summaryrefslogtreecommitdiff
path: root/src/third_party/wiredtiger/src/session/session_dhandle.c
blob: d7062b1615159e7629de3615b918a84e4907401d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
/*-
 * Copyright (c) 2014-present MongoDB, Inc.
 * Copyright (c) 2008-2014 WiredTiger, Inc.
 *	All rights reserved.
 *
 * See the file LICENSE for redistribution information.
 */

#include "wt_internal.h"

/*
 * __session_add_dhandle --
 *     Add a handle to the session's cache.
 */
static int
__session_add_dhandle(WT_SESSION_IMPL *session)
{
    WT_DATA_HANDLE_CACHE *dhandle_cache;
    uint64_t bucket;

    /* Allocate a handle cache entry. */
    WT_RET(__wt_calloc_one(session, &dhandle_cache));

    dhandle_cache->dhandle = session->dhandle;

    bucket = dhandle_cache->dhandle->name_hash & (S2C(session)->dh_hash_size - 1);
    TAILQ_INSERT_HEAD(&session->dhandles, dhandle_cache, q);
    TAILQ_INSERT_HEAD(&session->dhhash[bucket], dhandle_cache, hashq);

    return (0);
}

/*
 * __session_discard_dhandle --
 *     Remove a data handle from the session cache.
 */
static void
__session_discard_dhandle(WT_SESSION_IMPL *session, WT_DATA_HANDLE_CACHE *dhandle_cache)
{
    uint64_t bucket;

    bucket = dhandle_cache->dhandle->name_hash & (S2C(session)->dh_hash_size - 1);
    TAILQ_REMOVE(&session->dhandles, dhandle_cache, q);
    TAILQ_REMOVE(&session->dhhash[bucket], dhandle_cache, hashq);

    WT_DHANDLE_RELEASE(dhandle_cache->dhandle);
    __wt_overwrite_and_free(session, dhandle_cache);
}

/*
 * __session_find_dhandle --
 *     Search for a data handle in the session cache.
 */
static void
__session_find_dhandle(WT_SESSION_IMPL *session, const char *uri, const char *checkpoint,
  WT_DATA_HANDLE_CACHE **dhandle_cachep)
{
    WT_DATA_HANDLE *dhandle;
    WT_DATA_HANDLE_CACHE *dhandle_cache;
    uint64_t bucket;

    dhandle = NULL;

    bucket = __wt_hash_city64(uri, strlen(uri)) & (S2C(session)->dh_hash_size - 1);
retry:
    TAILQ_FOREACH (dhandle_cache, &session->dhhash[bucket], hashq) {
        dhandle = dhandle_cache->dhandle;
        if (WT_DHANDLE_INACTIVE(dhandle) && !WT_IS_METADATA(dhandle)) {
            __session_discard_dhandle(session, dhandle_cache);
            /* We deleted our entry, retry from the start. */
            goto retry;
        }

        if (strcmp(uri, dhandle->name) != 0)
            continue;
        if (checkpoint == NULL && dhandle->checkpoint == NULL)
            break;
        if (checkpoint != NULL && dhandle->checkpoint != NULL &&
          strcmp(checkpoint, dhandle->checkpoint) == 0)
            break;
    }

    *dhandle_cachep = dhandle_cache;
}

/*
 * __wt_session_lock_dhandle --
 *     Return when the current data handle is either (a) open with the requested lock mode; or (b)
 *     closed and write locked. If exclusive access is requested and cannot be granted immediately
 *     because the handle is in use, fail with EBUSY. Here is a brief summary of how different
 *     operations synchronize using either the schema lock, handle locks or handle flags: open --
 *     one thread gets the handle exclusive, reverts to a shared handle lock once the handle is
 *     open; bulk load --
 *     sets bulk and exclusive; salvage, truncate, update, verify --
 *     hold the schema lock, get the handle exclusive, set a "special" flag; sweep --
 *     gets a write lock on the handle, doesn't set exclusive The principle is that some application
 *     operations can cause other application operations to fail (so attempting to open a cursor on
 *     a file while it is being bulk-loaded will fail), but internal or database-wide operations
 *     should not prevent application-initiated operations. For example, attempting to verify a file
 *     should not fail because the sweep server happens to be in the process of closing that file.
 */
int
__wt_session_lock_dhandle(WT_SESSION_IMPL *session, uint32_t flags, bool *is_deadp)
{
    WT_BTREE *btree;
    WT_DATA_HANDLE *dhandle;
    WT_DECL_RET;
    bool is_open, lock_busy, want_exclusive;

    *is_deadp = false;

    dhandle = session->dhandle;
    btree = dhandle->handle;
    lock_busy = false;
    want_exclusive = LF_ISSET(WT_DHANDLE_EXCLUSIVE);

    /*
     * If this session already has exclusive access to the handle, there is no point trying to lock
     * it again.
     *
     * This should only happen if a checkpoint handle is locked multiple times during a checkpoint
     * operation, or the handle is already open without any special flags. In particular, it must
     * fail if attempting to checkpoint a handle opened for a bulk load, even in the same session.
     */
    if (dhandle->excl_session == session) {
        if (!LF_ISSET(WT_DHANDLE_LOCK_ONLY) &&
          (!F_ISSET(dhandle, WT_DHANDLE_OPEN) ||
            (btree != NULL && F_ISSET(btree, WT_BTREE_SPECIAL_FLAGS))))
            return (__wt_set_return(session, EBUSY));
        ++dhandle->excl_ref;
        return (0);
    }

