1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
|
// key_string.cpp
/**
* Copyright (C) 2014 MongoDB Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License, version 3,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the GNU Affero General Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kStorage
#include "mongo/platform/basic.h"
#include "mongo/db/storage/key_string.h"
#include <cmath>
#include "mongo/base/data_view.h"
#include "mongo/platform/bits.h"
#include "mongo/platform/strnlen.h"
#include "mongo/util/hex.h"
#include "mongo/util/log.h"
namespace mongo {
using std::string;
namespace {
typedef KeyString::TypeBits TypeBits;
namespace CType {
// canonical types namespace. (would be enum class CType: uint8_t in C++11)
// Note 0-9 and 246-255 are disallowed and reserved for value encodings.
// For types that encode value information in the ctype byte, the value in this list is
// the "generic" one to be used to represent all values of that ctype, such as in the
// encoding of fields in Objects.
const uint8_t kMinKey = 10;
const uint8_t kUndefined = 15;
const uint8_t kNullish = 20;
const uint8_t kNumeric = 30;
const uint8_t kStringLike = 60;
const uint8_t kObject = 70;
const uint8_t kArray = 80;
const uint8_t kBinData = 90;
const uint8_t kOID = 100;
const uint8_t kBool = 110;
const uint8_t kDate = 120;
const uint8_t kTimestamp = 130;
const uint8_t kRegEx = 140;
const uint8_t kDBRef = 150;
const uint8_t kCode = 160;
const uint8_t kCodeWithScope = 170;
const uint8_t kMaxKey = 240;
// These are ordered by the numeric value of the values encoded in each format.
// Therefore each format can be considered independently without considering
// cross-format comparisons.
const uint8_t kNumericNaN = kNumeric + 0;
const uint8_t kNumericNegativeLargeMagnitude = kNumeric + 1; // <= -2**63 including -Inf
const uint8_t kNumericNegative8ByteInt = kNumeric + 2;
const uint8_t kNumericNegative7ByteInt = kNumeric + 3;
const uint8_t kNumericNegative6ByteInt = kNumeric + 4;
const uint8_t kNumericNegative5ByteInt = kNumeric + 5;
const uint8_t kNumericNegative4ByteInt = kNumeric + 6;
const uint8_t kNumericNegative3ByteInt = kNumeric + 7;
const uint8_t kNumericNegative2ByteInt = kNumeric + 8;
const uint8_t kNumericNegative1ByteInt = kNumeric + 9;
const uint8_t kNumericNegativeSmallMagnitude = kNumeric + 10; // between 0 and -1 exclusive
const uint8_t kNumericZero = kNumeric + 11;
const uint8_t kNumericPositiveSmallMagnitude = kNumeric + 12; // between 0 and 1 exclusive
const uint8_t kNumericPositive1ByteInt = kNumeric + 13;
const uint8_t kNumericPositive2ByteInt = kNumeric + 14;
const uint8_t kNumericPositive3ByteInt = kNumeric + 15;
const uint8_t kNumericPositive4ByteInt = kNumeric + 16;
const uint8_t kNumericPositive5ByteInt = kNumeric + 17;
const uint8_t kNumericPositive6ByteInt = kNumeric + 18;
const uint8_t kNumericPositive7ByteInt = kNumeric + 19;
const uint8_t kNumericPositive8ByteInt = kNumeric + 20;
const uint8_t kNumericPositiveLargeMagnitude = kNumeric + 21; // >= 2**63 including +Inf
static_assert(kNumericPositiveLargeMagnitude < kStringLike,
"kNumericPositiveLargeMagnitude < kStringLike");
const uint8_t kBoolFalse = kBool + 0;
const uint8_t kBoolTrue = kBool + 1;
static_assert(kBoolTrue < kDate, "kBoolTrue < kDate");
size_t numBytesForInt(uint8_t ctype) {
if (ctype >= kNumericPositive1ByteInt) {
dassert(ctype <= kNumericPositive8ByteInt);
return ctype - kNumericPositive1ByteInt + 1;
}
dassert(ctype <= kNumericNegative1ByteInt);
dassert(ctype >= kNumericNegative8ByteInt);
return kNumericNegative1ByteInt - ctype + 1;
}
} // namespace CType
uint8_t bsonTypeToGenericKeyStringType(BSONType type) {
switch (type) {
case MinKey:
return CType::kMinKey;
case EOO:
case jstNULL:
return CType::kNullish;
case Undefined:
return CType::kUndefined;
case NumberDouble:
case NumberInt:
case NumberLong:
return CType::kNumeric;
case mongo::String:
case Symbol:
return CType::kStringLike;
case Object:
return CType::kObject;
case Array:
return CType::kArray;
case BinData:
return CType::kBinData;
case jstOID:
return CType::kOID;
case Bool:
return CType::kBool;
case Date:
return CType::kDate;
case bsonTimestamp:
return CType::kTimestamp;
case RegEx:
return CType::kRegEx;
case DBRef:
return CType::kDBRef;
case Code:
return CType::kCode;
case CodeWScope:
return CType::kCodeWithScope;
case MaxKey:
return CType::kMaxKey;
default:
invariant(false);
}
}
// Doubles smaller than this store only a single bit indicating a decimal continuation follows.
const double kTiniestDoubleWith2BitDCM = std::ldexp(1, -255);
// Amount to add to exponent of doubles tinier than kTiniestDoubleWith2BitDCM to avoid subnormals.
const int kTinyDoubleExponentShift = 256;
// Amount to multiply tiny doubles to perform a shift of the exponent by
// kSmallMagnitudeExponentShift.
const double kTinyDoubleExponentUpshiftFactor = std::ldexp(1, kTinyDoubleExponentShift);
// Amount to multiply scaled tiny doubles by to recover the unscaled value.
const double kTinyDoubleExponentDownshiftFactor = std::ldexp(1, -kTinyDoubleExponentShift);
// An underestimate of 2**256.
const Decimal128 kTinyDoubleExponentUpshiftFactorAsDecimal(std::ldexp(1, kTinyDoubleExponentShift),
Decimal128::kRoundTo34Digits,
Decimal128::kRoundTowardZero);
// An underestimate of 2**(-256).
const Decimal128 kTinyDoubleExponentDownshiftFactorAsDecimal(std::ldexp(1,
-kTinyDoubleExponentShift),
Decimal128::kRoundTo34Digits,
Decimal128::kRoundTowardZero);
// First double that isn't an int64.
const double kMinLargeDouble = 1ULL << 63;
// Integers larger than this may not be representable as doubles.
const double kMaxIntForDouble = 1ULL << 53;
// Factors for scaling a double by powers of 256 to do a logical shift left of x bytes.
const double kPow256[] = {1.0, // 2**0
1.0 * 256, // 2**8
1.0 * 256 * 256, // 2**16
1.0 * 256 * 256 * 256, // 2**24
1.0 * 256 * 256 * 256 * 256, // 2**32
1.0 * 256 * 256 * 256 * 256 * 256, // 2**40
1.0 * 256 * 256 * 256 * 256 * 256 * 256, // 2**48
1.0 * 256 * 256 * 256 * 256 * 256 * 256 * 256}; // 2**56
// Factors for scaling a double by negative powers of 256 to do a logical shift right of x bytes.
const double kInvPow256[] = {1.0, // 2**0
1.0 / 256, // 2**(-8)
1.0 / 256 / 256, // 2**(-16)
1.0 / 256 / 256 / 256, // 2**(-24)
1.0 / 256 / 256 / 256 / 256, // 2**(-32)
1.0 / 256 / 256 / 256 / 256 / 256, // 2**(-40)
1.0 / 256 / 256 / 256 / 256 / 256 / 256, // 2**(-48)
1.0 / 256 / 256 / 256 / 256 / 256 / 256 / 256}; // 2**(-56)
const uint8_t kEnd = 0x4;
// These overlay with CType or kEnd bytes and therefor must be less/greater than all of
// them (and their inverses). They also can't equal 0 or 255 since that would collide with
// the encoding of NUL bytes in strings as "\x00\xff".
const uint8_t kLess = 1;
const uint8_t kGreater = 254;
} // namespace
// some utility functions
namespace {
void memcpy_flipBits(void* dst, const void* src, size_t bytes) {
const char* input = static_cast<const char*>(src);
char* output = static_cast<char*>(dst);
const char* const end = input + bytes;
while (input != end) {
*output++ = ~(*input++);
}
}
template <typename T>
T readType(BufReader* reader, bool inverted) {
// TODO for C++11 to static_assert that T is integral
T t = ConstDataView(static_cast<const char*>(reader->skip(sizeof(T)))).read<T>();
if (inverted)
return ~t;
return t;
}
StringData readCString(BufReader* reader) {
const char* start = static_cast<const char*>(reader->pos());
const char* end = static_cast<const char*>(memchr(start, 0x0, reader->remaining()));
invariant(end);
size_t actualBytes = end - start;
reader->skip(1 + actualBytes);
return StringData(start, actualBytes);
}
/**
* scratch must be empty when passed in. It will be used if there is a NUL byte in the
* output string. In that case the returned StringData will point into scratch, otherwise
* it will point directly into the input buffer.
