialization outside lock.
    if (replSetMetadata)
        invariantStatusOK(replSetMetadata->writeToMetadata(builder));
    if (oplogQueryMetadata)
        invariantStatusOK(oplogQueryMetadata->writeToMetadata(builder));
}

bool ReplicationCoordinatorImpl::getWriteConcernMajorityShouldJournal() {
    stdx::unique_lock lock(_mutex);
    return getWriteConcernMajorityShouldJournal_inlock();
}

bool ReplicationCoordinatorImpl::getWriteConcernMajorityShouldJournal_inlock() const {
    return _rsConfig.getWriteConcernMajorityShouldJournal();
}

namespace {
// Fail point to block and optionally skip fetching config. Supported arguments:
//   versionAndTerm: [ v, t ]
void _handleBeforeFetchingConfig(const BSONObj& customArgs,
                                 ConfigVersionAndTerm versionAndTerm,
                                 bool* skipFetchingConfig) {
    if (customArgs.hasElement("versionAndTerm")) {
        const auto nested = customArgs["versionAndTerm"].embeddedObject();
        std::vector<BSONElement> elements;
        nested.elems(elements);
        invariant(elements.size() == 2);
        ConfigVersionAndTerm patternVersionAndTerm =
            ConfigVersionAndTerm(elements[0].numberInt(), elements[1].numberInt());
        if (patternVersionAndTerm == versionAndTerm) {
            LOGV2(5940905,
                  "Failpoint is activated to skip fetching config for version and term",
                  "versionAndTerm"_attr = versionAndTerm);
            *skipFetchingConfig = true;
        }
    }
}
}  // namespace

Status ReplicationCoordinatorImpl::processHeartbeatV1(const ReplSetHeartbeatArgsV1& args,
                                                      ReplSetHeartbeatResponse* response) {
    {
        stdx::lock_guard<Latch> lock(_mutex);
        if (_rsConfigState == kConfigPreStart || _rsConfigState == kConfigStartingUp) {
            return Status(ErrorCodes::NotYetInitialized,
                          "Received heartbeat while still initializing replication system");
        }
    }

    Status result(ErrorCodes::InternalError, "didn't set status in prepareHeartbeatResponse");
    stdx::lock_guard<Latch> lk(_mutex);

    std::string replSetName = [&]() {
        if (!_settings.isServerless()) {
            return _settings.ourSetName();
        } else {
            if (_rsConfig.isInitialized()) {
                return _rsConfig.getReplSetName().toString();
            }

            // In serverless mode before having an initialized config, simply use the replica set
            // name provided in the hearbeat request.
            return args.getSetName();
        }
    }();

    auto senderHost(args.getSenderHost());
    const Date_t now = _replExecutor->now();
    auto configChanged = _topCoord->prepareHeartbeatResponseV1(now, args, replSetName, response);
    result = configChanged.getStatus();
    if (configChanged.isOK() && configChanged.getValue()) {
        // If the latest heartbeat indicates that the remote node's config has changed, we want to
        // update it's member data as soon as possible. Send an immediate hearbeat, and update the
        // member data on processing its response.
        _scheduleHeartbeatToTarget_inlock(senderHost, now, replSetName);
    }

    if ((result.isOK() || result == ErrorCodes::InvalidReplicaSetConfig) && _selfIndex < 0) {
        // If this node does not belong to the configuration it knows about, send heartbeats
        // back to any node that sends us a heartbeat, in case one of those remote nodes has
        // a configuration that contains us.  Chances are excellent that it will, since that
        // is the only reason for a remote node to send this node a heartbeat request.
        if (!senderHost.empty() && _seedList.insert(senderHost).second) {
            LOGV2(21400,
                  "Scheduling heartbeat to fetch a new config from: {senderHost} since we are not "
                  "a member of our current config.",
                  "Scheduling heartbeat to fetch a new config since we are not "
                  "a member of our current config",
                  "senderHost"_attr = senderHost);

