1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
|
/**
* Copyright (C) 2018-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#include "mongo/platform/basic.h"
#include <algorithm>
#include <boost/optional/optional.hpp>
#include <boost/optional/optional_io.hpp>
#include "mongo/db/client.h"
#include "mongo/db/clientcursor.h"
#include "mongo/db/cursor_manager.h"
#include "mongo/db/cursor_server_params.h"
#include "mongo/db/exec/queued_data_stage.h"
#include "mongo/db/exec/working_set.h"
#include "mongo/db/exec/working_set_common.h"
#include "mongo/db/operation_context.h"
#include "mongo/db/query/plan_executor_factory.h"
#include "mongo/db/query/query_test_service_context.h"
#include "mongo/db/repl/read_concern_level.h"
#include "mongo/dbtests/dbtests.h"
#include "mongo/unittest/unittest.h"
#include "mongo/util/clock_source_mock.h"
#include "mongo/util/scopeguard.h"
namespace mongo {
namespace {
const NamespaceString kTestNss{"test.collection"};
class CursorManagerTest : public unittest::Test {
public:
CursorManagerTest()
: _queryServiceContext(std::make_unique<QueryTestServiceContext>()),
_opCtx(_queryServiceContext->makeOperationContext()) {
_opCtx->getServiceContext()->setPreciseClockSource(std::make_unique<ClockSourceMock>());
_clock =
static_cast<ClockSourceMock*>(_opCtx->getServiceContext()->getPreciseClockSource());
}
std::unique_ptr<PlanExecutor, PlanExecutor::Deleter> makeFakePlanExecutor() {
return makeFakePlanExecutor(_opCtx.get());
}
std::unique_ptr<PlanExecutor, PlanExecutor::Deleter> makeFakePlanExecutor(
OperationContext* opCtx) {
// Create a mock ExpressionContext.
auto expCtx = make_intrusive<ExpressionContext>(opCtx, nullptr, kTestNss);
auto workingSet = std::make_unique<WorkingSet>();
auto queuedDataStage = std::make_unique<QueuedDataStage>(expCtx.get(), workingSet.get());
return unittest::assertGet(
plan_executor_factory::make(expCtx,
std::move(workingSet),
std::move(queuedDataStage),
nullptr,
PlanYieldPolicy::YieldPolicy::NO_YIELD,
kTestNss));
}
ClientCursorParams makeParams(OperationContext* opCtx) {
return {
makeFakePlanExecutor(opCtx),
kTestNss,
{},
opCtx->getWriteConcern(),
repl::ReadConcernArgs(repl::ReadConcernLevel::kLocalReadConcern),
BSONObj(),
PrivilegeVector(),
};
}
ClientCursorPin makeCursor(OperationContext* opCtx) {
return useCursorManager()->registerCursor(opCtx, makeParams(opCtx));
}
ClockSourceMock* useClock() {
return _clock;
}
CursorManager* useCursorManager() {
return &_cursorManager;
}
protected:
std::unique_ptr<QueryTestServiceContext> _queryServiceContext;
ServiceContext::UniqueOperationContext _opCtx;
private:
ClockSourceMock* _clock;
CursorManager _cursorManager;
};
class CursorManagerTestCustomOpCtx : public CursorManagerTest {
void setUp() override {
_queryServiceContext->getClient()->resetOperationContext();
}
void tearDown() override {
_queryServiceContext->getClient()->setOperationContext(_opCtx.get());
}
};
/**
* Test that an attempt to kill a pinned cursor succeeds.
*/
TEST_F(CursorManagerTest, ShouldBeAbleToKillPinnedCursor) {
CursorManager* cursorManager = useCursorManager();
const bool shouldAudit = false;
OperationContext* const pinningOpCtx = _opCtx.get();
auto cursorPin = cursorManager->registerCursor(
pinningOpCtx,
{makeFakePlanExecutor(),
kTestNss,
{},
{},
repl::ReadConcernArgs(repl::ReadConcernLevel::kLocalReadConcern),
BSONObj(),
PrivilegeVector()});
auto cursorId = cursorPin.getCursor()->cursorid();
ASSERT_OK(cursorManager->killCursor(_opCtx.get(), cursorId, shouldAudit));
// The original operation should have been interrupted since the cursor was pinned.
ASSERT_EQ(pinningOpCtx->checkForInterruptNoAssert(), ErrorCodes::CursorKilled);
}
/**
* Test that an attempt to kill a pinned cursor succeeds with more than one client.