    /*
     * Check that the handle is open. We've already incremented the reference count, so once the
     * handle is open it won't be closed by another thread.
     *
     * If we can see the WT_DHANDLE_OPEN flag set while holding a lock on the handle, then it's
     * really open and we can start using it. Alternatively, if we can get an exclusive lock and
     * WT_DHANDLE_OPEN is still not set, we need to do the open.
     */
    for (;;) {
        /* If the handle is dead, give up. */
        if (F_ISSET(dhandle, WT_DHANDLE_DEAD)) {
            *is_deadp = true;
            return (0);
        }

        /*
         * If the handle is already open for a special operation, give up.
         */
        if (btree != NULL && F_ISSET(btree, WT_BTREE_SPECIAL_FLAGS))
            return (__wt_set_return(session, EBUSY));

        /*
         * If the handle is open, get a read lock and recheck.
         *
         * Wait for a read lock if we want exclusive access and failed to get it: the sweep server
         * may be closing this handle, and we need to wait for it to release its lock. If we want
         * exclusive access and find the handle open once we get the read lock, give up: some other
         * thread has it locked for real.
         */
        if (F_ISSET(dhandle, WT_DHANDLE_OPEN) && (!want_exclusive || lock_busy)) {
            WT_WITH_DHANDLE(session, dhandle, __wt_session_dhandle_readlock(session));
            if (F_ISSET(dhandle, WT_DHANDLE_DEAD)) {
                *is_deadp = true;
                WT_WITH_DHANDLE(session, dhandle, __wt_session_dhandle_readunlock(session));
                return (0);
            }

            is_open = F_ISSET(dhandle, WT_DHANDLE_OPEN);
            if (is_open && !want_exclusive)
                return (0);
            WT_WITH_DHANDLE(session, dhandle, __wt_session_dhandle_readunlock(session));
        } else
            is_open = false;

        /*
         * It isn't open or we want it exclusive: try to get an exclusive lock. There is some
         * subtlety here: if we race with another thread that successfully opens the file, we don't
         * want to block waiting to get exclusive access.
         */
        WT_WITH_DHANDLE(session, dhandle, ret = __wt_session_dhandle_try_writelock(session));
        if (ret == 0) {
            if (F_ISSET(dhandle, WT_DHANDLE_DEAD)) {
                *is_deadp = true;
                WT_WITH_DHANDLE(session, dhandle, __wt_session_dhandle_writeunlock(session));
                return (0);
            }

            /*
             * If it was opened while we waited, drop the write lock and get a read lock instead.
             */
            if (F_ISSET(dhandle, WT_DHANDLE_OPEN) && !want_exclusive) {
                lock_busy = false;
                WT_WITH_DHANDLE(session, dhandle, __wt_session_dhandle_writeunlock(session));
                continue;
            }

            /* We have an exclusive lock, we're done. */
            F_SET(dhandle, WT_DHANDLE_EXCLUSIVE);
            WT_ASSERT(session, dhandle->excl_session == NULL && dhandle->excl_ref == 0);
            dhandle->excl_session = session;
            dhandle->excl_ref = 1;
            WT_ASSERT(session, !F_ISSET(dhandle, WT_DHANDLE_DEAD));
            return (0);
        }
        if (ret != EBUSY || (is_open && want_exclusive) || LF_ISSET(WT_DHANDLE_LOCK_ONLY))
            return (ret);
        lock_busy = true;

        /* Give other threads a chance to make progress. */
        WT_STAT_CONN_INCR(session, dhandle_lock_blocked);
        __wt_yield();
    }
}

/*
 * __wt_session_release_dhandle --
 *     Unlock a data handle.
 */
int
__wt_session_release_dhandle(WT_SESSION_IMPL *session)
{
    WT_BTREE *btree;
    WT_DATA_HANDLE *dhandle;
    WT_DATA_HANDLE_CACHE *dhandle_cache;
    WT_DECL_RET;
    bool locked, write_locked;

    dhandle = session->dhandle;
    btree = dhandle->handle;
    write_locked = F_ISSET(dhandle, WT_DHANDLE_EXCLUSIVE);
    locked = true;

    /*
     * If we had special flags set, close the handle so that future access can get a handle without
     * special flags.
     */
    if (F_ISSET(dhandle, WT_DHANDLE_DISCARD | WT_DHANDLE_DISCARD_KILL)) {
        WT_SAVE_DHANDLE(session,
          __session_find_dhandle(session, dhandle->name, dhandle->checkpoint, &dhandle_cache));
        if (dhandle_cache != NULL)
            __session_discard_dhandle(session, dhandle_cache);
    }