            _scheduleHeartbeatToTarget_inlock(senderHost, now, replSetName);
        }
    } else if (result.isOK() &&
               response->getConfigVersionAndTerm() < args.getConfigVersionAndTerm()) {
        logv2::DynamicAttributes attr;
        attr.add("configTerm", args.getConfigTerm());
        attr.add("configVersion", args.getConfigVersion());
        attr.add("senderHost", senderHost);

        // If we are currently in drain mode, we won't allow installing newer configs, so we don't
        // schedule a heartbeat to fetch one. We do allow force reconfigs to proceed even if we are
        // in drain mode.
        if (_memberState.primary() && !_readWriteAbility->canAcceptNonLocalWrites(lk) &&
            args.getConfigTerm() != OpTime::kUninitializedTerm) {
            LOGV2(4794901,
                  "Not scheduling a heartbeat to fetch a newer config since we are in PRIMARY "
                  "state but cannot accept writes yet.",
                  attr);
        }
        // Schedule a heartbeat to the sender to fetch the new config.
        // Only send this if the sender's config is newer.
        // We cannot cancel the enqueued heartbeat, but either this one or the enqueued heartbeat
        // will trigger reconfig, which cancels and reschedules all heartbeats.
        else if (args.hasSender()) {
            bool inTestSkipFetchingConfig = false;
            skipBeforeFetchingConfig.execute([&](const BSONObj& customArgs) {
                _handleBeforeFetchingConfig(
                    customArgs, args.getConfigVersionAndTerm(), &inTestSkipFetchingConfig);
            });

            if (!inTestSkipFetchingConfig) {
                LOGV2(21401, "Scheduling heartbeat to fetch a newer config", attr);
                _scheduleHeartbeatToTarget_inlock(senderHost, now, replSetName);
            }
        }
    } else if (result.isOK() && args.getPrimaryId() >= 0 &&
               (!response->hasPrimaryId() || response->getPrimaryId() != args.getPrimaryId())) {
        // If the sender thinks the primary is different from what we think and if the sender itself
        // is the primary, then we want to update our view of primary by immediately sending out a
        // new round of heartbeats, whose responses should inform us of the new primary. We only do
        // this if the term of the heartbeat is greater than or equal to our own, to prevent
        // updating our view to a stale primary.
        if (args.hasSender() && args.getSenderId() == args.getPrimaryId() &&
            args.getTerm() >= _topCoord->getTerm()) {
            std::string myPrimaryId =
                (response->hasPrimaryId() ? (str::stream() << response->getPrimaryId())
                                          : std::string("none"));
            LOGV2(2903000,
                  "Restarting heartbeats after learning of a new primary",
                  "myPrimaryId"_attr = myPrimaryId,
                  "senderAndPrimaryId"_attr = args.getPrimaryId(),
                  "senderTerm"_attr = args.getTerm());
            _restartScheduledHeartbeats_inlock(replSetName);
        }
    }
    return result;
}

long long ReplicationCoordinatorImpl::getTerm() const {
    // Note: no mutex acquisition here, as we are reading an Atomic variable.
    return _termShadow.load();
}

TopologyVersion ReplicationCoordinatorImpl::getTopologyVersion() const {
    return TopologyVersion(repl::instanceId, _cachedTopologyVersionCounter.load());
}

EventHandle ReplicationCoordinatorImpl::updateTerm_forTest(
    long long term, TopologyCoordinator::UpdateTermResult* updateResult) {
    stdx::lock_guard<Latch> lock(_mutex);

    EventHandle finishEvh;
    finishEvh = _updateTerm_inlock(term, updateResult);
    return finishEvh;
}

Status ReplicationCoordinatorImpl::updateTerm(OperationContext* opCtx, long long term) {
    // Term is only valid if we are replicating.
    if (getReplicationMode() != modeReplSet) {
        return {ErrorCodes::BadValue, "cannot supply 'term' without active replication"};
    }

    // Check we haven't acquired any lock, because potential stepdown needs global lock.
    dassert(!opCtx->lockState()->isLocked() || opCtx->lockState()->isNoop());

    // If the term is already up to date, we can skip the update and the mutex acquisition.
    if (!_needToUpdateTerm(term))
        return Status::OK();

