1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
// Copyright 2005 Google Inc. All Rights Reserved.
#ifndef UTIL_GEOMETRY_S2EDGEUTIL_H__
#define UTIL_GEOMETRY_S2EDGEUTIL_H__
#include "base/logging.h"
#include "base/macros.h"
#include "s2.h"
#include "s2latlngrect.h"
class S2LatLngRect;
// This class contains various utility functions related to edges. It
// collects together common code that is needed to implement polygonal
// geometry such as polylines, loops, and general polygons.
class S2EdgeUtil {
public:
// This class allows a vertex chain v0, v1, v2, ... to be efficiently
// tested for intersection with a given fixed edge AB.
class EdgeCrosser {
public:
// AB is the given fixed edge, and C is the first vertex of the vertex
// chain. All parameters must point to fixed storage that persists for
// the lifetime of the EdgeCrosser object.
inline EdgeCrosser(S2Point const* a, S2Point const* b, S2Point const* c);
// Call this function when your chain 'jumps' to a new place.
inline void RestartAt(S2Point const* c);
// This method is equivalent to calling the S2EdgeUtil::RobustCrossing()
// function (defined below) on the edges AB and CD. It returns +1 if
// there is a crossing, -1 if there is no crossing, and 0 if two points
// from different edges are the same. Returns 0 or -1 if either edge is
// degenerate. As a side effect, it saves vertex D to be used as the next
// vertex C.
inline int RobustCrossing(S2Point const* d);
// This method is equivalent to the S2EdgeUtil::EdgeOrVertexCrossing()
// method defined below. It is similar to RobustCrossing, but handles
// cases where two vertices are identical in a way that makes it easy to
// implement point-in-polygon containment tests.
inline bool EdgeOrVertexCrossing(S2Point const* d);
private:
// This function handles the "slow path" of RobustCrossing(), which does
// not need to be inlined.
int RobustCrossingInternal(S2Point const* d);
// The fields below are all constant.
S2Point const* const a_;
S2Point const* const b_;
S2Point const a_cross_b_;
// The fields below are updated for each vertex in the chain.
S2Point const* c_; // Previous vertex in the vertex chain.
int acb_; // The orientation of the triangle ACB.
};
// This class computes a bounding rectangle that contains all edges
// defined by a vertex chain v0, v1, v2, ... All vertices must be unit
// length. Note that the bounding rectangle of an edge can be larger than
// the bounding rectangle of its endpoints, e.g. consider an edge that
// passes through the north pole.
class RectBounder {
public:
RectBounder() : bound_(S2LatLngRect::Empty()) {}
// This method is called to add each vertex to the chain. 'b'
// must point to fixed storage that persists through the next call
// to AddPoint. This means that if you don't store all of your
// points for the lifetime of the bounder, you must at least store
// the last two points and alternate which one you use for the
// next point.
void AddPoint(S2Point const* b);
// Return the bounding rectangle of the edge chain that connects the
// vertices defined so far.
S2LatLngRect GetBound() const { return bound_; }
private:
S2Point const* a_; // The previous vertex in the chain.
S2LatLng a_latlng_; // The corresponding latitude-longitude.
S2LatLngRect bound_; // The current bounding rectangle.
};
// The purpose of this class is to find edges that intersect a given
// longitude interval. It can be used as an efficient rejection test when
// attempting to find edges that intersect a given region. It accepts a
// vertex chain v0, v1, v2, ... and returns a boolean value indicating
// whether each edge intersects the specified longitude interval.
class LongitudePruner {
public:
// 'interval' is the longitude interval to be tested against, and
// 'v0' is the first vertex of edge chain.
LongitudePruner(S1Interval const& interval, S2Point const& v0);
// Returns true if the edge (v0, v1) intersects the given longitude
// interval, and then saves 'v1' to be used as the next 'v0'.
inline bool Intersects(S2Point const& v1);
private:
S1Interval interval_; // The interval to be tested against.
double lng0_; // The longitude of the next v0.
};
// Return true if edge AB crosses CD at a point that is interior
// to both edges. Properties:
//
// (1) SimpleCrossing(b,a,c,d) == SimpleCrossing(a,b,c,d)
// (2) SimpleCrossing(c,d,a,b) == SimpleCrossing(a,b,c,d)
static bool SimpleCrossing(S2Point const& a, S2Point const& b,
S2Point const& c, S2Point const& d);
// Like SimpleCrossing, except that points that lie exactly on a line are
// arbitrarily classified as being on one side or the other (according to
// the rules of S2::RobustCCW). It returns +1 if there is a crossing, -1
// if there is no crossing, and 0 if any two vertices from different edges
// are the same. Returns 0 or -1 if either edge is degenerate.
