1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
|
// Copyright 2005 Google Inc. All Rights Reserved.
#include "s2cell.h"
#include <cstdio>
#include <map>
using std::map;
using std::multimap;
#include <vector>
using std::vector;
#include "base/commandlineflags.h"
#include "base/logging.h"
#include "testing/base/public/gunit.h"
#include "s2.h"
#include "s2cap.h"
#include "s2latlngrect.h"
#include "s2testing.h"
TEST(S2Cell, TestFaces) {
map<S2Point, int> edge_counts;
map<S2Point, int> vertex_counts;
for (int face = 0; face < 6; ++face) {
S2CellId id = S2CellId::FromFacePosLevel(face, 0, 0);
S2Cell cell(id);
EXPECT_EQ(id, cell.id());
EXPECT_EQ(face, cell.face());
EXPECT_EQ(0, cell.level());
// Top-level faces have alternating orientations to get RHS coordinates.
EXPECT_EQ(face & S2::kSwapMask, cell.orientation());
EXPECT_FALSE(cell.is_leaf());
for (int k = 0; k < 4; ++k) {
edge_counts[cell.GetEdgeRaw(k)] += 1;
vertex_counts[cell.GetVertexRaw(k)] += 1;
EXPECT_DOUBLE_EQ(0.0, cell.GetVertexRaw(k).DotProd(cell.GetEdgeRaw(k)));
EXPECT_DOUBLE_EQ(0.0,
cell.GetVertexRaw((k+1)&3).DotProd(cell.GetEdgeRaw(k)));
EXPECT_DOUBLE_EQ(1.0,
cell.GetVertexRaw(k)
.CrossProd(cell.GetVertexRaw((k+1)&3))
.Normalize().DotProd(cell.GetEdge(k)));
}
}
// Check that edges have multiplicity 2 and vertices have multiplicity 3.
for (map<S2Point, int>::iterator i = edge_counts.begin();
i != edge_counts.end(); ++i) {
EXPECT_EQ(2, i->second);
}
for (map<S2Point, int>::iterator i = vertex_counts.begin();
i != vertex_counts.end(); ++i) {
EXPECT_EQ(3, i->second);
}
}
struct LevelStats {
double count;
double min_area, max_area, avg_area;
double min_width, max_width, avg_width;
double min_edge, max_edge, avg_edge, max_edge_aspect;
double min_diag, max_diag, avg_diag, max_diag_aspect;
double min_angle_span, max_angle_span, avg_angle_span;
double min_approx_ratio, max_approx_ratio;
LevelStats()
: count(0), min_area(100), max_area(0), avg_area(0),
min_width(100), max_width(0), avg_width(0),
min_edge(100), max_edge(0), avg_edge(0), max_edge_aspect(0),
min_diag(100), max_diag(0), avg_diag(0), max_diag_aspect(0),
min_angle_span(100), max_angle_span(0), avg_angle_span(0),
min_approx_ratio(100), max_approx_ratio(0) {}
};
static vector<LevelStats> level_stats(S2CellId::kMaxLevel+1);
static void GatherStats(S2Cell const& cell) {
LevelStats* s = &level_stats[cell.level()];
double exact_area = cell.ExactArea();
double approx_area = cell.ApproxArea();
double min_edge = 100, max_edge = 0, avg_edge = 0;
double min_diag = 100, max_diag = 0;
double min_width = 100, max_width = 0;
double min_angle_span = 100, max_angle_span = 0;
for (int i = 0; i < 4; ++i) {
double edge = cell.GetVertexRaw(i).Angle(cell.GetVertexRaw((i+1)&3));
min_edge = min(edge, min_edge);
max_edge = max(edge, max_edge);
avg_edge += 0.25 * edge;
S2Point mid = cell.GetVertexRaw(i) + cell.GetVertexRaw((i+1)&3);
double width = M_PI_2 - mid.Angle(cell.GetEdgeRaw(i^2));
min_width = min(width, min_width);
max_width = max(width, max_width);
if (i < 2) {
double diag = cell.GetVertexRaw(i).Angle(cell.GetVertexRaw(i^2));
min_diag = min(diag, min_diag);
max_diag = max(diag, max_diag);
double angle_span = cell.GetEdgeRaw(i).Angle(-cell.GetEdgeRaw(i^2));
min_angle_span = min(angle_span, min_angle_span);
max_angle_span = max(angle_span, max_angle_span);
}
}
s->count += 1;
s->min_area = min(exact_area, s->min_area);
s->max_area = max(exact_area, s->max_area);
s->avg_area += exact_area;
s->min_width = min(min_width, s->min_width);
s->max_width = max(max_width, s->max_width);