    TopologyCoordinator::UpdateTermResult updateTermResult;
    EventHandle finishEvh;

    {
        stdx::lock_guard<Latch> lock(_mutex);
        finishEvh = _updateTerm_inlock(term, &updateTermResult);
    }

    // Wait for potential stepdown to finish.
    if (finishEvh.isValid()) {
        LOGV2(6015302, "Waiting for potential stepdown to complete before finishing term update");
        _replExecutor->waitForEvent(finishEvh);
    }
    if (updateTermResult == TopologyCoordinator::UpdateTermResult::kUpdatedTerm ||
        updateTermResult == TopologyCoordinator::UpdateTermResult::kTriggerStepDown) {
        return {ErrorCodes::StaleTerm, "Replication term of this node was stale; retry query"};
    }

    return Status::OK();
}

bool ReplicationCoordinatorImpl::_needToUpdateTerm(long long term) {
    return term > _termShadow.load();
}

EventHandle ReplicationCoordinatorImpl::_updateTerm_inlock(
    long long term, TopologyCoordinator::UpdateTermResult* updateTermResult) {

    auto now = _replExecutor->now();
    TopologyCoordinator::UpdateTermResult localUpdateTermResult = _topCoord->updateTerm(term, now);
    if (localUpdateTermResult == TopologyCoordinator::UpdateTermResult::kUpdatedTerm) {
        // When the node discovers a new term, the new term date metrics are now out-of-date, so we
        // clear them.
        ReplicationMetrics::get(getServiceContext()).clearParticipantNewTermDates();

        _termShadow.store(term);
        _cancelPriorityTakeover_inlock();
        _cancelAndRescheduleElectionTimeout_inlock();
    }

    if (updateTermResult) {
        *updateTermResult = localUpdateTermResult;
    }

    if (localUpdateTermResult == TopologyCoordinator::UpdateTermResult::kTriggerStepDown) {
        if (!_pendingTermUpdateDuringStepDown || *_pendingTermUpdateDuringStepDown < term) {
            _pendingTermUpdateDuringStepDown = term;
        }
        if (_topCoord->prepareForUnconditionalStepDown()) {
            LOGV2(21402,
                  "stepping down from primary, because a new term has begun: {term}",
                  "Stepping down from primary, because a new term has begun",
                  "term"_attr = term);
            ReplicationMetrics::get(getServiceContext()).incrementNumStepDownsCausedByHigherTerm();
            return _stepDownStart();
        } else {
            LOGV2_DEBUG(21403,
                        2,
                        "Updated term but not triggering stepdown because we are already in the "
                        "process of stepping down");
        }
    }
    return EventHandle();
}

void ReplicationCoordinatorImpl::waitUntilSnapshotCommitted(OperationContext* opCtx,
                                                            const Timestamp& untilSnapshot) {
    stdx::unique_lock<Latch> lock(_mutex);

    uassert(ErrorCodes::NotYetInitialized,
            "Cannot use snapshots until replica set is finished initializing.",
            _rsConfigState != kConfigUninitialized && _rsConfigState != kConfigInitiating);

    opCtx->waitForConditionOrInterrupt(_currentCommittedSnapshotCond, lock, [&] {
        return _currentCommittedSnapshot &&
            _currentCommittedSnapshot->getTimestamp() >= untilSnapshot;
    });
}

void ReplicationCoordinatorImpl::createWMajorityWriteAvailabilityDateWaiter(OpTime opTime) {
    stdx::lock_guard<Latch> lk(_mutex);

