summaryrefslogtreecommitdiff
path: root/src/third_party/s2/s2loop_test.cc
blob: 972e39403915f1c55874d58095fe4ae8695a649d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
// Copyright 2005 Google Inc. All Rights Reserved.

#include <stdio.h>

#include <algorithm>
using std::min;
using std::max;
using std::swap;
using std::reverse;

#include <map>
using std::map;
using std::multimap;

#include <set>
using std::set;
using std::multiset;

#include <vector>
using std::vector;


#include "base/commandlineflags.h"
#include "base/logging.h"
#include "base/scoped_ptr.h"
#include "testing/base/public/benchmark.h"
#include "testing/base/public/gunit.h"
#include "util/coding/coder.h"
#include "s2cell.h"
#include "s2edgeindex.h"
#include "s2edgeutil.h"
#include "s2loop.h"
#include "s2testing.h"
#include "util/math/matrix3x3.h"
#include "util/math/matrix3x3-inl.h"

DECLARE_bool(s2debug);

class S2LoopTestBase : public testing::Test {
 protected:
  // Some standard loops to use in the tests (see descriptions below).  The
  // heap-checker ignores memory that is reachable from static variables, so
  // it is not necessary to free these loops.
  S2Loop const* const north_hemi;
  S2Loop const* const north_hemi3;
  S2Loop const* const south_hemi;
  S2Loop const* const west_hemi;
  S2Loop const* const east_hemi;
  S2Loop const* const near_hemi;
  S2Loop const* const far_hemi;
  S2Loop const* const candy_cane;
  S2Loop const* const small_ne_cw;
  S2Loop const* const arctic_80;
  S2Loop const* const antarctic_80;
  S2Loop const* const line_triangle;
  S2Loop const* const skinny_chevron;
  S2Loop const* const loop_a;
  S2Loop const* const loop_b;
  S2Loop const* const a_intersect_b;
  S2Loop const* const a_union_b;
  S2Loop const* const a_minus_b;
  S2Loop const* const b_minus_a;
  S2Loop const* const loop_c;
  S2Loop const* const loop_d;

 public:
  S2LoopTestBase():
      // The northern hemisphere, defined using two pairs of antipodal points.
      north_hemi(S2Testing::MakeLoop("0:-180, 0:-90, 0:0, 0:90")),

      // The northern hemisphere, defined using three points 120 degrees apart.
      north_hemi3(S2Testing::MakeLoop("0:-180, 0:-60, 0:60")),

      // The southern hemisphere, defined using two pairs of antipodal points.
      south_hemi(S2Testing::MakeLoop("0:90, 0:0, 0:-90, 0:-180")),

      // The western hemisphere, defined using two pairs of antipodal points.
      west_hemi(S2Testing::MakeLoop("0:-180, -90:0, 0:0, 90:0")),

      // The eastern hemisphere, defined using two pairs of antipodal points.
      east_hemi(S2Testing::MakeLoop("90:0, 0:0, -90:0, 0:-180")),

      // The "near" hemisphere, defined using two pairs of antipodal points.
      near_hemi(S2Testing::MakeLoop("0:-90, -90:0, 0:90, 90:0")),

      // The "far" hemisphere, defined using two pairs of antipodal points.
      far_hemi(S2Testing::MakeLoop("90:0, 0:90, -90:0, 0:-90")),

      // A spiral stripe that slightly over-wraps the equator.
      candy_cane(S2Testing::MakeLoop("-20:150, -20:-70, 0:70, 10:-150, "
                                     "10:70, -10:-70")),

      // A small clockwise loop in the northern & eastern hemisperes.
      small_ne_cw(S2Testing::MakeLoop("35:20, 45:20, 40:25")),

      // Loop around the north pole at 80 degrees.
      arctic_80(S2Testing::MakeLoop("80:-150, 80:-30, 80:90")),

      // Loop around the south pole at 80 degrees.
      antarctic_80(S2Testing::MakeLoop("-80:120, -80:0, -80:-120")),

      // A completely degenerate triangle along the equator that RobustCCW()
      // considers to be CCW.
      line_triangle(S2Testing::MakeLoop("0:1, 0:3, 0:2")),

      // A nearly-degenerate CCW chevron near the equator with very long sides
      // (about 80 degrees).  Its area is less than 1e-640, which is too small
      // to represent in double precision.
      skinny_chevron(S2Testing::MakeLoop("0:0, -1e-320:80, 0:1e-320, 1e-320:80")),

