summaryrefslogtreecommitdiff
path: root/src/support/huffman.c
blob: 2a0fcfde2187dc46f95dc73a4b94a35ab4e1c8ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
/*-
 * See the file LICENSE for redistribution information.
 *
 * Copyright (c) 2008-2011 WiredTiger, Inc.
 *	All rights reserved.
 *
 * $Id$
 *
 *   Huffman Encoder/Decoder v1.0
 *   Author Brian Pollack <brian@brians.com>
 */

#include "wt_internal.h"

typedef struct __wt_freqtree_node {
	/*
	 * Data structure representing a node of the huffman tree. It holds a
	 * 32-bit weight and pointers to the left and right child nodes.
	 * The node either has two child nodes or none.
	 */
	uint16_t symbol;			/* only used in leaf nodes */
	uint32_t weight;
	uint16_t codeword_length;
	struct __wt_freqtree_node *left;	/* bit 0 */
	struct __wt_freqtree_node *right;	/* bit 1 */
} WT_FREQTREE_NODE;

typedef struct __wt_static_huffman_node {
	/*
	 * This data structure is used to represent the huffman tree in a
	 * static array, after it has been created (using a dynamic tree
	 * representation with WT_FREQTREE_NODE nodes).
	 *
	 * In the binary tree's array representation if a node's index is i,
	 * then its left child node is 2i+1 and its right child node is 2i+2.
	 */
	uint8_t valid;
	uint16_t symbol;
	uint16_t codeword_length;
} WT_STATIC_HUFFMAN_NODE;

typedef struct __wt_huffman_obj {
	ENV *env;		/* Enclosing environment */
	/*
	 * Data structure here defines specific instance of the encoder/decoder.
	 * This contains the frequency table (tree) used to produce optimal
	 * results.  This version of the encoder supports 1- and 2-byte symbols.
	 */
	uint32_t numSymbols;
	uint8_t  numBytes;	/* 1 or 2 */
				/* The tree in static array reprentation */
	WT_STATIC_HUFFMAN_NODE *nodes;
	uint16_t max_depth;
} WT_HUFFMAN_OBJ;

/*
 * Queue element data structure.
 *
 * Consists of a pointer to a huffman tree node, and a pointer to the next
 * element in the queue.
 */
typedef struct node_queue_elem {
	WT_FREQTREE_NODE *node;
	struct node_queue_elem *next;
} NODE_QUEUE_ELEM;

/*
 * Queue of huffman tree nodes.
 *
 * Contains a pointer to the beginning and the end of the queue, which is
 * implemented as a linked list.
 */
typedef struct node_queue {
	NODE_QUEUE_ELEM *first;
	NODE_QUEUE_ELEM *last;
} NODE_QUEUE;

#define	node_queue_is_empty(queue)					\
	(((queue) == NULL || (queue)->first == NULL) ? 1 : 0)

static void node_queue_close(ENV *, NODE_QUEUE *);
static void node_queue_dequeue(ENV *, NODE_QUEUE *, WT_FREQTREE_NODE **);
static int  node_queue_enqueue(ENV *, NODE_QUEUE *, WT_FREQTREE_NODE *);
static void recursive_free_node(ENV *env, WT_FREQTREE_NODE *node);

/*
 * The following macros are used by the encoder to write the buffer with bit
 * addressing.
 */
#undef	SET_BIT
#define	SET_BIT(ptr, pos)						\
	*((ptr) + ((pos) / 8)) |= 1 << (7 - ((pos) % 8))
#undef	CLEAR_BIT
#define	CLEAR_BIT(ptr, pos)						\
	*((ptr) + ((pos) / 8)) &= ~(uint8_t)(1 << (7 - ((pos) % 8)))
#undef	MODIFY_BIT
#define	MODIFY_BIT(ptr, pos, bit)					\
	if (bit)							\
		SET_BIT(ptr, pos);					\
	else								\
		CLEAR_BIT(ptr, pos);