    WriteConcernOptions writeConcern(WriteConcernOptions::kMajority,
                                     WriteConcernOptions::SyncMode::UNSET,
                                     // The timeout isn't used by _doneWaitingForReplication_inlock.
                                     WriteConcernOptions::kNoTimeout);
    writeConcern = _populateUnsetWriteConcernOptionsSyncMode(lk, writeConcern);

    auto setOpTimeCB = [this](Status status) {
        // Only setWMajorityWriteAvailabilityDate if the wait was successful.
        if (status.isOK()) {
            ReplicationMetrics::get(getServiceContext())
                .setWMajorityWriteAvailabilityDate(_replExecutor->now());
        }
    };

    if (_doneWaitingForReplication_inlock(opTime, writeConcern)) {
        // Runs callback and returns early if the writeConcern is immediately satisfied.
        setOpTimeCB(Status::OK());
        return;
    }

    auto pf = makePromiseFuture<void>();
    auto waiter = std::make_shared<Waiter>(std::move(pf.promise), writeConcern);
    auto future = std::move(pf.future).onCompletion(setOpTimeCB);
    _replicationWaiterList.add_inlock(opTime, waiter);
}

bool ReplicationCoordinatorImpl::_updateCommittedSnapshot(WithLock lk,
                                                          const OpTime& newCommittedSnapshot) {
    if (gTestingSnapshotBehaviorInIsolation) {
        return false;
    }

    // If we are in ROLLBACK state, do not set any new _currentCommittedSnapshot, as it will be
    // cleared at the end of rollback anyway.
    if (_memberState.rollback()) {
        LOGV2(21404, "Not updating committed snapshot because we are in rollback");
        return false;
    }
    invariant(!newCommittedSnapshot.isNull());

    // The new committed snapshot should be <= the current replication commit point.
    OpTime lastCommittedOpTime = _topCoord->getLastCommittedOpTime();
    invariant(newCommittedSnapshot.getTimestamp() <= lastCommittedOpTime.getTimestamp());
    invariant(newCommittedSnapshot <= lastCommittedOpTime);

    // The new committed snapshot should be >= the current snapshot.
    if (_currentCommittedSnapshot) {
        invariant(newCommittedSnapshot.getTimestamp() >= _currentCommittedSnapshot->getTimestamp());
        invariant(newCommittedSnapshot >= *_currentCommittedSnapshot);
    }
    if (MONGO_unlikely(disableSnapshotting.shouldFail()))
        return false;
    _currentCommittedSnapshot = newCommittedSnapshot;
    _currentCommittedSnapshotCond.notify_all();

    _externalState->updateCommittedSnapshot(newCommittedSnapshot);

    // Wake up any threads waiting for read concern or write concern.
    if (_externalState->snapshotsEnabled() && _currentCommittedSnapshot) {
        _wakeReadyWaiters(lk, _currentCommittedSnapshot);
    }
    return true;
}

void ReplicationCoordinatorImpl::clearCommittedSnapshot() {
    stdx::lock_guard<Latch> lock(_mutex);
    _clearCommittedSnapshot_inlock();
}

void ReplicationCoordinatorImpl::_clearCommittedSnapshot_inlock() {
    _currentCommittedSnapshot = boost::none;
    _externalState->clearCommittedSnapshot();
}

void ReplicationCoordinatorImpl::waitForElectionFinish_forTest() {
    EventHandle finishedEvent;
    {
        stdx::lock_guard lk(_mutex);
        if (_electionState) {
            finishedEvent = _electionState->getElectionFinishedEvent(lk);
        }
    }
    if (finishedEvent.isValid()) {
        _replExecutor->waitForEvent(finishedEvent);
    }
}

void ReplicationCoordinatorImpl::waitForElectionDryRunFinish_forTest() {
    EventHandle finishedEvent;
    if (_electionState) {
        stdx::lock_guard lk(_mutex);
        finishedEvent = _electionState->getElectionDryRunFinishedEvent(lk);
    }
    if (finishedEvent.isValid()) {
        _replExecutor->waitForEvent(finishedEvent);
    }
}

CallbackHandle ReplicationCoordinatorImpl::_scheduleWorkAt(Date_t when, CallbackFn work) {
    auto cbh =
        _replExecutor->scheduleWorkAt(when, [work = std::move(work)](const CallbackArgs& args) {
            if (args.status == ErrorCodes::CallbackCanceled) {
                return;
            }
            work(args);
        });
    if (cbh == ErrorCodes::ShutdownInProgress) {
        return {};
    }
    return fassert(28800, cbh);
}

