summaryrefslogtreecommitdiff
path: root/mfbt/SHA1.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'mfbt/SHA1.cpp')
-rw-r--r--mfbt/SHA1.cpp342
1 files changed, 342 insertions, 0 deletions
diff --git a/mfbt/SHA1.cpp b/mfbt/SHA1.cpp
new file mode 100644
index 0000000..ce9dfc2
--- /dev/null
+++ b/mfbt/SHA1.cpp
@@ -0,0 +1,342 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include <string.h>
+#include "mozilla/SHA1.h"
+#include "mozilla/Assertions.h"
+
+// FIXME: We should probably create a more complete mfbt/Endian.h. This assumes
+// that any compiler that doesn't define these macros is little endian.
+#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__)
+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
+#define MOZ_IS_LITTLE_ENDIAN
+#endif
+#else
+#define MOZ_IS_LITTLE_ENDIAN
+#endif
+
+using namespace mozilla;
+
+static inline uint32_t SHA_ROTL(uint32_t t, uint32_t n)
+{
+ return ((t << n) | (t >> (32 - n)));
+}
+
+#ifdef MOZ_IS_LITTLE_ENDIAN
+static inline unsigned SHA_HTONL(unsigned x) {
+ const unsigned int mask = 0x00FF00FF;
+ x = (x << 16) | (x >> 16);
+ return ((x & mask) << 8) | ((x >> 8) & mask);
+}
+#else
+static inline unsigned SHA_HTONL(unsigned x) {
+ return x;
+}
+#endif
+
+static void shaCompress(volatile unsigned *X, const uint32_t * datain);
+
+#define SHA_F1(X,Y,Z) ((((Y)^(Z))&(X))^(Z))
+#define SHA_F2(X,Y,Z) ((X)^(Y)^(Z))
+#define SHA_F3(X,Y,Z) (((X)&(Y))|((Z)&((X)|(Y))))
+#define SHA_F4(X,Y,Z) ((X)^(Y)^(Z))
+
+#define SHA_MIX(n,a,b,c) XW(n) = SHA_ROTL(XW(a)^XW(b)^XW(c)^XW(n), 1)
+
+SHA1Sum::SHA1Sum() : size(0), mDone(false)
+{
+ // Initialize H with constants from FIPS180-1.
+ H[0] = 0x67452301L;
+ H[1] = 0xefcdab89L;
+ H[2] = 0x98badcfeL;
+ H[3] = 0x10325476L;
+ H[4] = 0xc3d2e1f0L;
+}
+
+/* Explanation of H array and index values:
+ * The context's H array is actually the concatenation of two arrays
+ * defined by SHA1, the H array of state variables (5 elements),
+ * and the W array of intermediate values, of which there are 16 elements.
+ * The W array starts at H[5], that is W[0] is H[5].
+ * Although these values are defined as 32-bit values, we use 64-bit
+ * variables to hold them because the AMD64 stores 64 bit values in
+ * memory MUCH faster than it stores any smaller values.
+ *
+ * Rather than passing the context structure to shaCompress, we pass
+ * this combined array of H and W values. We do not pass the address
+ * of the first element of this array, but rather pass the address of an
+ * element in the middle of the array, element X. Presently X[0] is H[11].
+ * So we pass the address of H[11] as the address of array X to shaCompress.
+ * Then shaCompress accesses the members of the array using positive AND
+ * negative indexes.
+ *
+ * Pictorially: (each element is 8 bytes)
+ * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf |
+ * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 |
+ *
+ * The byte offset from X[0] to any member of H and W is always
+ * representable in a signed 8-bit value, which will be encoded
+ * as a single byte offset in the X86-64 instruction set.
+ * If we didn't pass the address of H[11], and instead passed the
+ * address of H[0], the offsets to elements H[16] and above would be
+ * greater than 127, not representable in a signed 8-bit value, and the
+ * x86-64 instruction set would encode every such offset as a 32-bit
+ * signed number in each instruction that accessed element H[16] or
+ * higher. This results in much bigger and slower code.
+ */
+#define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */
+#define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */
+
+/*
+ * SHA: Add data to context.