s->avg_width += 0.5 * (min_width + max_width);
s->min_edge = min(min_edge, s->min_edge);
s->max_edge = max(max_edge, s->max_edge);
s->avg_edge += avg_edge;
s->max_edge_aspect = max(max_edge / min_edge, s->max_edge_aspect);
s->min_diag = min(min_diag, s->min_diag);
s->max_diag = max(max_diag, s->max_diag);
s->avg_diag += 0.5 * (min_diag + max_diag);
s->max_diag_aspect = max(max_diag / min_diag, s->max_diag_aspect);
s->min_angle_span = min(min_angle_span, s->min_angle_span);
s->max_angle_span = max(max_angle_span, s->max_angle_span);
s->avg_angle_span += 0.5 * (min_angle_span + max_angle_span);
double approx_ratio = approx_area / exact_area;
s->min_approx_ratio = min(approx_ratio, s->min_approx_ratio);
s->max_approx_ratio = max(approx_ratio, s->max_approx_ratio);
}
static void TestSubdivide(S2Cell const& cell) {
GatherStats(cell);
if (cell.is_leaf()) return;
S2Cell children[4];
CHECK(cell.Subdivide(children));
S2CellId child_id = cell.id().child_begin();
double exact_area = 0;
double approx_area = 0;
double average_area = 0;
for (int i = 0; i < 4; ++i, child_id = child_id.next()) {
exact_area += children[i].ExactArea();
approx_area += children[i].ApproxArea();
average_area += children[i].AverageArea();
// Check that the child geometry is consistent with its cell ID.
EXPECT_EQ(child_id, children[i].id());
EXPECT_TRUE(S2::ApproxEquals(children[i].GetCenter(), child_id.ToPoint()));
S2Cell direct(child_id);
EXPECT_EQ(direct.face(), children[i].face());
EXPECT_EQ(direct.level(), children[i].level());
EXPECT_EQ(direct.orientation(), children[i].orientation());
EXPECT_EQ(direct.GetCenterRaw(), children[i].GetCenterRaw());
for (int k = 0; k < 4; ++k) {
EXPECT_EQ(direct.GetVertexRaw(k), children[i].GetVertexRaw(k));
EXPECT_EQ(direct.GetEdgeRaw(k), children[i].GetEdgeRaw(k));
}
// Test Contains() and MayIntersect().
EXPECT_TRUE(cell.Contains(children[i]));
EXPECT_TRUE(cell.MayIntersect(children[i]));
EXPECT_FALSE(children[i].Contains(cell));
EXPECT_TRUE(cell.Contains(children[i].GetCenterRaw()));
EXPECT_TRUE(cell.VirtualContainsPoint(children[i].GetCenterRaw()));
for (int j = 0; j < 4; ++j) {
EXPECT_TRUE(cell.Contains(children[i].GetVertexRaw(j)));
if (j != i) {
EXPECT_FALSE(children[i].Contains(children[j].GetCenterRaw()));
EXPECT_FALSE(
children[i].VirtualContainsPoint(children[j].GetCenterRaw()));
EXPECT_FALSE(children[i].MayIntersect(children[j]));
}
}
// Test GetCapBound and GetRectBound.
S2Cap parent_cap = cell.GetCapBound();
S2LatLngRect parent_rect = cell.GetRectBound();
if (cell.Contains(S2Point(0, 0, 1)) || cell.Contains(S2Point(0, 0, -1))) {
EXPECT_TRUE(parent_rect.lng().is_full());
}
S2Cap child_cap = children[i].GetCapBound();
S2LatLngRect child_rect = children[i].GetRectBound();
EXPECT_TRUE(child_cap.Contains(children[i].GetCenter()));
EXPECT_TRUE(child_rect.Contains(children[i].GetCenterRaw()));
EXPECT_TRUE(parent_cap.Contains(children[i].GetCenter()));
EXPECT_TRUE(parent_rect.Contains(children[i].GetCenterRaw()));
for (int j = 0; j < 4; ++j) {
EXPECT_TRUE(child_cap.Contains(children[i].GetVertex(j)));
EXPECT_TRUE(child_rect.Contains(children[i].GetVertex(j)));
EXPECT_TRUE(child_rect.Contains(children[i].GetVertexRaw(j)));
EXPECT_TRUE(parent_cap.Contains(children[i].GetVertex(j)));
EXPECT_TRUE(parent_rect.Contains(children[i].GetVertex(j)));
EXPECT_TRUE(parent_rect.Contains(children[i].GetVertexRaw(j)));
if (j != i) {
// The bounding caps and rectangles should be tight enough so that
// they exclude at least two vertices of each adjacent cell.