*/
StringData readCStringWithNuls(BufReader* reader, std::string* scratch) {
const StringData initial = readCString(reader);
if (reader->peek<unsigned char>() != 0xFF)
return initial; // Don't alloc or copy for simple case with no NUL bytes.
scratch->append(initial.rawData(), initial.size());
while (reader->peek<unsigned char>() == 0xFF) {
// Each time we enter this loop it means we hit a NUL byte encoded as "\x00\xFF".
*scratch += '\0';
reader->skip(1);
const StringData nextPart = readCString(reader);
scratch->append(nextPart.rawData(), nextPart.size());
}
return *scratch;
}
string readInvertedCString(BufReader* reader) {
const char* start = static_cast<const char*>(reader->pos());
const char* end = static_cast<const char*>(memchr(start, 0xFF, reader->remaining()));
invariant(end);
size_t actualBytes = end - start;
string s(start, actualBytes);
for (size_t i = 0; i < s.size(); i++) {
s[i] = ~s[i];
}
reader->skip(1 + actualBytes);
return s;
}
string readInvertedCStringWithNuls(BufReader* reader) {
std::string out;
do {
if (!out.empty()) {
// If this isn't our first pass through the loop it means we hit an NUL byte
// encoded as "\xFF\00" in our inverted string.
reader->skip(1);
out += '\xFF'; // will be flipped to '\0' with rest of out before returning.
}
const char* start = static_cast<const char*>(reader->pos());
const char* end = static_cast<const char*>(memchr(start, 0xFF, reader->remaining()));
invariant(end);
size_t actualBytes = end - start;
out.append(start, actualBytes);
reader->skip(1 + actualBytes);
} while (reader->peek<unsigned char>() == 0x00);
for (size_t i = 0; i < out.size(); i++) {
out[i] = ~out[i];
}
return out;
}
} // namespace
void KeyString::resetToKey(const BSONObj& obj, Ordering ord, RecordId recordId) {
resetToEmpty();
_appendAllElementsForIndexing(obj, ord, kInclusive);
appendRecordId(recordId);
}
void KeyString::resetToKey(const BSONObj& obj, Ordering ord, Discriminator discriminator) {
resetToEmpty();
_appendAllElementsForIndexing(obj, ord, discriminator);
}
// ----------------------------------------------------------------------
// ----------- APPEND CODE -------------------------------------------
// ----------------------------------------------------------------------
void KeyString::_appendAllElementsForIndexing(const BSONObj& obj,
Ordering ord,
Discriminator discriminator) {
int elemCount = 0;
BSONObjIterator it(obj);
while (auto elem = it.next()) {
const int elemIdx = elemCount++;
const bool invert = (ord.get(elemIdx) == -1);
_appendBsonValue(elem, invert, NULL);
dassert(elem.fieldNameSize() < 3); // fieldNameSize includes the NUL
// IndexEntryComparison::makeQueryObject() encodes a discriminator in the first byte of
// the field name. This discriminator overrides the passed in one. Normal elements only
// have the NUL byte terminator. Entries stored in an index are not allowed to have a
// discriminator.
if (char ch = *elem.fieldName()) {
// l for less / g for greater.
invariant(ch == 'l' || ch == 'g');
discriminator = ch == 'l' ? kExclusiveBefore : kExclusiveAfter;
invariant(!it.more());
}
}
// The discriminator forces this KeyString to compare Less/Greater than any KeyString with
// the same prefix of keys. As an example, this can be used to land on the first key in the
// index with the value "a" regardless of the RecordId. In compound indexes it can use a
// prefix of the full key to ignore the later keys.
switch (discriminator) {
case kExclusiveBefore:
_append(kLess, false);
break;
case kExclusiveAfter:
_append(kGreater, false);
break;
case kInclusive:
break; // No discriminator byte.
}
// TODO consider omitting kEnd when using a discriminator byte. It is not a storage format
// change since keystrings with discriminators are not allowed to be stored.
_append(kEnd, false);
}
void KeyString::appendRecordId(RecordId loc) {
// The RecordId encoding must be able to determine the full length starting from the last
// byte, without knowing where the first byte is since it is stored at the end of a
// KeyString, and we need to be able to read the RecordId without decoding the whole thing.
//
// This encoding places a number (N) between 0 and 7 in both the high 3 bits of the first
// byte and the low 3 bits of the last byte. This is the number of bytes between the first
// and last byte (ie total bytes is N + 2). The remaining bits of the first and last bytes
// are combined with the bits of the in-between bytes to store the 64-bit RecordId in
// big-endian order. This does not encode negative RecordIds to give maximum space to
// positive RecordIds which are the only ones that are allowed to be stored in an index.
int64_t raw = loc.repr();
if (raw < 0) {
// Note: we encode RecordId::min() and RecordId() the same which is ok, as they are
// never stored so they will never be compared to each other.
invariant(raw == RecordId::min().repr());
raw = 0;
}
const uint64_t value = static_cast<uint64_t>(raw);
const int bitsNeeded = 64 - countLeadingZeros64(raw);
const int extraBytesNeeded =
bitsNeeded <= 10 ? 0 : ((bitsNeeded - 10) + 7) / 8; // ceil((bitsNeeded - 10) / 8)
// extraBytesNeeded must fit in 3 bits.
dassert(extraBytesNeeded >= 0 && extraBytesNeeded < 8);
// firstByte combines highest 5 bits of value with extraBytesNeeded.
const uint8_t firstByte =
uint8_t((extraBytesNeeded << 5) | (value >> (5 + (extraBytesNeeded * 8))));
// lastByte combines lowest 5 bits of value with extraBytesNeeded.
const uint8_t lastByte = uint8_t((value << 3) | extraBytesNeeded);
// RecordIds are never appended inverted.
_append(firstByte, false);
if (extraBytesNeeded) {
const uint64_t extraBytes = endian::nativeToBig(value >> 5);
// Only using the low-order extraBytesNeeded bytes of extraBytes.
_appendBytes(reinterpret_cast<const char*>(&extraBytes) + sizeof(extraBytes) -
extraBytesNeeded,
extraBytesNeeded,
false);
}
_append(lastByte, false);
}
void KeyString::appendTypeBits(const TypeBits& typeBits) {
// As an optimization, encode AllZeros as a single 0 byte.
if (typeBits.isAllZeros()) {
_append(uint8_t(0), false);
return;
}
_appendBytes(typeBits.getBuffer(), typeBits.getSize(), false);
}
void KeyString::_appendBool(bool val, bool invert) {
_append(val ? CType::kBoolTrue : CType::kBoolFalse, invert);
}
void KeyString::_appendDate(Date_t val, bool invert) {
_append(CType::kDate, invert);
// see: http://en.wikipedia.org/wiki/Offset_binary
uint64_t encoded = static_cast<uint64_t>(val.asInt64());
encoded ^= (1LL << 63); // flip highest bit (equivalent to bias encoding)
_append(endian::nativeToBig(encoded), invert);
}
void KeyString::_appendTimestamp(Timestamp val, bool invert) {
_append(CType::kTimestamp, invert);
_append(endian::nativeToBig(val.asLL()), invert);
}
void KeyString::_appendOID(OID val, bool invert) {
_append(CType::kOID, invert);
_appendBytes(val.view().view(), OID::kOIDSize, invert);
}
void KeyString::_appendString(StringData val, bool invert) {
_typeBits.appendString();
_append(CType::kStringLike, invert);
_appendStringLike(val, invert);
}
void KeyString::_appendSymbol(StringData val, bool invert) {
_typeBits.appendSymbol();
_append(CType::kStringLike, invert); // Symbols and Strings compare equally
_appendStringLike(val, invert);
}
void KeyString::_appendCode(StringData val, bool invert) {
_append(CType::kCode, invert);
_appendStringLike(val, invert);
}
void KeyString::_appendCodeWString(const BSONCodeWScope& val, bool invert) {
_append(CType::kCodeWithScope, invert);
_appendStringLike(val.code, invert);
_appendBson(val.scope, invert);
}
void KeyString::_appendBinData(const BSONBinData& val, bool invert) {
_append(CType::kBinData, invert);
if (val.length < 0xff) {
// size fits in one byte so use one byte to encode.
_append(uint8_t(val.length), invert);
} else {
// Encode 0xff prefix to indicate that the size takes 4 bytes.