      // A diamond-shaped loop around the point 0:180.
      loop_a(S2Testing::MakeLoop("0:178, -1:180, 0:-179, 1:-180")),

      // Another diamond-shaped loop around the point 0:180.
      loop_b(S2Testing::MakeLoop("0:179, -1:180, 0:-178, 1:-180")),

      // The intersection of A and B.
      a_intersect_b(S2Testing::MakeLoop("0:179, -1:180, 0:-179, 1:-180")),

      // The union of A and B.
      a_union_b(S2Testing::MakeLoop("0:178, -1:180, 0:-178, 1:-180")),

      // A minus B (concave).
      a_minus_b(S2Testing::MakeLoop("0:178, -1:180, 0:179, 1:-180")),

      // B minus A (concave).
      b_minus_a(S2Testing::MakeLoop("0:-179, -1:180, 0:-178, 1:-180")),

      // A shape gotten from a by adding one triangle to one edge, and
      // subtracting another triangle on an opposite edge.
      loop_c(S2Testing::MakeLoop(
          "0:178, 0:180, -1:180, 0:-179, 1:-179, 1:-180")),

      // A shape gotten from a by adding one triangle to one edge, and
      // adding another triangle on an opposite edge.
      loop_d(S2Testing::MakeLoop(
          "0:178, -1:178, -1:180, 0:-179, 1:-179, 1:-180"))

  {}

  ~S2LoopTestBase() {
    delete north_hemi;
    delete north_hemi3;
    delete south_hemi;
    delete west_hemi;
    delete east_hemi;
    delete near_hemi;
    delete far_hemi;
    delete candy_cane;
    delete small_ne_cw;
    delete arctic_80;
    delete antarctic_80;
    delete line_triangle;
    delete skinny_chevron;
    delete loop_a;
    delete loop_b;
    delete a_intersect_b;
    delete a_union_b;
    delete a_minus_b;
    delete b_minus_a;
    delete loop_c;
    delete loop_d;
  }
};

TEST_F(S2LoopTestBase, GetRectBound) {
  EXPECT_TRUE(candy_cane->GetRectBound().lng().is_full());
  EXPECT_LT(candy_cane->GetRectBound().lat_lo().degrees(), -20);
  EXPECT_GT(candy_cane->GetRectBound().lat_hi().degrees(), 10);
  EXPECT_TRUE(small_ne_cw->GetRectBound().is_full());
  EXPECT_EQ(arctic_80->GetRectBound(),
            S2LatLngRect(S2LatLng::FromDegrees(80, -180),
                         S2LatLng::FromDegrees(90, 180)));
  EXPECT_EQ(antarctic_80->GetRectBound(),
            S2LatLngRect(S2LatLng::FromDegrees(-90, -180),
                         S2LatLng::FromDegrees(-80, 180)));

  // Create a loop that contains the complement of the "arctic_80" loop.
  scoped_ptr<S2Loop> arctic_80_inv(arctic_80->Clone());
  arctic_80_inv->Invert();
  // The highest latitude of each edge is attained at its midpoint.
  S2Point mid = 0.5 * (arctic_80_inv->vertex(0) + arctic_80_inv->vertex(1));
  EXPECT_DOUBLE_EQ(arctic_80_inv->GetRectBound().lat_hi().radians(),
                   S2LatLng(mid).lat().radians());

  EXPECT_TRUE(south_hemi->GetRectBound().lng().is_full());
  EXPECT_EQ(south_hemi->GetRectBound().lat(), R1Interval(-M_PI_2, 0));
}

TEST_F(S2LoopTestBase, GetAreaAndCentroid) {
  EXPECT_DOUBLE_EQ(north_hemi->GetArea(), 2 * M_PI);
  EXPECT_LE(east_hemi->GetArea(), 2 * M_PI + 1e-12);
  EXPECT_GE(east_hemi->GetArea(), 2 * M_PI - 1e-12);

  // Construct spherical caps of random height, and approximate their boundary
  // with closely spaces vertices.  Then check that the area and centroid are
  // correct.

  for (int i = 0; i < 100; ++i) {
    // Choose a coordinate frame for the spherical cap.
    S2Point x, y, z;
    S2Testing::GetRandomFrame(&x, &y, &z);

