1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
|
/**
* Copyright (C) 2019-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#include "mongo/platform/basic.h"
#include <string>
#include "mongo/db/concurrency/locker_noop_service_context_test_fixture.h"
#include "mongo/db/operation_context.h"
#include "mongo/unittest/barrier.h"
#include "mongo/unittest/unittest.h"
#include "mongo/util/concurrency/thread_pool.h"
#include "mongo/util/read_through_cache.h"
#include "mongo/util/scopeguard.h"
namespace mongo {
namespace {
using unittest::assertGet;
// The structure for testing is intentionally made movable, but non-copyable
struct CachedValue {
CachedValue(int counter) : counter(counter) {}
CachedValue(CachedValue&&) = default;
CachedValue& operator=(CachedValue&&) = default;
int counter;
};
class Cache : public ReadThroughCache<std::string, CachedValue> {
public:
Cache(ServiceContext* service, ThreadPoolInterface& threadPool, size_t size, LookupFn lookupFn)
: ReadThroughCache(_mutex,
service,
threadPool,
[this, lookupFn = std::move(lookupFn)](OperationContext* opCtx,
const std::string& key,
const ValueHandle& cachedValue) {
++countLookups;
return lookupFn(opCtx, key, cachedValue);
},
size) {}
int countLookups{0};
private:
Mutex _mutex = MONGO_MAKE_LATCH("ReadThroughCacheTest::Cache");
};
class CausallyConsistentCache : public ReadThroughCache<std::string, CachedValue, Timestamp> {
public:
CausallyConsistentCache(ServiceContext* service,
ThreadPoolInterface& threadPool,
size_t size,
LookupFn lookupFn)
: ReadThroughCache(_mutex,
service,
threadPool,
[this, lookupFn = std::move(lookupFn)](OperationContext* opCtx,
const std::string& key,
const ValueHandle& cachedValue,
Timestamp timeInStore) {
++countLookups;
return lookupFn(opCtx, key, cachedValue, timeInStore);
},
size) {}
int countLookups{0};
private:
Mutex _mutex = MONGO_MAKE_LATCH("ReadThroughCacheTest::Cache");
};
/**
* Fixture for tests, which do not need to exercise the multi-threading capabilities of the cache
* and as such do not require control over the creation/destruction of their operation contexts.
*/
class ReadThroughCacheTest : public LockerNoopServiceContextTest {
protected:
// Extends any of Cache/CausallyConsistentCache and automatically provides it with a thread
// pool, which will be shutdown and joined before the Cache is destroyed (which is part of the
// contract of ReadThroughCache)
template <class T>
class CacheWithThreadPool : public T {
public:
CacheWithThreadPool(ServiceContext* service, size_t size, typename T::LookupFn lookupFn)
: T(service, _threadPool, size, std::move(lookupFn)) {
_threadPool.startup();
}
private:
ThreadPool _threadPool{[] {
ThreadPool::Options options;
options.poolName = "ReadThroughCacheTest";
options.minThreads = 1;
options.maxThreads = 1;
return options;
}()};
};
const ServiceContext::UniqueOperationContext _opCtxHolder{makeOperationContext()};
OperationContext* const _opCtx{_opCtxHolder.get()};
};
TEST(ReadThroughCacheTest, StandaloneValueHandle) {
Cache::ValueHandle standaloneHandle(CachedValue(100));
ASSERT(standaloneHandle.isValid());
ASSERT_EQ(100, standaloneHandle->counter);
}
TEST_F(ReadThroughCacheTest, FetchInvalidateAndRefetch) {
auto fnTest = [&](auto cache) {
for (int i = 1; i <= 3; i++) {
auto value = cache.acquire(_opCtx, "TestKey");
ASSERT(value);
ASSERT_EQ(100 * i, value->counter);
ASSERT_EQ(i, cache.countLookups);