    /*
     * Close the handle if we are finishing a bulk load or if the handle is set to discard on
     * release. Bulk loads are special because they may have huge root pages in memory, and we need
     * to push those pages out of the cache. The only way to do that is to close the handle.
     */
    if (btree != NULL && F_ISSET(btree, WT_BTREE_BULK)) {
        WT_ASSERT(
          session, F_ISSET(dhandle, WT_DHANDLE_EXCLUSIVE) && !F_ISSET(dhandle, WT_DHANDLE_DISCARD));
        /*
         * Acquire the schema lock while closing out the handles. This avoids racing with a
         * checkpoint while it gathers a set of handles.
         */
        WT_WITH_SCHEMA_LOCK(session, ret = __wt_conn_dhandle_close(session, false, false));
    } else if ((btree != NULL && F_ISSET(btree, WT_BTREE_SPECIAL_FLAGS)) ||
      F_ISSET(dhandle, WT_DHANDLE_DISCARD | WT_DHANDLE_DISCARD_KILL)) {
        WT_ASSERT(session, F_ISSET(dhandle, WT_DHANDLE_EXCLUSIVE));

        ret = __wt_conn_dhandle_close(session, false, F_ISSET(dhandle, WT_DHANDLE_DISCARD_KILL));
        F_CLR(dhandle, WT_DHANDLE_DISCARD | WT_DHANDLE_DISCARD_KILL);
    }

    if (session == dhandle->excl_session) {
        if (--dhandle->excl_ref == 0)
            dhandle->excl_session = NULL;
        else
            locked = false;
    }
    if (locked) {
        if (write_locked) {
            F_CLR(dhandle, WT_DHANDLE_EXCLUSIVE);
            WT_WITH_DHANDLE(session, dhandle, __wt_session_dhandle_writeunlock(session));
        } else
            WT_WITH_DHANDLE(session, dhandle, __wt_session_dhandle_readunlock(session));
    }

    session->dhandle = NULL;
    return (ret);
}

/*
 * __session_fetch_checkpoint_meta --
 *     Retrieve information about the selected checkpoint. Notes on the returned values are found
 *     under __session_lookup_checkpoint.
 */
static int
__session_fetch_checkpoint_meta(WT_SESSION_IMPL *session, const char *ckpt_name,
  WT_CKPT_SNAPSHOT *info_ret, uint64_t *snapshot_time_ret, uint64_t *stable_time_ret,
  uint64_t *oldest_time_ret)
{
    /* Get the timestamps. */
    WT_RET(__wt_meta_read_checkpoint_timestamp(
      session, ckpt_name, &info_ret->stable_ts, stable_time_ret));
    WT_RET(
      __wt_meta_read_checkpoint_oldest(session, ckpt_name, &info_ret->oldest_ts, oldest_time_ret));

    /* Get the snapshot. */
    WT_RET(__wt_meta_read_checkpoint_snapshot(session, ckpt_name, &info_ret->snapshot_write_gen,
      &info_ret->snapshot_min, &info_ret->snapshot_max, &info_ret->snapshot_txns,
      &info_ret->snapshot_count, snapshot_time_ret));

    /*
     * If we successfully read a null snapshot, set the min and max to WT_TXN_MAX so everything is
     * visible. (Whether this is desirable isn't entirely clear, but if we leave them set to
     * WT_TXN_NONE, then nothing is visible, and that's clearly not useful. The other choices are to
     * fail, which doesn't help, or to signal somehow to the checkpoint cursor that it should run
     * without a dummy transaction, which doesn't work.)
     */
    if (info_ret->snapshot_min == WT_TXN_NONE && info_ret->snapshot_max == WT_TXN_NONE) {
        info_ret->snapshot_min = info_ret->snapshot_max = WT_TXN_MAX;
        WT_ASSERT(session, info_ret->snapshot_txns == NULL && info_ret->snapshot_count == 0);
    }

    return (0);
}

/*
 * __session_fetch_checkpoint_snapshot_wall_time --
 *     Like __session_fetch_checkpoint_meta, but retrieves just the wall clock time of the snapshot.
 */
static int
__session_fetch_checkpoint_snapshot_wall_time(
  WT_SESSION_IMPL *session, const char *ckpt_name, uint64_t *walltime)
{
    return (__wt_meta_read_checkpoint_snapshot(
      session, ckpt_name, NULL, NULL, NULL, NULL, NULL, walltime));
}

/*
 * __session_open_hs_ckpt --
 *     Get a btree handle for the requested checkpoint of the history store and return it.
 */
static int
__session_open_hs_ckpt(WT_SESSION_IMPL *session, const char *checkpoint, const char *cfg[],
  uint32_t flags, int64_t order_expected, WT_DATA_HANDLE **hs_dhandlep)
{
    WT_RET(__wt_session_get_dhandle(session, WT_HS_URI, checkpoint, cfg, flags));

    if (session->dhandle->checkpoint_order != order_expected) {
        /* Not what we were expecting; treat as EBUSY and let the caller retry. */
        WT_RET(__wt_session_release_dhandle(session));
        return (__wt_set_return(session, EBUSY));
    }

    /* The handle is left in the session; return it explicitly for caller's convenience. */
    *hs_dhandlep = session->dhandle;
    return (0);
}