    // Given two points at latitude phi and whose longitudes differ by dtheta,
    // the geodesic between the two points has a maximum latitude of
    // atan(tan(phi) / cos(dtheta/2)).  This can be derived by positioning
    // the two points at (-dtheta/2, phi) and (dtheta/2, phi).
    //
    // We want to position the vertices close enough together so that their
    // maximum distance from the boundary of the spherical cap is kMaxDist.
    // Thus we want fabs(atan(tan(phi) / cos(dtheta/2)) - phi) <= kMaxDist.
    static double const kMaxDist = 1e-6;
    double height = 2 * S2Testing::rnd.RandDouble();
    double phi = asin(1 - height);
    double max_dtheta = 2 * acos(tan(fabs(phi)) / tan(fabs(phi) + kMaxDist));
    max_dtheta = min(M_PI, max_dtheta);  // At least 3 vertices.

    vector<S2Point> vertices;
    for (double theta = 0; theta < 2 * M_PI;
         theta += S2Testing::rnd.RandDouble() * max_dtheta) {
      vertices.push_back(cos(theta) * cos(phi) * x +
                         sin(theta) * cos(phi) * y +
                         sin(phi) * z);
    }
    S2Loop loop(vertices);
    double area = loop.GetArea();
    S2Point centroid = loop.GetCentroid();
    double expected_area = 2 * M_PI * height;
    EXPECT_LE(fabs(area - expected_area), 2 * M_PI * kMaxDist);
    EXPECT_GE(fabs(area - expected_area), 0.01 * kMaxDist); // high probability
    S2Point expected_centroid = expected_area * (1 - 0.5 * height) * z;
    EXPECT_LE((centroid - expected_centroid).Norm(), 2 * kMaxDist);
  }
}

static void Rotate(scoped_ptr<S2Loop>* ptr) {
  S2Loop* loop = ptr->get();
  vector<S2Point> vertices;
  for (int i = 1; i <= loop->num_vertices(); ++i) {
    vertices.push_back(loop->vertex(i));
  }
  ptr->reset(new S2Loop(vertices));
}

// Check that the turning angle is *identical* when the vertex order is
// rotated, and that the sign is inverted when the vertices are reversed.
static void CheckTurningAngleInvariants(S2Loop const* loop) {
  double expected = loop->GetTurningAngle();
  scoped_ptr<S2Loop> loop_copy(loop->Clone());
  for (int i = 0; i < loop->num_vertices(); ++i) {
    loop_copy->Invert();
    EXPECT_EQ(-expected, loop_copy->GetTurningAngle());
    loop_copy->Invert();
    Rotate(&loop_copy);
    EXPECT_EQ(expected, loop_copy->GetTurningAngle());
  }
}

TEST_F(S2LoopTestBase, GetTurningAngle) {
  EXPECT_NEAR(0, north_hemi3->GetTurningAngle(), 1e-15);
  CheckTurningAngleInvariants(north_hemi3);

  EXPECT_NEAR(0, west_hemi->GetTurningAngle(), 1e-15);
  CheckTurningAngleInvariants(west_hemi);

  // We don't have an easy way to estimate the turning angle of this loop, but
  // we can still check that the expected invariants hold.
  CheckTurningAngleInvariants(candy_cane);

  EXPECT_DOUBLE_EQ(-2 * M_PI, line_triangle->GetTurningAngle());
  CheckTurningAngleInvariants(line_triangle);

  EXPECT_DOUBLE_EQ(2 * M_PI, skinny_chevron->GetTurningAngle());
  CheckTurningAngleInvariants(skinny_chevron);
}

// Checks that if a loop is normalized, it doesn't contain a
// point outside of it, and vice versa.
static void CheckNormalizeAndContain(S2Loop const* loop) {
  S2Point p = S2Testing::MakePoint("40:40");

  scoped_ptr<S2Loop> flip(loop->Clone());
  flip->Invert();
  EXPECT_TRUE(loop->IsNormalized() ^ loop->Contains(p));
  EXPECT_TRUE(flip->IsNormalized() ^ flip->Contains(p));

  EXPECT_TRUE(loop->IsNormalized() ^ flip->IsNormalized());

  flip->Normalize();
  EXPECT_FALSE(flip->Contains(p));
}

TEST_F(S2LoopTestBase, NormalizedCompatibleWithContains) {
  CheckNormalizeAndContain(line_triangle);
  CheckNormalizeAndContain(skinny_chevron);
}

extern void DeleteLoop(S2Loop* loop) {
  delete loop;
}

TEST_F(S2LoopTestBase, Contains) {
  EXPECT_TRUE(candy_cane->Contains(S2LatLng::FromDegrees(5, 71).ToPoint()));