_append(uint8_t(0xff), invert);
_append(endian::nativeToBig(int32_t(val.length)), invert);
}
_append(uint8_t(val.type), invert);
_appendBytes(val.data, val.length, invert);
}
void KeyString::_appendRegex(const BSONRegEx& val, bool invert) {
_append(CType::kRegEx, invert);
// note: NULL is not allowed in pattern or flags
_appendBytes(val.pattern.rawData(), val.pattern.size(), invert);
_append(int8_t(0), invert);
_appendBytes(val.flags.rawData(), val.flags.size(), invert);
_append(int8_t(0), invert);
}
void KeyString::_appendDBRef(const BSONDBRef& val, bool invert) {
_append(CType::kDBRef, invert);
_append(endian::nativeToBig(int32_t(val.ns.size())), invert);
_appendBytes(val.ns.rawData(), val.ns.size(), invert);
_appendBytes(val.oid.view().view(), OID::kOIDSize, invert);
}
void KeyString::_appendArray(const BSONArray& val, bool invert) {
_append(CType::kArray, invert);
BSONForEach(elem, val) {
// No generic ctype byte needed here since no name is encoded.
_appendBsonValue(elem, invert, NULL);
}
_append(int8_t(0), invert);
}
void KeyString::_appendObject(const BSONObj& val, bool invert) {
_append(CType::kObject, invert);
_appendBson(val, invert);
}
void KeyString::_appendNumberDouble(const double num, bool invert) {
if (num == 0.0 && std::signbit(num))
_typeBits.appendZero(TypeBits::kNegativeDoubleZero);
else
_typeBits.appendNumberDouble();
_appendDoubleWithoutTypeBits(num, kDCMEqualToDouble, invert);
}
void KeyString::_appendDoubleWithoutTypeBits(const double num,
DecimalContinuationMarker dcm,
bool invert) {
const bool isNegative = num < 0.0;
const double magnitude = isNegative ? -num : num;
// Tests are structured such that NaNs and infinities fall through correctly.
if (!(magnitude >= 1.0)) {
if (magnitude > 0.0) {
// This includes subnormal numbers.
_appendSmallDouble(num, dcm, invert);
} else if (num == 0.0) {
// We are collapsing -0.0 and 0.0 to the same value here, the type bits disambiguate.
_append(CType::kNumericZero, invert);
} else {
invariant(std::isnan(num));
_append(CType::kNumericNaN, invert);
}
return;
}
if (magnitude < kMinLargeDouble) {
uint64_t integerPart = static_cast<uint64_t>(magnitude);
if (static_cast<double>(integerPart) == magnitude && dcm == kDCMEqualToDouble) {
// No fractional part
_appendPreshiftedIntegerPortion(integerPart << 1, isNegative, invert);
return;
}
if (version == Version::V0) {
invariant(dcm == kDCMEqualToDouble);
// There is a fractional part.
_appendPreshiftedIntegerPortion((integerPart << 1) | 1, isNegative, invert);
// Append the bytes of the mantissa that include fractional bits.
const size_t fractionalBits = 53 - (64 - countLeadingZeros64(integerPart));
const size_t fractionalBytes = (fractionalBits + 7) / 8;
dassert(fractionalBytes > 0);
uint64_t mantissa;
memcpy(&mantissa, &num, sizeof(mantissa));
mantissa &= ~(uint64_t(-1) << fractionalBits); // set non-fractional bits to 0;
mantissa = endian::nativeToBig(mantissa);
const void* firstUsedByte =
reinterpret_cast<const char*>((&mantissa) + 1) - fractionalBytes;
_appendBytes(firstUsedByte, fractionalBytes, isNegative ? !invert : invert);
} else {
const size_t fractionalBytes = countLeadingZeros64(integerPart << 1) / 8;
const auto ctype = isNegative ? CType::kNumericNegative8ByteInt + fractionalBytes
: CType::kNumericPositive8ByteInt - fractionalBytes;
_append(static_cast<uint8_t>(ctype), invert);
// Multiplying the double by 256 to the power X is logically equivalent to shifting the
// fraction left by X bytes.
uint64_t encoding = static_cast<uint64_t>(magnitude * kPow256[fractionalBytes]);
dassert(encoding == magnitude * kPow256[fractionalBytes]);
// Merge in the bit indicating the value has a fractional part by doubling the integer
// part and adding 1. This leaves encoding with the high 8-fractionalBytes bytes in the
// same form they'd have with _appendPreshiftedIntegerPortion(). The remaining low bytes
// are the fractional bytes left-shifted by 2 bits to make room for the DCM.
encoding += (integerPart + 1) << (fractionalBytes * 8);
invariant((encoding & 0x3ULL) == 0);
encoding |= dcm;
encoding = endian::nativeToBig(encoding);
_append(encoding, isNegative ? !invert : invert);
}
} else {
_appendLargeDouble(num, dcm, invert);
}
}
void KeyString::_appendNumberLong(const long long num, bool invert) {
_typeBits.appendNumberLong();
_appendInteger(num, invert);
}
void KeyString::_appendNumberInt(const int num, bool invert) {
_typeBits.appendNumberInt();
_appendInteger(num, invert);
}
void KeyString::_appendNumberDecimal(const Decimal128 dec, bool invert) {
bool isNegative = dec.isNegative();
if (dec.isZero()) {
uint32_t zeroExp = dec.getBiasedExponent();
if (isNegative)
zeroExp += Decimal128::kMaxBiasedExponent + 1;
_typeBits.appendDecimalZero(zeroExp);
_append(CType::kNumericZero, invert);
return;
}
if (dec.isNaN()) {
_append(CType::kNumericNaN, invert);
_typeBits.appendNumberDecimal();
return;
}
if (dec.isInfinite()) {
_append(isNegative ? CType::kNumericNegativeLargeMagnitude
: CType::kNumericPositiveLargeMagnitude,
invert);
const uint64_t infinity = ~0ULL;
_append(infinity, isNegative ? !invert : invert);
_typeBits.appendNumberDecimal();
return;
}
const uint32_t biasedExponent = dec.getBiasedExponent();
dassert(biasedExponent <= Decimal128::kInfinityExponent);
_typeBits.appendNumberDecimal();
_typeBits.appendDecimalExponent(biasedExponent & TypeBits::kStoredDecimalExponentMask);
uint32_t signalingFlags = Decimal128::kNoFlag;
double bin = dec.toDouble(&signalingFlags, Decimal128::kRoundTowardZero);
// Easy case: the decimal actually is a double. True for many integers, fractions like 1.5, etc.
if (!Decimal128::hasFlag(signalingFlags, Decimal128::kInexact) &&
!Decimal128::hasFlag(signalingFlags, Decimal128::kOverflow)) {
_appendDoubleWithoutTypeBits(bin, kDCMEqualToDouble, invert);
return;
}
// Values smaller than the double normalized range need special handling: a regular double
// wouldn't give 15 digits, if any at all.
if (std::abs(bin) < std::numeric_limits<double>::min()) {
_appendTinyDecimalWithoutTypeBits(dec, bin, invert);
return;
}
// Huge finite values are encoded directly. Because the value is not exact, and truncates
// to the maximum double, the original decimal was outside of the range of finite doubles.
// Because all decimals larger than the max finite double round down to that value, strict
// less-than would be incorrect.
if (std::abs(bin) >= std::numeric_limits<double>::max()) {
_appendHugeDecimalWithoutTypeBits(dec, invert);
return;
}
const auto roundAwayFromZero =
isNegative ? Decimal128::kRoundTowardNegative : Decimal128::kRoundTowardPositive;
const uint64_t k1E15 = 1E15; // Exact in both double and int64_t.
// If the conditions below fall through, a decimal continuation is needed to represent the
// difference between the stored value and the actual decimal. All paths that fall through
// must set 'storedValue', overwriting the NaN.