// Properties of RobustCrossing:
//
// (1) RobustCrossing(b,a,c,d) == RobustCrossing(a,b,c,d)
// (2) RobustCrossing(c,d,a,b) == RobustCrossing(a,b,c,d)
// (3) RobustCrossing(a,b,c,d) == 0 if a==c, a==d, b==c, b==d
// (3) RobustCrossing(a,b,c,d) <= 0 if a==b or c==d
//
// Note that if you want to check an edge against a *chain* of other
// edges, it is much more efficient to use an EdgeCrosser (above).
static int RobustCrossing(S2Point const& a, S2Point const& b,
S2Point const& c, S2Point const& d);
// Given two edges AB and CD where at least two vertices are identical
// (i.e. RobustCrossing(a,b,c,d) == 0), this function defines whether the
// two edges "cross" in a such a way that point-in-polygon containment tests
// can be implemented by counting the number of edge crossings. The basic
// rule is that a "crossing" occurs if AB is encountered after CD during a
// CCW sweep around the shared vertex starting from a fixed reference point.
//
// Note that according to this rule, if AB crosses CD then in general CD
// does not cross AB. However, this leads to the correct result when
// counting polygon edge crossings. For example, suppose that A,B,C are
// three consecutive vertices of a CCW polygon. If we now consider the edge
// crossings of a segment BP as P sweeps around B, the crossing number
// changes parity exactly when BP crosses BA or BC.
//
// Useful properties of VertexCrossing (VC):
//
// (1) VC(a,a,c,d) == VC(a,b,c,c) == false
// (2) VC(a,b,a,b) == VC(a,b,b,a) == true
// (3) VC(a,b,c,d) == VC(a,b,d,c) == VC(b,a,c,d) == VC(b,a,d,c)
// (3) If exactly one of a,b equals one of c,d, then exactly one of
// VC(a,b,c,d) and VC(c,d,a,b) is true
//
// It is an error to call this method with 4 distinct vertices.
static bool VertexCrossing(S2Point const& a, S2Point const& b,
S2Point const& c, S2Point const& d);
// A convenience function that calls RobustCrossing() to handle cases
// where all four vertices are distinct, and VertexCrossing() to handle
// cases where two or more vertices are the same. This defines a crossing
// function such that point-in-polygon containment tests can be implemented
// by simply counting edge crossings.
static bool EdgeOrVertexCrossing(S2Point const& a, S2Point const& b,
S2Point const& c, S2Point const& d);
// Given two edges AB and CD such that RobustCrossing() is true, return
// their intersection point. Useful properties of GetIntersection (GI):
//
// (1) GI(b,a,c,d) == GI(a,b,d,c) == GI(a,b,c,d)
// (2) GI(c,d,a,b) == GI(a,b,c,d)
//
// The returned intersection point X is guaranteed to be close to the edges
// AB and CD, but if the edges intersect at a very small angle then X may
// not be close to the true mathematical intersection point P. See the
// description of "kIntersectionTolerance" below for details.
static S2Point GetIntersection(S2Point const& a, S2Point const& b,
S2Point const& c, S2Point const& d);
// This distance is an upper bound on the distance from the intersection
// point returned by GetIntersection() to either of the two edges that were
// intersected. In particular, if "x" is the intersection point, then
// GetDistance(x, a, b) and GetDistance(x, c, d) will both be smaller than
// this value. The intersection tolerance is also large enough such if it
// is passed as the "vertex_merge_radius" of an S2PolygonBuilder, then the
// intersection point will be spliced into the edges AB and/or CD if they
// are also supplied to the S2PolygonBuilder.
static S1Angle const kIntersectionTolerance;
// Given a point X and an edge AB, return the distance ratio AX / (AX + BX).
// If X happens to be on the line segment AB, this is the fraction "t" such
// that X == Interpolate(A, B, t). Requires that A and B are distinct.
static double GetDistanceFraction(S2Point const& x,
S2Point const& a, S2Point const& b);
// Return the point X along the line segment AB whose distance from A is the
// given fraction "t" of the distance AB. Does NOT require that "t" be
// between 0 and 1. Note that all distances are measured on the surface of
// the sphere, so this is more complicated than just computing (1-t)*a + t*b
// and normalizing the result.
static S2Point Interpolate(double t, S2Point const& a, S2Point const& b);
// Like Interpolate(), except that the parameter "ax" represents the desired
// distance from A to the result X rather than a fraction between 0 and 1.
static S2Point InterpolateAtDistance(S1Angle const& ax,
S2Point const& a, S2Point const& b);
// A slightly more efficient version of InterpolateAtDistance() that can be
// used when the distance AB is already known.
static S2Point InterpolateAtDistance(S1Angle const& ax,
S2Point const& a, S2Point const& b,
S1Angle const& ab);
// Return the minimum distance from X to any point on the edge AB. All
// arguments should be unit length. The result is very accurate for small
// distances but may have some numerical error if the distance is large
// (approximately Pi/2 or greater). The case A == B is handled correctly.
static S1Angle GetDistance(S2Point const& x,
S2Point const& a, S2Point const& b);
// A slightly more efficient version of GetDistance() where the cross
// product of the two endpoints has been precomputed. The cross product
// does not need to be normalized, but should be computed using
// S2::RobustCrossProd() for the most accurate results.
static S1Angle GetDistance(S2Point const& x,
S2Point const& a, S2Point const& b,
S2Point const& a_cross_b);
// Return the point along the edge AB that is closest to the point X.
