summaryrefslogtreecommitdiff
path: root/mfbt/CheckedInt.h
diff options
context:
space:
mode:
Diffstat (limited to 'mfbt/CheckedInt.h')
-rw-r--r--mfbt/CheckedInt.h878
1 files changed, 878 insertions, 0 deletions
diff --git a/mfbt/CheckedInt.h b/mfbt/CheckedInt.h
new file mode 100644
index 0000000..e0c0ebe
--- /dev/null
+++ b/mfbt/CheckedInt.h
@@ -0,0 +1,878 @@
+/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this file,
+ * You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/* Provides checked integers, detecting integer overflow and divide-by-0. */
+
+#ifndef mozilla_CheckedInt_h_
+#define mozilla_CheckedInt_h_
+
+// Enable relying of Mozilla's MFBT for possibly-available C++11 features
+#define MOZ_CHECKEDINT_USE_MFBT
+
+#ifdef MOZ_CHECKEDINT_USE_MFBT
+# include "mozilla/Assertions.h"
+# include "mozilla/StandardInteger.h"
+#else
+# include <cassert>
+# include <stdint.h>
+# define MOZ_STATIC_ASSERT(cond, reason) assert((cond) && reason)
+# define MOZ_ASSERT(cond, reason) assert((cond) && reason)
+# define MOZ_DELETE
+#endif
+
+#include <climits>
+#include <cstddef>
+
+namespace mozilla {
+
+template<typename T> class CheckedInt;
+
+namespace detail {
+
+/*
+ * Step 1: manually record supported types
+ *
+ * What's nontrivial here is that there are different families of integer
+ * types: basic integer types and stdint types. It is merrily undefined which
+ * types from one family may be just typedefs for a type from another family.
+ *
+ * For example, on GCC 4.6, aside from the basic integer types, the only other
+ * type that isn't just a typedef for some of them, is int8_t.
+ */
+
+struct UnsupportedType {};
+
+template<typename IntegerType>
+struct IsSupportedPass2
+{
+ static const bool value = false;
+};
+
+template<typename IntegerType>
+struct IsSupported
+{
+ static const bool value = IsSupportedPass2<IntegerType>::value;
+};
+
+template<>
+struct IsSupported<int8_t>
+{ static const bool value = true; };
+
+template<>
+struct IsSupported<uint8_t>
+{ static const bool value = true; };
+
+template<>
+struct IsSupported<int16_t>
+{ static const bool value = true; };
+
+template<>
+struct IsSupported<uint16_t>
+{ static const bool value = true; };
+
+template<>
+struct IsSupported<int32_t>
+{ static const bool value = true; };
+
+template<>
+struct IsSupported<uint32_t>
+{ static const bool value = true; };
+
+template<>
+struct IsSupported<int64_t>
+{ static const bool value = true; };
+
+template<>
+struct IsSupported<uint64_t>
+{ static const bool value = true; };
+
+
+template<>
+struct IsSupportedPass2<char>
+{ static const bool value = true; };
+
+template<>
+struct IsSupportedPass2<signed char>
+{ static const bool value = true; };
+
+template<>
+struct IsSupportedPass2<unsigned char>
+{ static const bool value = true; };
+
+template<>
+struct IsSupportedPass2<short>
+{ static const bool value = true; };
+
+template<>
+struct IsSupportedPass2<unsigned short>
+{ static const bool value = true; };
+
+template<>
+struct IsSupportedPass2<int>
+{ static const bool value = true; };
+
+template<>
+struct IsSupportedPass2<unsigned int>
+{ static const bool value = true; };
+
+template<>
+struct IsSupportedPass2<long>
+{ static const bool value = true; };
+
+template<>
+struct IsSupportedPass2<unsigned long>
+{ static const bool value = true; };
+
+template<>
+struct IsSupportedPass2<long long>
+{ static const bool value = true; };
+
+template<>
+struct IsSupportedPass2<unsigned long long>
+{ static const bool value = true; };
+
+/*
+ * Step 2: some integer-traits kind of stuff.