Decimal128 storedValue = Decimal128::kPositiveNaN;
// For doubles in this range, 'bin' may have lost precision in the integer part, which would
// lead to miscompares with integers. So, instead handle explicitly.
if ((bin <= -kMaxIntForDouble || bin >= kMaxIntForDouble) && bin > -kMinLargeDouble &&
bin < kMinLargeDouble) {
uint32_t signalingFlags = Decimal128::kNoFlag;
Decimal128 truncated = dec.quantize(
Decimal128::kNormalizedZero, &signalingFlags, Decimal128::kRoundTowardZero);
dassert(truncated.getBiasedExponent() == Decimal128::kExponentBias);
dassert(truncated.getCoefficientHigh() == 0 &&
truncated.getCoefficientLow() < (1ULL << 63));
int64_t integerPart = truncated.getCoefficientLow();
bool hasFraction = Decimal128::hasFlag(signalingFlags, Decimal128::kInexact);
bool isNegative = truncated.isNegative();
bool has8bytes = integerPart >= (1LL << 55);
uint64_t preshifted = integerPart << 1;
_appendPreshiftedIntegerPortion(preshifted | hasFraction, isNegative, invert);
if (!hasFraction)
return;
if (!has8bytes) {
// A Fraction byte follows, but the leading 7 bytes already encode 53 bits of the
// coefficient, so just store the DCM.
uint8_t dcm = hasFraction ? kDCMHasContinuationLargerThanDoubleRoundedUpTo15Digits
: kDCMEqualToDouble;
_append(dcm, isNegative ? !invert : invert);
}
storedValue = Decimal128(isNegative, Decimal128::kExponentBias, 0, integerPart);
// Common case: the coefficient less than 1E15, so at most 15 digits, and the number is
// in the normal range of double, so the decimal can be represented with at least 15 digits
// of precision by the double 'bin'
} else if (dec.getCoefficientHigh() == 0 && dec.getCoefficientLow() < k1E15) {
dassert(Decimal128(std::abs(bin),
Decimal128::kRoundTo15Digits,
Decimal128::kRoundTowardPositive).isEqual(dec.toAbs()));
_appendDoubleWithoutTypeBits(bin, kDCMEqualToDoubleRoundedUpTo15Digits, invert);
return;
} else {
// The coefficient has more digits, but may still be 15 digits after removing trailing
// zeros.
Decimal128 decFromBin = Decimal128(bin, Decimal128::kRoundTo15Digits, roundAwayFromZero);
if (decFromBin.isEqual(dec)) {
_appendDoubleWithoutTypeBits(bin, kDCMEqualToDoubleRoundedUpTo15Digits, invert);
return;
}
// Harder cases: decimal continuation is needed.
// First store the double and kind of continuation needed.
DecimalContinuationMarker dcm = dec.isLess(decFromBin) != isNegative
? kDCMHasContinuationLessThanDoubleRoundedUpTo15Digits
: kDCMHasContinuationLargerThanDoubleRoundedUpTo15Digits;
_appendDoubleWithoutTypeBits(bin, dcm, invert);
// Note that 'dec' and 'bin' can be negative.
storedValue = Decimal128(bin, Decimal128::kRoundTo34Digits, roundAwayFromZero);
}
invariant(!storedValue.isNaN()); // Should have been set explicitly.
storedValue = storedValue.normalize(); // Normalize to 34 digits to fix decDiff exponent.
Decimal128 decDiff = dec.subtract(storedValue);
invariant(decDiff.isNegative() == dec.isNegative() || decDiff.isZero());
invariant(decDiff.getBiasedExponent() == storedValue.getBiasedExponent());
invariant(decDiff.getCoefficientHigh() == 0);
// Now we know that we can recover the original decimal value (but not its precision, which is
// given by the type bits) from the binary double plus the decimal continuation.
uint64_t decimalContinuation = decDiff.getCoefficientLow();
dassert(storedValue.add(Decimal128(isNegative,
storedValue.getBiasedExponent(),
0,
decimalContinuation)).isEqual(dec));
decimalContinuation = endian::nativeToBig(decimalContinuation);
_append(decimalContinuation, isNegative ? !invert : invert);
}
void KeyString::_appendBsonValue(const BSONElement& elem, bool invert, const StringData* name) {
if (name) {
_appendBytes(name->rawData(), name->size() + 1, invert); // + 1 for NUL
}
switch (elem.type()) {
case MinKey:
case MaxKey:
case EOO:
case Undefined:
case jstNULL:
_append(bsonTypeToGenericKeyStringType(elem.type()), invert);
break;
case NumberDouble:
_appendNumberDouble(elem._numberDouble(), invert);
break;
case String:
_appendString(elem.valueStringData(), invert);
break;
case Object:
_appendObject(elem.Obj(), invert);
break;
case Array:
_appendArray(BSONArray(elem.Obj()), invert);
break;
case BinData: {
int len;
const char* data = elem.binData(len);
_appendBinData(BSONBinData(data, len, elem.binDataType()), invert);
break;
}
case jstOID:
_appendOID(elem.__oid(), invert);
break;
case Bool:
_appendBool(elem.boolean(), invert);
break;
case Date:
_appendDate(elem.date(), invert);
break;
case RegEx:
_appendRegex(BSONRegEx(elem.regex(), elem.regexFlags()), invert);
break;
case DBRef:
_appendDBRef(BSONDBRef(elem.dbrefNS(), elem.dbrefOID()), invert);
break;
case Symbol:
_appendSymbol(elem.valueStringData(), invert);
break;
case Code:
_appendCode(elem.valueStringData(), invert);
break;
case CodeWScope: {
_appendCodeWString(
BSONCodeWScope(StringData(elem.codeWScopeCode(), elem.codeWScopeCodeLen() - 1),
BSONObj(elem.codeWScopeScopeData())),
invert);
break;
}
case NumberInt:
_appendNumberInt(elem._numberInt(), invert);
break;
case bsonTimestamp:
_appendTimestamp(elem.timestamp(), invert);
break;
case NumberLong:
_appendNumberLong(elem._numberLong(), invert);
break;
case NumberDecimal:
uassert(ErrorCodes::UnsupportedFormat,
"Index version does not support NumberDecimal",
version >= Version::V1);
_appendNumberDecimal(elem._numberDecimal(), invert);
break;
default:
invariant(false);
}
}
/// -- lowest level
void KeyString::_appendStringLike(StringData str, bool invert) {
while (true) {
size_t firstNul = strnlen(str.rawData(), str.size());
// No NULs in string.
_appendBytes(str.rawData(), firstNul, invert);
if (firstNul == str.size() || firstNul == std::string::npos) {
_append(int8_t(0), invert);
break;
}
// replace "\x00" with "\x00\xFF"
_appendBytes("\x00\xFF", 2, invert);
str = str.substr(firstNul + 1); // skip over the NUL byte
}
}
void KeyString::_appendBson(const BSONObj& obj, bool invert) {
BSONForEach(elem, obj) {
// Force the order to be based on (ctype, name, value).
_append(bsonTypeToGenericKeyStringType(elem.type()), invert);
StringData name = elem.fieldNameStringData();
_appendBsonValue(elem, invert, &name);
}
_append(int8_t(0), invert);
}
void KeyString::_appendSmallDouble(double value, DecimalContinuationMarker dcm, bool invert) {
bool isNegative = value < 0;
double magnitude = isNegative ? -value : value;
dassert(!std::isnan(value) && value != 0 && magnitude < 1);
_append(isNegative ? CType::kNumericNegativeSmallMagnitude
: CType::kNumericPositiveSmallMagnitude,
invert);
uint64_t encoded;
if (version == KeyString::Version::V0) {
// Not using magnitude to preserve sign bit in V0
memcpy(&encoded, &value, sizeof(encoded));
} else if (magnitude >= kTiniestDoubleWith2BitDCM) {
// Values in the range [2**(-255), 1) get the prefix 0b11
memcpy(&encoded, &magnitude, sizeof(encoded));
dassert((encoded & (0x3ULL << 62)) == 0);
encoded <<= 2;
encoded |= dcm;
dassert(encoded >> 62 == 0x3);
} else {
// Values in the range [numeric_limits<double>::denorm_min(), 2**(-255)) get the prefixes
// 0b01 or 0b10. The 0b00 prefix is used by _appendHugeDecimalWithoutTypeBits for decimals
// smaller than that.
magnitude *= kTinyDoubleExponentUpshiftFactor;
memcpy(&encoded, &magnitude, sizeof(encoded));
encoded <<= 1;
encoded |= (dcm != kDCMEqualToDouble);
// Change the two most significant bits from 0b00 or 0b01 to 0b01 or 0b10.
encoded += (1ULL << 62);
dassert(encoded >> 62 == 0x1 || encoded >> 62 == 0x2);
}
_append(endian::nativeToBig(encoded), isNegative ? !invert : invert);
}
void KeyString::_appendLargeDouble(double value, DecimalContinuationMarker dcm, bool invert) {
dassert(!std::isnan(value));
dassert(value != 0.0);
_append(value > 0 ? CType::kNumericPositiveLargeMagnitude
: CType::kNumericNegativeLargeMagnitude,
invert);
uint64_t encoded;
memcpy(&encoded, &value, sizeof(encoded));
if (version != Version::V0) {
if (std::isfinite(value)) {
encoded <<= 1;
encoded &= ~(1ULL << 63);
encoded |= (dcm != kDCMEqualToDouble);
} else {
encoded = ~0ULL; // infinity
}
}
encoded = endian::nativeToBig(encoded);
_append(encoded, value > 0 ? invert : !invert);
}
void KeyString::_appendTinyDecimalWithoutTypeBits(const Decimal128 dec,
const double bin,
bool invert) {
// This function is only for 'dec' that doesn't exactly equal a double, but rounds to 'bin'
dassert(bin == dec.toDouble(Decimal128::kRoundTowardZero));
dassert(std::abs(bin) < DBL_MIN);
const bool isNegative = dec.isNegative();
Decimal128 magnitude = isNegative ? dec.negate() : dec;
_append(isNegative ? CType::kNumericNegativeSmallMagnitude
: CType::kNumericPositiveSmallMagnitude,
invert);
// For decimals smaller than the smallest subnormal double, just store the decimal number
if (bin == 0.0) {
Decimal128 normalized = magnitude.normalize();
uint64_t hi = normalized.getValue().high64;
uint64_t lo = normalized.getValue().low64;
invariant((hi & (0x3ULL << 62)) == 0);
_append(endian::nativeToBig(hi), isNegative ? !invert : invert);
_append(endian::nativeToBig(lo), isNegative ? !invert : invert);
return;
}
// Encode decimal in subnormal double range by scaling in the decimal domain. Round down at
// each step, but ensure not to get below the subnormal double. This will ensure that
// 'scaledBin' is monotonically increasing and will only be off by at most a few units in the
// last place, so the decimal continuation will stay in range.