  // Create copies of these loops so that we can change the vertex order.
  scoped_ptr<S2Loop> north_copy(north_hemi->Clone());
  scoped_ptr<S2Loop> south_copy(south_hemi->Clone());
  scoped_ptr<S2Loop> west_copy(west_hemi->Clone());
  scoped_ptr<S2Loop> east_copy(east_hemi->Clone());
  for (int i = 0; i < 4; ++i) {
    EXPECT_TRUE(north_copy->Contains(S2Point(0, 0, 1)));
    EXPECT_FALSE(north_copy->Contains(S2Point(0, 0, -1)));
    EXPECT_FALSE(south_copy->Contains(S2Point(0, 0, 1)));
    EXPECT_TRUE(south_copy->Contains(S2Point(0, 0, -1)));
    EXPECT_FALSE(west_copy->Contains(S2Point(0, 1, 0)));
    EXPECT_TRUE(west_copy->Contains(S2Point(0, -1, 0)));
    EXPECT_TRUE(east_copy->Contains(S2Point(0, 1, 0)));
    EXPECT_FALSE(east_copy->Contains(S2Point(0, -1, 0)));
    Rotate(&north_copy);
    Rotate(&south_copy);
    Rotate(&east_copy);
    Rotate(&west_copy);
  }

  // This code checks each cell vertex is contained by exactly one of
  // the adjacent cells.
  for (int level = 0; level < 3; ++level) {
    vector<S2Loop*> loops;
    vector<S2Point> loop_vertices;
    set<S2Point> points;
    for (S2CellId id = S2CellId::Begin(level);
         id != S2CellId::End(level); id = id.next()) {
      S2Cell cell(id);
      points.insert(cell.GetCenter());
      for (int k = 0; k < 4; ++k) {
        loop_vertices.push_back(cell.GetVertex(k));
        points.insert(cell.GetVertex(k));
      }
      loops.push_back(new S2Loop(loop_vertices));
      loop_vertices.clear();
    }
    for (set<S2Point>::const_iterator i = points.begin();
        i != points.end(); ++i) {
      int count = 0;
      for (int j = 0; j < loops.size(); ++j) {
        if (loops[j]->Contains(*i)) ++count;
        // Contains and VirtualContainsPoint should have identical
        // implementation.
        EXPECT_EQ(loops[j]->Contains(*i), loops[j]->VirtualContainsPoint(*i));
      }
      EXPECT_EQ(count, 1);
    }

    for_each(loops.begin(), loops.end(), DeleteLoop);
    loops.clear();
  }
}

static void TestRelationWithDesc(S2Loop const* a, S2Loop const* b,
                                 int contains_or_crosses, bool intersects,
                                 bool nestable,
                                 const char* test_description) {
  SCOPED_TRACE(test_description);
  EXPECT_EQ(a->Contains(b), contains_or_crosses == 1);
  EXPECT_EQ(a->Intersects(b), intersects);
  if (nestable) EXPECT_EQ(a->ContainsNested(b), a->Contains(b));
  if (contains_or_crosses >= -1) {
    EXPECT_EQ(a->ContainsOrCrosses(b), contains_or_crosses);
  }
}

TEST_F(S2LoopTestBase, LoopRelations) {
#define TestRelation(a, b, contains, intersects, nestable)                   \
  TestRelationWithDesc(a, b, contains, intersects, nestable, "args " #a ", " #b)

  TestRelation(north_hemi, north_hemi, 1, true, false);
  TestRelation(north_hemi, south_hemi, 0, false, false);
  TestRelation(north_hemi, east_hemi, -1, true, false);
  TestRelation(north_hemi, arctic_80, 1, true, true);
  TestRelation(north_hemi, antarctic_80, 0, false, true);
  TestRelation(north_hemi, candy_cane, -1, true, false);

  // We can't compare north_hemi3 vs. north_hemi or south_hemi.
  TestRelation(north_hemi3, north_hemi3, 1, true, false);
  TestRelation(north_hemi3, east_hemi, -1, true, false);
  TestRelation(north_hemi3, arctic_80, 1, true, true);
  TestRelation(north_hemi3, antarctic_80, 0, false, true);
  TestRelation(north_hemi3, candy_cane, -1, true, false);

  TestRelation(south_hemi, north_hemi, 0, false, false);
  TestRelation(south_hemi, south_hemi, 1, true, false);
  TestRelation(south_hemi, far_hemi, -1, true, false);
  TestRelation(south_hemi, arctic_80, 0, false, true);
  TestRelation(south_hemi, antarctic_80, 1, true, true);
  TestRelation(south_hemi, candy_cane, -1, true, false);

