summaryrefslogtreecommitdiff
path: root/src/mongo/util/future_impl.h
blob: ac9c4dd1fc2cb66734cac26ce7aeb89099fe4fd8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#pragma once

#include <boost/intrusive_ptr.hpp>
#include <boost/optional.hpp>
#include <forward_list>
#include <type_traits>

#include "mongo/base/checked_cast.h"
#include "mongo/base/status.h"
#include "mongo/base/status_with.h"
#include "mongo/platform/atomic_word.h"
#include "mongo/platform/mutex.h"
#include "mongo/stdx/condition_variable.h"
#include "mongo/stdx/type_traits.h"
#include "mongo/stdx/utility.h"
#include "mongo/util/assert_util.h"
#include "mongo/util/debug_util.h"
#include "mongo/util/functional.h"
#include "mongo/util/hierarchical_acquisition.h"
#include "mongo/util/interruptible.h"
#include "mongo/util/intrusive_counter.h"
#include "mongo/util/scopeguard.h"

namespace mongo {
template <typename T>
class Promise;

template <typename T>
class Future;

template <typename T>
class SemiFuture;

template <typename T>
class ExecutorFuture;

template <typename T>
class SharedPromise;

template <typename T>
class SharedSemiFuture;

namespace future_details {

template <typename T>
class FutureImpl;
template <>
class FutureImpl<void>;

template <typename T>
inline constexpr bool isFutureLike = false;
template <typename T>
inline constexpr bool isFutureLike<Future<T>> = true;
template <typename T>
inline constexpr bool isFutureLike<SemiFuture<T>> = true;
template <typename T>
inline constexpr bool isFutureLike<ExecutorFuture<T>> = true;
template <typename T>
inline constexpr bool isFutureLike<SharedSemiFuture<T>> = true;

template <typename T>
struct UnstatusTypeImpl {
    using type = T;
};
template <typename T>
struct UnstatusTypeImpl<StatusWith<T>> {
    using type = T;
};
template <>
struct UnstatusTypeImpl<Status> {
    using type = void;
};
template <typename T>
using UnstatusType = typename UnstatusTypeImpl<T>::type;

template <typename T>
struct UnwrappedTypeImpl {
    static_assert(!isFutureLike<T>);
    static_assert(!isStatusOrStatusWith<T>);
    using type = T;
};
template <typename T>
struct UnwrappedTypeImpl<Future<T>> {
    using type = T;
};
template <typename T>
struct UnwrappedTypeImpl<SemiFuture<T>> {
    using type = T;
};
template <typename T>
struct UnwrappedTypeImpl<ExecutorFuture<T>> {
    using type = T;
};
template <typename T>
struct UnwrappedTypeImpl<SharedSemiFuture<T>> {
    using type = T;
};
template <typename T>
struct UnwrappedTypeImpl<FutureImpl<T>> {
    using type = T;
};
template <typename T>
struct UnwrappedTypeImpl<StatusWith<T>> {
    using type = T;
};
template <>
struct UnwrappedTypeImpl<Status> {
    using type = void;
};
template <typename T>
using UnwrappedType = typename UnwrappedTypeImpl<T>::type;

template <typename T>
struct FutureContinuationKindImpl {
    static_assert(!isFutureLike<T>);
    using type = Future<T>;
};
template <typename T>
struct FutureContinuationKindImpl<Future<T>> {
    using type = Future<T>;
};
template <typename T>
struct FutureContinuationKindImpl<SemiFuture<T>> {
    using type = SemiFuture<T>;
};
template <typename T>
struct FutureContinuationKindImpl<ExecutorFuture<T>> {
    // Weird but right. ExecutorFuture needs to know the executor prior to running the continuation,
    // and in this case it doesn't.
    using type = SemiFuture<T>;
};
template <typename T>
struct FutureContinuationKindImpl<SharedSemiFuture<T>> {
    using type = SemiFuture<T>;  // It will generate a child continuation.
};
template <typename T>
using FutureContinuationKind = typename FutureContinuationKindImpl<T>::type;

template <typename T>
struct AddRefUnlessVoidImpl {
    using type = T&;
};
template <>
struct AddRefUnlessVoidImpl<void> {
    using type = void;
};
template <>
struct AddRefUnlessVoidImpl<const void> {
    using type = void;
};
template <typename T>
using AddRefUnlessVoid = typename AddRefUnlessVoidImpl<T>::type;

// This is used to "normalize" void since it can't be used as an argument and it becomes Status
// rather than StatusWith<void>.
struct FakeVoid {};

template <typename T>
using VoidToFakeVoid = std::conditional_t<std::is_void_v<T>, FakeVoid, T>;
template <typename T>
using FakeVoidToVoid = std::conditional_t<std::is_same_v<T, FakeVoid>, void, T>;

struct InvalidCallSentinal;  // Nothing actually returns this.
template <typename Func, typename Arg, typename = void>
struct FriendlyInvokeResultImpl {
    using type = InvalidCallSentinal;
};
template <typename Func, typename Arg>
struct FriendlyInvokeResultImpl<
    Func,
    Arg,
    std::enable_if_t<std::is_invocable_v<Func, std::enable_if_t<!std::is_void_v<Arg>, Arg>>>> {
    using type = std::invoke_result_t<Func, Arg>;
};
template <typename Func>
struct FriendlyInvokeResultImpl<Func, void, std::enable_if_t<std::is_invocable_v<Func>>> {
    using type = std::invoke_result_t<Func>;
};
template <typename Func>
struct FriendlyInvokeResultImpl<Func, const void, std::enable_if_t<std::is_invocable_v<Func>>> {
    using type = std::invoke_result_t<Func>;
};

template <typename Func, typename Arg>
using FriendlyInvokeResult = typename FriendlyInvokeResultImpl<Func, Arg>::type;