+ */
+void SHA1Sum::update(const uint8_t *dataIn, uint32_t len)
+{
+ MOZ_ASSERT(!mDone);
+ register unsigned int lenB;
+ register unsigned int togo;
+
+ if (!len)
+ return;
+
+ /* accumulate the byte count. */
+ lenB = (unsigned int)(size) & 63U;
+
+ size += len;
+
+ /*
+ * Read the data into W and process blocks as they get full
+ */
+ if (lenB > 0) {
+ togo = 64U - lenB;
+ if (len < togo)
+ togo = len;
+ memcpy(u.b + lenB, dataIn, togo);
+ len -= togo;
+ dataIn += togo;
+ lenB = (lenB + togo) & 63U;
+ if (!lenB) {
+ shaCompress(&H[H2X], u.w);
+ }
+ }
+ while (len >= 64U) {
+ len -= 64U;
+ shaCompress(&H[H2X], (uint32_t *)dataIn);
+ dataIn += 64U;
+ }
+ if (len) {
+ memcpy(u.b, dataIn, len);
+ }
+}
+
+
+/*
+ * SHA: Generate hash value
+ */
+void SHA1Sum::finish(uint8_t hashout[20])
+{
+ MOZ_ASSERT(!mDone);
+ register uint64_t size2 = size;
+ register uint32_t lenB = (uint32_t)size2 & 63;
+
+ static const uint8_t bulk_pad[64] = { 0x80,0,0,0,0,0,0,0,0,0,
+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
+
+ /*
+ * Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits
+ */
+
+ update(bulk_pad, (((55+64) - lenB) & 63) + 1);
+ MOZ_ASSERT(((uint32_t)size & 63) == 56);
+ /* Convert size from bytes to bits. */
+ size2 <<= 3;
+ u.w[14] = SHA_HTONL((uint32_t)(size2 >> 32));
+ u.w[15] = SHA_HTONL((uint32_t)size2);
+ shaCompress(&H[H2X], u.w);
+
+ /*
+ * Output hash
+ */
+ u.w[0] = SHA_HTONL(H[0]);
+ u.w[1] = SHA_HTONL(H[1]);
+ u.w[2] = SHA_HTONL(H[2]);
+ u.w[3] = SHA_HTONL(H[3]);
+ u.w[4] = SHA_HTONL(H[4]);
+ memcpy(hashout, u.w, 20);
+ mDone = true;
+}
+
+/*
+ * SHA: Compression function, unrolled.
+ *
+ * Some operations in shaCompress are done as 5 groups of 16 operations.
+ * Others are done as 4 groups of 20 operations.
+ * The code below shows that structure.
+ *
+ * The functions that compute the new values of the 5 state variables
+ * A-E are done in 4 groups of 20 operations (or you may also think
+ * of them as being done in 16 groups of 5 operations). They are
+ * done by the SHA_RNDx macros below, in the right column.
+ *
+ * The functions that set the 16 values of the W array are done in
+ * 5 groups of 16 operations. The first group is done by the
+ * LOAD macros below, the latter 4 groups are done by SHA_MIX below,
+ * in the left column.
+ *
+ * gcc's optimizer observes that each member of the W array is assigned
+ * a value 5 times in this code. It reduces the number of store
+ * operations done to the W array in the context (that is, in the X array)
+ * by creating a W array on the stack, and storing the W values there for
+ * the first 4 groups of operations on W, and storing the values in the
+ * context's W array only in the fifth group. This is undesirable.
+ * It is MUCH bigger code than simply using the context's W array, because
+ * all the offsets to the W array in the stack are 32-bit signed offsets,
+ * and it is no faster than storing the values in the context's W array.
+ *
+ * The original code for sha_fast.c prevented this creation of a separate
+ * W array in the stack by creating a W array of 80 members, each of
+ * whose elements is assigned only once. It also separated the computations
+ * of the W array values and the computations of the values for the 5
+ * state variables into two separate passes, W's, then A-E's so that the
+ * second pass could be done all in registers (except for accessing the W
+ * array) on machines with fewer registers. The method is suboptimal
+ * for machines with enough registers to do it all in one pass, and it
+ * necessitates using many instructions with 32-bit offsets.
+ *
+ * This code eliminates the separate W array on the stack by a completely
+ * different means: by declaring the X array volatile. This prevents
+ * the optimizer from trying to reduce the use of the X array by the
+ * creation of a MORE expensive W array on the stack. The result is
+ * that all instructions use signed 8-bit offsets and not 32-bit offsets.
+ *
+ * The combination of this code and the -O3 optimizer flag on GCC 3.4.3
+ * results in code that is 3 times faster than the previous NSS sha_fast
+ * code on AMD64.