/*
 * __wt_session_get_btree_ckpt --
 *     Check the configuration strings for a checkpoint name. If opening a checkpoint, resolve the
 *     checkpoint name, get a btree handle for it, load that into the session, and if requested with
 *     non-null pointers, also resolve a matching history store checkpoint, open a handle for it,
 *     return that, and also find and return the corresponding snapshot/timestamp metadata. The
 *     transactions array in the snapshot info is allocated and must be freed by the caller on
 *     success. If not opening a checkpoint, the history store dhandle and snapshot info is
 *     immaterial; if the return pointers are not null, send back nulls and in particular never
 *     allocate or open anything.
 */
int
__wt_session_get_btree_ckpt(WT_SESSION_IMPL *session, const char *uri, const char *cfg[],
  uint32_t flags, WT_DATA_HANDLE **hs_dhandlep, WT_CKPT_SNAPSHOT *ckpt_snapshot)
{
    WT_CONFIG_ITEM cval;
    WT_DECL_RET;
    uint64_t ds_time, first_snapshot_time, hs_time, oldest_time, snapshot_time, stable_time;
    int64_t ds_order, hs_order;
    const char *checkpoint, *hs_checkpoint;
    bool is_hs, is_unnamed_ckpt, is_reserved_name, must_resolve;

    ds_time = first_snapshot_time = hs_time = oldest_time = snapshot_time = stable_time = 0;
    ds_order = hs_order = 0;
    checkpoint = NULL;
    hs_checkpoint = NULL;
    is_hs = is_unnamed_ckpt = is_reserved_name = must_resolve = false;

    /* These should only be set together. Asking for only one doesn't make sense. */
    WT_ASSERT(session, (hs_dhandlep == NULL) == (ckpt_snapshot == NULL));

    if (hs_dhandlep != NULL)
        *hs_dhandlep = NULL;
    if (ckpt_snapshot != NULL) {
        ckpt_snapshot->ckpt_id = 0;
        ckpt_snapshot->oldest_ts = WT_TS_NONE;
        ckpt_snapshot->stable_ts = WT_TS_NONE;
        ckpt_snapshot->snapshot_write_gen = 0;
        ckpt_snapshot->snapshot_min = WT_TXN_MAX;
        ckpt_snapshot->snapshot_max = WT_TXN_MAX;
        ckpt_snapshot->snapshot_txns = NULL;
        ckpt_snapshot->snapshot_count = 0;
    }

    /*
     * This function exists to handle checkpoint configuration. Callers that never open a checkpoint
     * call the underlying function directly.
     */
    WT_RET_NOTFOUND_OK(__wt_config_gets_def(session, cfg, "checkpoint", 0, &cval));
    if (cval.len == 0) {
        /* We are not opening a checkpoint. This is the simple case; retire it immediately. */
        return (__wt_session_get_dhandle(session, uri, NULL, cfg, flags));
    }

    /*
     * Here and below is only for checkpoints.
     *
     * Ultimately, unless we're being opened from a context where we won't ever need to access the
     * history store, we need two dhandles and a set of snapshot/timestamp info that all match.
     *
     * "Match" here is a somewhat complex issue. In the simple case, it means trees and a snapshot
     * that came from the same global checkpoint. But because checkpoints skip clean trees, either
     * tree can potentially be from an earlier global checkpoint. This means we cannot readily
     * identify matching trees by looking at them (or by looking at their metadata either) -- both
     * the order numbers and the wall clock times can easily be different. Consequently we don't try
     * to actively find or check matching trees; instead we rely on the system to not produce
     * mutually inconsistent checkpoints, and read out whatever exists taking active steps to avoid
     * racing with a currently running checkpoint.
     *
     * Note that this fundamentally relies on partial checkpoints being prohibited. In the presence
     * of partial checkpoints we would have to actively find matching trees, and in many cases
     * (because old unnamed checkpoints are garbage collected) the proper matching history store
     * wouldn't exist any more and we'd be stuck.
     *
     * The scheme is as follows: 1. Read checkpoint info out of the metadata, and retry until we get
     * a consistent set; then 2. Open both dhandles and retry the whole thing if we didn't get the
     * trees we expected.
     *
     * For the first part, we look up the requested checkpoint in both the data store and history
     * store's metadata (either by name or for WiredTigerCheckpoint by picking the most recent
     * checkpoint), and look up the snapshot and timestamps in the global metadata. For all of these
     * we retrieve the wall clock time of the checkpoint, which we'll use to check for consistency.
     * For the trees we also retrieve the order numbers of the checkpoints, which we'll use to check
     * that the dhandles we open are the ones we wanted. (For unnamed checkpoints, they must be,
     * because unnamed checkpoints are never replaced, but for named checkpoints it's possible for
     * the open to race with regeneration of the checkpoint.)
     *
     * Because the snapshot information is always written by every checkpoint, and is written last,
     * we use its wall clock time as the reference. This is always the wall clock time of the most
     * recent completed global checkpoint of the same name, or the most recent completed unnamed
     * checkpoint, as appropriate. We read this time twice, once at the very beginning and again
     * along with the snapshot information itself at the end after the other items. If these two
     * times don't match, a global checkpoint completed while we were reading. In this case we
     * cannot tell for sure if we read one of the trees' metadata before the checkpoint updated it;
     * if the tree's wall clock time is older than the snapshot's, it might be because that tree was
     * skipped, but it might also be because there was an update but we read before the update
     * happened. Therefore, we need to retry.
     *
     * If the two copies of the snapshot time match, we check the other wall clock times against the
     * snapshot time. If any of the items are newer, they were written by a currently running
     * checkpoint that hasn't finished yet, and we need to retry.
     *
     * (For the timestamps it is slightly easier; either timestamp might not be present, in which
     * case both the timestamp and its associated time will read back as zero. We take advantage of
     * the knowledge that for both these timestamps the system cannot transition from a state with
     * the timestamp set to one where it is not, and therefore once any checkpoint includes either
     * timestamp, every subsequent checkpoint will too. Therefore, the timestamps' wall times should
     * either match the snapshot or be zero; and if they're zero, it doesn't matter if they were
     * actually zero in a newer, currently running checkpoint, because then they must have always
     * been zero.)
     *
     * This scheme relies on the fact that the checkpoint wall clock time always moves forward. Each
     * checkpoint is given a wall clock time at least one second greater than the previous
     * checkpoint. Before recovery, we load the time of the last successful checkpoint in the
     * previous database so we can ensure checkpoint times increase across restarts. This avoids
     * trouble if the system clock moves backwards between runs, and also avoids possible issues if
     * the checkpoint clock runs forward. (See comment about that in
     * __txn_checkpoint_establish_time().) When reading from a previous database, the checkpoint
     * time in the snapshot and timestamp metadata default to zero if not present, avoiding
     * confusion caused by older versions that don't include these values.
     *
     * Also note that only the exact name "WiredTigerCheckpoint" needs to be resolved. Requests to
     * open specific versions, such as "WiredTigerCheckpoint.6", is forbidden.
     *
     * It is also at least theoretically possible for there to be no matching history store
     * checkpoint. If looking up the checkpoint names finds no history store checkpoint, its name
     * will come back as null and we must avoid trying to open it, either here or later on in the
     * life of the checkpoint cursor.
     */