ASSERT(cache.acquire(_opCtx, "TestKey"));
ASSERT_EQ(i, cache.countLookups);
cache.invalidateKey("TestKey");
}
};
fnTest(CacheWithThreadPool<Cache>(
getServiceContext(),
1,
[&, nextValue = 0](
OperationContext*, const std::string& key, const Cache::ValueHandle&) mutable {
ASSERT_EQ("TestKey", key);
return Cache::LookupResult(CachedValue(100 * ++nextValue));
}));
fnTest(CacheWithThreadPool<CausallyConsistentCache>(
getServiceContext(),
1,
[&, nextValue = 0](OperationContext*,
const std::string& key,
const CausallyConsistentCache::ValueHandle&,
const Timestamp& timeInStore) mutable {
ASSERT_EQ("TestKey", key);
++nextValue;
return CausallyConsistentCache::LookupResult(CachedValue(100 * nextValue),
Timestamp(nextValue));
}));
}
TEST_F(ReadThroughCacheTest, FetchInvalidateKeyAndRefetch) {
auto fnTest = [&](auto cache) {
for (int i = 1; i <= 3; i++) {
auto value = cache.acquire(_opCtx, "TestKey");
ASSERT(value);
ASSERT_EQ(100 * i, value->counter);
ASSERT_EQ(i, cache.countLookups);
ASSERT(cache.acquire(_opCtx, "TestKey"));
ASSERT_EQ(i, cache.countLookups);
cache.invalidateKeyIf([](const std::string& key) { return key == "TestKey"; });
}
};
fnTest(CacheWithThreadPool<Cache>(
getServiceContext(),
1,
[&, nextValue = 0](
OperationContext*, const std::string& key, const Cache::ValueHandle&) mutable {
ASSERT_EQ("TestKey", key);
return Cache::LookupResult(CachedValue(100 * ++nextValue));
}));
fnTest(CacheWithThreadPool<CausallyConsistentCache>(
getServiceContext(),
1,
[&, nextValue = 0](OperationContext*,
const std::string& key,
const CausallyConsistentCache::ValueHandle&,
const Timestamp& timeInStore) mutable {
ASSERT_EQ("TestKey", key);
++nextValue;
return CausallyConsistentCache::LookupResult(CachedValue(100 * nextValue),
Timestamp(nextValue));
}));
}
TEST_F(ReadThroughCacheTest, FetchInvalidateValueAndRefetch) {
auto fnTest = [&](auto cache) {
for (int i = 1; i <= 3; i++) {
auto value = cache.acquire(_opCtx, "TestKey");
ASSERT(value);
ASSERT_EQ(100 * i, value->counter);
ASSERT_EQ(i, cache.countLookups);
ASSERT(cache.acquire(_opCtx, "TestKey"));
ASSERT_EQ(i, cache.countLookups);
cache.invalidateLatestCachedValueIf_IgnoreInProgress(
[i](const std::string&, const CachedValue& value) {
return value.counter == 100 * i;
});
}
};
fnTest(CacheWithThreadPool<Cache>(
getServiceContext(),
1,
[&, nextValue = 0](
OperationContext*, const std::string& key, const Cache::ValueHandle&) mutable {
ASSERT_EQ("TestKey", key);
return Cache::LookupResult(CachedValue(100 * ++nextValue));
}));
fnTest(CacheWithThreadPool<CausallyConsistentCache>(
getServiceContext(),
1,
[&, nextValue = 0](OperationContext*,
const std::string& key,
const CausallyConsistentCache::ValueHandle&,
const Timestamp& timeInStore) mutable {
ASSERT_EQ("TestKey", key);
++nextValue;
return CausallyConsistentCache::LookupResult(CachedValue(100 * nextValue),
Timestamp(nextValue));
}));
}
TEST_F(ReadThroughCacheTest, FailedLookup) {
auto fnTest = [&](auto cache) {
ASSERT_THROWS_CODE(
cache.acquire(_opCtx, "TestKey"), DBException, ErrorCodes::InternalError);
};
fnTest(CacheWithThreadPool<Cache>(
getServiceContext(),
1,
[&](OperationContext*, const std::string& key, const Cache::ValueHandle&)
-> Cache::LookupResult { uasserted(ErrorCodes::InternalError, "Test error"); }));
fnTest(CacheWithThreadPool<CausallyConsistentCache>(
getServiceContext(),
1,
[&](OperationContext*,