/*
 * Internal data structure used to preserve the symbol when rearranging the
 * frequency array.
 */
typedef struct __indexed_byte {
	uint8_t frequency;
	uint16_t symbol;
} INDEXED_BYTE;

/*
 * Comparator function used by QuickSort to order the frequency table by
 * frequency (most frequent symbols will be at the end of the array).
 */
static int
indexed_byte_comparator(const void *elem1, const void *elem2)
{
	return (((INDEXED_BYTE *)
	    elem1)->frequency) - (((INDEXED_BYTE *)elem2)->frequency);
}

/*
 * traverse_tree --
 *	Recursive function with dual functionality:
 *	- It sets the codeword_length field of each leaf node to the
 *	  appropriate value.
 *	- It finds the maximum depth of the tree.
 */
static void
traverse_tree(
    WT_FREQTREE_NODE *node, uint16_t current_length, uint16_t *max_depth)
{
	/* Recursively traverse the tree */
	if (node->left != NULL)
		traverse_tree(node->left, current_length + 1, max_depth);
	if (node->right != NULL)
		traverse_tree(node->right, current_length + 1, max_depth);

	/* If this is a leaf: */
	if (node->left == NULL && node->right == NULL) {
		/*
		 * Setting the leaf's codeword length (for inner nodes, it
		 * is always 0!)
		 */
		node->codeword_length = current_length;

		/* Store the new maximal depth. */
		if (*max_depth < current_length + 1)
			*max_depth = current_length + 1;
	}
}

/*
 * fill_static_representation --
 *	Recursive function that converts the huffman tree from its dynamic
 * representation to static tree representation, to a preallocated array.
 *
 * To know the required size of the array the traverse_tree function can be
 * used, determining the maximum depth N. Then the required array size is 2^N.
 */
static void
fill_static_representation(
    WT_STATIC_HUFFMAN_NODE *target, WT_FREQTREE_NODE *node, int idx)
{
	WT_STATIC_HUFFMAN_NODE *current_target;

	current_target = &target[idx];
	current_target->symbol = node->symbol;
	current_target->codeword_length = node->codeword_length;
	current_target->valid = 1;

	if (node->left != NULL)
		fill_static_representation(target, node->left, idx * 2 + 1);
	if (node->right != NULL)
		fill_static_representation(target, node->right, idx * 2 + 2);
}

/*
 * recursive_free_node --
 *	Recursively free the huffman frequency tree's nodes.
 */
static void
recursive_free_node(ENV *env, WT_FREQTREE_NODE *node)
{
	if (node != NULL) {
		recursive_free_node(env, node->left);
		recursive_free_node(env, node->right);
		__wt_free(env, node, sizeof(WT_FREQTREE_NODE));
	}
}

/*
 * __wt_huffman_open --
 *	Take a frequency table and return a pointer to a descriptor object.
 *
 *  The frequency table must be the full range of valid values.  For 1 byte
 *  tables there are 256 values in 8 bits.  The highest rank is 255, and the
 * lowest rank is 1 (0 means the byte never appears in the input), so 1 byte
 * is needed to hold the rank and the input table must be 1 byte x 256 values.
 *
 *  For UTF-16 (nbytes == 2) the range is 0 - 65535 and the max rank is 65535.
 *  The table should be 2 bytes x 65536 values.
 */
int
__wt_huffman_open(ENV *env,
    uint8_t const *byte_frequency_array, u_int nbytes, void *retp)
{
	INDEXED_BYTE *indexed_freqs;
	NODE_QUEUE *combined_nodes, *leaves;
	WT_FREQTREE_NODE *node, *node2, **refnode, *tempnode;
	WT_HUFFMAN_OBJ *huffman;
	uint32_t w1, w2;
	uint16_t i;
	int ret;

	indexed_freqs = NULL;
	combined_nodes = leaves = NULL;
	node = node2 = tempnode = NULL;
	ret = 0;