  TestRelation(candy_cane, north_hemi, -1, true, false);
  TestRelation(candy_cane, south_hemi, -1, true, false);
  TestRelation(candy_cane, arctic_80, 0, false, true);
  TestRelation(candy_cane, antarctic_80, 0, false, true);
  TestRelation(candy_cane, candy_cane, 1, true, false);

  TestRelation(near_hemi, west_hemi, -1, true, false);

  TestRelation(small_ne_cw, south_hemi, 1, true, false);
  TestRelation(small_ne_cw, west_hemi, 1, true, false);
  TestRelation(small_ne_cw, north_hemi, -2, true, false);
  TestRelation(small_ne_cw, east_hemi, -2, true, false);

  TestRelation(loop_a, loop_a, 1, true, false);
  TestRelation(loop_a, loop_b, -1, true, false);
  TestRelation(loop_a, a_intersect_b, 1, true, false);
  TestRelation(loop_a, a_union_b, 0, true, false);
  TestRelation(loop_a, a_minus_b, 1, true, false);
  TestRelation(loop_a, b_minus_a, 0, false, false);

  TestRelation(loop_b, loop_a, -1, true, false);
  TestRelation(loop_b, loop_b, 1, true, false);
  TestRelation(loop_b, a_intersect_b, 1, true, false);
  TestRelation(loop_b, a_union_b, 0, true, false);
  TestRelation(loop_b, a_minus_b, 0, false, false);
  TestRelation(loop_b, b_minus_a, 1, true, false);

  TestRelation(a_intersect_b, loop_a, 0, true, false);
  TestRelation(a_intersect_b, loop_b, 0, true, false);
  TestRelation(a_intersect_b, a_intersect_b, 1, true, false);
  TestRelation(a_intersect_b, a_union_b, 0, true, true);
  TestRelation(a_intersect_b, a_minus_b, 0, false, false);
  TestRelation(a_intersect_b, b_minus_a, 0, false, false);

  TestRelation(a_union_b, loop_a, 1, true, false);
  TestRelation(a_union_b, loop_b, 1, true, false);
  TestRelation(a_union_b, a_intersect_b, 1, true, true);
  TestRelation(a_union_b, a_union_b, 1, true, false);
  TestRelation(a_union_b, a_minus_b, 1, true, false);
  TestRelation(a_union_b, b_minus_a, 1, true, false);

  TestRelation(a_minus_b, loop_a, 0, true, false);
  TestRelation(a_minus_b, loop_b, 0, false, false);
  TestRelation(a_minus_b, a_intersect_b, 0, false, false);
  TestRelation(a_minus_b, a_union_b, 0, true, false);
  TestRelation(a_minus_b, a_minus_b, 1, true, false);
  TestRelation(a_minus_b, b_minus_a, 0, false, true);

  TestRelation(b_minus_a, loop_a, 0, false, false);
  TestRelation(b_minus_a, loop_b, 0, true, false);
  TestRelation(b_minus_a, a_intersect_b, 0, false, false);
  TestRelation(b_minus_a, a_union_b, 0, true, false);
  TestRelation(b_minus_a, a_minus_b, 0, false, true);
  TestRelation(b_minus_a, b_minus_a, 1, true, false);

  // Added in 2010/08: Make sure the relations are correct if the loop
  // crossing happens on two ends of a shared boundary segment.
  TestRelation(loop_a, loop_c, -1, true, false);
  TestRelation(loop_c, loop_a, -1, true, false);
  TestRelation(loop_a, loop_d, 0, true, false);
  TestRelation(loop_d, loop_a, 1, true, false);
}

static S2Loop* MakeCellLoop(S2CellId const& begin, S2CellId const& end) {
  // Construct a CCW polygon whose boundary is the union of the cell ids
  // in the range [begin, end).  We add the edges one by one, removing
  // any edges that are already present in the opposite direction.

  map<S2Point, set<S2Point> > edges;
  for (S2CellId id = begin; id != end; id = id.next()) {
    S2Cell cell(id);
    for (int k = 0; k < 4; ++k) {
      S2Point a = cell.GetVertex(k);
      S2Point b = cell.GetVertex((k + 1) & 3);
      if (edges[b].erase(a) == 0) {
        edges[a].insert(b);
      } else if (edges[b].empty()) {
        edges.erase(b);
      }
    }
  }

  // The remaining edges form a single loop.  We simply follow it starting
  // at an arbitrary vertex and build up a list of vertices.