int cap_count = 0;
int rect_count = 0;
for (int k = 0; k < 4; ++k) {
if (child_cap.Contains(children[j].GetVertex(k)))
++cap_count;
if (child_rect.Contains(children[j].GetVertexRaw(k)))
++rect_count;
}
EXPECT_LE(cap_count, 2);
if (child_rect.lat_lo().radians() > -M_PI_2 &&
child_rect.lat_hi().radians() < M_PI_2) {
// Bounding rectangles may be too large at the poles because the
// pole itself has an arbitrary fixed longitude.
EXPECT_LE(rect_count, 2);
}
}
}
// Check all children for the first few levels, and then sample randomly.
// Also subdivide one corner cell, one edge cell, and one center cell
// so that we have a better chance of sample the minimum metric values.
bool force_subdivide = false;
S2Point center = S2::GetNorm(children[i].face());
S2Point edge = center + S2::GetUAxis(children[i].face());
S2Point corner = edge + S2::GetVAxis(children[i].face());
for (int j = 0; j < 4; ++j) {
S2Point p = children[i].GetVertexRaw(j);
if (p == center || p == edge || p == corner)
force_subdivide = true;
}
if (force_subdivide || cell.level() < (DEBUG_MODE ? 5 : 6) ||
S2Testing::rnd.OneIn(DEBUG_MODE ? 5 : 4)) {
TestSubdivide(children[i]);
}
}
// Check sum of child areas equals parent area.
//
// For ExactArea(), the best relative error we can expect is about 1e-6
// because the precision of the unit vector coordinates is only about 1e-15
// and the edge length of a leaf cell is about 1e-9.
//
// For ApproxArea(), the areas are accurate to within a few percent.
//
// For AverageArea(), the areas themselves are not very accurate, but
// the average area of a parent is exactly 4 times the area of a child.
EXPECT_LE(fabs(log(exact_area / cell.ExactArea())), fabs(log(1 + 1e-6)));
EXPECT_LE(fabs(log(approx_area / cell.ApproxArea())), fabs(log(1.03)));
EXPECT_LE(fabs(log(average_area / cell.AverageArea())), fabs(log(1 + 1e-15)));
}
template <int dim>
static void CheckMinMaxAvg(
char const* label, int level, double count, double abs_error,
double min_value, double max_value, double avg_value,
S2::Metric<dim> const& min_metric,
S2::Metric<dim> const& max_metric,
S2::Metric<dim> const& avg_metric) {
// All metrics are minimums, maximums, or averages of differential
// quantities, and therefore will not be exact for cells at any finite
// level. The differential minimum is always a lower bound, and the maximum
// is always an upper bound, but these minimums and maximums may not be
// achieved for two different reasons. First, the cells at each level are
// sampled and we may miss the most extreme examples. Second, the actual
// metric for a cell is obtained by integrating the differential quantity,
// which is not constant across the cell. Therefore cells at low levels
// (bigger cells) have smaller variations.
//
// The "tolerance" below is an attempt to model both of these effects.
// At low levels, error is dominated by the variation of differential
// quantities across the cells, while at high levels error is dominated by
// the effects of random sampling.
double tolerance = (max_metric.GetValue(level) - min_metric.GetValue(level)) /
sqrt(min(count, 0.5 * double(1 << level)));
if (tolerance == 0) tolerance = abs_error;
double min_error = min_value - min_metric.GetValue(level);
double max_error = max_metric.GetValue(level) - max_value;
double avg_error = fabs(avg_metric.GetValue(level) - avg_value);
printf("%-10s (%6.0f samples, tolerance %8.3g) - min (%9.3g : %9.3g) "
"max (%9.3g : %9.3g), avg (%9.3g : %9.3g)\n",
label, count, tolerance,
min_error / min_value, min_error / tolerance,
max_error / max_value, max_error / tolerance,
avg_error / avg_value, avg_error / tolerance);
EXPECT_LE(min_metric.GetValue(level), min_value + abs_error);
EXPECT_GE(min_metric.GetValue(level), min_value - tolerance);
EXPECT_LE(max_metric.GetValue(level), max_value + tolerance);
EXPECT_GE(max_metric.GetValue(level), max_value - abs_error);
EXPECT_NEAR(avg_metric.GetValue(level), avg_value, 10 * tolerance);
}
TEST(S2Cell, TestSubdivide) {
for (int face = 0; face < 6; ++face) {
TestSubdivide(S2Cell::FromFacePosLevel(face, 0, 0));
}
// The maximum edge *ratio* is the ratio of the longest edge of any cell to
// the shortest edge of any cell at the same level (and similarly for the
// maximum diagonal ratio).