const std::string& key,
const CausallyConsistentCache::ValueHandle&,
const Timestamp& timeInStore) -> CausallyConsistentCache::LookupResult {
uasserted(ErrorCodes::InternalError, "Test error");
}));
}
TEST_F(ReadThroughCacheTest, InvalidateCacheSizeZeroReissuesLookup) {
auto fnTest = [&](auto cache) {
auto value = cache.acquire(_opCtx, "TestKey");
ASSERT(value);
ASSERT_EQ(1000, value->counter);
ASSERT_EQ(1, cache.countLookups);
// Because 'value' above is held alive, the cache will not perform lookup until it is
// destroyed
ASSERT_EQ(1000, cache.acquire(_opCtx, "TestKey")->counter);
ASSERT_EQ(1, cache.countLookups);
cache.invalidateKey("TestKey");
auto valueAfterInvalidate = cache.acquire(_opCtx, "TestKey");
ASSERT(!value.isValid());
ASSERT(valueAfterInvalidate);
ASSERT_EQ(2000, valueAfterInvalidate->counter);
ASSERT_EQ(2, cache.countLookups);
};
fnTest(CacheWithThreadPool<Cache>(
getServiceContext(),
0,
[&, nextValue = 0](
OperationContext*, const std::string& key, const Cache::ValueHandle&) mutable {
ASSERT_EQ("TestKey", key);
return Cache::LookupResult(CachedValue(1000 * ++nextValue));
}));
fnTest(CacheWithThreadPool<CausallyConsistentCache>(
getServiceContext(),
0,
[&, nextValue = 0](OperationContext*,
const std::string& key,
const CausallyConsistentCache::ValueHandle&,
const Timestamp& timeInStore) mutable {
ASSERT_EQ("TestKey", key);
++nextValue;
return CausallyConsistentCache::LookupResult(CachedValue(1000 * nextValue),
Timestamp(nextValue));
}));
}
TEST_F(ReadThroughCacheTest, KeyDoesNotExist) {
auto fnTest = [&](auto cache) { ASSERT(!cache.acquire(_opCtx, "TestKey")); };
fnTest(CacheWithThreadPool<Cache>(
getServiceContext(),
1,
[&](OperationContext*, const std::string& key, const Cache::ValueHandle&) {
ASSERT_EQ("TestKey", key);
return Cache::LookupResult(boost::none);
}));
fnTest(CacheWithThreadPool<CausallyConsistentCache>(
getServiceContext(),
1,
[&](OperationContext*,
const std::string& key,
const CausallyConsistentCache::ValueHandle&,
const Timestamp& timeInStore) {
ASSERT_EQ("TestKey", key);
return CausallyConsistentCache::LookupResult(boost::none, Timestamp(10));
}));
}
TEST_F(ReadThroughCacheTest, CausalConsistency) {
boost::optional<CausallyConsistentCache::LookupResult> nextToReturn;
CacheWithThreadPool<CausallyConsistentCache> cache(
getServiceContext(),
1,
[&](OperationContext*,
const std::string& key,
const CausallyConsistentCache::ValueHandle&,
const Timestamp& timeInStore) {
ASSERT_EQ("TestKey", key);
return CausallyConsistentCache::LookupResult(std::move(*nextToReturn));
});
nextToReturn.emplace(CachedValue(10), Timestamp(10));
ASSERT_EQ(10, cache.acquire(_opCtx, "TestKey", CacheCausalConsistency::kLatestCached)->counter);
ASSERT_EQ(10, cache.acquire(_opCtx, "TestKey", CacheCausalConsistency::kLatestKnown)->counter);
nextToReturn.emplace(CachedValue(20), Timestamp(20));
ASSERT(cache.advanceTimeInStore("TestKey", Timestamp(20)));
ASSERT_EQ(10, cache.acquire(_opCtx, "TestKey", CacheCausalConsistency::kLatestCached)->counter);
ASSERT(!cache.acquire(_opCtx, "TestKey", CacheCausalConsistency::kLatestCached).isValid());
ASSERT_EQ(20, cache.acquire(_opCtx, "TestKey", CacheCausalConsistency::kLatestKnown)->counter);
ASSERT(cache.acquire(_opCtx, "TestKey", CacheCausalConsistency::kLatestKnown).isValid());
}
/**
* Fixture for tests, which need to control the creation/destruction of their operation contexts.