	WT_RET(__wt_calloc(env, 1, sizeof(WT_HUFFMAN_OBJ), &huffman));
	WT_ERR(__wt_calloc(env, nbytes, sizeof(INDEXED_BYTE), &indexed_freqs));
	huffman->env = env;

	/*
	 * The frequency array must be sorted to be able to use linear time
	 * construction algorithm.
	 */
	for (i = 0; i < nbytes; ++i) {
		indexed_freqs[i].frequency = byte_frequency_array[i];
		indexed_freqs[i].symbol = i;
	}

	qsort(indexed_freqs,
	    nbytes, sizeof(INDEXED_BYTE), indexed_byte_comparator);

	/* We need two node queues to build the tree. */
	WT_ERR(__wt_calloc(env, 1, sizeof(NODE_QUEUE), &leaves));
	WT_ERR(__wt_calloc(env, 1, sizeof(NODE_QUEUE), &combined_nodes));

	/* Adding the leaves to the queue */
	for (i = 0; i < nbytes; ++i) {
		/*
		 * We are leaving out symbols with a frequency of 0.  This
		 * assumes these symbols will NEVER occur in the source stream,
		 * and the purpose is to reduce the huffman tree's size.
		 *
		 * NOTE: Even if this behavior is not desired, the frequencies
		 * should have a range between 1 - 255, otherwise the algorithm
		 * cannot produce well balanced tree; so this can be treated as
		 * an optional feature.
		 */
		if (indexed_freqs[i].frequency > 0) {
			WT_ERR(__wt_calloc(
			    env, 1, sizeof(WT_FREQTREE_NODE), &tempnode));
			tempnode->symbol = indexed_freqs[i].symbol;
			tempnode->weight = indexed_freqs[i].frequency;
			WT_ERR(node_queue_enqueue(env, leaves, tempnode));
			tempnode = NULL;
		}
	}

	while (!node_queue_is_empty(leaves) ||
	    !node_queue_is_empty(combined_nodes)) {
		/*
		 * We have to get the node with the smaller weight, examining
		 * both queues first element.  We are collecting pairs of these
		 * items, by alternating between node and node2:
		 */
		refnode = !node ? &node : &node2;

		/*
		 * To decide which queue must be used, we get the weights of
		 * the first items from both:
		 */
		w1 = node_queue_is_empty(leaves) ?
		    UINT32_MAX : leaves->first->node->weight;
		w2 = node_queue_is_empty(combined_nodes) ?
		    UINT32_MAX : combined_nodes->first->node->weight;

		/*
		 * Based on the two weights we finally can dequeue the smaller
		 * element and place it to the alternating target node pointer:
		 */
		if (w1 < w2)
			node_queue_dequeue(env, leaves, refnode);
		else
			node_queue_dequeue(env, combined_nodes, refnode);

		/*
		 * In every second run, we have both node and node2 initialized.
		 */
		if (node != NULL && node2 != NULL) {
			WT_ERR(__wt_calloc(
			    env, 1, sizeof(WT_FREQTREE_NODE), &tempnode));

			/* The new weight is the sum of the two weights. */
			tempnode->weight = node->weight + node2->weight;
			tempnode->left = node;
			tempnode->right = node2;

			/* Enqueue it to the combined nodes queue */
			WT_ERR(
			    node_queue_enqueue(env, combined_nodes, tempnode));
			tempnode = NULL;

			/* Reset the state pointers */
			node = node2 = NULL;
		}
	}

	/*
	 * The remaining node is in the node variable, this is the root of the
	 * tree.   Calculate the number of bytes it takes to hold nbytes bits.
	 */
	huffman->numSymbols = nbytes;
	huffman->numBytes = nbytes > 256 ? 2 : 1;

	/* Traverse the tree and set the code word length for each node. */
	traverse_tree(node, 0, &huffman->max_depth);