Decimal128 scaledDec =
magnitude.multiply(kTinyDoubleExponentUpshiftFactorAsDecimal, Decimal128::kRoundTowardZero);
double scaledBin = scaledDec.toDouble(Decimal128::kRoundTowardZero);
// Here we know that scaledBin contains the first 15 significant digits of scaled dec, and
// sorts correctly with scaled double.
scaledBin = std::max(scaledBin, std::abs(bin) * kTinyDoubleExponentUpshiftFactor);
uint64_t encoded;
memcpy(&encoded, &scaledBin, sizeof(encoded));
encoded <<= 1;
encoded |= 1; // Even if decDiff.isZero() we aren't exactly equal
encoded += (1ULL << 62);
dassert(encoded >> 62 == 0x1);
_append(endian::nativeToBig(encoded), isNegative ? !invert : invert);
Decimal128 storedVal(scaledBin, Decimal128::kRoundTo34Digits, Decimal128::kRoundTowardPositive);
storedVal = storedVal.multiply(kTinyDoubleExponentDownshiftFactorAsDecimal,
Decimal128::kRoundTowardZero)
.add(Decimal128::kLargestNegativeExponentZero);
dassert(storedVal.isLess(magnitude));
Decimal128 decDiff = magnitude.subtract(storedVal);
dassert(decDiff.getBiasedExponent() == storedVal.getBiasedExponent() || decDiff.isZero());
dassert(decDiff.getCoefficientHigh() == 0 && !decDiff.isNegative());
uint64_t continuation = decDiff.getCoefficientLow();
_append(endian::nativeToBig(continuation), isNegative ? !invert : invert);
}
void KeyString::_appendHugeDecimalWithoutTypeBits(const Decimal128 dec, bool invert) {
// To allow us to use CType::kNumericNegativeLargeMagnitude we need to fit between the highest
// finite double and the representation of +/-Inf. We do this by forcing the high bit to 1
// (large doubles always have 0) and never encoding ~0 here.
const bool isNegative = dec.isNegative();
Decimal128 normalizedMagnitude = (isNegative ? dec.negate() : dec).normalize();
uint64_t hi = normalizedMagnitude.getValue().high64;
uint64_t lo = normalizedMagnitude.getValue().low64;
dassert(hi < (1ULL << 63));
hi |= (1ULL << 63);
_append(isNegative ? CType::kNumericNegativeLargeMagnitude
: CType::kNumericPositiveLargeMagnitude,
invert);
_append(endian::nativeToBig(hi), isNegative ? !invert : invert);
_append(endian::nativeToBig(lo), isNegative ? !invert : invert);
}
// Handles NumberLong and NumberInt which are encoded identically except for the TypeBits.
void KeyString::_appendInteger(const long long num, bool invert) {
if (num == std::numeric_limits<long long>::min()) {
// -2**63 is exactly representable as a double and not as a positive int64.
// Therefore we encode it as a double.
dassert(-double(num) == kMinLargeDouble);
_appendLargeDouble(static_cast<double>(num), kDCMEqualToDouble, invert);
return;
}
if (num == 0) {
_append(CType::kNumericZero, invert);
return;
}
const bool isNegative = num < 0;
const uint64_t magnitude = isNegative ? -num : num;
_appendPreshiftedIntegerPortion(magnitude << 1, isNegative, invert);
}
void KeyString::_appendPreshiftedIntegerPortion(uint64_t value, bool isNegative, bool invert) {
dassert(value != 0ULL);
dassert(value != 1ULL);
const size_t bytesNeeded = (64 - countLeadingZeros64(value) + 7) / 8;
// Append the low bytes of value in big endian order.
value = endian::nativeToBig(value);
const void* firstUsedByte = reinterpret_cast<const char*>((&value) + 1) - bytesNeeded;
if (isNegative) {
_append(uint8_t(CType::kNumericNegative1ByteInt - (bytesNeeded - 1)), invert);
_appendBytes(firstUsedByte, bytesNeeded, !invert);
} else {
_append(uint8_t(CType::kNumericPositive1ByteInt + (bytesNeeded - 1)), invert);
_appendBytes(firstUsedByte, bytesNeeded, invert);
}
}
template <typename T>
void KeyString::_append(const T& thing, bool invert) {
_appendBytes(&thing, sizeof(thing), invert);
}
void KeyString::_appendBytes(const void* source, size_t bytes, bool invert) {
char* const base = _buffer.skip(bytes);
if (invert) {
memcpy_flipBits(base, source, bytes);
} else {
memcpy(base, source, bytes);
}
}
// ----------------------------------------------------------------------
// ----------- DECODING CODE --------------------------------------------
// ----------------------------------------------------------------------
namespace {
void toBsonValue(uint8_t ctype,
BufReader* reader,
TypeBits::Reader* typeBits,
bool inverted,
KeyString::Version version,
BSONObjBuilderValueStream* stream);
void toBson(BufReader* reader,
TypeBits::Reader* typeBits,
bool inverted,
KeyString::Version version,
BSONObjBuilder* builder) {
while (readType<uint8_t>(reader, inverted) != 0) {
if (inverted) {
std::string name = readInvertedCString(reader);
BSONObjBuilderValueStream& stream = *builder << name;
toBsonValue(
readType<uint8_t>(reader, inverted), reader, typeBits, inverted, version, &stream);
} else {
StringData name = readCString(reader);
BSONObjBuilderValueStream& stream = *builder << name;
toBsonValue(
readType<uint8_t>(reader, inverted), reader, typeBits, inverted, version, &stream);
}
}
}
/**
* Helper function to read the least significant type bits for 'num' and return a value that
* is numerically equal to 'num', but has its exponent adjusted to match the stored exponent bits.
*/
Decimal128 adjustDecimalExponent(TypeBits::Reader* typeBits, Decimal128 num);
/**
* Helper function that takes a 'num' with 15 decimal digits of precision, normalizes it to 34
* digits and reads a 64-bit (19-digit) continuation to obtain the full 34-bit value.
*/
Decimal128 readDecimalContinuation(BufReader* reader, bool inverted, Decimal128 num) {
uint32_t flags = Decimal128::kNoFlag;
uint64_t continuation = endian::bigToNative(readType<uint64_t>(reader, inverted));
num = num.normalize();
num = num.add(Decimal128(num.isNegative(), num.getBiasedExponent(), 0, continuation), &flags);
invariant(!(Decimal128::hasFlag(flags, Decimal128::kInexact)));
return num;
}
void toBsonValue(uint8_t ctype,
BufReader* reader,
TypeBits::Reader* typeBits,
bool inverted,
KeyString::Version version,
BSONObjBuilderValueStream* stream) {
// This is only used by the kNumeric.*ByteInt types, but needs to be declared up here
// since it is used across a fallthrough.
bool isNegative = false;
switch (ctype) {
case CType::kMinKey:
*stream << MINKEY;
break;
case CType::kMaxKey:
*stream << MAXKEY;
break;
case CType::kNullish:
*stream << BSONNULL;
break;
case CType::kUndefined:
*stream << BSONUndefined;
break;
case CType::kBoolTrue:
*stream << true;
break;
case CType::kBoolFalse:
*stream << false;
break;
case CType::kDate:
*stream << Date_t::fromMillisSinceEpoch(
endian::bigToNative(readType<uint64_t>(reader, inverted)) ^ (1LL << 63));
break;
case CType::kTimestamp:
*stream << Timestamp(endian::bigToNative(readType<uint64_t>(reader, inverted)));
break;
case CType::kOID:
if (inverted) {
char buf[OID::kOIDSize];
memcpy_flipBits(buf, reader->skip(OID::kOIDSize), OID::kOIDSize);
*stream << OID::from(buf);
} else {
*stream << OID::from(reader->skip(OID::kOIDSize));
}
break;
case CType::kStringLike: {
const uint8_t originalType = typeBits->readStringLike();
if (inverted) {
if (originalType == TypeBits::kString) {
*stream << readInvertedCStringWithNuls(reader);
} else {
dassert(originalType == TypeBits::kSymbol);
*stream << BSONSymbol(readInvertedCStringWithNuls(reader));
}
} else {
std::string scratch;
if (originalType == TypeBits::kString) {
*stream << readCStringWithNuls(reader, &scratch);
} else {
dassert(originalType == TypeBits::kSymbol);
*stream << BSONSymbol(readCStringWithNuls(reader, &scratch));
}
}
break;
}
case CType::kCode: {
if (inverted) {
*stream << BSONCode(readInvertedCStringWithNuls(reader));
} else {
std::string scratch;
*stream << BSONCode(readCStringWithNuls(reader, &scratch));
}
break;
}
case CType::kCodeWithScope: {
std::string scratch;
StringData code; // will point to either scratch or the raw encoded bytes.
if (inverted) {
scratch = readInvertedCStringWithNuls(reader);
code = scratch;
} else {
code = readCStringWithNuls(reader, &scratch);
}
// Not going to optimize CodeWScope.