// The fractional distance of this point along the edge AB can be obtained
// using GetDistanceFraction() above.
static S2Point GetClosestPoint(S2Point const& x,
S2Point const& a, S2Point const& b);
// A slightly more efficient version of GetClosestPoint() where the cross
// product of the two endpoints has been precomputed. The cross product
// does not need to be normalized, but should be computed using
// S2::RobustCrossProd() for the most accurate results.
static S2Point GetClosestPoint(S2Point const& x,
S2Point const& a, S2Point const& b,
S2Point const& a_cross_b);
// Return true if every point on edge B=b0b1 is no further than "tolerance"
// from some point on edge A=a0a1.
// Requires that tolerance is less than 90 degrees.
static bool IsEdgeBNearEdgeA(S2Point const& a0, S2Point const& a1,
S2Point const& b0, S2Point const& b1,
S1Angle const& tolerance);
// For an edge chain (x0, x1, x2), a wedge is the region to the left
// of the edges. More precisely, it is the union of all the rays
// from x1x0 to x1x2, clockwise.
// The following are Wedge comparison functions for two wedges A =
// (a0, ab1, a2) and B = (b0, a12, b2). These are used in S2Loops.
// Returns true if wedge A fully contains or is equal to wedge B.
static bool WedgeContains(S2Point const& a0, S2Point const& ab1,
S2Point const& a2, S2Point const& b0,
S2Point const& b2);
// Returns true if the intersection of the two wedges is not empty.
static bool WedgeIntersects(S2Point const& a0, S2Point const& ab1,
S2Point const& a2, S2Point const& b0,
S2Point const& b2);
// Detailed relation from wedges A to wedge B.
enum WedgeRelation {
WEDGE_EQUALS,
WEDGE_PROPERLY_CONTAINS, // A is a strict superset of B.
WEDGE_IS_PROPERLY_CONTAINED, // A is a strict subset of B.
WEDGE_PROPERLY_OVERLAPS, // All of A intsect B, A-B and B-A are non-empty.
WEDGE_IS_DISJOINT, // A is disjoint from B
};
// Return the relation from wedge A to B.
static WedgeRelation GetWedgeRelation(
S2Point const& a0, S2Point const& ab1, S2Point const& a2,
S2Point const& b0, S2Point const& b2);
DISALLOW_IMPLICIT_CONSTRUCTORS(S2EdgeUtil); // Contains only static methods.
};
inline S2EdgeUtil::EdgeCrosser::EdgeCrosser(
S2Point const* a, S2Point const* b, S2Point const* c)
: a_(a), b_(b), a_cross_b_(a_->CrossProd(*b_)) {
RestartAt(c);
}
inline void S2EdgeUtil::EdgeCrosser::RestartAt(S2Point const* c) {
c_ = c;
acb_ = -S2::RobustCCW(*a_, *b_, *c_, a_cross_b_);
}
inline int S2EdgeUtil::EdgeCrosser::RobustCrossing(S2Point const* d) {
// For there to be an edge crossing, the triangles ACB, CBD, BDA, DAC must
// all be oriented the same way (CW or CCW). We keep the orientation of ACB
// as part of our state. When each new point D arrives, we compute the
// orientation of BDA and check whether it matches ACB. This checks whether
// the points C and D are on opposite sides of the great circle through AB.
// Recall that RobustCCW is invariant with respect to rotating its
// arguments, i.e. ABC has the same orientation as BDA.
int bda = S2::RobustCCW(*a_, *b_, *d, a_cross_b_);
int result;
if (bda == -acb_ && bda != 0) {
result = -1; // Most common case -- triangles have opposite orientations.
} else if ((bda & acb_) == 0) {
result = 0; // At least one value is zero -- two vertices are identical.
} else { // Slow path.
DCHECK_EQ(acb_, bda);
DCHECK_NE(0, bda);
result = RobustCrossingInternal(d);
}
// Now save the current vertex D as the next vertex C, and also save the
// orientation of the new triangle ACB (which is opposite to the current
// triangle BDA).
c_ = d;
acb_ = -bda;
return result;
}
inline bool S2EdgeUtil::EdgeCrosser::EdgeOrVertexCrossing(S2Point const* d) {
// We need to copy c_ since it is clobbered by RobustCrossing().
S2Point const* c = c_;
int crossing = RobustCrossing(d);
if (crossing < 0) return false;
if (crossing > 0) return true;
return VertexCrossing(*a_, *b_, *c, *d);
}
inline bool S2EdgeUtil::LongitudePruner::Intersects(S2Point const& v1) {
double lng1 = S2LatLng::Longitude(v1).radians();
bool result = interval_.Intersects(S1Interval::FromPointPair(lng0_, lng1));
lng0_ = lng1;
return result;
}
#endif // UTIL_GEOMETRY_S2EDGEUTIL_H__
|