*/
class ReadThroughCacheAsyncTest : public unittest::Test, public ScopedGlobalServiceContextForTest {
public:
ReadThroughCacheAsyncTest() {
auto service = getServiceContext();
service->registerClientObserver(std::make_unique<LockerNoopClientObserver>());
}
};
using Barrier = unittest::Barrier;
TEST_F(ReadThroughCacheAsyncTest, SuccessfulInProgressLookupForNotCausallyConsistentCache) {
ThreadPool threadPool{ThreadPool::Options()};
threadPool.startup();
Cache cache(getServiceContext(),
threadPool,
1,
[&](OperationContext*, const std::string& key, const Cache::ValueHandle&) {
return Cache::LookupResult(CachedValue(500));
});
// Join threads before destroying cache. This ensure the internal asynchronous processing tasks
// are completed before the cache resources are released.
ON_BLOCK_EXIT([&] {
threadPool.shutdown();
threadPool.join();
});
Cache::InProgressLookup inProgress(
cache, "TestKey", Cache::ValueHandle(), CacheNotCausallyConsistent());
auto future = inProgress.addWaiter(WithLock::withoutLock());
ASSERT(!future.isReady());
auto res = inProgress.asyncLookupRound().get();
ASSERT(inProgress.valid(WithLock::withoutLock()));
ASSERT(res.v);
ASSERT_EQ(500, res.v->counter);
auto promisesToSet = inProgress.getPromisesLessThanOrEqualToTime(WithLock::withoutLock(),
CacheNotCausallyConsistent());
ASSERT_EQ(1U, promisesToSet.size());
promisesToSet.front()->emplaceValue(std::move(*res.v));
ASSERT(future.isReady());
ASSERT_EQ(500, future.get()->counter);
}
TEST_F(ReadThroughCacheAsyncTest, FailedInProgressLookupForNotCausallyConsistentCache) {
ThreadPool threadPool{ThreadPool::Options()};
threadPool.startup();
Cache cache(getServiceContext(),
threadPool,
1,
[&](OperationContext*, const std::string& key, const Cache::ValueHandle&)
-> Cache::LookupResult { uasserted(ErrorCodes::InternalError, "Test error"); });
// Join threads before destroying cache. This ensure the internal asynchronous processing tasks
// are completed before the cache resources are released.
ON_BLOCK_EXIT([&] {
threadPool.shutdown();
threadPool.join();
});
Cache::InProgressLookup inProgress(
cache, "TestKey", Cache::ValueHandle(), CacheNotCausallyConsistent());
auto future = inProgress.addWaiter(WithLock::withoutLock());
ASSERT(!future.isReady());
auto asyncLookupResult = inProgress.asyncLookupRound().getNoThrow();
ASSERT_THROWS_CODE(inProgress.asyncLookupRound().get(), DBException, ErrorCodes::InternalError);
ASSERT(inProgress.valid(WithLock::withoutLock()));
auto promisesToSet = inProgress.getAllPromisesOnError(WithLock::withoutLock());
ASSERT_EQ(1U, promisesToSet.size());
promisesToSet.front()->setError(asyncLookupResult.getStatus());
ASSERT(future.isReady());
ASSERT_THROWS_CODE(future.get(), DBException, ErrorCodes::InternalError);
}
TEST_F(ReadThroughCacheAsyncTest, AcquireObservesOperationContextDeadline) {
ThreadPool threadPool{ThreadPool::Options()};
threadPool.startup();
Barrier lookupStartedBarrier(2);
Barrier completeLookupBarrier(2);
Cache cache(getServiceContext(),
threadPool,
1,
[&](OperationContext*, const std::string& key, const Cache::ValueHandle&) {
lookupStartedBarrier.countDownAndWait();
completeLookupBarrier.countDownAndWait();
return Cache::LookupResult(CachedValue(5));
});
// Join threads before destroying cache. This ensure the internal asynchronous processing tasks
// are completed before the cache resources are released.