    is_hs = strcmp(uri, WT_HS_URI) == 0;
    if (is_hs)
        /* We're opening the history store directly, so don't open it twice. */
        hs_dhandlep = NULL;

    /*
     * Applications can use the internal reserved name "WiredTigerCheckpoint" to open the latest
     * checkpoint, but they are not allowed to directly open specific checkpoint versions, such as
     * "WiredTigerCheckpoint.6". However, internally it is allowed to open the history store with a
     * specific version.
     */
    is_reserved_name = cval.len > strlen(WT_CHECKPOINT) && WT_PREFIX_MATCH(cval.str, WT_CHECKPOINT);
    if (is_reserved_name && (!is_hs || session->hs_checkpoint == NULL))
        WT_RET_MSG(
          session, EINVAL, "the prefix \"%s\" for checkpoint cursors is reserved", WT_CHECKPOINT);

    /*
     * Test for the internal checkpoint name (WiredTigerCheckpoint). Note: must_resolve is true in a
     * subset of the cases where is_unnamed_ckpt is true.
     */
    must_resolve = cval.len == strlen(WT_CHECKPOINT) && WT_PREFIX_MATCH(cval.str, WT_CHECKPOINT);
    is_unnamed_ckpt = cval.len >= strlen(WT_CHECKPOINT) && WT_PREFIX_MATCH(cval.str, WT_CHECKPOINT);

    /* This is the top of a retry loop. */
    do {
        ret = 0;

        if (!must_resolve)
            /* Copy the checkpoint name first because we may need it to get the first wall time. */
            WT_RET(__wt_strndup(session, cval.str, cval.len, &checkpoint));

        if (ckpt_snapshot != NULL) {
            /* We're about to re-fetch this; discard the prior version. No effect the first time. */
            __wt_free(session, ckpt_snapshot->snapshot_txns);

            /*
             * Now, as the first step of the retrieval process, get the wall-clock time of the
             * snapshot metadata (only). If we need the name, we'll have copied it already.
             */
            WT_RET(__session_fetch_checkpoint_snapshot_wall_time(
              session, is_unnamed_ckpt ? NULL : checkpoint, &first_snapshot_time));
        }

        if (must_resolve)
            /* Look up the most recent data store checkpoint. This fetches the exact name to use. */
            WT_RET(__wt_meta_checkpoint_last_name(session, uri, &checkpoint, &ds_order, &ds_time));
        else
            /* Look up the checkpoint by name and get its time and order information. */
            WT_RET(__wt_meta_checkpoint_by_name(session, uri, checkpoint, &ds_order, &ds_time));

        /* Look up the history store checkpoint. */
        if (hs_dhandlep != NULL) {
            if (must_resolve)
                WT_RET_NOTFOUND_OK(__wt_meta_checkpoint_last_name(
                  session, WT_HS_URI, &hs_checkpoint, &hs_order, &hs_time));
            else {
                ret =
                  __wt_meta_checkpoint_by_name(session, WT_HS_URI, checkpoint, &hs_order, &hs_time);
                WT_RET_NOTFOUND_OK(ret);
                if (ret == WT_NOTFOUND)
                    ret = 0;
                else
                    WT_RET(__wt_strdup(session, checkpoint, &hs_checkpoint));
            }
        }

        /*
         * If we were asked for snapshot metadata, fetch it now, including the time (comparable to
         * checkpoint times) for each element.
         */
        if (ckpt_snapshot != NULL) {
            WT_RET(__session_fetch_checkpoint_meta(session, is_unnamed_ckpt ? NULL : checkpoint,
              ckpt_snapshot, &snapshot_time, &stable_time, &oldest_time));