+ */
+
+template<size_t Size, bool Signedness>
+struct StdintTypeForSizeAndSignedness
+{};
+
+template<>
+struct StdintTypeForSizeAndSignedness<1, true>
+{ typedef int8_t Type; };
+
+template<>
+struct StdintTypeForSizeAndSignedness<1, false>
+{ typedef uint8_t Type; };
+
+template<>
+struct StdintTypeForSizeAndSignedness<2, true>
+{ typedef int16_t Type; };
+
+template<>
+struct StdintTypeForSizeAndSignedness<2, false>
+{ typedef uint16_t Type; };
+
+template<>
+struct StdintTypeForSizeAndSignedness<4, true>
+{ typedef int32_t Type; };
+
+template<>
+struct StdintTypeForSizeAndSignedness<4, false>
+{ typedef uint32_t Type; };
+
+template<>
+struct StdintTypeForSizeAndSignedness<8, true>
+{ typedef int64_t Type; };
+
+template<>
+struct StdintTypeForSizeAndSignedness<8, false>
+{ typedef uint64_t Type; };
+
+template<typename IntegerType>
+struct UnsignedType
+{
+ typedef typename StdintTypeForSizeAndSignedness<sizeof(IntegerType),
+ false>::Type Type;
+};
+
+template<typename IntegerType>
+struct IsSigned
+{
+ static const bool value = IntegerType(-1) <= IntegerType(0);
+};
+
+template<typename IntegerType, size_t Size = sizeof(IntegerType)>
+struct TwiceBiggerType
+{
+ typedef typename StdintTypeForSizeAndSignedness<
+ sizeof(IntegerType) * 2,
+ IsSigned<IntegerType>::value
+ >::Type Type;
+};
+
+template<typename IntegerType>
+struct TwiceBiggerType<IntegerType, 8>
+{
+ typedef UnsupportedType Type;
+};
+
+template<typename IntegerType>
+struct PositionOfSignBit
+{
+ static const size_t value = CHAR_BIT * sizeof(IntegerType) - 1;
+};
+
+template<typename IntegerType>
+struct MinValue
+{
+ private:
+ typedef typename UnsignedType<IntegerType>::Type UnsignedIntegerType;
+ static const size_t PosOfSignBit = PositionOfSignBit<IntegerType>::value;
+
+ public:
+ // Bitwise ops may return a larger type, that's why we cast explicitly.
+ // In C++, left bit shifts on signed values is undefined by the standard
+ // unless the shifted value is representable.
+ // Notice that signed-to-unsigned conversions are always well-defined in
+ // the standard as the value congruent to 2**n, as expected. By contrast,
+ // unsigned-to-signed is only well-defined if the value is representable.
+ static const IntegerType value =
+ IsSigned<IntegerType>::value
+ ? IntegerType(UnsignedIntegerType(1) << PosOfSignBit)
+ : IntegerType(0);
+};
+
+template<typename IntegerType>
+struct MaxValue
+{
+ // Tricksy, but covered by the unit test.
+ // Relies heavily on the type of MinValue<IntegerType>::value
+ // being IntegerType.
+ static const IntegerType value = ~MinValue<IntegerType>::value;
+};
+
+/*
+ * Step 3: Implement the actual validity checks.
+ *
+ * Ideas taken from IntegerLib, code different.
+ */
+
+template<typename T>
+inline bool
+HasSignBit(T x)
+{
+ // In C++, right bit shifts on negative values is undefined by the standard.
+ // Notice that signed-to-unsigned conversions are always well-defined in the
+ // standard, as the value congruent modulo 2**n as expected. By contrast,
+ // unsigned-to-signed is only well-defined if the value is representable.
+ return bool(typename UnsignedType<T>::Type(x)
+ >> PositionOfSignBit<T>::value);
+}
+
+// Bitwise ops may return a larger type, so it's good to use this inline
+// helper guaranteeing that the result is really of type T.