// Like is_invocable_v<Func, Args>, but handles Args == void correctly.
template <typename Func, typename Arg>
inline constexpr bool isCallable =
    !std::is_same_v<FriendlyInvokeResult<Func, Arg>, InvalidCallSentinal>;

// Like is_invocable_r_v<Func, Args>, but handles Args == void correctly and unwraps the return.
template <typename Ret, typename Func, typename Arg>
inline constexpr bool isCallableR =
    (isCallable<Func, Arg> && std::is_same_v<UnwrappedType<FriendlyInvokeResult<Func, Arg>>, Ret>);

// Like isCallableR, but doesn't unwrap the result type.
template <typename Ret, typename Func, typename Arg>
inline constexpr bool isCallableExactR = (isCallable<Func, Arg> &&
                                          std::is_same_v<FriendlyInvokeResult<Func, Arg>, Ret>);

/**
 * call() normalizes arguments to hide the FakeVoid shenanigans from users of Futures.
 * In the future it may also expand tuples to argument lists.
 */
template <typename Func, typename Arg>
inline auto call(Func&& func, Arg&& arg) {
    return func(std::forward<Arg>(arg));
}

template <typename Func>
inline auto call(Func&& func, FakeVoid) {
    return func();
}

template <typename Func>
inline auto call(Func&& func, StatusWith<FakeVoid> sw) {
    return func(sw.getStatus());
}

/**
 * statusCall() normalizes return values so everything returns StatusWith<T>. Exceptions are
 * converted to !OK statuses. void and Status returns are converted to StatusWith<FakeVoid>
 */
template <typename Func, typename... Args>
inline auto statusCall(Func&& func, Args&&... args) noexcept {
    using RawResult = decltype(call(func, std::forward<Args>(args)...));
    using Result = StatusWith<VoidToFakeVoid<UnstatusType<RawResult>>>;
    try {
        if constexpr (std::is_void_v<RawResult>) {
            call(func, std::forward<Args>(args)...);
            return Result(FakeVoid());
        } else if constexpr (std::is_same_v<RawResult, Status>) {
            auto s = call(func, std::forward<Args>(args)...);
            if (!s.isOK()) {
                return Result(std::move(s));
            }
            return Result(FakeVoid());
        } else {
            return Result(call(func, std::forward<Args>(args)...));
        }
    } catch (const DBException& ex) {
        return Result(ex.toStatus());
    }
}

/**
 * throwingCall() normalizes return values so everything returns T or FakeVoid. !OK Statuses are
 * converted exceptions. void and Status returns are converted to FakeVoid.
 *
 * This is equivalent to uassertStatusOK(statusCall(func, args...)), but avoids catching just to
 * rethrow.
 */
template <typename Func, typename... Args>
inline auto throwingCall(Func&& func, Args&&... args) {
    using Result = decltype(call(func, std::forward<Args>(args)...));
    if constexpr (std::is_void_v<Result>) {
        call(func, std::forward<Args>(args)...);
        return FakeVoid{};
    } else if constexpr (std::is_same_v<Result, Status>) {
        uassertStatusOK(call(func, std::forward<Args>(args)...));
        return FakeVoid{};
    } else if constexpr (isStatusWith<Result>) {
        return uassertStatusOK(call(func, std::forward<Args>(args)...));
    } else {
        return call(func, std::forward<Args>(args)...);
    }
}

template <typename Func, typename... Args>
using NormalizedCallResult = FakeVoidToVoid<
    UnstatusType<decltype(call(std::declval<Func>(), std::declval<VoidToFakeVoid<Args>>()...))>>;

template <typename T>
struct SharedStateImpl;

template <typename T>
using SharedState = SharedStateImpl<VoidToFakeVoid<T>>;

/**
 * SSB is SharedStateBase, and this is its current state.
 *
 * Legal transitions on future side:
 *      kInit -> kWaitingOrHaveChildren
 *      kInit -> kHaveCallback
 *      kWaitingOrHaveChildren -> kHaveCallback
 *
 * Legal transitions on promise side:
 *      kInit -> kFinished
 *      kWaitingOrHaveChildren -> kFinished
 *      kHaveCallback -> kFinished
 *
 * Note that all and only downward transitions are legal.
 *
 * Each thread must change the state *after* it is set up all data that it is releasing to the other
 * side. This must be done with an exchange() or compareExchange() so that you know what to do if
 * the other side finished its transition before you.
 */
enum class SSBState : uint8_t {
    // Initial state: Promise hasn't been completed and has nothing to do when it is.
    kInit,

    // Promise hasn't been completed. Either someone has constructed the condvar and may be waiting
    // on it, or children is non-empty. Either way, the completer of the promise must acquire the
    // mutex inside transitionToFinished() to determine what needs to be done. We do not transition
    // back to kInit if they give up on waiting. There is also no callback directly registered in
    // this state, although callbacks may be registered on children.
    kWaitingOrHaveChildren,

    // Promise hasn't been completed. Someone has registered a callback to be run when it is.
    // There is no-one currently waiting on the condvar, and there are no children. Once a future is
    // shared, its state can never transition to this.
    kHaveCallback,

    // The promise has been completed with a value or error. This is the terminal state. This should
    // stay last since we have code like assert(state < kFinished).
    kFinished,
};

class SharedStateBase : public RefCountable {
public:
    using Children = std::forward_list<boost::intrusive_ptr<SharedStateBase>>;