  vector<S2Point> vertices;
  S2Point p = edges.begin()->first;
  while (!edges.empty()) {
    DCHECK_EQ(1, edges[p].size());
    S2Point next = *edges[p].begin();
    vertices.push_back(p);
    edges.erase(p);
    p = next;
  }

  return new S2Loop(vertices);
}

TEST(S2Loop, LoopRelations2) {
  // Construct polygons consisting of a sequence of adjacent cell ids
  // at some fixed level.  Comparing two polygons at the same level
  // ensures that there are no T-vertices.
  for (int iter = 0; iter < 1000; ++iter) {
    S2Testing::Random& rnd = S2Testing::rnd;
    S2CellId begin = S2CellId(rnd.Rand64() | 1);
    if (!begin.is_valid()) continue;
    begin = begin.parent(rnd.Uniform(S2CellId::kMaxLevel));
    S2CellId a_begin = begin.advance(rnd.Skewed(6));
    S2CellId a_end = a_begin.advance(rnd.Skewed(6) + 1);
    S2CellId b_begin = begin.advance(rnd.Skewed(6));
    S2CellId b_end = b_begin.advance(rnd.Skewed(6) + 1);
    if (!a_end.is_valid() || !b_end.is_valid()) continue;

    scoped_ptr<S2Loop> a(MakeCellLoop(a_begin, a_end));
    scoped_ptr<S2Loop> b(MakeCellLoop(b_begin, b_end));
    if (a.get() && b.get()) {
      bool contained = (a_begin <= b_begin && b_end <= a_end);
      bool intersects = (a_begin < b_end && b_begin < a_end);
      VLOG(1) << "Checking " << a->num_vertices() << " vs. "
              << b->num_vertices() << ", contained = " << contained
              << ", intersects = " << intersects;
      EXPECT_EQ(a->Contains(b.get()), contained);
      EXPECT_EQ(a->Intersects(b.get()), intersects);
    } else {
      VLOG(1) << "MakeCellLoop failed to create a loop.";
    }
  }
}

void DebugDumpCrossings(S2Loop const* loop) {
  // This function is useful for debugging.

  LOG(INFO) << "Ortho(v1): " << S2::Ortho(loop->vertex(1));
  printf("Contains(kOrigin): %d\n", loop->Contains(S2::Origin()));
  for (int i = 1; i <= loop->num_vertices(); ++i) {
    S2Point a = S2::Ortho(loop->vertex(i));
    S2Point b = loop->vertex(i-1);
    S2Point c = loop->vertex(i+1);
    S2Point o = loop->vertex(i);
    printf("Vertex %d: [%.17g, %.17g, %.17g], "
           "%d%dR=%d, %d%d%d=%d, R%d%d=%d, inside: %d\n",
           i, loop->vertex(i).x(), loop->vertex(i).y(), loop->vertex(i).z(),
           i-1, i, S2::RobustCCW(b, o, a),
           i+1, i, i-1, S2::RobustCCW(c, o, b),
           i, i+1, S2::RobustCCW(a, o, c),
           S2::OrderedCCW(a, b, c, o));
  }
  for (int i = 0; i < loop->num_vertices() + 2; ++i) {
    S2Point orig = S2::Origin();
    S2Point dest;
    if (i < loop->num_vertices()) {
      dest = loop->vertex(i);
      printf("Origin->%d crosses:", i);
    } else {
      dest = S2Point(0, 0, 1);
      if (i == loop->num_vertices() + 1) orig = loop->vertex(1);
      printf("Case %d:", i);
    }
    for (int j = 0; j < loop->num_vertices(); ++j) {
      printf(" %d", S2EdgeUtil::EdgeOrVertexCrossing(
                 orig, dest, loop->vertex(j), loop->vertex(j+1)));
    }
    printf("\n");
  }
  for (int i = 0; i <= 2; i += 2) {
    printf("Origin->v1 crossing v%d->v1: ", i);
    S2Point a = S2::Ortho(loop->vertex(1));
    S2Point b = loop->vertex(i);
    S2Point c = S2::Origin();
    S2Point o = loop->vertex(1);
    printf("%d1R=%d, M1%d=%d, R1M=%d, crosses: %d\n",
           i, S2::RobustCCW(b, o, a),
           i, S2::RobustCCW(c, o, b),
           S2::RobustCCW(a, o, c),
           S2EdgeUtil::EdgeOrVertexCrossing(c, o, b, a));
  }
}

static void TestNear(char const* a_str, char const* b_str,
                     double max_error, bool expected) {
  scoped_ptr<S2Loop> a(S2Testing::MakeLoop(a_str));
  scoped_ptr<S2Loop> b(S2Testing::MakeLoop(b_str));
  EXPECT_EQ(a->BoundaryNear(b.get(), max_error), expected);
  EXPECT_EQ(b->BoundaryNear(a.get(), max_error), expected);
}