*/
TEST_F(CursorManagerTest, ShouldBeAbleToKillPinnedCursorMultiClient) {
CursorManager* cursorManager = useCursorManager();
const bool shouldAudit = false;
OperationContext* const pinningOpCtx = _opCtx.get();
// Pin the cursor from one client.
auto cursorPin = cursorManager->registerCursor(
pinningOpCtx,
{makeFakePlanExecutor(),
kTestNss,
{},
{},
repl::ReadConcernArgs(repl::ReadConcernLevel::kLocalReadConcern),
BSONObj(),
PrivilegeVector()});
auto cursorId = cursorPin.getCursor()->cursorid();
// Set up another client to kill the cursor.
auto killCursorClientOwned = getGlobalServiceContext()->makeClient("killCursorClient");
// Keep around a raw pointer for when we transfer ownership of killingClientOwned to the global
// current client.
Client* killCursorClient = killCursorClientOwned.get();
// Need to swap the current client in order to make an operation context.
auto pinningClient = Client::releaseCurrent();
Client::setCurrent(std::move(killCursorClientOwned));
auto killCursorOpCtx = killCursorClient->makeOperationContext();
invariant(killCursorOpCtx);
ASSERT_OK(cursorManager->killCursor(killCursorOpCtx.get(), cursorId, shouldAudit));
// The original operation should have been interrupted since the cursor was pinned.
ASSERT_EQ(pinningOpCtx->checkForInterruptNoAssert(), ErrorCodes::CursorKilled);
}
/**
* Test that client cursors time out and get deleted.
*/
TEST_F(CursorManagerTest, InactiveCursorShouldTimeout) {
CursorManager* cursorManager = useCursorManager();
auto clock = useClock();
cursorManager->registerCursor(_opCtx.get(),
{makeFakePlanExecutor(),
NamespaceString{"test.collection"},
{},
{},
repl::ReadConcernArgs(repl::ReadConcernLevel::kLocalReadConcern),
BSONObj(),
PrivilegeVector()});
ASSERT_EQ(0UL, cursorManager->timeoutCursors(_opCtx.get(), Date_t()));
clock->advance(getDefaultCursorTimeoutMillis());
ASSERT_EQ(1UL, cursorManager->timeoutCursors(_opCtx.get(), clock->now()));
ASSERT_EQ(0UL, cursorManager->numCursors());
cursorManager->registerCursor(_opCtx.get(),
{makeFakePlanExecutor(),
NamespaceString{"test.collection"},
{},
{},
repl::ReadConcernArgs(repl::ReadConcernLevel::kLocalReadConcern),
BSONObj(),
PrivilegeVector()});
ASSERT_EQ(1UL, cursorManager->timeoutCursors(_opCtx.get(), Date_t::max()));
ASSERT_EQ(0UL, cursorManager->numCursors());
}
/**
* Test that pinned cursors do not get timed out.
*/
TEST_F(CursorManagerTest, InactivePinnedCursorShouldNotTimeout) {
CursorManager* cursorManager = useCursorManager();
auto clock = useClock();
auto cursorPin = cursorManager->registerCursor(
_opCtx.get(),
{makeFakePlanExecutor(),
NamespaceString{"test.collection"},
{},
{},
repl::ReadConcernArgs(repl::ReadConcernLevel::kLocalReadConcern),
BSONObj(),
PrivilegeVector()});
// The pin is still in scope, so it should not time out.
clock->advance(getDefaultCursorTimeoutMillis());
ASSERT_EQ(0UL, cursorManager->timeoutCursors(_opCtx.get(), clock->now()));
}
/**
* A cursor can be left in the CursorManager in a killed state when a pinned cursor is interrupted
* with an unusual error code (a code other than ErrorCodes::Interrupted or
* ErrorCodes::CursorKilled). Verify that such cursors get deregistered and deleted on an attempt to
* pin.
*/
TEST_F(CursorManagerTest, MarkedAsKilledCursorsShouldBeDeletedOnCursorPin) {
CursorManager* cursorManager = useCursorManager();
auto cursorPin = cursorManager->registerCursor(
_opCtx.get(),
{makeFakePlanExecutor(),
NamespaceString{"test.collection"},
{},
{},
repl::ReadConcernArgs(repl::ReadConcernLevel::kLocalReadConcern),
BSONObj(),
PrivilegeVector()});
auto cursorId = cursorPin->cursorid();
// A cursor will stay alive, but be marked as killed, if it is interrupted with a code other
// than ErrorCodes::Interrupted or ErrorCodes::CursorKilled and then unpinned.