+template<typename T>
+inline T
+BinaryComplement(T x)
+{
+ return ~x;
+}
+
+template<typename T,
+ typename U,
+ bool IsTSigned = IsSigned<T>::value,
+ bool IsUSigned = IsSigned<U>::value>
+struct DoesRangeContainRange
+{
+};
+
+template<typename T, typename U, bool Signedness>
+struct DoesRangeContainRange<T, U, Signedness, Signedness>
+{
+ static const bool value = sizeof(T) >= sizeof(U);
+};
+
+template<typename T, typename U>
+struct DoesRangeContainRange<T, U, true, false>
+{
+ static const bool value = sizeof(T) > sizeof(U);
+};
+
+template<typename T, typename U>
+struct DoesRangeContainRange<T, U, false, true>
+{
+ static const bool value = false;
+};
+
+template<typename T,
+ typename U,
+ bool IsTSigned = IsSigned<T>::value,
+ bool IsUSigned = IsSigned<U>::value,
+ bool DoesTRangeContainURange = DoesRangeContainRange<T, U>::value>
+struct IsInRangeImpl {};
+
+template<typename T, typename U, bool IsTSigned, bool IsUSigned>
+struct IsInRangeImpl<T, U, IsTSigned, IsUSigned, true>
+{
+ static bool run(U)
+ {
+ return true;
+ }
+};
+
+template<typename T, typename U>
+struct IsInRangeImpl<T, U, true, true, false>
+{
+ static bool run(U x)
+ {
+ return x <= MaxValue<T>::value && x >= MinValue<T>::value;
+ }
+};
+
+template<typename T, typename U>
+struct IsInRangeImpl<T, U, false, false, false>
+{
+ static bool run(U x)
+ {
+ return x <= MaxValue<T>::value;
+ }
+};
+
+template<typename T, typename U>
+struct IsInRangeImpl<T, U, true, false, false>
+{
+ static bool run(U x)
+ {
+ return sizeof(T) > sizeof(U) || x <= U(MaxValue<T>::value);
+ }
+};
+
+template<typename T, typename U>
+struct IsInRangeImpl<T, U, false, true, false>
+{
+ static bool run(U x)
+ {
+ return sizeof(T) >= sizeof(U)
+ ? x >= 0
+ : x >= 0 && x <= U(MaxValue<T>::value);
+ }
+};
+
+template<typename T, typename U>
+inline bool
+IsInRange(U x)
+{
+ return IsInRangeImpl<T, U>::run(x);
+}
+
+template<typename T>
+inline bool
+IsAddValid(T x, T y)
+{
+ // Addition is valid if the sign of x+y is equal to either that of x or that
+ // of y. Since the value of x+y is undefined if we have a signed type, we
+ // compute it using the unsigned type of the same size.
+ // Beware! These bitwise operations can return a larger integer type,
+ // if T was a small type like int8_t, so we explicitly cast to T.
+
+ typename UnsignedType<T>::Type ux = x;
+ typename UnsignedType<T>::Type uy = y;
+ typename UnsignedType<T>::Type result = ux + uy;
+ return IsSigned<T>::value
+ ? HasSignBit(BinaryComplement(T((result ^ x) & (result ^ y))))
+ : BinaryComplement(x) >= y;
+}
+
+template<typename T>
+inline bool
+IsSubValid(T x, T y)
+{
+ // Subtraction is valid if either x and y have same sign, or x-y and x have
+ // same sign. Since the value of x-y is undefined if we have a signed type,
+ // we compute it using the unsigned type of the same size.
+ typename UnsignedType<T>::Type ux = x;
+ typename UnsignedType<T>::Type uy = y;
+ typename UnsignedType<T>::Type result = ux - uy;
+
+ return IsSigned<T>::value
+ ? HasSignBit(BinaryComplement(T((result ^ x) & (x ^ y))))
+ : x >= y;
+}
+
+template<typename T,
+ bool IsTSigned = IsSigned<T>::value,
+ bool TwiceBiggerTypeIsSupported =
+ IsSupported<typename TwiceBiggerType<T>::Type>::value>
+struct IsMulValidImpl {};
+
+template<typename T, bool IsTSigned>
+struct IsMulValidImpl<T, IsTSigned, true>
+{
+ static bool run(T x, T y)
+ {
+ typedef typename TwiceBiggerType<T>::Type TwiceBiggerType;
+ TwiceBiggerType product = TwiceBiggerType(x) * TwiceBiggerType(y);
+ return IsInRange<T>(product);
+ }
+};
+
+template<typename T>
+struct IsMulValidImpl<T, true, false>
+{
+ static bool run(T x, T y)
+ {
+ const T max = MaxValue<T>::value;
+ const T min = MinValue<T>::value;
+
+ if (x == 0 || y == 0)
+ return true;
+
+ if (x > 0) {
+ return y > 0
+ ? x <= max / y
+ : y >= min / x;
+ }
+
+ // If we reach this point, we know that x < 0.