            /*
             * If we have not raced with a checkpoint, we still may have an inconsistency in a
             * specific scenario that involves bulk operations. When a bulk operation finishes, it
             * generates a single file checkpoint which is different from a system wide checkpoint.
             * The single file checkpoint only bumps the data store time which makes it ahead of the
             * last system wide checkpoint time and leads to the inconsistency.
             */
            if (first_snapshot_time == snapshot_time && ds_time > snapshot_time &&
              hs_time <= snapshot_time) {
                /*
                 * If a system wide checkpoint is running, the inconsistency should be resolved, it
                 * is worth retrying.
                 */
                if (S2C(session)->txn_global.checkpoint_running)
                    ret = __wt_set_return(session, EBUSY);
                else {
                    __wt_verbose_warning(session, WT_VERB_DEFAULT,
                      "Session (@: 0x%p name: %s) could not open the checkpoint '%s' (config: %s) "
                      "on the file '%s'.",
                      (void *)session, session->name == NULL ? "EMPTY" : session->name, checkpoint,
                      cval.str, uri);
                    ret = __wt_set_return(session, WT_NOTFOUND);
                    goto err;
                }
            }
            /*
             * Check if we raced with a running checkpoint.
             *
             * If the two copies of the snapshot don't match, or if any of the other metadata items'
             * time is newer than the snapshot, we read in the middle of that material being updated
             * and we need to retry.
             *
             * Otherwise we have successfully gotten a matching set, as described above.
             *
             * If there is no history store checkpoint, its time will be zero, which will be
             * accepted.
             *
             * We skip the test entirely if we aren't trying to return a snapshot (and therefore not
             * history either) because there's nothing to check, and if we didn't retrieve the
             * snapshot its time will be 0 and the check will fail gratuitously and lead to retrying
             * forever.
             */
            else if (first_snapshot_time != snapshot_time || ds_time > snapshot_time ||
              hs_time > snapshot_time || stable_time > snapshot_time || oldest_time > snapshot_time)
                ret = __wt_set_return(session, EBUSY);
            else {
                /* Crosscheck that we didn't somehow get an older timestamp. */
                WT_ASSERT(session, stable_time == snapshot_time || stable_time == 0);
                WT_ASSERT(session, oldest_time == snapshot_time || oldest_time == 0);
            }

            /*
             * Return the snapshot's wall time as the (global) checkpoint ID. The ID is a 64-bit
             * value of unspecified semantics such that if you open the same checkpoint name and get
             * different IDs, the cursors you got are looking at different versions of that
             * checkpoint, which usually isn't what you want. Test code uses this to check whether a
             * collection of checkpoint cursors they opened on different files all came from the
             * same global checkpoint or not. This is the same problem as checking if the history
             * store checkpoint and data store checkpoint match, so the wall time is the right thing
             * to use for it.
             */
            ckpt_snapshot->ckpt_id = snapshot_time;
        }

        if (ret == 0) {
            /* Get a handle for the data store. */
            ret = __wt_session_get_dhandle(session, uri, checkpoint, cfg, flags);
            if (ret == 0 && session->dhandle->checkpoint_order != ds_order) {
                /* The tree we opened is newer than the one we expected; need to retry. */
                WT_TRET(__wt_session_release_dhandle(session));
                WT_TRET(__wt_set_return(session, EBUSY));
            }
        }

        if (ret == 0 && hs_checkpoint != NULL) {
            /* Get a handle for the history store. */
            WT_ASSERT(session, hs_dhandlep != NULL);
            WT_WITHOUT_DHANDLE(session,
              ret =
                __session_open_hs_ckpt(session, hs_checkpoint, cfg, flags, hs_order, hs_dhandlep));
            if (ret != 0)
                WT_TRET(__wt_session_release_dhandle(session));
        }

        /* Drop the names; we don't need them any more. Nulls the pointers; retry relies on that. */
        __wt_free(session, checkpoint);
        __wt_free(session, hs_checkpoint);

        /*
         * There's a potential race: we get the name of the most recent unnamed checkpoint, but if
         * it's discarded (or locked so it can be discarded) by the time we try to open it, we'll
         * fail the open. Retry in those cases; a new checkpoint version should surface, and we
         * can't return an error. The application will be justifiably upset if we can't open the
         * last checkpoint instance of an object.
         *
         * The WT_NOTFOUND condition will eventually clear; some unnamed checkpoint existed when we
         * looked up the name (otherwise we would have failed then) so a new one must be in
         * progress.
         *
         * At this point we should either have ret == 0 and the handles we were asked for, or ret !=
         * 0 and no handles.
         *
         * For named checkpoints, we don't retry, I guess because the application ought not to try
         * to open its checkpoints while regenerating them.
         */

    } while (is_unnamed_ckpt && (ret == WT_NOTFOUND || ret == EBUSY));

err:
    __wt_free(session, checkpoint);
    __wt_free(session, hs_checkpoint);
    return (ret);
}

/*
 * __wt_session_close_cache --
 *     Close any cached handles in a session.
 */
void
__wt_session_close_cache(WT_SESSION_IMPL *session)
{
    WT_DATA_HANDLE_CACHE *dhandle_cache, *dhandle_cache_tmp;

    WT_TAILQ_SAFE_REMOVE_BEGIN(dhandle_cache, &session->dhandles, q, dhandle_cache_tmp)
    {
        __session_discard_dhandle(session, dhandle_cache);
    }
    WT_TAILQ_SAFE_REMOVE_END
}