EventHandle ReplicationCoordinatorImpl::_makeEvent() {
    auto eventResult = this->_replExecutor->makeEvent();
    if (eventResult.getStatus() == ErrorCodes::ShutdownInProgress) {
        return EventHandle();
    }
    fassert(28825, eventResult.getStatus());
    return eventResult.getValue();
}

WriteConcernOptions ReplicationCoordinatorImpl::populateUnsetWriteConcernOptionsSyncMode(
    WriteConcernOptions wc) {
    stdx::lock_guard<Latch> lock(_mutex);
    return _populateUnsetWriteConcernOptionsSyncMode(lock, wc);
}

WriteConcernOptions ReplicationCoordinatorImpl::_populateUnsetWriteConcernOptionsSyncMode(
    WithLock lk, WriteConcernOptions wc) {
    WriteConcernOptions writeConcern(wc);
    if (writeConcern.syncMode == WriteConcernOptions::SyncMode::UNSET) {
        if (writeConcern.isMajority() && getWriteConcernMajorityShouldJournal_inlock()) {
            writeConcern.syncMode = WriteConcernOptions::SyncMode::JOURNAL;
        } else {
            writeConcern.syncMode = WriteConcernOptions::SyncMode::NONE;
        }
    }
    return writeConcern;
}

CallbackFn ReplicationCoordinatorImpl::_wrapAsCallbackFn(const std::function<void()>& work) {
    return [work](const CallbackArgs& cbData) {
        if (cbData.status == ErrorCodes::CallbackCanceled) {
            return;
        }

        work();
    };
}

Status ReplicationCoordinatorImpl::stepUpIfEligible(bool skipDryRun) {

    auto reason = skipDryRun ? StartElectionReasonEnum::kStepUpRequestSkipDryRun
                             : StartElectionReasonEnum::kStepUpRequest;
    _startElectSelfIfEligibleV1(reason);

    EventHandle finishEvent;
    {
        stdx::lock_guard<Latch> lk(_mutex);
        // A null _electionState indicates that the election has already completed.
        if (_electionState) {
            finishEvent = _electionState->getElectionFinishedEvent(lk);
        }
    }
    if (finishEvent.isValid()) {
        LOGV2(6015303, "Waiting for in-progress election to complete before finishing stepup");
        _replExecutor->waitForEvent(finishEvent);
    }
    {
        // Step up is considered successful only if we are currently a primary and we are not in the
        // process of stepping down. If we know we are going to step down, we should fail the
        // replSetStepUp command so caller can retry if necessary.
        stdx::lock_guard<Latch> lk(_mutex);
        if (!_getMemberState_inlock().primary())
            return Status(ErrorCodes::CommandFailed, "Election failed.");
        else if (_topCoord->isSteppingDown())
            return Status(ErrorCodes::CommandFailed, "Election failed due to concurrent stepdown.");
    }
    return Status::OK();
}

executor::TaskExecutor::EventHandle ReplicationCoordinatorImpl::_cancelElectionIfNeeded(
    WithLock lk) {
    if (_topCoord->getRole() != TopologyCoordinator::Role::kCandidate) {
        return {};
    }
    invariant(_electionState);
    _electionState->cancel(lk);
    return _electionState->getElectionFinishedEvent(lk);
}

int64_t ReplicationCoordinatorImpl::_nextRandomInt64_inlock(int64_t limit) {
    return _random.nextInt64(limit);
}

bool ReplicationCoordinatorImpl::setContainsArbiter() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.containsArbiter();
}

void ReplicationCoordinatorImpl::ReadWriteAbility::setCanAcceptNonLocalWrites(
    WithLock lk, OperationContext* opCtx, bool canAcceptWrites) {
    // We must be holding the RSTL in mode X to change _canAcceptNonLocalWrites.
    invariant(opCtx);
    invariant(opCtx->lockState()->isRSTLExclusive());
    if (canAcceptWrites == canAcceptNonLocalWrites(lk)) {
        return;
    }
    _canAcceptNonLocalWrites.store(canAcceptWrites);
}