	/* Converting the tree to a static array representation. */
	WT_ERR(__wt_calloc(env, 1 << huffman->max_depth,
	    sizeof(WT_STATIC_HUFFMAN_NODE), &huffman->nodes));
	fill_static_representation(huffman->nodes, node, 0);

	*(void **)retp = huffman;

err:	if (leaves != NULL)
		node_queue_close(env, leaves);
	if (combined_nodes != NULL)
		node_queue_close(env, combined_nodes);
	if (indexed_freqs != NULL)
		__wt_free(env, indexed_freqs, 0);
	if (node != NULL)
		recursive_free_node(env, node);
	if (node2 != NULL)
		recursive_free_node(env, node2);
	if (tempnode != NULL)
		__wt_free(env, tempnode, sizeof(WT_FREQTREE_NODE));
	if (ret != 0) {
		if (huffman->nodes != NULL)
			__wt_free(env, huffman->nodes, 0);
		__wt_free(env, huffman, sizeof(WT_HUFFMAN_OBJ));
	}
	return (ret);
}

/*
 * __wt_huffman_close --
 *	Discard a Huffman descriptor object.
 */
void
__wt_huffman_close(ENV *env, void *huffman_arg)
{
	WT_HUFFMAN_OBJ *huffman;

	huffman = huffman_arg;

	__wt_free(env, huffman->nodes, 0);
	__wt_free(env, huffman, sizeof(WT_HUFFMAN_OBJ));
}

#ifdef HAVE_DIAGNOSTIC
/*
 * __wt_print_huffman_code --
 *	Prints a symbol's huffman code. Can be used for debugging purposes.
 */
int
__wt_print_huffman_code(ENV *env, void *huffman_arg, uint16_t symbol)
{
	WT_HUFFMAN_OBJ *huffman;
	WT_STATIC_HUFFMAN_NODE *node;
	u_int i, n;
	int p;
	char *buffer;

	huffman = huffman_arg;

	/* Check if the symbol is in valid range */
	if (symbol < huffman->numSymbols) {
		WT_RET(__wt_calloc(env, huffman->max_depth, 1, &buffer));

		node = NULL;
		for (i = 0, n = 1 << huffman->max_depth; i < n; ++i) {
			node = &huffman->nodes[i];
			if (node->valid &&
			    node->symbol == symbol && node->codeword_length > 0)
				break;
		}

		if (node != NULL) {
			/*
			 * We've got the leaf node, at index 'i'.  Now we fill
			 * the output buffer in back order.
			 */
			for (p = node->codeword_length - 1; p >= 0; --p) {
				buffer[p] = (i % 2) == 1 ? '0' : '1';
				i = (i - 1) / 2;
			}

			(void)printf("%s\n", buffer);
		} else {
			(void)printf(
			    "Symbol is not in the huffman tree: %x\n", symbol);
			return (WT_ERROR);
		}

		__wt_free(env, buffer, 0);
	} else
		(void)printf("Symbol out of range: %lu >= %lu\n",
		    (u_long)symbol, (u_long)huffman->numSymbols);
	return (0);
}
#endif

/*
 * __wt_huffman_encode --
 *	Take a byte string, encode it into the target.
 */
int
__wt_huffman_encode(void *huffman_arg,
    uint8_t *from, uint32_t from_len,
    void *top, uint32_t *to_len, uint32_t *out_bytes_used)
{
	ENV *env;
	WT_HUFFMAN_OBJ *huffman;
	WT_STATIC_HUFFMAN_NODE *node;
	uint32_t bitpos, i, n, j;
	uint16_t symbol;
	uint8_t padding_info, *to;
	int p;

	huffman = huffman_arg;
	env = huffman->env;