/*
 * __wt_session_dhandle_sweep --
 *     Discard any session dhandles that are not open.
 */
void
__wt_session_dhandle_sweep(WT_SESSION_IMPL *session)
{
    WT_CONNECTION_IMPL *conn;
    WT_DATA_HANDLE *dhandle;
    WT_DATA_HANDLE_CACHE *dhandle_cache, *dhandle_cache_tmp;
    uint64_t now;

    conn = S2C(session);

    /*
     * Periodically sweep for dead handles; if we've swept recently, don't do it again.
     */
    __wt_seconds(session, &now);
    if (now - session->last_sweep < conn->sweep_interval)
        return;
    session->last_sweep = now;

    WT_STAT_CONN_INCR(session, dh_session_sweeps);

    TAILQ_FOREACH_SAFE(dhandle_cache, &session->dhandles, q, dhandle_cache_tmp)
    {
        dhandle = dhandle_cache->dhandle;

        /*
         * Only discard handles that are dead or dying and, in the case of btrees, have been
         * evicted. These checks are not done with any locks in place, other than the data handle
         * reference, so we cannot peer past what is in the dhandle directly.
         */
        if (dhandle != session->dhandle && dhandle->session_inuse == 0 &&
          (WT_DHANDLE_INACTIVE(dhandle) ||
            (dhandle->timeofdeath != 0 && now - dhandle->timeofdeath > conn->sweep_idle_time)) &&
          (!WT_DHANDLE_BTREE(dhandle) || F_ISSET(dhandle, WT_DHANDLE_EVICTED))) {
            WT_STAT_CONN_INCR(session, dh_session_handles);
            WT_ASSERT(session, !WT_IS_METADATA(dhandle));
            __session_discard_dhandle(session, dhandle_cache);
        }
    }
}

/*
 * __session_find_shared_dhandle --
 *     Search for a data handle in the connection and add it to a session's cache. We must increment
 *     the handle's reference count while holding the handle list lock.
 */
static int
__session_find_shared_dhandle(WT_SESSION_IMPL *session, const char *uri, const char *checkpoint)
{
    WT_DECL_RET;

    WT_WITH_HANDLE_LIST_READ_LOCK(session,
      if ((ret = __wt_conn_dhandle_find(session, uri, checkpoint)) == 0)
        WT_DHANDLE_ACQUIRE(session->dhandle));

    if (ret != WT_NOTFOUND)
        return (ret);

    WT_WITH_HANDLE_LIST_WRITE_LOCK(session,
      if ((ret = __wt_conn_dhandle_alloc(session, uri, checkpoint)) == 0)
        WT_DHANDLE_ACQUIRE(session->dhandle));

    return (ret);
}

/*
 * __session_get_dhandle --
 *     Search for a data handle, first in the session cache, then in the connection.
 */
static int
__session_get_dhandle(WT_SESSION_IMPL *session, const char *uri, const char *checkpoint)
{
    WT_DATA_HANDLE_CACHE *dhandle_cache;
    WT_DECL_RET;

    __session_find_dhandle(session, uri, checkpoint, &dhandle_cache);
    if (dhandle_cache != NULL) {
        session->dhandle = dhandle_cache->dhandle;
        return (0);
    }

    /* Sweep the handle list to remove any dead handles. */
    __wt_session_dhandle_sweep(session);

    /*
     * We didn't find a match in the session cache, search the shared handle list and cache the
     * handle we find.
     */
    WT_RET(__session_find_shared_dhandle(session, uri, checkpoint));

    /*
     * Fixup the reference count on failure (we incremented the reference count while holding the
     * handle-list lock).
     */
    if ((ret = __session_add_dhandle(session)) != 0) {
        WT_DHANDLE_RELEASE(session->dhandle);
        session->dhandle = NULL;
    }

    return (ret);
}

/*
 * __wt_session_dhandle_readlock --
 *     Acquire read lock for the session's current dhandle.
 */
void
__wt_session_dhandle_readlock(WT_SESSION_IMPL *session)
{
    WT_ASSERT(session, session->dhandle != NULL);
    __wt_readlock(session, &session->dhandle->rwlock);
}

/*
 * __wt_session_dhandle_readunlock --
 *     Release read lock for the session's current dhandle.
 */
void
__wt_session_dhandle_readunlock(WT_SESSION_IMPL *session)
{
    WT_ASSERT(session, session->dhandle != NULL);
    __wt_readunlock(session, &session->dhandle->rwlock);
}

/*
 * __wt_session_dhandle_writeunlock --
 *     Release write lock for the session's current dhandle.
 */
void
__wt_session_dhandle_writeunlock(WT_SESSION_IMPL *session)
{
    WT_ASSERT(session, session->dhandle != NULL);
    WT_ASSERT(session, FLD_ISSET(session->dhandle->lock_flags, WT_DHANDLE_LOCK_WRITE));
    FLD_CLR(session->dhandle->lock_flags, WT_DHANDLE_LOCK_WRITE);
    __wt_writeunlock(session, &session->dhandle->rwlock);
}

/*
 * __wt_session_dhandle_try_writelock --
 *     Try to acquire write lock for the session's current dhandle.
 */
int
__wt_session_dhandle_try_writelock(WT_SESSION_IMPL *session)
{
    WT_DECL_RET;