_opCtx->markKilled(ErrorCodes::InternalError);
cursorPin.release();
// The cursor should still be present in the manager.
ASSERT_EQ(1UL, cursorManager->numCursors());
// Pinning the cursor should fail with the same error code that interrupted the OpCtx. The
// cursor should no longer be present in the manager.
ASSERT_EQ(cursorManager->pinCursor(_opCtx.get(), cursorId).getStatus(),
ErrorCodes::InternalError);
ASSERT_EQ(0UL, cursorManager->numCursors());
}
/**
* Test that client cursors which have been marked as killed time out and get deleted.
*/
TEST_F(CursorManagerTest, InactiveKilledCursorsShouldTimeout) {
CursorManager* cursorManager = useCursorManager();
auto clock = useClock();
auto cursorPin = cursorManager->registerCursor(
_opCtx.get(),
{makeFakePlanExecutor(),
NamespaceString{"test.collection"},
{},
{},
repl::ReadConcernArgs(repl::ReadConcernLevel::kLocalReadConcern),
BSONObj(),
PrivilegeVector()});
// A cursor will stay alive, but be marked as killed, if it is interrupted with a code other
// than ErrorCodes::Interrupted or ErrorCodes::CursorKilled and then unpinned.
_opCtx->markKilled(ErrorCodes::InternalError);
cursorPin.release();
// The cursor should still be present in the manager.
ASSERT_EQ(1UL, cursorManager->numCursors());
// Advance the clock to simulate time passing, and verify that the cursor times out.
clock->advance(getDefaultCursorTimeoutMillis());
ASSERT_EQ(1UL, cursorManager->timeoutCursors(_opCtx.get(), clock->now()));
ASSERT_EQ(0UL, cursorManager->numCursors());
}
/**
* Test that using a cursor updates its time of last use.
*/
TEST_F(CursorManagerTest, UsingACursorShouldUpdateTimeOfLastUse) {
CursorManager* cursorManager = useCursorManager();
auto clock = useClock();
// Register a cursor which we will look at again.
auto cursorPin = cursorManager->registerCursor(
_opCtx.get(),
{makeFakePlanExecutor(),
kTestNss,
{},
{},
repl::ReadConcernArgs(repl::ReadConcernLevel::kLocalReadConcern),
BSONObj(),
PrivilegeVector()});
auto usedCursorId = cursorPin.getCursor()->cursorid();
cursorPin.release();
// Register a cursor to immediately forget about, to make sure it will time out on a normal
// schedule.
cursorManager->registerCursor(_opCtx.get(),
{makeFakePlanExecutor(),
kTestNss,
{},
{},
repl::ReadConcernArgs(repl::ReadConcernLevel::kLocalReadConcern),
BSONObj(),
PrivilegeVector()});
// Advance the clock to simulate time passing.
clock->advance(Milliseconds(1));
// Touch the cursor with id 'usedCursorId' to advance its time of last use.
cursorManager->pinCursor(_opCtx.get(), usedCursorId).status_with_transitional_ignore();
// We should be able to time out the unused cursor, but the one we used should stay alive.
ASSERT_EQ(2UL, cursorManager->numCursors());
clock->advance(getDefaultCursorTimeoutMillis() - Milliseconds(1));
ASSERT_EQ(1UL, cursorManager->timeoutCursors(_opCtx.get(), clock->now()));
ASSERT_EQ(1UL, cursorManager->numCursors());
// We should be able to time out the used cursor after one more millisecond.
clock->advance(Milliseconds(1));
ASSERT_EQ(1UL, cursorManager->timeoutCursors(_opCtx.get(), clock->now()));
ASSERT_EQ(0UL, cursorManager->numCursors());
}
/**
* Test that a cursor cannot be timed out while in use, and that it's time of last use is updated
* when it is unpinned.
*/
TEST_F(CursorManagerTest, CursorShouldNotTimeOutUntilIdleForLongEnoughAfterBeingUnpinned) {
CursorManager* cursorManager = useCursorManager();
auto clock = useClock();
// Register a cursor which we will look at again.
auto cursorPin = cursorManager->registerCursor(
_opCtx.get(),
{makeFakePlanExecutor(),
kTestNss,
{},
{},
repl::ReadConcernArgs(repl::ReadConcernLevel::kLocalReadConcern),
BSONObj(),
PrivilegeVector()});
// Advance the clock to simulate time passing.
clock->advance(getDefaultCursorTimeoutMillis() + Milliseconds(1));
// Make sure the pinned cursor does not time out, before or after unpinning it.