BSONObjBuilder scope;
toBson(reader, typeBits, inverted, version, &scope);
*stream << BSONCodeWScope(code, scope.done());
break;
}
case CType::kBinData: {
size_t size = readType<uint8_t>(reader, inverted);
if (size == 0xff) {
// size was stored in 4 bytes.
size = endian::bigToNative(readType<uint32_t>(reader, inverted));
}
BinDataType subType = BinDataType(readType<uint8_t>(reader, inverted));
const void* ptr = reader->skip(size);
if (!inverted) {
*stream << BSONBinData(ptr, size, subType);
} else {
std::unique_ptr<char[]> flipped(new char[size]);
memcpy_flipBits(flipped.get(), ptr, size);
*stream << BSONBinData(flipped.get(), size, subType);
}
break;
}
case CType::kRegEx: {
if (inverted) {
string pattern = readInvertedCString(reader);
string flags = readInvertedCString(reader);
*stream << BSONRegEx(pattern, flags);
} else {
StringData pattern = readCString(reader);
StringData flags = readCString(reader);
*stream << BSONRegEx(pattern, flags);
}
break;
}
case CType::kDBRef: {
size_t size = endian::bigToNative(readType<uint32_t>(reader, inverted));
if (inverted) {
std::unique_ptr<char[]> ns(new char[size]);
memcpy_flipBits(ns.get(), reader->skip(size), size);
char oidBytes[OID::kOIDSize];
memcpy_flipBits(oidBytes, reader->skip(OID::kOIDSize), OID::kOIDSize);
OID oid = OID::from(oidBytes);
*stream << BSONDBRef(StringData(ns.get(), size), oid);
} else {
const char* ns = static_cast<const char*>(reader->skip(size));
OID oid = OID::from(reader->skip(OID::kOIDSize));
*stream << BSONDBRef(StringData(ns, size), oid);
}
break;
}
case CType::kObject: {
BSONObjBuilder subObj(stream->subobjStart());
toBson(reader, typeBits, inverted, version, &subObj);
break;
}
case CType::kArray: {
BSONObjBuilder subArr(stream->subarrayStart());
int index = 0;
uint8_t elemType;
while ((elemType = readType<uint8_t>(reader, inverted)) != 0) {
toBsonValue(elemType,
reader,
typeBits,
inverted,
version,
&(subArr << BSONObjBuilder::numStr(index++)));
}
break;
}
//
// Numerics
//
case CType::kNumericNaN: {
auto type = typeBits->readNumeric();
if (type == TypeBits::kDouble) {
*stream << std::numeric_limits<double>::quiet_NaN();
} else {
invariant(type == TypeBits::kDecimal && version == KeyString::Version::V1);
*stream << Decimal128::kPositiveNaN;
}
break;
}
case CType::kNumericZero: {
uint8_t zeroType = typeBits->readZero();
switch (zeroType) {
case TypeBits::kDouble:
*stream << 0.0;
break;
case TypeBits::kInt:
*stream << 0;
break;
case TypeBits::kLong:
*stream << 0ll;
break;
case TypeBits::kNegativeDoubleZero:
*stream << -0.0;
break;
default:
const uint32_t whichZero = typeBits->readDecimalZero(zeroType);
const bool isNegative = whichZero > Decimal128::kMaxBiasedExponent;
const uint32_t biasedExponent =
isNegative ? whichZero - (Decimal128::kMaxBiasedExponent + 1) : whichZero;
*stream << Decimal128(isNegative, biasedExponent, 0, 0);
break;
}
break;
}
case CType::kNumericNegativeLargeMagnitude:
inverted = !inverted;
isNegative = true;
// fallthrough (format is the same as positive, but inverted)
case CType::kNumericPositiveLargeMagnitude: {
const uint8_t originalType = typeBits->readNumeric();
invariant(version > KeyString::Version::V0 || originalType != TypeBits::kDecimal);
uint64_t encoded = readType<uint64_t>(reader, inverted);
encoded = endian::bigToNative(encoded);
bool hasDecimalContinuation = false;
double bin;
// Backward compatibility
if (version == KeyString::Version::V0) {
memcpy(&bin, &encoded, sizeof(bin));
} else if (!(encoded & (1ULL << 63))) { // In range of (finite) doubles
hasDecimalContinuation = encoded & 1;
encoded >>= 1; // remove decimal continuation marker
encoded |= 1ULL << 62; // implied leading exponent bit
memcpy(&bin, &encoded, sizeof(bin));
if (isNegative)
bin = -bin;
} else if (encoded == ~0ULL) { // infinity
bin = isNegative ? -std::numeric_limits<double>::infinity()
: std::numeric_limits<double>::infinity();
} else { // Huge decimal number, directly output
invariant(originalType == TypeBits::kDecimal);
uint64_t highbits = encoded & ~(1ULL << 63);
uint64_t lowbits = endian::bigToNative(readType<uint64_t>(reader, inverted));
Decimal128 dec(Decimal128::Value{lowbits, highbits});
if (isNegative)
dec = dec.negate();
dec = adjustDecimalExponent(typeBits, dec);
*stream << dec;
break;
}
// 'bin' contains the value of the input, rounded toward zero in case of decimal
if (originalType == TypeBits::kDouble) {
*stream << bin;
} else if (originalType == TypeBits::kLong) {
// This can only happen for a single number.
invariant(bin == static_cast<double>(std::numeric_limits<long long>::min()));
*stream << std::numeric_limits<long long>::min();
} else {
invariant(originalType == TypeBits::kDecimal && version != KeyString::Version::V0);
const auto roundAwayFromZero = isNegative ? Decimal128::kRoundTowardNegative
: Decimal128::kRoundTowardPositive;
Decimal128 dec(bin, Decimal128::kRoundTo34Digits, roundAwayFromZero);
if (hasDecimalContinuation)
dec = readDecimalContinuation(reader, inverted, dec);
dec = adjustDecimalExponent(typeBits, dec);
*stream << dec;
}
break;
}
case CType::kNumericNegativeSmallMagnitude:
inverted = !inverted;
isNegative = true;
// fallthrough (format is the same as positive, but inverted)
case CType::kNumericPositiveSmallMagnitude: {
const uint8_t originalType = typeBits->readNumeric();
uint64_t encoded = readType<uint64_t>(reader, inverted);
encoded = endian::bigToNative(encoded);
if (version == KeyString::Version::V0) {
// for these, the raw double was stored intact, including sign bit.
invariant(originalType == TypeBits::kDouble);
double d;
memcpy(&d, &encoded, sizeof(d));
*stream << d;
break;
}
switch (encoded >> 62) {
case 0x0: {
// Teeny tiny decimal, smaller magnitude than 2**(-1074)
uint64_t lowbits = readType<uint64_t>(reader, inverted);
lowbits = endian::bigToNative(lowbits);
Decimal128 dec = Decimal128(Decimal128::Value{lowbits, encoded});
dec = adjustDecimalExponent(typeBits, dec);
if (ctype == CType::kNumericNegativeSmallMagnitude)
dec = dec.negate();
*stream << dec;
break;
}
case 0x1:
case 0x2: {
// Tiny double or decimal, magnitude from 2**(-1074) to 2**(-255), exclusive.
// The exponent is shifted by 256 in order to avoid subnormals, which would
// result in less than 15 significant digits. Because 2**(-255) has 179
// decimal digits, no doubles exactly equal decimals, so all decimals have
// a continuation. The bit is still needed for comparison purposes.
bool hasDecimalContinuation = encoded & 1;
encoded -= 1ULL << 62;
encoded >>= 1;
double scaledBin;
memcpy(&scaledBin, &encoded, sizeof(scaledBin));
if (originalType == TypeBits::kDouble) {
invariant(!hasDecimalContinuation);
double bin = scaledBin * kTinyDoubleExponentDownshiftFactor;
*stream << (isNegative ? -bin : bin);
break;
}
invariant(originalType == TypeBits::kDecimal && hasDecimalContinuation);
// If the actual double would be subnormal, scale in decimal domain.