    SharedStateBase(const SharedStateBase&) = delete;
    SharedStateBase(SharedStateBase&&) = delete;
    SharedStateBase& operator=(const SharedStateBase&) = delete;
    SharedStateBase& operator=(SharedStateBase&&) = delete;

    virtual ~SharedStateBase() = default;

    // Only called by future side, but may be called multiple times if waiting times out and is
    // retried.
    void wait(Interruptible* interruptible) {
        if (state.load(std::memory_order_acquire) == SSBState::kFinished)
            return;

        stdx::unique_lock<Latch> lk(mx);
        if (!cv) {
            cv.emplace();

            auto oldState = SSBState::kInit;
            // We don't need release (or acq_rel) here because the cv construction will be released
            // and acquired via the mutex.
            if (MONGO_unlikely(!state.compare_exchange_strong(
                    oldState, SSBState::kWaitingOrHaveChildren, std::memory_order_acquire))) {
                if (oldState == SSBState::kFinished) {
                    // transitionToFinished() transitioned after we did our initial check.
                    return;
                }
                // Someone else did this transition.
                invariant(oldState == SSBState::kWaitingOrHaveChildren);
            }
        } else {
            // Someone has already created the cv and put us in the waiting state. The promise may
            // also have completed after we checked above, so we can't assume we aren't at
            // kFinished.
            dassert(state.load() != SSBState::kInit);
        }

        interruptible->waitForConditionOrInterrupt(*cv, lk, [&] {
            // The mx locking above is insufficient to establish an acquire if state transitions to
            // kFinished before we get here, but we aquire mx before the producer does.
            return state.load(std::memory_order_acquire) == SSBState::kFinished;
        });
    }

    // Remaining methods only called from promise side.
    void transitionToFinished() noexcept {
        auto oldState = state.exchange(SSBState::kFinished, std::memory_order_acq_rel);
        if (oldState == SSBState::kInit)
            return;

        dassert(oldState == SSBState::kWaitingOrHaveChildren ||
                oldState == SSBState::kHaveCallback);

        if (kDebugBuild) {
            // If you hit this limit one of two things has probably happened
            //
            // 1. The justForContinuation optimization isn't working.
            // 2. You may be creating a variable length chain.
            //
            // If those statements don't mean anything to you, please ask an editor of this file.
            // If they don't work here anymore, I'm sorry.
            const size_t kMaxDepth = 32;

            size_t depth = 0;
            for (auto ssb = continuation.get(); ssb;
                 ssb = ssb->state.load(std::memory_order_acquire) == SSBState::kHaveCallback
                     ? ssb->continuation.get()
                     : nullptr) {
                depth++;

                invariant(depth < kMaxDepth);
            }
        }

        if (oldState == SSBState::kHaveCallback) {
            dassert(children.empty());
            callback(this);
        } else {
            invariant(!callback);

            Children localChildren;

            stdx::unique_lock<Latch> lk(mx);
            localChildren.swap(children);
            if (cv) {
                // This must be done inside the lock to correctly synchronize with wait().
                cv->notify_all();
            }
            lk.unlock();

            if (!localChildren.empty()) {
                fillChildren(localChildren);
            }
        }
    }

    virtual void fillChildren(const Children&) const = 0;

    void setError(Status statusArg) noexcept {
        invariant(!statusArg.isOK());
        dassert(state.load() < SSBState::kFinished, statusArg.toString());
        status = std::move(statusArg);
        transitionToFinished();
    }

    //
    // Concurrency Rules for members: Each non-atomic member is initially owned by either the
    // Promise side or the Future side, indicated by a P/F comment. The general rule is that members
    // representing the propagating data are owned by Promise, while members representing what
    // to do with the data are owned by Future. The owner may freely modify the members it owns
    // until it releases them by doing a release-store to state of kFinished from Promise or
    // kWaitingOrHaveChildren from Future. Promise can acquire access to all members by doing an
    // acquire-load of state and seeing kWaitingOrHaveChildren (or Future with kFinished).
    // Transitions should be done via acquire-release exchanges to combine both actions.
    //
    // Future::propagateResults uses an alternative mechanism to transfer ownership of the
    // continuation member. The logical Future-side does a release-store of true to
    // isJustForContinuation, and the Promise-side can do an acquire-load seeing true to get access.
    //


    std::atomic<SSBState> state{SSBState::kInit};  // NOLINT

    // This is used to prevent infinite chains of SharedStates that just propagate results.
    std::atomic<bool> isJustForContinuation{false};  // NOLINT

    // This is likely to be a different derived type from this, since it is the logical output of
    // callback.
    boost::intrusive_ptr<SharedStateBase> continuation;  // F

    // Takes this as argument and usually writes to continuation.
    unique_function<void(SharedStateBase* input)> callback;  // F

    // These are only used to signal completion to blocking waiters. Benchmarks showed that it was
    // worth deferring the construction of cv, so it can be avoided when it isn't necessary.