ASSERT_EQ(1UL, cursorManager->numCursors());
ASSERT_EQ(0UL, cursorManager->timeoutCursors(_opCtx.get(), clock->now()));
ASSERT_EQ(1UL, cursorManager->numCursors());
cursorPin.release();
ASSERT_EQ(1UL, cursorManager->numCursors());
ASSERT_EQ(0UL, cursorManager->timeoutCursors(_opCtx.get(), clock->now()));
ASSERT_EQ(1UL, cursorManager->numCursors());
// Advance the clock to simulate more time passing, then assert that the now-inactive cursor
// times out.
clock->advance(getDefaultCursorTimeoutMillis() + Milliseconds(1));
ASSERT_EQ(1UL, cursorManager->timeoutCursors(_opCtx.get(), clock->now()));
ASSERT_EQ(0UL, cursorManager->numCursors());
}
/**
* Test that cursors inherit the logical session id from their operation context
*/
TEST_F(CursorManagerTestCustomOpCtx, LogicalSessionIdOnOperationCtxTest) {
// Cursors created on an op ctx without a session id have no session id.
{
auto opCtx = _queryServiceContext->makeOperationContext();
auto pinned = makeCursor(opCtx.get());
ASSERT_EQUALS(pinned.getCursor()->getSessionId(), boost::none);
}
// Cursors created on an op ctx with a session id have a session id.
{
auto lsid = makeLogicalSessionIdForTest();
auto opCtx2 = _queryServiceContext->makeOperationContext(lsid);
auto pinned2 = makeCursor(opCtx2.get());
ASSERT_EQUALS(pinned2.getCursor()->getSessionId(), lsid);
}
}
/**
* Test that a manager whose cursors do not have sessions does not return them.
*/
TEST_F(CursorManagerTestCustomOpCtx, CursorsWithoutSessions) {
// Add a cursor with no session to the cursor manager.
auto opCtx = _queryServiceContext->makeOperationContext();
auto pinned = makeCursor(opCtx.get());
ASSERT_EQUALS(pinned.getCursor()->getSessionId(), boost::none);
// Retrieve all sessions active in manager - set should be empty.
LogicalSessionIdSet lsids;
useCursorManager()->appendActiveSessions(&lsids);
ASSERT(lsids.empty());
}
/**
* Test a manager that has one cursor running inside of a session.
*/
TEST_F(CursorManagerTestCustomOpCtx, OneCursorWithASession) {
// Add a cursor with a session to the cursor manager.
auto lsid = makeLogicalSessionIdForTest();
auto opCtx = _queryServiceContext->makeOperationContext(lsid);
auto pinned = makeCursor(opCtx.get());
// Retrieve all sessions active in manager - set should contain just lsid.
LogicalSessionIdSet lsids;
useCursorManager()->appendActiveSessions(&lsids);
ASSERT_EQ(lsids.size(), size_t(1));
ASSERT(lsids.find(lsid) != lsids.end());
// Retrieve all cursors for this lsid - should be just ours.
auto cursors = useCursorManager()->getCursorsForSession(lsid);
ASSERT_EQ(cursors.size(), size_t(1));
auto cursorId = pinned.getCursor()->cursorid();
ASSERT(cursors.find(cursorId) != cursors.end());
// Remove the cursor from the manager.
pinned.release();
ASSERT_OK(useCursorManager()->killCursor(opCtx.get(), cursorId, false));
// There should be no more cursor entries by session id.
LogicalSessionIdSet sessions;
useCursorManager()->appendActiveSessions(&sessions);
ASSERT(sessions.empty());
ASSERT(useCursorManager()->getCursorsForSession(lsid).empty());
}
/**
* Test a manager with multiple cursors running inside of the same session.