	/*
	 * We need N+1 bytes to encode N bytes, re-allocate as necessary.
	 *
	 * If the initial target pointer, or the initial target buffer length,
	 * aren't set, it's an allocation.   Clear the initial target pointer,
	 * our caller may have only set the initial target buffer length, not
	 * the initial pointer value.
	 */
	if (to_len == NULL || *to_len < from_len + 1) {
		if (to_len == NULL)
			*(void **)top = NULL;
		WT_RET(__wt_realloc(env, to_len, from_len + 1, top));
	}

	to = *(uint8_t **)top;
	memset(to, 0, from_len + 1);

	/*
	 * Leave the first 3 bits of the encoded value empty, it holds the
	 * number of bits actually used in the last byte of the encoded value.
	 */
	bitpos = 3;
	n = 1 << huffman->max_depth;
	for (i = 0; i < from_len; i += huffman->numBytes) {
		/* Getting the next symbol, either 1 or 2 bytes */
		if (huffman->numBytes == 1)
			symbol = *from++;
		else {
			symbol = ((uint16_t)(*from++)) << 8;
			symbol |= *from++;
		}

		/* Getting the symbol's huffman code from the table */
		node = NULL;
		for (j = 0; j < n; ++j) {
			node = &huffman->nodes[j];
			if (node->valid &&
			    node->symbol == symbol && node->codeword_length > 0)
				break;
		}

		if (node != NULL) {
			/*
			 * We've got the leaf node, at index 'j'.  Now we fill
			 * the output buffer in back order.
			 */
			for (p = node->codeword_length - 1; p >= 0; --p) {
				MODIFY_BIT(to, bitpos + (u_int)p, (j % 2) ^ 1);
				j = (j - 1) / 2;
			}

			bitpos += node->codeword_length;
		} else {
			__wt_api_env_errx(NULL,
			    "Huffman compression: there was a symbol in the "
			    "source originally declared with zero frequency; "
			    "undefined source symbol: %lu", (u_long)symbol);
			return (WT_ERROR);
		}
	}

	/*
	 * At this point, bitpos is the total number of used bits (including
	 * the 3 bits at the beginning of the buffer, which we'll set now to
	 * the number of bits used in the last byte).   Note if the number of
	 * bits used in the last byte is 8, we set the 3 bits to 0, in other
	 * words, the first 3 bits of the encoded value are the number of bits
	 * used in the last byte, unless they're 0, in which case there are 8
	 * bits used in the last byte.
	 */
	padding_info = (bitpos % 8) << 5;
	*to |= padding_info;

	*out_bytes_used = bitpos / 8 + ((bitpos % 8) ? 1 : 0);

	return (0);
}

/*
 * __wt_huffman_decode --
 *	Take a byte string, decode it into the target.
 */
int
__wt_huffman_decode(void *huffman_arg,
    uint8_t *from, uint32_t from_len,
    void *top, uint32_t *to_len, uint32_t *out_bytes_used)
{
	ENV *env;
	WT_HUFFMAN_OBJ *huffman;
	WT_STATIC_HUFFMAN_NODE* node;
	uint32_t bytes, i, from_len_bits, node_idx;
	uint8_t bitpos, mask, bit, padding_info, *to;

	huffman = huffman_arg;
	env = huffman->env;

	/*
	 * We need 2N+1 bytes to decode N bytes, re-allocate as necessary.
	 *
	 * If the initial target pointer, or the initial target buffer length,
	 * aren't set, it's an allocation.   Clear the initial target pointer,
	 * our caller may have only set the initial target buffer length, not
	 * the initial pointer value.
	 */
	if (to_len == NULL || *to_len < 2 * from_len + 1) {
		if (to_len == NULL)
			*(void **)top = NULL;
		WT_RET(__wt_realloc(env, to_len, 2 * from_len + 1, top));
	}

	to = *(uint8_t **)top;

	bitpos = 4;			/* Skipping the first 3 bits. */
	bytes = 0;
	node_idx = 0;