    Mutex mx = MONGO_MAKE_LATCH(HierarchicalAcquisitionLevel(0), "FutureResolution");  // F
    boost::optional<stdx::condition_variable> cv;  // F (but guarded by mutex)

    // This holds the children created from a SharedSemiFuture. When this SharedState is completed,
    // the result will be copied in to each of the children. This allows their continuations to have
    // their own mutable copy, rather than tracking mutability for each callback.
    Children children;  // F (but guarded by mutex)

    Status status = Status::OK();  // P
protected:
    SharedStateBase() = default;
};

template <typename T>
struct SharedStateImpl final : SharedStateBase {
    static_assert(!std::is_void<T>::value);

    // Initial methods only called from future side.

    boost::intrusive_ptr<SharedState<T>> addChild() {
        static_assert(std::is_copy_constructible_v<T>);  // T has been through VoidToFakeVoid.
        invariant(!callback);

        auto out = make_intrusive<SharedState<T>>();
        if (state.load(std::memory_order_acquire) == SSBState::kFinished) {
            out->fillFromConst(*this);
            return out;
        }

        auto lk = stdx::unique_lock(mx);

        auto oldState = state.load(std::memory_order_acquire);
        if (oldState == SSBState::kInit) {
            // On the success path, our reads and writes to children are protected by the mutex
            //
            // On the failure path, we raced with transitionToFinished() and lost, so we need to
            // synchronize with it via acquire before accessing the results since it wouldn't have
            // taken the mutex.
            state.compare_exchange_strong(oldState,
                                          SSBState::kWaitingOrHaveChildren,
                                          std::memory_order_relaxed,
                                          std::memory_order_acquire);
        }
        if (oldState == SSBState::kFinished) {
            lk.unlock();
            out->fillFromConst(*this);
            return out;
        }
        dassert(oldState != SSBState::kHaveCallback);

        // If oldState became kFinished after we checked (or successfully stored
        // kWaitingOrHaveChildren), the returned continuation will be completed by the promise side
        // once it acquires the lock since we are adding ourself to the chain here.

        children.emplace_front(out.get(), /*add ref*/ false);
        out->threadUnsafeIncRefCountTo(2);
        return out;
    }

    // Remaining methods only called by promise side.

    // fillFromConst and fillFromMove are identical other than using as_const() vs move().
    void fillFromConst(const SharedState<T>& other) {
        dassert(state.load() < SSBState::kFinished);
        dassert(other.state.load() == SSBState::kFinished);
        if (other.status.isOK()) {
            data.emplace(std::as_const(*other.data));
        } else {
            status = std::as_const(other.status);
        }
        transitionToFinished();
    }
    void fillFromMove(SharedState<T>&& other) {
        dassert(state.load() < SSBState::kFinished);
        dassert(other.state.load() == SSBState::kFinished);
        if (other.status.isOK()) {
            data.emplace(std::move(*other.data));
        } else {
            status = std::move(other.status);
        }
        transitionToFinished();
    }

    template <typename... Args>
    void emplaceValue(Args&&... args) noexcept {
        dassert(state.load() < SSBState::kFinished);
        try {
            data.emplace(std::forward<Args>(args)...);
        } catch (const DBException& ex) {
            status = ex.toStatus();
        }
        transitionToFinished();
    }

    void setFromStatusWith(StatusWith<T> sw) {
        if (sw.isOK()) {
            emplaceValue(std::move(sw.getValue()));
        } else {
            setError(std::move(sw.getStatus()));
        }
    }

    void fillChildren(const Children& children) const override {
        if constexpr (std::is_copy_constructible_v<T>) {  // T has been through VoidToFakeVoid.
            for (auto&& child : children) {
                checked_cast<SharedState<T>*>(child.get())->fillFromConst(*this);
            }
        } else {
            invariant(false, "should never call fillChildren with non-copyable T");
        }
    }

    boost::optional<T> data;  // P
};

template <typename T>
class SharedStateHolder {
public:
    SharedStateHolder() = default;
    explicit SharedStateHolder(const boost::intrusive_ptr<SharedState<T>>& shared)
        : _shared(shared) {}
    explicit SharedStateHolder(boost::intrusive_ptr<SharedState<T>>&& shared)
        : _shared(std::move(shared)) {}

    static SharedStateHolder makeReady(T&& val) {
        auto out = SharedStateHolder(make_intrusive<SharedState<T>>());
        out._shared->emplaceValue(std::move(val));
        return out;
    }

    static SharedStateHolder makeReady(Status&& status) {
        invariant(!status.isOK());
        auto out = SharedStateHolder(make_intrusive<SharedState<T>>());
        out._shared->setError(std::move(status));
        return out;
    }

    static SharedStateHolder makeReady(StatusWith<T>&& val) {
        if (val.isOK())
            return makeReady(std::move(val.getValue()));
        return makeReady(val.getStatus());
    }

    bool isReady() const {
        return _shared->state.load(std::memory_order_acquire) == SSBState::kFinished;
    }

    void wait(Interruptible* interruptible) const {
        _shared->wait(interruptible);
    }

    Status waitNoThrow(Interruptible* interruptible) const noexcept {
        try {
            _shared->wait(interruptible);
        } catch (const DBException& ex) {
            return ex.toStatus();
        }

        return Status::OK();
    }

    T get(Interruptible* interruptible) && {
        _shared->wait(interruptible);
        uassertStatusOK(std::move(_shared->status));
        return std::move(*(_shared->data));
    }
    T& get(Interruptible* interruptible) & {
        _shared->wait(interruptible);
        uassertStatusOK(_shared->status);
        return *(_shared->data);
    }
    const T& get(Interruptible* interruptible) const& {
        _shared->wait(interruptible);
        uassertStatusOK(_shared->status);
        return *(_shared->data);
    }

    StatusWith<T> getNoThrow(Interruptible* interruptible) && noexcept {
        try {
            _shared->wait(interruptible);
        } catch (const DBException& ex) {
            return ex.toStatus();
        }

        if (!_shared->status.isOK())
            return std::move(_shared->status);
        return std::move(*_shared->data);
    }