TEST(S2Loop, BoundaryNear) {
  double degree = S1Angle::Degrees(1).radians();

  TestNear("0:0, 0:10, 5:5",
           "0:0.1, -0.1:9.9, 5:5.2",
           0.5 * degree, true);
  TestNear("0:0, 0:3, 0:7, 0:10, 3:7, 5:5",
           "0:0, 0:10, 2:8, 5:5, 4:4, 3:3, 1:1",
           1e-3, true);

  // All vertices close to some edge, but not equivalent.
  TestNear("0:0, 0:2, 2:2, 2:0",
           "0:0, 1.9999:1, 0:2, 2:2, 2:0",
           0.5 * degree, false);

  // Two triangles that backtrack a bit on different edges.  A simple
  // greedy matching algorithm would fail on this example.
  const char* t1 = "0.1:0, 0.1:1, 0.1:2, 0.1:3, 0.1:4, 1:4, 2:4, 3:4, "
                   "2:4.1, 1:4.1, 2:4.2, 3:4.2, 4:4.2, 5:4.2";
  char const* t2 = "0:0, 0:1, 0:2, 0:3, 0.1:2, 0.1:1, 0.2:2, 0.2:3, "
                   "0.2:4, 1:4.1, 2:4, 3:4, 4:4, 5:4";
  TestNear(t1, t2, 1.5 * degree, true);
  TestNear(t1, t2, 0.5 * degree, false);
}

TEST(S2Loop, EncodeDecode) {
  scoped_ptr<S2Loop> l(S2Testing::MakeLoop("30:20, 40:20, 39:43, 33:35"));
  l->set_depth(3);

  Encoder encoder;
  l->Encode(&encoder);

  Decoder decoder(encoder.base(), encoder.length());

  S2Loop decoded_loop;
  ASSERT_TRUE(decoded_loop.Decode(&decoder));
  EXPECT_TRUE(l->BoundaryEquals(&decoded_loop));
  EXPECT_EQ(l->depth(), decoded_loop.depth());
  EXPECT_EQ(l->GetRectBound(), decoded_loop.GetRectBound());
}

TEST(S2Loop, EncodeDecodeWithinScope) {
  scoped_ptr<S2Loop> l(S2Testing::MakeLoop("30:20, 40:20, 39:43, 33:35"));
  l->set_depth(3);
  Encoder encoder;
  l->Encode(&encoder);
  Decoder decoder1(encoder.base(), encoder.length());

  // Initialize the loop using DecodeWithinScope and check that it is the
  // same as the original loop.
  S2Loop loop1;
  ASSERT_TRUE(loop1.DecodeWithinScope(&decoder1));
  EXPECT_TRUE(l->BoundaryEquals(&loop1));
  EXPECT_EQ(l->depth(), loop1.depth());
  EXPECT_EQ(l->GetRectBound(), loop1.GetRectBound());

  // Initialize the same loop using Init with a vector of vertices, and
  // check that it doesn't deallocate the original memory.
  vector<S2Point> vertices;
  vertices.push_back(loop1.vertex(0));
  vertices.push_back(loop1.vertex(2));
  vertices.push_back(loop1.vertex(3));
  loop1.Init(vertices);
  Decoder decoder2(encoder.base(), encoder.length());
  S2Loop loop2;
  ASSERT_TRUE(loop2.DecodeWithinScope(&decoder2));
  EXPECT_TRUE(l->BoundaryEquals(&loop2));
  EXPECT_EQ(l->vertex(1), loop2.vertex(1));
  EXPECT_NE(loop1.vertex(1), loop2.vertex(1));

  // Initialize loop2 using Decode with a decoder on different data.
  // Check that the original memory is not deallocated or overwritten.
  scoped_ptr<S2Loop> l2(S2Testing::MakeLoop("30:40, 40:75, 39:43, 80:35"));
  l2->set_depth(2);
  Encoder encoder2;
  l2->Encode(&encoder2);
  Decoder decoder3(encoder2.base(), encoder2.length());
  ASSERT_TRUE(loop2.Decode(&decoder3));
  Decoder decoder4(encoder.base(), encoder.length());
  ASSERT_TRUE(loop1.DecodeWithinScope(&decoder4));
  EXPECT_TRUE(l->BoundaryEquals(&loop1));
  EXPECT_EQ(l->vertex(1), loop1.vertex(1));
  EXPECT_NE(loop1.vertex(1), loop2.vertex(1));
}