//
// The maximum edge *aspect* is the maximum ratio of the longest edge of a
// cell to the shortest edge of that same cell (and similarly for the
// maximum diagonal aspect).
printf("Level Area Edge Diag Approx Average\n");
printf(" Ratio Ratio Aspect Ratio Aspect Min Max Min Max\n");
for (int i = 0; i <= S2CellId::kMaxLevel; ++i) {
LevelStats* s = &level_stats[i];
if (s->count > 0) {
s->avg_area /= s->count;
s->avg_width /= s->count;
s->avg_edge /= s->count;
s->avg_diag /= s->count;
s->avg_angle_span /= s->count;
}
printf("%5d %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f\n",
i, s->max_area / s->min_area,
s->max_edge / s->min_edge, s->max_edge_aspect,
s->max_diag / s->min_diag, s->max_diag_aspect,
s->min_approx_ratio, s->max_approx_ratio,
S2Cell::AverageArea(i) / s->max_area,
S2Cell::AverageArea(i) / s->min_area);
}
// Now check the validity of the S2 length and area metrics.
for (int i = 0; i <= S2CellId::kMaxLevel; ++i) {
LevelStats const* s = &level_stats[i];
if (s->count == 0) continue;
printf("Level %2d - metric (error/actual : error/tolerance)\n", i);
// The various length calculations are only accurate to 1e-15 or so,
// so we need to allow for this amount of discrepancy with the theoretical
// minimums and maximums. The area calculation is accurate to about 1e-15
// times the cell width.
CheckMinMaxAvg("area", i, s->count, 1e-15 * s->min_width,
s->min_area, s->max_area, s->avg_area,
S2::kMinArea, S2::kMaxArea, S2::kAvgArea);
CheckMinMaxAvg("width", i, s->count, 1e-15,
s->min_width, s->max_width, s->avg_width,
S2::kMinWidth, S2::kMaxWidth, S2::kAvgWidth);
CheckMinMaxAvg("edge", i, s->count, 1e-15,
s->min_edge, s->max_edge, s->avg_edge,
S2::kMinEdge, S2::kMaxEdge, S2::kAvgEdge);
CheckMinMaxAvg("diagonal", i, s->count, 1e-15,
s->min_diag, s->max_diag, s->avg_diag,
S2::kMinDiag, S2::kMaxDiag, S2::kAvgDiag);
CheckMinMaxAvg("angle span", i, s->count, 1e-15,
s->min_angle_span, s->max_angle_span, s->avg_angle_span,
S2::kMinAngleSpan, S2::kMaxAngleSpan, S2::kAvgAngleSpan);
// The aspect ratio calculations are ratios of lengths and are therefore
// less accurate at higher subdivision levels.
EXPECT_LE(s->max_edge_aspect, S2::kMaxEdgeAspect + 1e-15 * (1 << i));
EXPECT_LE(s->max_diag_aspect, S2::kMaxDiagAspect + 1e-15 * (1 << i));
}
}
static int const kMaxLevel = DEBUG_MODE ? 6 : 11;
static void ExpandChildren1(S2Cell const& cell) {
S2Cell children[4];
CHECK(cell.Subdivide(children));
if (children[0].level() < kMaxLevel) {
for (int pos = 0; pos < 4; ++pos) {
ExpandChildren1(children[pos]);
}
}
}
static void ExpandChildren2(S2Cell const& cell) {
S2CellId id = cell.id().child_begin();
for (int pos = 0; pos < 4; ++pos, id = id.next()) {
S2Cell child(id);
if (child.level() < kMaxLevel) ExpandChildren2(child);
}
}
TEST(S2Cell, TestPerformance) {
double subdivide_start = S2Testing::GetCpuTime();
ExpandChildren1(S2Cell::FromFacePosLevel(0, 0, 0));
double subdivide_time = S2Testing::GetCpuTime() - subdivide_start;
fprintf(stderr, "Subdivide: %.3f seconds\n", subdivide_time);
double constructor_start = S2Testing::GetCpuTime();
ExpandChildren2(S2Cell::FromFacePosLevel(0, 0, 0));
double constructor_time = S2Testing::GetCpuTime() - constructor_start;
fprintf(stderr, "Constructor: %.3f seconds\n", constructor_time);
}
|