    StatusWith<T> getNoThrow(Interruptible* interruptible) const& noexcept {
        try {
            _shared->wait(interruptible);
        } catch (const DBException& ex) {
            return ex.toStatus();
        }

        if (!_shared->status.isOK())
            return _shared->status;
        return *_shared->data;
    }

    SharedState<T>* getPtr() {
        return _shared.get();
    }

    SharedState<T>* operator->() {
        return _shared.operator->();
    }

    SharedStateHolder<VoidToFakeVoid<T>> addChild() const {
        return SharedStateHolder<VoidToFakeVoid<T>>(_shared->addChild());
    }

private:
    boost::intrusive_ptr<SharedState<T>> _shared;
};

template <>
class SharedStateHolder<void> {
    using Impl = SharedStateHolder<FakeVoid>;

public:
    explicit SharedStateHolder() : SharedStateHolder(makeReady()) {}
    explicit SharedStateHolder(const boost::intrusive_ptr<SharedState<FakeVoid>>& shared)
        : _inner(shared) {}
    explicit SharedStateHolder(boost::intrusive_ptr<SharedState<FakeVoid>>&& shared)
        : _inner(std::move(shared)) {}
    /*implicit*/ SharedStateHolder(Impl&& shared) : _inner(std::move(shared)) {}
    /*implicit*/ operator Impl &&() && {
        return std::move(_inner);
    }

    static SharedStateHolder makeReady(FakeVoid = {}) {
        return SharedStateHolder<FakeVoid>::makeReady(FakeVoid{});
    }

    static SharedStateHolder makeReady(Status status) {
        if (status.isOK())
            return makeReady();
        return SharedStateHolder<FakeVoid>::makeReady(std::move(status));
    }

    static SharedStateHolder<void> makeReady(StatusWith<FakeVoid> status) {
        return SharedStateHolder<FakeVoid>::makeReady(std::move(status));
    }

    bool isReady() const {
        return _inner.isReady();
    }

    void wait(Interruptible* interruptible) const {
        _inner.wait(interruptible);
    }

    Status waitNoThrow(Interruptible* interruptible) const noexcept {
        return _inner.waitNoThrow(interruptible);
    }

    void get(Interruptible* interruptible) && {
        std::move(_inner).get(interruptible);
    }
    void get(Interruptible* interruptible) const& {
        _inner.get(interruptible);
    }

    Status getNoThrow(Interruptible* interruptible) && noexcept {
        return std::move(_inner).getNoThrow(interruptible).getStatus();
    }
    Status getNoThrow(Interruptible* interruptible) const& noexcept {
        return _inner.getNoThrow(interruptible).getStatus();
    }

    SharedStateHolder<VoidToFakeVoid<void>> addChild() const {
        return _inner.addChild();
    }

private:
    SharedStateHolder<FakeVoid> _inner;
};

template <typename T>
class MONGO_WARN_UNUSED_RESULT_CLASS FutureImpl {
public:
    using value_type = T;

    FutureImpl() = default;

    FutureImpl& operator=(FutureImpl&&) = default;
    FutureImpl(FutureImpl&&) = default;

    FutureImpl(const FutureImpl&) = delete;
    FutureImpl& operator=(const FutureImpl&) = delete;

    explicit FutureImpl(SharedStateHolder<T>&& ptr) : _shared(std::move(ptr)) {}

    static FutureImpl<T> makeReady(T val) {  // TODO emplace?
        FutureImpl out;
        out._immediate = std::move(val);
        return out;
    }

    static FutureImpl<T> makeReady(Status status) {
        return FutureImpl(SharedStateHolder<T>::makeReady(std::move(status)));
    }

    static FutureImpl<T> makeReady(StatusWith<T> val) {
        if (val.isOK())
            return makeReady(std::move(val.getValue()));
        return makeReady(val.getStatus());
    }

    SharedSemiFuture<FakeVoidToVoid<T>> share() && noexcept;

    bool isReady() const {
        return _immediate || _shared.isReady();
    }

    void wait(Interruptible* interruptible) const {
        if (_immediate)
            return;
        _shared.wait(interruptible);
    }

    Status waitNoThrow(Interruptible* interruptible) const noexcept {
        if (_immediate)
            return Status::OK();
        return _shared.waitNoThrow(interruptible);
    }

    T get(Interruptible* interruptible) && {
        if (_immediate)
            return std::move(*_immediate);
        return std::move(_shared).get(interruptible);
    }
    T& get(Interruptible* interruptible) & {
        if (_immediate)
            return *_immediate;
        return _shared.get(interruptible);
    }
    const T& get(Interruptible* interruptible) const& {
        if (_immediate)
            return *_immediate;
        return _shared.get(interruptible);
    }

    StatusWith<T> getNoThrow(Interruptible* interruptible) && noexcept {
        if (_immediate)
            return std::move(*_immediate);
        return std::move(_shared).getNoThrow(interruptible);
    }
    StatusWith<T> getNoThrow(Interruptible* interruptible) const& noexcept {
        if (_immediate)
            return *_immediate;
        return _shared.getNoThrow(interruptible);
    }

    template <typename Func>
        void getAsync(Func&& func) && noexcept {
        static_assert(std::is_void<decltype(call(func, std::declval<StatusWith<T>>()))>::value,
                      "func passed to getAsync must return void");

        return generalImpl(
            // on ready success:
            [&](T&& val) { call(func, StatusWith<T>(std::move(val))); },
            // on ready failure:
            [&](Status&& status) { call(func, StatusWith<T>(std::move(status))); },
            // on not ready yet:
            [&] {
                _shared->callback = [func = std::forward<Func>(func)](SharedStateBase *
                                                                      ssb) mutable noexcept {
                    const auto input = checked_cast<SharedState<T>*>(ssb);
                    if (input->status.isOK()) {
                        call(func, StatusWith<T>(std::move(*input->data)));
                    } else {
                        call(func, StatusWith<T>(std::move(input->status)));
                    }
                };
            });
    }