ON_BLOCK_EXIT([&] {
threadPool.shutdown();
threadPool.join();
});
{
ThreadClient tc(getServiceContext());
const ServiceContext::UniqueOperationContext opCtxHolder{tc->makeOperationContext()};
OperationContext* const opCtx{opCtxHolder.get()};
opCtx->setDeadlineAfterNowBy(Milliseconds{5}, ErrorCodes::ExceededTimeLimit);
ASSERT_THROWS_CODE(
cache.acquire(opCtx, "TestKey"), DBException, ErrorCodes::ExceededTimeLimit);
lookupStartedBarrier.countDownAndWait();
}
completeLookupBarrier.countDownAndWait();
{
ThreadClient tc(getServiceContext());
const ServiceContext::UniqueOperationContext opCtxHolder{tc->makeOperationContext()};
OperationContext* const opCtx{opCtxHolder.get()};
auto value = cache.acquire(opCtx, "TestKey");
ASSERT(value);
ASSERT_EQ(5, value->counter);
}
{
ThreadClient tc(getServiceContext());
const ServiceContext::UniqueOperationContext opCtxHolder{tc->makeOperationContext()};
OperationContext* const opCtx{opCtxHolder.get()};
opCtx->setDeadlineAfterNowBy(Milliseconds{0}, ErrorCodes::ExceededTimeLimit);
auto value = cache.acquire(opCtx, "TestKey");
ASSERT(value);
ASSERT_EQ(5, value->counter);
}
}
TEST_F(ReadThroughCacheAsyncTest, InvalidateReissuesLookup) {
ThreadPool threadPool{ThreadPool::Options()};
threadPool.startup();
AtomicWord<int> countLookups(0);
Barrier lookupStartedBarriers[] = {Barrier{2}, Barrier{2}, Barrier{2}};
Barrier completeLookupBarriers[] = {Barrier{2}, Barrier{2}, Barrier{2}};
Cache cache(getServiceContext(),
threadPool,
1,
[&](OperationContext*, const std::string& key, const Cache::ValueHandle&) {
int idx = countLookups.fetchAndAdd(1);
lookupStartedBarriers[idx].countDownAndWait();
completeLookupBarriers[idx].countDownAndWait();
return Cache::LookupResult(CachedValue(idx));
});
// Join threads before destroying cache. This ensure the internal asynchronous processing tasks
// are completed before the cache resources are released.
ON_BLOCK_EXIT([&] {
threadPool.shutdown();
threadPool.join();
});
// Kick off the first lookup, which will block
auto future = cache.acquireAsync("TestKey");
ASSERT(!future.isReady());
// Wait for the first lookup attempt to start and invalidate it before letting it proceed
lookupStartedBarriers[0].countDownAndWait();
ASSERT_EQ(1, countLookups.load());
cache.invalidateKey("TestKey");
ASSERT(!future.isReady());
completeLookupBarriers[0].countDownAndWait(); // Lets lookup attempt 1 proceed
ASSERT(!future.isReady());
// Wait for the second lookup attempt to start and invalidate it before letting it proceed
lookupStartedBarriers[1].countDownAndWait();
ASSERT_EQ(2, countLookups.load());
cache.invalidateKey("TestKey");
ASSERT(!future.isReady());
completeLookupBarriers[1].countDownAndWait(); // Lets lookup attempt 2 proceed
ASSERT(!future.isReady());
// Wait for the third lookup attempt to start, but not do not invalidate it before letting it
// proceed
lookupStartedBarriers[2].countDownAndWait();
ASSERT_EQ(3, countLookups.load());
ASSERT(!future.isReady());
completeLookupBarriers[2].countDownAndWait(); // Lets lookup attempt 3 proceed
ASSERT_EQ(2, future.get()->counter);
}
TEST_F(ReadThroughCacheAsyncTest, AcquireWithAShutdownThreadPool) {
ThreadPool threadPool{ThreadPool::Options()};
threadPool.startup();
threadPool.shutdown();
threadPool.join();
Cache cache(getServiceContext(),
threadPool,
1,
[&](OperationContext*, const std::string&, const Cache::ValueHandle&) {
FAIL("Should not be called");
return Cache::LookupResult(boost::none); // Will never be reached
});
auto future = cache.acquireAsync("TestKey");
ASSERT_THROWS_CODE(future.get(), DBException, ErrorCodes::ShutdownInProgress);
}
TEST_F(ReadThroughCacheAsyncTest, ShutdownWithConcurrentInvalidate) {
ThreadPool threadPool{ThreadPool::Options()};
Barrier lookupStartedBarrier(2);
Barrier completeLookupBarrier(2);
threadPool.startup();
Cache cache(getServiceContext(),
threadPool,
1,
[&](OperationContext*, const std::string&, const Cache::ValueHandle&) {
// Wait until noticed
lookupStartedBarrier.countDownAndWait();
completeLookupBarrier.countDownAndWait();
uasserted(ErrorCodes::InterruptedAtShutdown, "Interrupted at shutdown");
return Cache::LookupResult(boost::none);
});
// Join threads before destroying cache. This ensure the internal asynchronous processing tasks
// are completed before the cache resources are released.