+ */
+static void
+shaCompress(volatile unsigned *X, const uint32_t *inbuf)
+{
+ register unsigned A, B, C, D, E;
+
+
+#define XH(n) X[n-H2X]
+#define XW(n) X[n-W2X]
+
+#define K0 0x5a827999L
+#define K1 0x6ed9eba1L
+#define K2 0x8f1bbcdcL
+#define K3 0xca62c1d6L
+
+#define SHA_RND1(a,b,c,d,e,n) \
+ a = SHA_ROTL(b,5)+SHA_F1(c,d,e)+a+XW(n)+K0; c=SHA_ROTL(c,30)
+#define SHA_RND2(a,b,c,d,e,n) \
+ a = SHA_ROTL(b,5)+SHA_F2(c,d,e)+a+XW(n)+K1; c=SHA_ROTL(c,30)
+#define SHA_RND3(a,b,c,d,e,n) \
+ a = SHA_ROTL(b,5)+SHA_F3(c,d,e)+a+XW(n)+K2; c=SHA_ROTL(c,30)
+#define SHA_RND4(a,b,c,d,e,n) \
+ a = SHA_ROTL(b,5)+SHA_F4(c,d,e)+a+XW(n)+K3; c=SHA_ROTL(c,30)
+
+#define LOAD(n) XW(n) = SHA_HTONL(inbuf[n])
+
+ A = XH(0);
+ B = XH(1);
+ C = XH(2);
+ D = XH(3);
+ E = XH(4);
+
+ LOAD(0); SHA_RND1(E,A,B,C,D, 0);
+ LOAD(1); SHA_RND1(D,E,A,B,C, 1);
+ LOAD(2); SHA_RND1(C,D,E,A,B, 2);
+ LOAD(3); SHA_RND1(B,C,D,E,A, 3);
+ LOAD(4); SHA_RND1(A,B,C,D,E, 4);
+ LOAD(5); SHA_RND1(E,A,B,C,D, 5);
+ LOAD(6); SHA_RND1(D,E,A,B,C, 6);
+ LOAD(7); SHA_RND1(C,D,E,A,B, 7);
+ LOAD(8); SHA_RND1(B,C,D,E,A, 8);
+ LOAD(9); SHA_RND1(A,B,C,D,E, 9);
+ LOAD(10); SHA_RND1(E,A,B,C,D,10);
+ LOAD(11); SHA_RND1(D,E,A,B,C,11);
+ LOAD(12); SHA_RND1(C,D,E,A,B,12);
+ LOAD(13); SHA_RND1(B,C,D,E,A,13);
+ LOAD(14); SHA_RND1(A,B,C,D,E,14);
+ LOAD(15); SHA_RND1(E,A,B,C,D,15);
+
+ SHA_MIX( 0, 13, 8, 2); SHA_RND1(D,E,A,B,C, 0);
+ SHA_MIX( 1, 14, 9, 3); SHA_RND1(C,D,E,A,B, 1);
+ SHA_MIX( 2, 15, 10, 4); SHA_RND1(B,C,D,E,A, 2);
+ SHA_MIX( 3, 0, 11, 5); SHA_RND1(A,B,C,D,E, 3);
+
+ SHA_MIX( 4, 1, 12, 6); SHA_RND2(E,A,B,C,D, 4);
+ SHA_MIX( 5, 2, 13, 7); SHA_RND2(D,E,A,B,C, 5);
+ SHA_MIX( 6, 3, 14, 8); SHA_RND2(C,D,E,A,B, 6);
+ SHA_MIX( 7, 4, 15, 9); SHA_RND2(B,C,D,E,A, 7);
+ SHA_MIX( 8, 5, 0, 10); SHA_RND2(A,B,C,D,E, 8);
+ SHA_MIX( 9, 6, 1, 11); SHA_RND2(E,A,B,C,D, 9);
+ SHA_MIX(10, 7, 2, 12); SHA_RND2(D,E,A,B,C,10);
+ SHA_MIX(11, 8, 3, 13); SHA_RND2(C,D,E,A,B,11);
+ SHA_MIX(12, 9, 4, 14); SHA_RND2(B,C,D,E,A,12);
+ SHA_MIX(13, 10, 5, 15); SHA_RND2(A,B,C,D,E,13);
+ SHA_MIX(14, 11, 6, 0); SHA_RND2(E,A,B,C,D,14);
+ SHA_MIX(15, 12, 7, 1); SHA_RND2(D,E,A,B,C,15);
+
+ SHA_MIX( 0, 13, 8, 2); SHA_RND2(C,D,E,A,B, 0);
+ SHA_MIX( 1, 14, 9, 3); SHA_RND2(B,C,D,E,A, 1);
+ SHA_MIX( 2, 15, 10, 4); SHA_RND2(A,B,C,D,E, 2);