*/
TEST_F(CursorManagerTestCustomOpCtx, MultipleCursorsWithSameSession) {
// Add two cursors on the same session to the cursor manager.
auto lsid = makeLogicalSessionIdForTest();
auto opCtx = _queryServiceContext->makeOperationContext(lsid);
auto pinned = makeCursor(opCtx.get());
auto pinned2 = makeCursor(opCtx.get());
auto cursorId1 = pinned.getCursor()->cursorid();
auto cursorId2 = pinned2.getCursor()->cursorid();
// Retrieve all sessions - set should contain just lsid.
stdx::unordered_set<LogicalSessionId, LogicalSessionIdHash> lsids;
useCursorManager()->appendActiveSessions(&lsids);
ASSERT_EQ(lsids.size(), size_t(1));
ASSERT(lsids.find(lsid) != lsids.end());
// Retrieve all cursors for session - should be both cursors.
auto cursors = useCursorManager()->getCursorsForSession(lsid);
ASSERT_EQ(cursors.size(), size_t(2));
ASSERT(cursors.find(cursorId1) != cursors.end());
ASSERT(cursors.find(cursorId2) != cursors.end());
// Remove one cursor from the manager.
pinned.release();
ASSERT_OK(useCursorManager()->killCursor(opCtx.get(), cursorId1, false));
// Should still be able to retrieve the session.
lsids.clear();
useCursorManager()->appendActiveSessions(&lsids);
ASSERT_EQ(lsids.size(), size_t(1));
ASSERT(lsids.find(lsid) != lsids.end());
// Should still be able to retrieve remaining cursor by session.
cursors = useCursorManager()->getCursorsForSession(lsid);
ASSERT_EQ(cursors.size(), size_t(1));
ASSERT(cursors.find(cursorId2) != cursors.end());
}
/**
* Test a manager with multiple cursors running inside of different sessions.
*/
TEST_F(CursorManagerTestCustomOpCtx, MultipleCursorsMultipleSessions) {
auto lsid1 = makeLogicalSessionIdForTest();
auto lsid2 = makeLogicalSessionIdForTest();
CursorId cursor1;
CursorId cursor2;
// Cursor with session 1.
{
auto opCtx1 = _queryServiceContext->makeOperationContext(lsid1);
cursor1 = makeCursor(opCtx1.get()).getCursor()->cursorid();
}
// Cursor with session 2.
{
auto opCtx2 = _queryServiceContext->makeOperationContext(lsid2);
cursor2 = makeCursor(opCtx2.get()).getCursor()->cursorid();
}
// Cursor with no session.
{
auto opCtx3 = _queryServiceContext->makeOperationContext();
makeCursor(opCtx3.get()).getCursor();
}
// Retrieve all sessions - should be both lsids.
LogicalSessionIdSet lsids;
useCursorManager()->appendActiveSessions(&lsids);
ASSERT_EQ(lsids.size(), size_t(2));
ASSERT(lsids.find(lsid1) != lsids.end());
ASSERT(lsids.find(lsid2) != lsids.end());
// Retrieve cursors for each session - should be just one.
auto cursors1 = useCursorManager()->getCursorsForSession(lsid1);
ASSERT_EQ(cursors1.size(), size_t(1));
ASSERT(cursors1.find(cursor1) != cursors1.end());
auto cursors2 = useCursorManager()->getCursorsForSession(lsid2);
ASSERT_EQ(cursors2.size(), size_t(1));
ASSERT(cursors2.find(cursor2) != cursors2.end());
}
/**
* Test that a CursorManager is registered with the global ServiceContext.
*/
TEST(CursorManagerTest, RegisteredWithGlobalServiceContext) {
CursorManager* cursorManager = CursorManager::get(getGlobalServiceContext());
ASSERT(cursorManager);
}
/**
* Test that a CursorManager is registered with a custom ServiceContext.
*/
TEST_F(CursorManagerTest, RegisteredWithCustomServiceContext) {
CursorManager* cursorManager = CursorManager::get(_queryServiceContext->getServiceContext());
ASSERT(cursorManager);
}
/**
* Test that a CursorManager is accessible via an OperationContext.
*/
TEST_F(CursorManagerTest, CanAccessFromOperationContext) {
CursorManager* cursorManager = CursorManager::get(_opCtx.get());
ASSERT(cursorManager);
}
TEST_F(CursorManagerTestCustomOpCtx, CursorsWithoutOperationKeys) {
auto opCtx = _queryServiceContext->makeOperationContext();
auto pinned = makeCursor(opCtx.get());
ASSERT_EQUALS(pinned.getCursor()->getOperationKey(), boost::none);
}
TEST_F(CursorManagerTestCustomOpCtx, OneCursorWithAnOperationKey) {
auto opKey = UUID::gen();
auto opCtx = _queryServiceContext->makeOperationContext();
opCtx->setOperationKey(opKey);
auto pinned = makeCursor(opCtx.get());
auto cursors = useCursorManager()->getCursorsForOpKeys({opKey});
ASSERT_EQ(cursors.size(), size_t(1));
auto cursorId = pinned.getCursor()->cursorid();
ASSERT(cursors.find(cursorId) != cursors.end());
// Remove the cursor from the manager and verify that we can't retrieve it.