    WT_ASSERT(session, session->dhandle != NULL);
    if ((ret = __wt_try_writelock(session, &session->dhandle->rwlock)) == 0)
        FLD_SET(session->dhandle->lock_flags, WT_DHANDLE_LOCK_WRITE);

    return (ret);
}

/*
 * __wt_session_get_dhandle --
 *     Get a data handle for the given name, set session->dhandle. Optionally if we opened a
 *     checkpoint return its checkpoint order number.
 */
int
__wt_session_get_dhandle(WT_SESSION_IMPL *session, const char *uri, const char *checkpoint,
  const char *cfg[], uint32_t flags)
{
    WT_DATA_HANDLE *dhandle;
    WT_DECL_RET;
    bool is_dead;

    WT_ASSERT(session, !F_ISSET(session, WT_SESSION_NO_DATA_HANDLES));

    for (;;) {
        WT_RET(__session_get_dhandle(session, uri, checkpoint));
        dhandle = session->dhandle;

        /* Try to lock the handle. */
        WT_RET(__wt_session_lock_dhandle(session, flags, &is_dead));
        if (is_dead)
            continue;

        /* If the handle is open in the mode we want, we're done. */
        if (LF_ISSET(WT_DHANDLE_LOCK_ONLY) ||
          (F_ISSET(dhandle, WT_DHANDLE_OPEN) && !LF_ISSET(WT_BTREE_SPECIAL_FLAGS)))
            break;

        WT_ASSERT(session, F_ISSET(dhandle, WT_DHANDLE_EXCLUSIVE));

        /*
         * For now, we need the schema lock and handle list locks to open a file for real.
         *
         * Code needing exclusive access (such as drop or verify) assumes that it can close all open
         * handles, then open an exclusive handle on the active tree and no other threads can reopen
         * handles in the meantime. A combination of the schema and handle list locks are used to
         * enforce this.
         */
        if (!FLD_ISSET(session->lock_flags, WT_SESSION_LOCKED_SCHEMA)) {
            dhandle->excl_session = NULL;
            dhandle->excl_ref = 0;
            F_CLR(dhandle, WT_DHANDLE_EXCLUSIVE);
            WT_WITH_DHANDLE(session, dhandle, __wt_session_dhandle_writeunlock(session));

            WT_WITH_SCHEMA_LOCK(
              session, ret = __wt_session_get_dhandle(session, uri, checkpoint, cfg, flags));

            return (ret);
        }

        /* Open the handle. */
        if ((ret = __wt_conn_dhandle_open(session, cfg, flags)) == 0 &&
          LF_ISSET(WT_DHANDLE_EXCLUSIVE))
            break;

        /*
         * If we got the handle exclusive to open it but only want ordinary access, drop our lock
         * and retry the open.
         */
        dhandle->excl_session = NULL;
        dhandle->excl_ref = 0;
        F_CLR(dhandle, WT_DHANDLE_EXCLUSIVE);
        WT_WITH_DHANDLE(session, dhandle, __wt_session_dhandle_writeunlock(session));
        WT_RET(ret);
    }

    WT_ASSERT(session, !F_ISSET(dhandle, WT_DHANDLE_DEAD));
    WT_ASSERT(session, LF_ISSET(WT_DHANDLE_LOCK_ONLY) || F_ISSET(dhandle, WT_DHANDLE_OPEN));

    WT_ASSERT(session,
      LF_ISSET(WT_DHANDLE_EXCLUSIVE) == F_ISSET(dhandle, WT_DHANDLE_EXCLUSIVE) ||
        dhandle->excl_ref > 1);

    return (0);
}

/*
 * __wt_session_lock_checkpoint --
 *     Lock the btree handle for the given checkpoint name.
 */
int
__wt_session_lock_checkpoint(WT_SESSION_IMPL *session, const char *checkpoint)
{
    WT_DATA_HANDLE *saved_dhandle;
    WT_DECL_RET;

    WT_ASSERT(session, WT_META_TRACKING(session));
    saved_dhandle = session->dhandle;

    /*
     * Get the checkpoint handle exclusive, so no one else can access it while we are creating the
     * new checkpoint. Hold the lock until the checkpoint completes.
     */
    WT_ERR(__wt_session_get_dhandle(
      session, saved_dhandle->name, checkpoint, NULL, WT_DHANDLE_EXCLUSIVE | WT_DHANDLE_LOCK_ONLY));
    if ((ret = __wt_meta_track_handle_lock(session, false)) != 0) {
        WT_TRET(__wt_session_release_dhandle(session));
        goto err;
    }

    /*
     * Get exclusive access to the handle and then flush any pages in this checkpoint from the cache
     * (we are about to re-write the checkpoint which will mean cached pages no longer have valid
     * contents). This is especially noticeable with memory mapped files, since changes to the
     * underlying file are visible to the in-memory pages.
     */
    WT_ERR(__wt_evict_file_exclusive_on(session));
    ret = __wt_evict_file(session, WT_SYNC_DISCARD);
    __wt_evict_file_exclusive_off(session);
    WT_ERR(ret);

    /*
     * We lock checkpoint handles that we are overwriting, so the handle must be closed when we
     * release it.
     */
    F_SET(session->dhandle, WT_DHANDLE_DISCARD);

/* Restore the original data handle in the session. */
err:
    session->dhandle = saved_dhandle;
    return (ret);
}