ON_BLOCK_EXIT([&] {
threadPool.shutdown();
threadPool.join();
});
auto future = cache.acquireAsync("async", CacheCausalConsistency::kLatestCached);
lookupStartedBarrier.countDownAndWait();
cache.invalidateKey("async");
completeLookupBarrier.countDownAndWait();
ASSERT_THROWS_CODE(future.get(), DBException, ErrorCodes::InterruptedAtShutdown);
}
class MockThreadPool : public ThreadPoolInterface {
public:
~MockThreadPool() {
ASSERT(!_mostRecentTask);
}
void startup() override {}
void shutdown() override {}
void join() override {}
void schedule(Task task) override {
ASSERT(!_mostRecentTask);
_mostRecentTask = std::move(task);
}
void runMostRecentTask() {
ASSERT(_mostRecentTask);
auto f = std::move(_mostRecentTask);
f(Status::OK());
}
private:
Task _mostRecentTask;
};
TEST_F(ReadThroughCacheAsyncTest, AdvanceTimeDuringLookupOfUnCachedKey) {
MockThreadPool threadPool;
boost::optional<CausallyConsistentCache::LookupResult> nextToReturn;
CausallyConsistentCache cache(getServiceContext(),
threadPool,
1,
[&](OperationContext*,
const std::string&,
const CausallyConsistentCache::ValueHandle&,
const Timestamp&) { return std::move(*nextToReturn); });
auto futureAtTS100 = cache.acquireAsync("TestKey", CacheCausalConsistency::kLatestKnown);
ASSERT(!futureAtTS100.isReady());
ASSERT(cache.advanceTimeInStore("TestKey", Timestamp(200)));
auto futureAtTS200 = cache.acquireAsync("TestKey", CacheCausalConsistency::kLatestKnown);
ASSERT(!futureAtTS200.isReady());
nextToReturn.emplace(CachedValue(100), Timestamp(100));
threadPool.runMostRecentTask();
ASSERT_EQ(100, futureAtTS100.get()->counter);
ASSERT(!futureAtTS100.get().isValid());
ASSERT(!futureAtTS200.isReady());
nextToReturn.emplace(CachedValue(200), Timestamp(200));
threadPool.runMostRecentTask();
ASSERT_EQ(200, futureAtTS200.get()->counter);
ASSERT(futureAtTS200.get().isValid());
}
TEST_F(ReadThroughCacheAsyncTest, KeyDeletedAfterAdvanceTimeInStore) {
MockThreadPool threadPool;
boost::optional<CausallyConsistentCache::LookupResult> nextToReturn;
CausallyConsistentCache cache(getServiceContext(),
threadPool,
1,
[&](OperationContext*,
const std::string&,
const CausallyConsistentCache::ValueHandle&,
const Timestamp&) { return std::move(*nextToReturn); });
auto futureAtTS100 = cache.acquireAsync("TestKey", CacheCausalConsistency::kLatestKnown);
nextToReturn.emplace(CachedValue(100), Timestamp(100));
threadPool.runMostRecentTask();
ASSERT_EQ(100, futureAtTS100.get()->counter);
ASSERT(futureAtTS100.get().isValid());
ASSERT(cache.advanceTimeInStore("TestKey", Timestamp(200)));
auto futureAtTS200 = cache.acquireAsync("TestKey", CacheCausalConsistency::kLatestKnown);
nextToReturn.emplace(boost::none, Timestamp(200));
threadPool.runMostRecentTask();
ASSERT(!futureAtTS100.get().isValid());
ASSERT(!futureAtTS200.get());
auto futureAtTS300 = cache.acquireAsync("TestKey", CacheCausalConsistency::kLatestCached);
nextToReturn.emplace(boost::none, Timestamp(300));
threadPool.runMostRecentTask();
ASSERT(!futureAtTS300.get());
