1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
#!/usr/bin/env python
#
# Public Domain 2014-2016 MongoDB, Inc.
# Public Domain 2008-2014 WiredTiger, Inc.
#
# This is free and unencumbered software released into the public domain.
#
# Anyone is free to copy, modify, publish, use, compile, sell, or
# distribute this software, either in source code form or as a compiled
# binary, for any purpose, commercial or non-commercial, and by any
# means.
#
# In jurisdictions that recognize copyright laws, the author or authors
# of this software dedicate any and all copyright interest in the
# software to the public domain. We make this dedication for the benefit
# of the public at large and to the detriment of our heirs and
# successors. We intend this dedication to be an overt act of
# relinquishment in perpetuity of all present and future rights to this
# software under copyright law.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
import testscenarios
import suite_random
# wtscenarios.py
# Support scenarios based testing
def powerrange(start, stop, mult):
"""
Like xrange, generates a range from start to stop.
Unlike xrange, the range is inclusive of stop,
each step is multiplicative, and as a special case,
the stop value is returned as the last item.
"""
val = start
while val <= stop:
yield val
newval = val * mult
if val < stop and newval > stop:
val = stop
else:
val = newval
def log2chr(val):
"""
For the log-base 2 of val, return the numeral or letter
corresponding to val (which is < 36). Hence, 1 return '0',
2 return '1', 2*15 returns 'f', 2*16 returns 'g', etc.
"""
p = 0
while val >= 2:
p += 1
val /= 2
if p < 10:
return chr(ord('0') + p)
else:
return chr(ord('a') + p - 10)
megabyte = 1024 * 1024
def check_scenarios(scenes):
"""
Make sure all scenarios have unique names
"""
assert len(scenes) == len(dict(scenes))
return scenes
def multiply_scenarios(sep, *args):
"""
Create the cross product of two lists of scenarios
"""
result = None
for scenes in args:
if result == None:
result = scenes
else:
total = []
for scena in scenes:
for scenb in result:
# Create a merged scenario with a concatenated name
name = scena[0] + sep + scenb[0]
tdict = {}
tdict.update(scena[1])
tdict.update(scenb[1])
# If there is a 'P' value, it represents the
# probability that we want to use this scenario
# If both scenarios list a probability, multiply them.
if 'P' in scena[1] and 'P' in scenb[1]:
P = scena[1]['P'] * scenb[1]['P']
tdict['P'] = P
total.append((name, tdict))
result = total
return check_scenarios(result)
def prune_sorter_key(scene):
"""
Used by prune_scenerios to extract key for sorting.
The key is the saved random value multiplied by
the probability of choosing.
"""
p = 1.0
if 'P' in scene[1]:
p = scene[1]['P']
return p * scene[1]['_rand']
def prune_resort_key(scene):
"""
Used by prune_scenerios to extract the original ordering key for sorting.
"""
return scene[1]['_order']
def set_long_run(islong):
global _is_long_run
_is_long_run = islong
def prune_scenarios(scenes, default_count = -1, long_count = -1):
"""
Use listed probabilities for pruning the list of scenarios.
That is, the highest probability (value of P in the scendario)
are chosen more often. With just one argument, only scenarios
with P > .5 are returned half the time, etc. A second argument
limits the number of scenarios. When a third argument is present,
it is a separate limit for a long run.
"""
global _is_long_run
r = suite_random.suite_random()
result = []
if default_count == -1:
# Missing second arg - return those with P == .3 at
# 30% probability, for example.
for scene in scenes:
if 'P' in scene[1]:
p = scene[1]['P']
if p < r.rand_float():
continue
result.append(scene)
return result
else:
# With at least a second arg present, we'll want a specific count
# of items returned. So we'll sort them all and choose
# the top number. Not the most efficient solution,
# but it's easy.
if _is_long_run and long_count != -1:
count = long_count
else:
count = default_count
l = len(scenes)
if l <= count:
return scenes
if count == 0:
return []
order = 0
for scene in scenes:
scene[1]['_rand'] = r.rand_float()
scene[1]['_order'] = order
order += 1
scenes = sorted(scenes, key=prune_sorter_key) # random sort driven by P
scenes = scenes[l-count:l] # truncate to get best
scenes = sorted(scenes, key=prune_resort_key) # original order
for scene in scenes:
del scene[1]['_rand']
del scene[1]['_order']
return check_scenarios(scenes)
def number_scenarios(scenes):
"""
Add a 'scenario_number' and 'scenario_name' variable to each scenario.
The hash table for each scenario is altered!
"""
count = 0
for scene in scenes:
scene[1]['scenario_name'] = scene[0]
scene[1]['scenario_number'] = count
count += 1
return check_scenarios(scenes)
def quick_scenarios(fieldname, values, probabilities):
"""
Quickly build common scenarios, like:
[('foo', dict(somefieldname='foo')),
('bar', dict(somefieldname='bar')),
('boo', dict(somefieldname='boo'))]
via a call to:
quick_scenario('somefieldname', ['foo', 'bar', 'boo'])
"""
result = []
if probabilities == None:
plen = 0
else:
plen = len(probabilities)
ppos = 0
for value in values:
if ppos >= plen:
d = dict([[fieldname, value]])
else:
p = probabilities[ppos]
ppos += 1
d = dict([[fieldname, value],['P', p]])
result.append((str(value), d))
return result
class wtscenario:
"""
A set of generators for different test scenarios
"""
@staticmethod
def session_create_scenario():
"""
Return a set of scenarios with the name of this method
'session_create_scenario' as the name of instance
variable containing a wtscenario object. The wtscenario
object can be queried to get a config string.
Each scenario is named according to the shortName() method.
"""
s = [
('default', dict(session_create_scenario=wtscenario())) ]
for imin in powerrange(512, 512*megabyte, 1024):
for imax in powerrange(imin, 512*megabyte, 1024):
for lmin in powerrange(512, 512*megabyte, 1024):
for lmax in powerrange(lmin, 512*megabyte, 1024):
for cache in [megabyte, 32*megabyte, 1000*megabyte]:
scen = wtscenario()
scen.ioverflow = max(imin / 40, 40)
scen.imax = imax
scen.loverflow = max(lmin / 40, 40)
scen.lmax = lmax
scen.cache_size = cache
s.append((scen.shortName(), dict(session_create_scenario=scen)))
return s
def shortName(self):
"""
Return a name of a scenario, based on the 'log2chr-ed numerals'
representing the four values for {internal,leaf} {minimum, maximum}
page size.
"""
return 'scen_' + log2chr(self.ioverflow) + log2chr(self.imax) + log2chr(self.loverflow) + log2chr(self.lmax) + log2chr(self.cache_size)
def configString(self):
"""
Return the associated configuration string
"""
res = ''
if hasattr(self, 'ioverflow'):
res += ',internal_item_max=' + str(self.ioverflow)
if hasattr(self, 'imax'):
res += ',internal_page_max=' + str(self.imax)
if self.imax < 4*1024:
res += ',allocation_size=512'
if hasattr(self, 'loverflow'):
res += ',leaf_item_max=' + str(self.loverflow)
if hasattr(self, 'lmax'):
res += ',leaf_page_max=' + str(self.lmax)
if self.lmax < 4*1024:
res += ',allocation_size=512'
return res
|