+ return y > 0
+ ? x >= min / y
+ : y >= max / x;
+ }
+};
+
+template<typename T>
+struct IsMulValidImpl<T, false, false>
+{
+ static bool run(T x, T y)
+ {
+ return y == 0 || x <= MaxValue<T>::value / y;
+ }
+};
+
+template<typename T>
+inline bool
+IsMulValid(T x, T y)
+{
+ return IsMulValidImpl<T>::run(x, y);
+}
+
+template<typename T>
+inline bool
+IsDivValid(T x, T y)
+{
+ // Keep in mind that in the signed case, min/-1 is invalid because abs(min)>max.
+ return y != 0 &&
+ !(IsSigned<T>::value && x == MinValue<T>::value && y == T(-1));
+}
+
+template<typename T, bool IsTSigned = IsSigned<T>::value>
+struct IsModValidImpl;
+
+template<typename T>
+inline bool
+IsModValid(T x, T y)
+{
+ return IsModValidImpl<T>::run(x, y);
+}
+
+/*
+ * Mod is pretty simple.
+ * For now, let's just use the ANSI C definition:
+ * If x or y are negative, the results are implementation defined.
+ * Consider these invalid.
+ * Undefined for y=0.
+ * The result will never exceed either x or y.
+ *
+ * Checking that x>=0 is a warning when T is unsigned.
+ */
+
+template<typename T>
+struct IsModValidImpl<T, false> {
+ static inline bool run(T x, T y) {
+ return y >= 1;
+ }
+};
+
+template<typename T>
+struct IsModValidImpl<T, true> {
+ static inline bool run(T x, T y) {
+ if (x < 0)
+ return false;
+
+ return y >= 1;
+ }
+};
+
+template<typename T, bool IsSigned = IsSigned<T>::value>
+struct NegateImpl;
+
+template<typename T>
+struct NegateImpl<T, false>
+{
+ static CheckedInt<T> negate(const CheckedInt<T>& val)
+ {
+ // Handle negation separately for signed/unsigned, for simpler code and to
+ // avoid an MSVC warning negating an unsigned value.
+ return CheckedInt<T>(0, val.isValid() && val.mValue == 0);
+ }
+};
+
+template<typename T>
+struct NegateImpl<T, true>
+{
+ static CheckedInt<T> negate(const CheckedInt<T>& val)
+ {
+ // Watch out for the min-value, which (with twos-complement) can't be
+ // negated as -min-value is then (max-value + 1).
+ if (!val.isValid() || val.mValue == MinValue<T>::value)
+ return CheckedInt<T>(val.mValue, false);
+ return CheckedInt<T>(-val.mValue, true);
+ }
+};
+
+} // namespace detail
+
+
+/*
+ * Step 4: Now define the CheckedInt class.
+ */
+
+/**
+ * @class CheckedInt
+ * @brief Integer wrapper class checking for integer overflow and other errors
+ * @param T the integer type to wrap. Can be any type among the following:
+ * - any basic integer type such as |int|
+ * - any stdint type such as |int8_t|
+ *
+ * This class implements guarded integer arithmetic. Do a computation, check
+ * that isValid() returns true, you then have a guarantee that no problem, such
+ * as integer overflow, happened during this computation, and you can call
+ * value() to get the plain integer value.
+ *
+ * The arithmetic operators in this class are guaranteed not to raise a signal
+ * (e.g. in case of a division by zero).