pinned.release();
ASSERT_OK(useCursorManager()->killCursor(opCtx.get(), cursorId, false));
ASSERT(useCursorManager()->getCursorsForOpKeys({opKey}).empty());
}
TEST_F(CursorManagerTestCustomOpCtx, MultipleCursorsMultipleOperationKeys) {
auto opKey1 = UUID::gen();
auto opKey2 = UUID::gen();
CursorId cursor1;
CursorId cursor2;
// Cursor with operationKey 1.
{
auto opCtx1 = _queryServiceContext->makeOperationContext();
opCtx1->setOperationKey(opKey1);
cursor1 = makeCursor(opCtx1.get()).getCursor()->cursorid();
}
// Cursor with operationKey 2.
{
auto opCtx2 = _queryServiceContext->makeOperationContext();
opCtx2->setOperationKey(opKey2);
cursor2 = makeCursor(opCtx2.get()).getCursor()->cursorid();
}
// Cursor with no operation key.
{
auto opCtx3 = _queryServiceContext->makeOperationContext();
makeCursor(opCtx3.get()).getCursor();
}
// Retrieve cursors for each operation key - should be one for each.
auto cursors1 = useCursorManager()->getCursorsForOpKeys({opKey1});
ASSERT_EQ(cursors1.size(), size_t(1));
ASSERT(cursors1.find(cursor1) != cursors1.end());
auto cursors2 = useCursorManager()->getCursorsForOpKeys({opKey2});
ASSERT_EQ(cursors2.size(), size_t(1));
ASSERT(cursors2.find(cursor2) != cursors2.end());
// Retrieve cursors for both operation keys.
auto cursors = useCursorManager()->getCursorsForOpKeys({opKey1, opKey2});
ASSERT_EQ(cursors.size(), size_t(2));
ASSERT(cursors.find(cursor1) != cursors.end());
ASSERT(cursors.find(cursor2) != cursors.end());
}
TEST_F(CursorManagerTestCustomOpCtx, TimedOutCursorShouldNotBeReturnedForOpKeyLookup) {
auto opKey = UUID::gen();
auto opCtx = _queryServiceContext->makeOperationContext();
opCtx->setOperationKey(opKey);
auto clock = useClock();
auto cursor = makeCursor(opCtx.get());
ASSERT_EQ(1UL, useCursorManager()->numCursors());
ASSERT_EQ(0UL, useCursorManager()->timeoutCursors(opCtx.get(), Date_t()));
// Advance the clock and verify that the cursor times out.
cursor.release();
clock->advance(getDefaultCursorTimeoutMillis() + Milliseconds(1));
ASSERT_EQ(1UL, useCursorManager()->timeoutCursors(opCtx.get(), clock->now()));
ASSERT_EQ(0UL, useCursorManager()->numCursors());
// Verify that the timed out cursor is not returned when looking up by OperationKey.
auto cursors = useCursorManager()->getCursorsForOpKeys({opKey});
ASSERT_EQ(cursors.size(), size_t(0));
}
TEST_F(CursorManagerTestCustomOpCtx, CursorsMarkedAsKilledAreReturnedForOpKeyLookup) {
auto opKey = UUID::gen();
auto opCtx = _queryServiceContext->makeOperationContext();
opCtx->setOperationKey(opKey);
auto cursor = makeCursor(opCtx.get());
// Mark the OperationContext as killed.
{
stdx::lock_guard<Client> lkClient(*opCtx->getClient());
// A cursor will stay alive, but be marked as killed, if it is interrupted with a code other
// than ErrorCodes::Interrupted or ErrorCodes::CursorKilled and then unpinned.
opCtx->getServiceContext()->killOperation(lkClient, opCtx.get(), ErrorCodes::InternalError);
}
cursor.release();
// The cursor should still be present in the manager.
ASSERT_EQ(1UL, useCursorManager()->numCursors());
// Verify that the killed cursor is still returned when looking up by OperationKey.
auto cursors = useCursorManager()->getCursorsForOpKeys({opKey});
ASSERT_EQ(cursors.size(), size_t(1));
}
} // namespace
} // namespace mongo
|