bool ReplicationCoordinatorImpl::ReadWriteAbility::canAcceptNonLocalWrites(WithLock) const {
    return _canAcceptNonLocalWrites.loadRelaxed();
}

bool ReplicationCoordinatorImpl::ReadWriteAbility::canAcceptNonLocalWrites_UNSAFE() const {
    return _canAcceptNonLocalWrites.loadRelaxed();
}

bool ReplicationCoordinatorImpl::ReadWriteAbility::canAcceptNonLocalWrites(
    OperationContext* opCtx) const {
    // We must be holding the RSTL.
    invariant(opCtx);
    invariant(opCtx->lockState()->isRSTLLocked());
    return _canAcceptNonLocalWrites.loadRelaxed();
}

bool ReplicationCoordinatorImpl::ReadWriteAbility::canServeNonLocalReads_UNSAFE() const {
    return _canServeNonLocalReads.loadRelaxed();
}

bool ReplicationCoordinatorImpl::ReadWriteAbility::canServeNonLocalReads(
    OperationContext* opCtx) const {
    // We must be holding the RSTL.
    invariant(opCtx);
    invariant(opCtx->lockState()->isRSTLLocked() || opCtx->isLockFreeReadsOp());
    return _canServeNonLocalReads.loadRelaxed();
}

void ReplicationCoordinatorImpl::ReadWriteAbility::setCanServeNonLocalReads(OperationContext* opCtx,
                                                                            unsigned int newVal) {
    // We must be holding the RSTL in mode X to change _canServeNonLocalReads.
    invariant(opCtx);
    invariant(opCtx->lockState()->isRSTLExclusive());
    _canServeNonLocalReads.store(newVal);
}

void ReplicationCoordinatorImpl::ReadWriteAbility::setCanServeNonLocalReads_UNSAFE(
    unsigned int newVal) {
    _canServeNonLocalReads.store(newVal);
}

void ReplicationCoordinatorImpl::recordIfCWWCIsSetOnConfigServerOnStartup(OperationContext* opCtx) {
    auto isCWWCSet = _externalState->isCWWCSetOnConfigShard(opCtx);
    {
        stdx::lock_guard<Latch> lk(_mutex);
        _wasCWWCSetOnConfigServerOnStartup = isCWWCSet;
    }
}

void ReplicationCoordinatorImpl::_validateDefaultWriteConcernOnShardStartup(WithLock lk) const {
    if (serverGlobalParams.clusterRole.has(ClusterRole::ShardServer)) {
        // Checking whether the shard is part of a sharded cluster or not by checking if CWWC
        // flag is set as we record it during sharding initialization phase, as on restarting a
        // shard node for upgrading or any other reason, sharding initialization happens before
        // config initialization.
        if (_wasCWWCSetOnConfigServerOnStartup && !_wasCWWCSetOnConfigServerOnStartup.value() &&
            !_rsConfig.isImplicitDefaultWriteConcernMajority()) {
            auto msg =
                "Cannot start shard because the implicit default write concern on this shard is "
                "set to {w : 1}, since the number of writable voting members is not strictly more "
                "than the voting majority. Change the shard configuration or set the cluster-wide "
                "write concern using setDefaultRWConcern command and try again.";
            fassert(5684400, {ErrorCodes::IllegalOperation, msg});
        }
    }
}

ReplicationCoordinatorImpl::WriteConcernTagChanges*
ReplicationCoordinatorImpl::getWriteConcernTagChanges() {
    return &_writeConcernTagChanges;
}

SplitPrepareSessionManager* ReplicationCoordinatorImpl::getSplitPrepareSessionManager() {
    return &_splitSessionManager;
}

bool ReplicationCoordinatorImpl::isRetryableWrite(OperationContext* opCtx) const {
    if (!opCtx->writesAreReplicated() || !opCtx->isRetryableWrite()) {
        return false;
    }
    auto txnParticipant = TransactionParticipant::get(opCtx);
    return txnParticipant &&
        (!opCtx->inMultiDocumentTransaction() || txnParticipant.transactionIsOpen());
}

}  // namespace repl
}  // namespace mongo