    template <typename Func>
        auto then(Func&& func) && noexcept {
        using Result = NormalizedCallResult<Func, T>;
        if constexpr (!isFutureLike<Result>) {
            return generalImpl(
                // on ready success:
                [&](T&& val) {
                    return FutureImpl<Result>::makeReady(statusCall(func, std::move(val)));
                },
                // on ready failure:
                [&](Status&& status) { return FutureImpl<Result>::makeReady(std::move(status)); },
                // on not ready yet:
                [&] {
                    return makeContinuation<Result>([func = std::forward<Func>(func)](
                        SharedState<T> * input, SharedState<Result> * output) mutable noexcept {
                        if (!input->status.isOK())
                            return output->setError(std::move(input->status));

                        output->setFromStatusWith(statusCall(func, std::move(*input->data)));
                    });
                });
        } else {
            using UnwrappedResult = typename Result::value_type;
            return generalImpl(
                // on ready success:
                [&](T&& val) {
                    try {
                        return FutureImpl<UnwrappedResult>(throwingCall(func, std::move(val)));
                    } catch (const DBException& ex) {
                        return FutureImpl<UnwrappedResult>::makeReady(ex.toStatus());
                    }
                },
                // on ready failure:
                [&](Status&& status) {
                    return FutureImpl<UnwrappedResult>::makeReady(std::move(status));
                },
                // on not ready yet:
                [&] {
                    return makeContinuation<UnwrappedResult>([func = std::forward<Func>(func)](
                        SharedState<T> * input,
                        SharedState<UnwrappedResult> * output) mutable noexcept {
                        if (!input->status.isOK())
                            return output->setError(std::move(input->status));

                        try {
                            throwingCall(func, std::move(*input->data)).propagateResultTo(output);
                        } catch (const DBException& ex) {
                            output->setError(ex.toStatus());
                        }
                    });
                });
        }
    }

    template <typename Func>
        auto onCompletion(Func&& func) && noexcept {
        using Wrapper = StatusOrStatusWith<T>;
        using Result = NormalizedCallResult<Func, StatusOrStatusWith<T>>;
        if constexpr (!isFutureLike<Result>) {
            return generalImpl(
                // on ready success:
                [&](T&& val) {
                    return FutureImpl<Result>::makeReady(
                        statusCall(std::forward<Func>(func), Wrapper(std::move(val))));
                },
                // on ready failure:
                [&](Status&& status) {
                    return FutureImpl<Result>::makeReady(
                        statusCall(std::forward<Func>(func), Wrapper(std::move(status))));
                },
                // on not ready yet:
                [&] {
                    return makeContinuation<Result>([func = std::forward<Func>(func)](
                        SharedState<T> * input, SharedState<Result> * output) mutable noexcept {
                        if (!input->status.isOK())
                            return output->setFromStatusWith(
                                statusCall(func, Wrapper(std::move(input->status))));

                        output->setFromStatusWith(
                            statusCall(func, Wrapper(std::move(*input->data))));
                    });
                });
        } else {
            using UnwrappedResult = typename Result::value_type;
            return generalImpl(
                // on ready success:
                [&](T&& val) {
                    try {
                        return FutureImpl<UnwrappedResult>(
                            throwingCall(std::forward<Func>(func), Wrapper(std::move(val))));
                    } catch (const DBException& ex) {
                        return FutureImpl<UnwrappedResult>::makeReady(ex.toStatus());
                    }
                },
                // on ready failure:
                [&](Status&& status) {
                    try {
                        return FutureImpl<UnwrappedResult>(
                            throwingCall(std::forward<Func>(func), Wrapper(std::move(status))));
                    } catch (const DBException& ex) {
                        return FutureImpl<UnwrappedResult>::makeReady(ex.toStatus());
                    }
                },
                // on not ready yet:
                [&] {
                    return makeContinuation<UnwrappedResult>([func = std::forward<Func>(func)](
                        SharedState<T> * input,
                        SharedState<UnwrappedResult> * output) mutable noexcept {
                        if (!input->status.isOK()) {
                            try {
                                throwingCall(func, Wrapper(std::move(input->status)))
                                    .propagateResultTo(output);
                            } catch (const DBException& ex) {
                                output->setError(ex.toStatus());
                            }

                            return;
                        }

                        try {
                            throwingCall(func, Wrapper(std::move(*input->data)))
                                .propagateResultTo(output);
                        } catch (const DBException& ex) {
                            output->setError(ex.toStatus());
                        }
                    });
                });
        }
    }

    template <typename Func>
        FutureImpl<FakeVoidToVoid<T>> onError(Func&& func) && noexcept {
        using Result = NormalizedCallResult<Func, Status>;
        static_assert(
            std::is_same<VoidToFakeVoid<UnwrappedType<Result>>, T>::value,
            "func passed to Future<T>::onError must return T, StatusWith<T>, or Future<T>");

        if constexpr (!isFutureLike<Result>) {
            return generalImpl(
                // on ready success:
                [&](T&& val) { return FutureImpl<T>::makeReady(std::move(val)); },
                // on ready failure:
                [&](Status&& status) {
                    return FutureImpl<T>::makeReady(statusCall(func, std::move(status)));
                },
                // on not ready yet:
                [&] {
                    return makeContinuation<T>([func = std::forward<Func>(func)](
                        SharedState<T> * input, SharedState<T> * output) mutable noexcept {
                        if (input->status.isOK())
                            return output->emplaceValue(std::move(*input->data));