// This test checks that S2Loops created directly from S2Cells behave
// identically to S2Loops created from the vertices of those cells; this
// previously was not the case, because S2Cells calculate their bounding
// rectangles slightly differently, and S2Loops created from them just copied
// the S2Cell bounds.
TEST(S2Loop, S2CellConstructorAndContains) {
  S2Cell cell(S2CellId::FromLatLng(S2LatLng::FromE6(40565459, -74645276)));
  S2Loop cell_as_loop(cell);

  vector<S2Point> vertices;
  for (int i = 0; i < cell_as_loop.num_vertices(); ++i) {
    vertices.push_back(cell_as_loop.vertex(i));
  }
  S2Loop loop_copy(vertices);
  EXPECT_TRUE(loop_copy.Contains(&cell_as_loop));
  EXPECT_TRUE(cell_as_loop.Contains(&loop_copy));
  EXPECT_TRUE(loop_copy.Contains(cell));

  // Demonstrates the reason for this test; the cell bounds are more
  // conservative than the resulting loop bounds.
  EXPECT_FALSE(loop_copy.GetRectBound().Contains(cell.GetRectBound()));
}

TEST(s2loop, IsValidDetectsInvalidLoops) {
  // Only two vertices
  S2Loop* l1 = S2Testing::MakeLoop("20:20, 21:21");
  ASSERT_FALSE(l1->IsValid());
  delete l1;

  // Even if you disable s2debug, non-unit-length vertices break RobustCCW,
  // so there is no point in testing it here.
  // TODO(user): Check if the unit length test in IsValid is redundant
  // and remove it if so.

  // There is a duplicate vertex
  S2Loop* l2 = S2Testing::MakeLoop("20:20, 21:21, 21:20, 20:20, 20:21");
  ASSERT_FALSE(l2->IsValid());
  delete l2;

  // Some edges intersect
  S2Loop* l3 = S2Testing::MakeLoop("20:20, 21:21, 21:20.5, 21:20, 20:21");
  ASSERT_FALSE(l3->IsValid());
  delete l3;
}

TEST(s2loop, IsValidDetectsLargeInvalidLoops) {
}

static void BM_ContainsOrCrosses(int iters, int num_vertices) {
  StopBenchmarkTiming();
  S2Loop* p1 = S2Testing::MakeRegularLoop(S2::Origin(), num_vertices, 0.005);
  S2Loop* p2 = S2Testing::MakeRegularLoop(
      (S2::Origin() + S2Point(0, 0, 0.003)).Normalize(),
      num_vertices,
      0.005);
  StartBenchmarkTiming();
  for (int i = 0; i < iters; ++i) {
    p1->ContainsOrCrosses(p2);
  }
  StopBenchmarkTiming();
  delete p1;
  delete p2;
}
BENCHMARK_RANGE(BM_ContainsOrCrosses, 8, 8192);

static void BM_IsValid(int iters, int num_vertices) {
  StopBenchmarkTiming();
  S2Loop* l = S2Testing::MakeRegularLoop(S2::Origin(), num_vertices, 0.001);
  StartBenchmarkTiming();
  int r = 0;
  for (int i = 0; i < iters; ++i) {
    r += l->IsValid();
  }
  CHECK(r != INT_MAX);
  delete l;
}
BENCHMARK(BM_IsValid)
  ->Arg(32)
  ->Arg(64)
  ->Arg(128)
  ->Arg(256)
  ->Arg(512)
  ->Arg(4096)
  ->Arg(32768);

static void BM_ContainsQuery(int iters, int num_vertices) {
  StopBenchmarkTiming();
  S2Point loop_center = S2Testing::MakePoint("42:10");
  S2Loop* loop = S2Testing::MakeRegularLoop(loop_center,
                                            num_vertices,
                                            7e-3);  // = 5km/6400km
  StartBenchmarkTiming();
  int count = 0;
  for (int i = 0; i < iters; ++i) {
    count += 1 + loop->Contains(loop_center);
  }
  CHECK_LE(0, count);
  delete loop;
}
BENCHMARK_RANGE(BM_ContainsQuery, 4, 1 << 16);