Decimal128 dec;
if (scaledBin < DBL_MIN * kTinyDoubleExponentUpshiftFactor) {
// For conversion from binary->decimal scale away from zero,
// otherwise round toward. Needs to be done consistently in read/write.
Decimal128 scaledDec = Decimal128(scaledBin,
Decimal128::kRoundTo34Digits,
Decimal128::kRoundTowardPositive);
dec = scaledDec.multiply(kTinyDoubleExponentDownshiftFactorAsDecimal,
Decimal128::kRoundTowardZero);
} else {
double bin = scaledBin * kTinyDoubleExponentDownshiftFactor;
dec = Decimal128(
bin, Decimal128::kRoundTo34Digits, Decimal128::kRoundTowardPositive);
}
dec = readDecimalContinuation(reader, inverted, dec);
*stream << adjustDecimalExponent(typeBits, isNegative ? dec.negate() : dec);
break;
}
case 0x3: {
// Small double, 2**(-255) or more in magnitude. Common case.
auto dcm = static_cast<KeyString::DecimalContinuationMarker>(encoded & 3);
encoded >>= 2;
double bin;
memcpy(&bin, &encoded, sizeof(bin));
if (originalType == TypeBits::kDouble) {
invariant(dcm == KeyString::kDCMEqualToDouble);
*stream << (isNegative ? -bin : bin);
break;
}
// Deal with decimal cases
invariant(originalType == TypeBits::kDecimal);
Decimal128 dec;
switch (dcm) {
case KeyString::kDCMEqualToDoubleRoundedUpTo15Digits:
dec = Decimal128(bin,
Decimal128::kRoundTo15Digits,
Decimal128::kRoundTowardPositive);
break;
case KeyString::kDCMEqualToDouble:
dec = Decimal128(bin,
Decimal128::kRoundTo34Digits,
Decimal128::kRoundTowardPositive);
break;
case KeyString::kDCMHasContinuationLessThanDoubleRoundedUpTo15Digits:
case KeyString::kDCMHasContinuationLargerThanDoubleRoundedUpTo15Digits:
// Deal with decimal continuation
dec = Decimal128(bin,
Decimal128::kRoundTo34Digits,
Decimal128::kRoundTowardPositive);
dec = readDecimalContinuation(reader, inverted, dec);
}
*stream << adjustDecimalExponent(typeBits, isNegative ? dec.negate() : dec);
break;
}
default:
MONGO_UNREACHABLE;
}
break;
}
case CType::kNumericNegative8ByteInt:
case CType::kNumericNegative7ByteInt:
case CType::kNumericNegative6ByteInt:
case CType::kNumericNegative5ByteInt:
case CType::kNumericNegative4ByteInt:
case CType::kNumericNegative3ByteInt:
case CType::kNumericNegative2ByteInt:
case CType::kNumericNegative1ByteInt:
inverted = !inverted;
isNegative = true;
// fallthrough (format is the same as positive, but inverted)
case CType::kNumericPositive1ByteInt:
case CType::kNumericPositive2ByteInt:
case CType::kNumericPositive3ByteInt:
case CType::kNumericPositive4ByteInt:
case CType::kNumericPositive5ByteInt:
case CType::kNumericPositive6ByteInt:
case CType::kNumericPositive7ByteInt:
case CType::kNumericPositive8ByteInt: {
const uint8_t originalType = typeBits->readNumeric();
uint64_t encodedIntegerPart = 0;
{
size_t intBytesRemaining = CType::numBytesForInt(ctype);
while (intBytesRemaining--) {
encodedIntegerPart =
(encodedIntegerPart << 8) | readType<uint8_t>(reader, inverted);
}
}
const bool haveFractionalPart = (encodedIntegerPart & 1);
int64_t integerPart = encodedIntegerPart >> 1;
if (!haveFractionalPart) {
if (isNegative)
integerPart = -integerPart;
switch (originalType) {
case TypeBits::kDouble:
*stream << double(integerPart);
break;
case TypeBits::kInt:
*stream << int(integerPart);
break;
case TypeBits::kLong:
*stream << static_cast<long long>(integerPart);
break;
case TypeBits::kDecimal:
*stream << adjustDecimalExponent(typeBits, Decimal128(integerPart));
break;
default:
MONGO_UNREACHABLE;
}
break;
}
// KeyString V0: anything fractional is a double
if (version == KeyString::Version::V0) {
invariant(originalType == TypeBits::kDouble);
const uint64_t exponent = (64 - countLeadingZeros64(integerPart)) - 1;
const size_t fractionalBits = (52 - exponent);
const size_t fractionalBytes = (fractionalBits + 7) / 8;
// build up the bits of a double here.
uint64_t doubleBits = integerPart << fractionalBits;
doubleBits &= ~(1ULL << 52); // clear implicit leading 1
doubleBits |= (exponent + 1023 /*bias*/) << 52;
if (isNegative) {
doubleBits |= (1ULL << 63); // sign bit
}
for (size_t i = 0; i < fractionalBytes; i++) {
// fold in the fractional bytes
const uint64_t byte = readType<uint8_t>(reader, inverted);
doubleBits |= (byte << ((fractionalBytes - i - 1) * 8));
}
double number;
memcpy(&number, &doubleBits, sizeof(number));
*stream << number;
break;
}
// KeyString V1: all numeric values with fractions have at least 8 bytes.
// Start with integer part, and read until we have a full 8 bytes worth of data.
const size_t fracBytes = 8 - CType::numBytesForInt(ctype);
uint64_t encodedFraction = integerPart;
for (int fracBytesRemaining = fracBytes; fracBytesRemaining; fracBytesRemaining--)
encodedFraction = (encodedFraction << 8) | readType<uint8_t>(reader, inverted);
// Zero out the DCM and convert the whole binary fraction
double bin = static_cast<double>(encodedFraction & ~3ULL) * kInvPow256[fracBytes];
if (originalType == TypeBits::kDouble) {
*stream << (isNegative ? -bin : bin);
break;
}
// The two lsb's are the DCM, except for the 8-byte case, where it's already known
KeyString::DecimalContinuationMarker dcm = fracBytes
? static_cast<KeyString::DecimalContinuationMarker>(encodedFraction & 3)
: KeyString::kDCMHasContinuationLargerThanDoubleRoundedUpTo15Digits;
// Deal with decimal cases
invariant(originalType == TypeBits::kDecimal);
Decimal128 dec;
switch (dcm) {
case KeyString::kDCMEqualToDoubleRoundedUpTo15Digits:
dec = Decimal128(
bin, Decimal128::kRoundTo15Digits, Decimal128::kRoundTowardPositive);
break;
case KeyString::kDCMEqualToDouble:
dec = Decimal128(
bin, Decimal128::kRoundTo34Digits, Decimal128::kRoundTowardPositive);
break;
default:
// Deal with decimal continuation
dec = integerPart > kMaxIntForDouble
? Decimal128(integerPart)
: Decimal128(
bin, Decimal128::kRoundTo34Digits, Decimal128::kRoundTowardPositive);
dec = readDecimalContinuation(reader, inverted, dec);
}
*stream << adjustDecimalExponent(typeBits, isNegative ? dec.negate() : dec);
break;
}
default:
invariant(false);
}
}
Decimal128 adjustDecimalExponent(TypeBits::Reader* typeBits, Decimal128 num) {
// The last 6 bits of the exponent are stored in the type bits. First figure out if the exponent
// of 'num' is too high or too low. Even for a non-zero number with only a single significant
// digit, there are only 34 possiblities while exponents with the given low 6 bits are spaced
// (1 << 6) == 64 apart. This is not quite enough to figure out whether to shift the expnent up
// or down when the difference is for example 32 in either direction. However, if the high part
// of the coefficient is zero, the coefficient can only be scaled down by up to 1E19 (increasing
// the exponent by 19), as 2**64 < 1E20. If scaling down to match the higher exponent isn't
// possible, we must be able to scale up. Scaling always must be exact and not change the value.
const uint32_t kMaxExpAdjust = 33;
const uint32_t kMaxExpIncrementForZeroHighCoefficient = 19;
dassert(!num.isZero());
const uint32_t origExp = num.getBiasedExponent();
const uint8_t storedBits = typeBits->readDecimalExponent();
uint32_t highExp = (origExp & ~KeyString::TypeBits::kStoredDecimalExponentMask) | storedBits;
// Start by determining an exponent that's not less than num's and matches the stored bits.