                        output->setFromStatusWith(statusCall(func, std::move(input->status)));
                    });
                });
        } else {
            return generalImpl(
                // on ready success:
                [&](T&& val) { return FutureImpl<T>::makeReady(std::move(val)); },
                // on ready failure:
                [&](Status&& status) {
                    try {
                        return FutureImpl<T>(throwingCall(func, std::move(status)));
                    } catch (const DBException& ex) {
                        return FutureImpl<T>::makeReady(ex.toStatus());
                    }
                },
                // on not ready yet:
                [&] {
                    return makeContinuation<T>([func = std::forward<Func>(func)](
                        SharedState<T> * input, SharedState<T> * output) mutable noexcept {
                        if (input->status.isOK())
                            return output->emplaceValue(std::move(*input->data));

                        try {
                            throwingCall(func, std::move(input->status)).propagateResultTo(output);
                        } catch (const DBException& ex) {
                            output->setError(ex.toStatus());
                        }
                    });
                });
        }
    }

    template <ErrorCodes::Error code, typename Func>
        FutureImpl<FakeVoidToVoid<T>> onError(Func&& func) && noexcept {
        using Result = NormalizedCallResult<Func, Status>;
        static_assert(
            std::is_same_v<UnwrappedType<Result>, FakeVoidToVoid<T>>,
            "func passed to Future<T>::onError must return T, StatusWith<T>, or Future<T>");

        if (_immediate || (isReady() && _shared->status.isOK()))
            return std::move(*this);  // Avoid copy/moving func if we know we won't call it.

        // TODO in C++17 with constexpr if this can be done cleaner and more efficiently by not
        // throwing.
        return std::move(*this).onError([func = std::forward<Func>(func)](Status&& status) mutable {
            if (status != code)
                uassertStatusOK(status);
            return throwingCall(func, std::move(status));
        });
    }

    template <ErrorCategory category, typename Func>
        FutureImpl<FakeVoidToVoid<T>> onErrorCategory(Func&& func) && noexcept {
        using Result = NormalizedCallResult<Func, Status>;
        static_assert(std::is_same_v<UnwrappedType<Result>, FakeVoidToVoid<T>>,
                      "func passed to Future<T>::onErrorCategory must return T, StatusWith<T>, "
                      "or Future<T>");

        if (_immediate || (isReady() && _shared->status.isOK()))
            return std::move(*this);

        return std::move(*this).onError([func = std::forward<Func>(func)](Status&& status) mutable {
            if (!ErrorCodes::isA<category>(status))
                uassertStatusOK(status);
            return throwingCall(func, std::move(status));
        });
    }

    template <typename Func>
        FutureImpl<FakeVoidToVoid<T>> tap(Func&& func) && noexcept {
        static_assert(std::is_void<decltype(call(func, std::declval<const T&>()))>::value,
                      "func passed to tap must return void");

        return tapImpl(std::forward<Func>(func),
                       [](Func && func, const T& val) noexcept { call(func, val); },
                       [](Func && func, const Status& status) noexcept {});
    }

    template <typename Func>
        FutureImpl<FakeVoidToVoid<T>> tapError(Func&& func) && noexcept {
        static_assert(std::is_void<decltype(call(func, std::declval<const Status&>()))>::value,
                      "func passed to tapError must return void");

        return tapImpl(std::forward<Func>(func), [](Func && func, const T& val) noexcept {}, [
        ](Func && func, const Status& status) noexcept { call(func, status); });
    }

    template <typename Func>
        FutureImpl<FakeVoidToVoid<T>> tapAll(Func&& func) && noexcept {
        static_assert(
            std::is_void<decltype(call(func, std::declval<const StatusOrStatusWith<T>&>()))>::value,
            "func passed to tapAll must return void");

        using Wrapper = StatusOrStatusWith<T>;
        return tapImpl(
            std::forward<Func>(func),
            [](Func && func, const T& val) noexcept { call(func, Wrapper(val)); },
            [](Func && func, const Status& status) noexcept { call(func, Wrapper(status)); });
    }

    FutureImpl<void> ignoreValue() && noexcept;

    void propagateResultTo(SharedState<T>* output) && noexcept {
        generalImpl(
            // on ready success:
            [&](T&& val) { output->emplaceValue(std::move(val)); },
            // on ready failure:
            [&](Status&& status) { output->setError(std::move(status)); },
            // on not ready yet:
            [&] {
                // If the output is just for continuation, bypass it and just directly fill in the
                // SharedState that it would write to. The concurrency situation is a bit subtle
                // here since we are the Future-side of shared, but the Promise-side of output.
                // The rule is that p->isJustForContinuation must be acquire-read as true before
                // examining p->continuation, and p->continuation must be written before doing the
                // release-store of true to p->isJustForContinuation.
                if (output->isJustForContinuation.load(std::memory_order_acquire)) {
                    _shared->continuation = std::move(output->continuation);
                } else {
                    _shared->continuation = output;
                }
                _shared->isJustForContinuation.store(true, std::memory_order_release);

                _shared->callback = [](SharedStateBase * ssb) noexcept {
                    const auto input = checked_cast<SharedState<T>*>(ssb);
                    const auto output = checked_cast<SharedState<T>*>(ssb->continuation.get());
                    output->fillFromMove(std::move(*input));
                };
            });
    }

private:
    template <typename>
    friend class FutureImpl;
    friend class Promise<T>;
    friend class SharedPromise<T>;
    friend class SharedSemiFuture<FakeVoidToVoid<T>>;