+ SHA_MIX( 3, 0, 11, 5); SHA_RND2(E,A,B,C,D, 3);
+ SHA_MIX( 4, 1, 12, 6); SHA_RND2(D,E,A,B,C, 4);
+ SHA_MIX( 5, 2, 13, 7); SHA_RND2(C,D,E,A,B, 5);
+ SHA_MIX( 6, 3, 14, 8); SHA_RND2(B,C,D,E,A, 6);
+ SHA_MIX( 7, 4, 15, 9); SHA_RND2(A,B,C,D,E, 7);
+
+ SHA_MIX( 8, 5, 0, 10); SHA_RND3(E,A,B,C,D, 8);
+ SHA_MIX( 9, 6, 1, 11); SHA_RND3(D,E,A,B,C, 9);
+ SHA_MIX(10, 7, 2, 12); SHA_RND3(C,D,E,A,B,10);
+ SHA_MIX(11, 8, 3, 13); SHA_RND3(B,C,D,E,A,11);
+ SHA_MIX(12, 9, 4, 14); SHA_RND3(A,B,C,D,E,12);
+ SHA_MIX(13, 10, 5, 15); SHA_RND3(E,A,B,C,D,13);
+ SHA_MIX(14, 11, 6, 0); SHA_RND3(D,E,A,B,C,14);
+ SHA_MIX(15, 12, 7, 1); SHA_RND3(C,D,E,A,B,15);
+
+ SHA_MIX( 0, 13, 8, 2); SHA_RND3(B,C,D,E,A, 0);
+ SHA_MIX( 1, 14, 9, 3); SHA_RND3(A,B,C,D,E, 1);
+ SHA_MIX( 2, 15, 10, 4); SHA_RND3(E,A,B,C,D, 2);
+ SHA_MIX( 3, 0, 11, 5); SHA_RND3(D,E,A,B,C, 3);
+ SHA_MIX( 4, 1, 12, 6); SHA_RND3(C,D,E,A,B, 4);
+ SHA_MIX( 5, 2, 13, 7); SHA_RND3(B,C,D,E,A, 5);
+ SHA_MIX( 6, 3, 14, 8); SHA_RND3(A,B,C,D,E, 6);
+ SHA_MIX( 7, 4, 15, 9); SHA_RND3(E,A,B,C,D, 7);
+ SHA_MIX( 8, 5, 0, 10); SHA_RND3(D,E,A,B,C, 8);
+ SHA_MIX( 9, 6, 1, 11); SHA_RND3(C,D,E,A,B, 9);
+ SHA_MIX(10, 7, 2, 12); SHA_RND3(B,C,D,E,A,10);
+ SHA_MIX(11, 8, 3, 13); SHA_RND3(A,B,C,D,E,11);
+
+ SHA_MIX(12, 9, 4, 14); SHA_RND4(E,A,B,C,D,12);
+ SHA_MIX(13, 10, 5, 15); SHA_RND4(D,E,A,B,C,13);
+ SHA_MIX(14, 11, 6, 0); SHA_RND4(C,D,E,A,B,14);
+ SHA_MIX(15, 12, 7, 1); SHA_RND4(B,C,D,E,A,15);
+
+ SHA_MIX( 0, 13, 8, 2); SHA_RND4(A,B,C,D,E, 0);
+ SHA_MIX( 1, 14, 9, 3); SHA_RND4(E,A,B,C,D, 1);
+ SHA_MIX( 2, 15, 10, 4); SHA_RND4(D,E,A,B,C, 2);
+ SHA_MIX( 3, 0, 11, 5); SHA_RND4(C,D,E,A,B, 3);
+ SHA_MIX( 4, 1, 12, 6); SHA_RND4(B,C,D,E,A, 4);
+ SHA_MIX( 5, 2, 13, 7); SHA_RND4(A,B,C,D,E, 5);
+ SHA_MIX( 6, 3, 14, 8); SHA_RND4(E,A,B,C,D, 6);
+ SHA_MIX( 7, 4, 15, 9); SHA_RND4(D,E,A,B,C, 7);
+ SHA_MIX( 8, 5, 0, 10); SHA_RND4(C,D,E,A,B, 8);
+ SHA_MIX( 9, 6, 1, 11); SHA_RND4(B,C,D,E,A, 9);
+ SHA_MIX(10, 7, 2, 12); SHA_RND4(A,B,C,D,E,10);
+ SHA_MIX(11, 8, 3, 13); SHA_RND4(E,A,B,C,D,11);
+ SHA_MIX(12, 9, 4, 14); SHA_RND4(D,E,A,B,C,12);
+ SHA_MIX(13, 10, 5, 15); SHA_RND4(C,D,E,A,B,13);
+ SHA_MIX(14, 11, 6, 0); SHA_RND4(B,C,D,E,A,14);
+ SHA_MIX(15, 12, 7, 1); SHA_RND4(A,B,C,D,E,15);
+
+ XH(0) += A;
+ XH(1) += B;
+ XH(2) += C;
+ XH(3) += D;
+ XH(4) += E;
+}