	/*
	 * The first 3 bits are the number of used bits in the last byte, unless
	 * they're 0, in which case there are 8 bits used in the last byte.
	 */
	padding_info = (*from & 0xE0) >> 5;
	from_len_bits = from_len * 8;
	if (padding_info != 0)
		from_len_bits -= 8 - padding_info;

	/*
	 * The loop will go through each bit of the source stream, its length
	 * is given in BITS!
	 */
	for (i = 3; i < from_len_bits; i++) {
		/* Extracting the current bit */
		mask = (uint8_t)(1 << bitpos);
		bit = (*from & mask);

		/*
		 * As we go through the bits, we also make steps in the huffman
		 * tree, originated from the root, toward the leaves.
		 */
		if (bit)
			node_idx = (node_idx * 2) + 2;
		else
			node_idx = (node_idx * 2) + 1;

		node = &huffman->nodes[node_idx];

		/* If this is a leaf, we've found a complete symbol. */
		if (node->valid && node->codeword_length > 0) {
			if (huffman->numBytes == 1)
				*to++ = (uint8_t)node->symbol;
			else {
				*to++ = (node->symbol & 0xFF00) >> 8;
				*to++ = node->symbol & 0xFF;
			}

			bytes += huffman->numBytes;
			node_idx = 0;
		}

		/* Moving forward one bit in the source stream. */
		if (bitpos > 0)
			bitpos--;
		else {
			bitpos = 7;
			from++;
		}
	}

	/* Return the number of bytes used. */
	*out_bytes_used = bytes;

	return (0);
}

/*
 * node_queue_close --
 *	Delete a queue from memory.
 *
 * It does not delete the pointed huffman tree nodes!
 */
static void
node_queue_close(ENV *env, NODE_QUEUE *queue)
{
	NODE_QUEUE_ELEM *elem, *next_elem;

	/* Freeing each element of the queue's linked list. */
	for (elem = queue->first; elem != NULL; elem = next_elem) {
		next_elem = elem->next;
		__wt_free(env, elem, sizeof(NODE_QUEUE_ELEM));
	}

	/* Freeing the queue record itself. */
	__wt_free(env, queue, sizeof(NODE_QUEUE));
}

/*
 * node_queue_enqueue --
 *	Push a tree node to the end of the queue.
 */
static int
node_queue_enqueue(ENV *env, NODE_QUEUE *queue, WT_FREQTREE_NODE *node)
{
	NODE_QUEUE_ELEM *elem;

	/* Allocating a new linked list element */
	WT_RET(__wt_calloc(env, 1, sizeof(NODE_QUEUE_ELEM), &elem));

	/* It holds the tree node, and has no next element yet */
	elem->node = node;
	elem->next = NULL;

	/* If the queue is empty, the first element will be the new one. */
	if (queue->first == NULL)
		queue->first = elem;

	/*
	 * If the queue is not empty, the last element's next pointer must be
	 * updated.
	 */
	if (queue->last != NULL)
		queue->last->next = elem;

	/* The last element is the new one */
	queue->last = elem;

	return (0);
}

/*
 * node_queue_dequeue --
 *	Removes a node from the beginning of the queue and copies the node's
 *	pointer to the location referred by the retp parameter.
 */
static void
node_queue_dequeue(ENV *env, NODE_QUEUE *queue, WT_FREQTREE_NODE **retp)
{
	NODE_QUEUE_ELEM *first_elem;

	/*
	 * Getting the first element of the queue and updating it to point to
	 * the next element as first.
	 */
	first_elem = queue->first;
	*retp = first_elem->node;
	queue->first = first_elem->next;

	/*
	 * If the last element was the dequeued element, we have to update it
	 * to NULL.
	 */
	if (queue->last == first_elem)
		queue->last = NULL;

	/* Freeing the linked list element that has been dequeued */
	__wt_free(env, first_elem, sizeof(NODE_QUEUE_ELEM));
}