    // All callbacks are called immediately so they are allowed to capture everything by reference.
    // All callbacks should return the same return type.
    template <typename SuccessFunc, typename FailFunc, typename NotReady>
    auto generalImpl(SuccessFunc&& success, FailFunc&& fail, NotReady&& notReady) noexcept {
        if (_immediate) {
            return success(std::move(*_immediate));
        }

        auto oldState = _shared->state.load(std::memory_order_acquire);
        dassert(oldState != SSBState::kHaveCallback);
        if (oldState == SSBState::kFinished) {
            if (_shared->status.isOK()) {
                return success(std::move(*_shared->data));
            } else {
                return fail(std::move(_shared->status));
            }
        }

        // This is always done after notReady, which never throws. It is in an ON_BLOCK_EXIT to
        // support both void- and value-returning notReady implementations since we can't assign
        // void to a variable.
        ON_BLOCK_EXIT([&] {
            dassert(_shared->children.empty());
            // oldState could be either kInit or kWaitingOrHaveChildren, depending on whether we've
            // failed a call to wait().
            if (MONGO_unlikely(!_shared->state.compare_exchange_strong(
                    oldState, SSBState::kHaveCallback, std::memory_order_acq_rel))) {
                dassert(oldState == SSBState::kFinished);
                _shared->callback(_shared.getPtr());
            }
        });

        return notReady();
    }

    // success and fail may be called from a continuation so they shouldn't capture anything.
    template <typename Callback, typename SuccessFunc, typename FailFunc>
    FutureImpl<FakeVoidToVoid<T>> tapImpl(Callback&& cb,
                                          SuccessFunc&& success,
                                          FailFunc&& fail) noexcept {
        // Make sure they don't capture anything.
        MONGO_STATIC_ASSERT(std::is_empty<SuccessFunc>::value);
        MONGO_STATIC_ASSERT(std::is_empty<FailFunc>::value);

        return generalImpl(
            [&](T&& val) {
                success(std::forward<Callback>(cb), stdx::as_const(val));
                return FutureImpl<T>::makeReady(std::move(val));
            },
            [&](Status&& status) {
                fail(std::forward<Callback>(cb), stdx::as_const(status));
                return FutureImpl<T>::makeReady(std::move(status));
            },
            [&] {
                return makeContinuation<T>([ success, fail, cb = std::forward<Callback>(cb) ](
                    SharedState<T> * input, SharedState<T> * output) mutable noexcept {
                    if (input->status.isOK()) {
                        success(std::forward<Callback>(cb), stdx::as_const(*input->data));
                    } else {
                        fail(std::forward<Callback>(cb), stdx::as_const(input->status));
                    }

                    output->fillFromMove(std::move(*input));
                });
            });
    }

    template <typename Result, typename OnReady>
    inline FutureImpl<Result> makeContinuation(OnReady&& onReady) {
        invariant(!_shared->callback && !_shared->continuation);

        auto continuation = make_intrusive<SharedState<Result>>();
        continuation->threadUnsafeIncRefCountTo(2);
        _shared->continuation.reset(continuation.get(), /*add ref*/ false);
        _shared->callback = [onReady = std::forward<OnReady>(onReady)](SharedStateBase *
                                                                       ssb) mutable noexcept {
            const auto input = checked_cast<SharedState<T>*>(ssb);
            const auto output = checked_cast<SharedState<Result>*>(ssb->continuation.get());
            onReady(input, output);
        };
        return FutureImpl<Result>(SharedStateHolder<Result>(std::move(continuation)));
    }

    // At most one of these will be active.
    boost::optional<T> _immediate;
    SharedStateHolder<T> _shared;
};

template <>
class MONGO_WARN_UNUSED_RESULT_CLASS FutureImpl<void> : public FutureImpl<FakeVoid> {
    using Base = FutureImpl<FakeVoid>;

public:
    using value_type = void;

    FutureImpl() : FutureImpl(makeReady()) {}

    explicit FutureImpl(SharedStateHolder<FakeVoid>&& holder) : Base(std::move(holder)) {}
    /*implicit*/ FutureImpl(FutureImpl<FakeVoid>&& inner) : Base(std::move(inner)) {}

    // Only replacing a few methods to use void/Status in place of FakeVoid. The callback method
    // fixups are handled by call().

    static FutureImpl<void> makeReady() {
        return FutureImpl<FakeVoid>::makeReady(FakeVoid{});
    }

    static FutureImpl<void> makeReady(Status status) {
        if (status.isOK())
            return makeReady();
        return Base::makeReady(std::move(status));
    }

    static FutureImpl<void> makeReady(StatusWith<FakeVoid> status) {
        return Base::makeReady(std::move(status));
    }

    void get(Interruptible* interruptible) && {
        std::move(base()).get(interruptible);
    }
    void get(Interruptible* interruptible) const& {
        base().get(interruptible);
    }

    Status getNoThrow(Interruptible* interruptible) && noexcept {
        return std::move(base()).getNoThrow(interruptible).getStatus();
    }
    Status getNoThrow(Interruptible* interruptible) const& noexcept {
        return base().getNoThrow(interruptible).getStatus();
    }

    FutureImpl<void> ignoreValue() && noexcept {
        return std::move(*this);
    }

private:
    Base& base() {
        return *this;
    }
    const Base& base() const {
        return *this;
    }
};

template <typename T>
    inline FutureImpl<void> FutureImpl<T>::ignoreValue() && noexcept {
    return std::move(*this).then([](auto&&) {});
}

}  // namespace future_details
}  // namespace mongo