}
TEST_F(ReadThroughCacheAsyncTest, AcquireAsyncAndAdvanceTimeInterleave) {
MockThreadPool threadPool;
boost::optional<CausallyConsistentCache::LookupResult> nextToReturn;
CausallyConsistentCache cache(getServiceContext(),
threadPool,
1,
[&](OperationContext*,
const std::string&,
const CausallyConsistentCache::ValueHandle&,
const Timestamp&) { return std::move(*nextToReturn); });
auto futureAtTS100 = cache.acquireAsync("TestKey");
nextToReturn.emplace(CachedValue(100), Timestamp(100));
threadPool.runMostRecentTask();
ASSERT_EQ(100, futureAtTS100.get()->counter);
ASSERT(futureAtTS100.get().isValid());
ASSERT(cache.advanceTimeInStore("TestKey", Timestamp(150)));
auto futureAtTS150 = cache.acquireAsync("TestKey", CacheCausalConsistency::kLatestKnown);
ASSERT(!futureAtTS100.get().isValid());
ASSERT(!futureAtTS150.isReady());
ASSERT(cache.advanceTimeInStore("TestKey", Timestamp(250)));
auto futureAtTS250 = cache.acquireAsync("TestKey", CacheCausalConsistency::kLatestKnown);
ASSERT(!futureAtTS100.get().isValid());
ASSERT(!futureAtTS150.isReady());
ASSERT(!futureAtTS250.isReady());
nextToReturn.emplace(CachedValue(150), Timestamp(150));
threadPool.runMostRecentTask();
ASSERT_EQ(150, futureAtTS150.get()->counter);
ASSERT(!futureAtTS150.get().isValid());
ASSERT(!futureAtTS250.isReady());
nextToReturn.emplace(CachedValue(250), Timestamp(250));
threadPool.runMostRecentTask();
ASSERT_EQ(250, futureAtTS250.get()->counter);
ASSERT(futureAtTS250.get().isValid());
}
TEST_F(ReadThroughCacheAsyncTest, InvalidateCalledBeforeLookupTaskExecutes) {
MockThreadPool threadPool;
Cache cache(getServiceContext(),
threadPool,
1,
[&](OperationContext*, const std::string&, const Cache::ValueHandle&) {
return Cache::LookupResult(CachedValue(123));
});
auto future = cache.acquireAsync("TestKey");
cache.invalidateAll();
ASSERT(!future.isReady());
threadPool.runMostRecentTask();
ASSERT(!future.isReady());
threadPool.runMostRecentTask();
ASSERT_EQ(123, future.get()->counter);
}
TEST_F(ReadThroughCacheAsyncTest, CacheSizeZero) {
MockThreadPool threadPool;
auto fnTest = [&](auto cache) {
for (int i = 1; i <= 3; i++) {
auto future = cache.acquireAsync("TestKey", CacheCausalConsistency::kLatestKnown);
threadPool.runMostRecentTask();
auto value = future.get();
ASSERT(value);
ASSERT_EQ(100 * i, value->counter);
ASSERT_EQ(i, cache.countLookups);
}
};
fnTest(Cache(getServiceContext(),
threadPool,
0,
[&, nextValue = 0](
OperationContext*, const std::string& key, const Cache::ValueHandle&) mutable {
ASSERT_EQ("TestKey", key);
return Cache::LookupResult(CachedValue(100 * ++nextValue));
}));
fnTest(CausallyConsistentCache(getServiceContext(),
threadPool,
0,
[&, nextValue = 0](OperationContext*,
const std::string& key,
const CausallyConsistentCache::ValueHandle&,
const Timestamp&) mutable {
ASSERT_EQ("TestKey", key);
++nextValue;
return CausallyConsistentCache::LookupResult(
CachedValue(100 * nextValue), Timestamp(nextValue));
}));
}
} // namespace
} // namespace mongo
|