if (highExp < origExp)
highExp += (1U << KeyString::TypeBits::kStoredDecimalExponentBits);
// This must be the right exponent, as no scaling is required.
if (highExp == origExp)
return num;
// For increasing the exponent, quantize the existing number. This must be
// exact, as the value stays in the same cohort.
if (highExp <= origExp + kMaxExpAdjust &&
(num.getCoefficientHigh() != 0 ||
highExp <= origExp + kMaxExpIncrementForZeroHighCoefficient)) {
// Increase exponent and decrease (right shift) coefficient.
uint32_t flags = Decimal128::SignalingFlag::kNoFlag;
auto quantized = num.quantize(Decimal128(0, highExp, 0, 1), &flags);
invariant(flags == Decimal128::SignalingFlag::kNoFlag); // must be exact
num = quantized;
} else {
// Decrease exponent and increase (left shift) coefficient.
uint32_t lowExp = highExp - (1U << KeyString::TypeBits::kStoredDecimalExponentBits);
invariant(lowExp >= origExp - kMaxExpAdjust);
num = num.add(Decimal128(0, lowExp, 0, 0));
}
dassert((num.getBiasedExponent() & KeyString::TypeBits::kStoredDecimalExponentMask) ==
(highExp & KeyString::TypeBits::kStoredDecimalExponentMask));
return num;
}
} // namespace
BSONObj KeyString::toBson(const char* buffer, size_t len, Ordering ord, const TypeBits& typeBits) {
BSONObjBuilder builder;
BufReader reader(buffer, len);
TypeBits::Reader typeBitsReader(typeBits);
for (int i = 0; reader.remaining(); i++) {
const bool invert = (ord.get(i) == -1);
uint8_t ctype = readType<uint8_t>(&reader, invert);
if (ctype == kLess || ctype == kGreater) {
// This was just a discriminator which is logically part of the previous field. This
// will only be encountered on queries, not in the keys stored in an index.
// Note: this should probably affect the BSON key name of the last field, but it
// must be read *after* the value so it isn't possible.
ctype = readType<uint8_t>(&reader, invert);
}
if (ctype == kEnd)
break;
toBsonValue(ctype, &reader, &typeBitsReader, invert, typeBits.version, &(builder << ""));
}
return builder.obj();
}
BSONObj KeyString::toBson(StringData data, Ordering ord, const TypeBits& typeBits) {
return toBson(data.rawData(), data.size(), ord, typeBits);
}
RecordId KeyString::decodeRecordIdAtEnd(const void* bufferRaw, size_t bufSize) {
invariant(bufSize >= 2); // smallest possible encoding of a RecordId.
const unsigned char* buffer = static_cast<const unsigned char*>(bufferRaw);
const unsigned char lastByte = *(buffer + bufSize - 1);
const size_t ridSize = 2 + (lastByte & 0x7); // stored in low 3 bits.
invariant(bufSize >= ridSize);
const unsigned char* firstBytePtr = buffer + bufSize - ridSize;
BufReader reader(firstBytePtr, ridSize);
return decodeRecordId(&reader);
}
RecordId KeyString::decodeRecordId(BufReader* reader) {
const uint8_t firstByte = readType<uint8_t>(reader, false);
const uint8_t numExtraBytes = firstByte >> 5; // high 3 bits in firstByte
uint64_t repr = firstByte & 0x1f; // low 5 bits in firstByte
for (int i = 0; i < numExtraBytes; i++) {
repr = (repr << 8) | readType<uint8_t>(reader, false);
}
const uint8_t lastByte = readType<uint8_t>(reader, false);
invariant((lastByte & 0x7) == numExtraBytes);
repr = (repr << 5) | (lastByte >> 3); // fold in high 5 bits of last byte
return RecordId(repr);
}
// ----------------------------------------------------------------------
// --------- MISC class utils --------
// ----------------------------------------------------------------------
std::string KeyString::toString() const {
return toHex(getBuffer(), getSize());
}
int KeyString::compare(const KeyString& other) const {
int a = getSize();
int b = other.getSize();
int min = std::min(a, b);
int cmp = memcmp(getBuffer(), other.getBuffer(), min);
if (cmp) {
if (cmp < 0)
return -1;
return 1;
}
// keys match
if (a == b)
return 0;
return a < b ? -1 : 1;
}
void KeyString::TypeBits::resetFromBuffer(BufReader* reader) {
if (!reader->remaining()) {
// This means AllZeros state was encoded as an empty buffer.
reset();
return;
}
const uint8_t firstByte = readType<uint8_t>(reader, false);
if (firstByte & 0x80) {
// firstByte is the size byte.
_isAllZeros = false; // it wouldn't be encoded like this if it was.
_buf[0] = firstByte;
const uint8_t remainingBytes = getSizeByte();
memcpy(_buf + 1, reader->skip(remainingBytes), remainingBytes);
return;
}
// In remaining cases, firstByte is the only byte.
if (firstByte == 0) {
// This means AllZeros state was encoded as a single 0 byte.
reset();
return;
}
_isAllZeros = false;
setSizeByte(1);
_buf[1] = firstByte;
}
void KeyString::TypeBits::appendBit(uint8_t oneOrZero) {
dassert(oneOrZero == 0 || oneOrZero == 1);
if (oneOrZero == 1)
_isAllZeros = false;
const uint8_t byte = (_curBit / 8) + 1;
const uint8_t offsetInByte = _curBit % 8;
if (offsetInByte == 0) {
setSizeByte(byte);
_buf[byte] = oneOrZero; // zeros bits 1-7
} else {
_buf[byte] |= (oneOrZero << offsetInByte);
}
_curBit++;
}
void KeyString::TypeBits::appendZero(uint8_t zeroType) {
switch (zeroType) {
// 2-bit encodings
case kInt:
case kDouble:
case kLong:
appendBit(zeroType >> 1);
appendBit(zeroType & 1);
break;
case kNegativeDoubleZero:
if (version == Version::V0) {
appendBit(kV0NegativeDoubleZero >> 1);
appendBit(kV0NegativeDoubleZero & 1);
break;
}
zeroType = kV1NegativeDoubleZero;
// fallthrough for 5-bit encodings
case kDecimalZero0xxx:
case kDecimalZero1xxx:
case kDecimalZero2xxx:
case kDecimalZero3xxx:
case kDecimalZero4xxx:
case kDecimalZero5xxx:
// first two bits output are ones
dassert((zeroType >> 3) == 3);
for (int bitPos = 4; bitPos >= 0; bitPos--)
appendBit((zeroType >> bitPos) & 1);
break;
default:
MONGO_UNREACHABLE;
}
}
void KeyString::TypeBits::appendDecimalZero(uint32_t whichZero) {
invariant((whichZero >> 12) <= kDecimalZero5xxx - kDecimalZero0xxx);
appendZero((whichZero >> 12) + kDecimalZero0xxx);
for (int bitPos = 11; bitPos >= 0; bitPos--)
appendBit((whichZero >> bitPos) & 1);
}
void KeyString::TypeBits::appendDecimalExponent(uint8_t storedExponentBits) {
invariant(storedExponentBits < (1U << kStoredDecimalExponentBits));
for (int bitPos = kStoredDecimalExponentBits - 1; bitPos >= 0; bitPos--)
appendBit((storedExponentBits >> bitPos) & 1);
}
uint8_t KeyString::TypeBits::Reader::readBit() {
if (_typeBits._isAllZeros)
return 0;
const uint8_t byte = (_curBit / 8) + 1;
const uint8_t offsetInByte = _curBit % 8;
_curBit++;
dassert(byte <= _typeBits.getSizeByte());
return (_typeBits._buf[byte] & (1 << offsetInByte)) ? 1 : 0;
}
uint8_t KeyString::TypeBits::Reader::readZero() {
uint8_t res = readNumeric();
// For keyString v1, negative and decimal zeros require at least 3 more bits.
if (_typeBits.version != Version::V0 && res == kSpecialZeroPrefix) {
res = (res << 1) | readBit();
res = (res << 1) | readBit();
res = (res << 1) | readBit();
}
if (res == kV1NegativeDoubleZero || res == kV0NegativeDoubleZero)
res = kNegativeDoubleZero;
return res;
}
uint32_t KeyString::TypeBits::Reader::readDecimalZero(uint8_t zeroType) {
uint32_t whichZero = zeroType - TypeBits::kDecimalZero0xxx;
for (int bitPos = 11; bitPos >= 0; bitPos--)
whichZero = (whichZero << 1) | readBit();
return whichZero;
}
uint8_t KeyString::TypeBits::Reader::readDecimalExponent() {
uint8_t exponentBits = 0;
for (int bitPos = kStoredDecimalExponentBits - 1; bitPos >= 0; bitPos--)
exponentBits = (exponentBits << 1) | readBit();
return exponentBits;
}
} // namespace mongo
|