+ *
+ * For example, suppose that you want to implement a function that computes
+ * (x+y)/z, that doesn't crash if z==0, and that reports on error (divide by
+ * zero or integer overflow). You could code it as follows:
+ @code
+ bool computeXPlusYOverZ(int x, int y, int z, int *result)
+ {
+ CheckedInt<int> checkedResult = (CheckedInt<int>(x) + y) / z;
+ if (checkedResult.isValid()) {
+ *result = checkedResult.value();
+ return true;
+ } else {
+ return false;
+ }
+ }
+ @endcode
+ *
+ * Implicit conversion from plain integers to checked integers is allowed. The
+ * plain integer is checked to be in range before being casted to the
+ * destination type. This means that the following lines all compile, and the
+ * resulting CheckedInts are correctly detected as valid or invalid:
+ * @code
+ // 1 is of type int, is found to be in range for uint8_t, x is valid
+ CheckedInt<uint8_t> x(1);
+ // -1 is of type int, is found not to be in range for uint8_t, x is invalid
+ CheckedInt<uint8_t> x(-1);
+ // -1 is of type int, is found to be in range for int8_t, x is valid
+ CheckedInt<int8_t> x(-1);
+ // 1000 is of type int16_t, is found not to be in range for int8_t,
+ // x is invalid
+ CheckedInt<int8_t> x(int16_t(1000));
+ // 3123456789 is of type uint32_t, is found not to be in range for int32_t,
+ // x is invalid
+ CheckedInt<int32_t> x(uint32_t(3123456789));
+ * @endcode
+ * Implicit conversion from
+ * checked integers to plain integers is not allowed. As shown in the
+ * above example, to get the value of a checked integer as a normal integer,
+ * call value().
+ *
+ * Arithmetic operations between checked and plain integers is allowed; the
+ * result type is the type of the checked integer.
+ *
+ * Checked integers of different types cannot be used in the same arithmetic
+ * expression.
+ *
+ * There are convenience typedefs for all stdint types, of the following form
+ * (these are just 2 examples):
+ @code
+ typedef CheckedInt<int32_t> CheckedInt32;
+ typedef CheckedInt<uint16_t> CheckedUint16;
+ @endcode
+ */
+template<typename T>
+class CheckedInt
+{
+ protected:
+ T mValue;
+ bool mIsValid;
+
+ template<typename U>
+ CheckedInt(U value, bool isValid) : mValue(value), mIsValid(isValid)
+ {
+ MOZ_STATIC_ASSERT(detail::IsSupported<T>::value &&
+ detail::IsSupported<U>::value,
+ "This type is not supported by CheckedInt");
+ }
+
+ friend class detail::NegateImpl<T>;
+
+ public:
+ /**
+ * Constructs a checked integer with given @a value. The checked integer is
+ * initialized as valid or invalid depending on whether the @a value
+ * is in range.
+ *
+ * This constructor is not explicit. Instead, the type of its argument is a
+ * separate template parameter, ensuring that no conversion is performed
+ * before this constructor is actually called. As explained in the above
+ * documentation for class CheckedInt, this constructor checks that its
+ * argument is valid.
+ */
+ template<typename U>
+ CheckedInt(U value)
+ : mValue(T(value)),
+ mIsValid(detail::IsInRange<T>(value))
+ {
+ MOZ_STATIC_ASSERT(detail::IsSupported<T>::value &&
+ detail::IsSupported<U>::value,
+ "This type is not supported by CheckedInt");
+ }
+
+ template<typename U>
+ friend class CheckedInt;
+
+ template<typename U>
+ CheckedInt<U> toChecked() const
+ {
+ CheckedInt<U> ret(mValue);
+ ret.mIsValid = ret.mIsValid && mIsValid;
+ return ret;
+ }
+
+ /** Constructs a valid checked integer with initial value 0 */
+ CheckedInt() : mValue(0), mIsValid(true)
+ {
+ MOZ_STATIC_ASSERT(detail::IsSupported<T>::value,
+ "This type is not supported by CheckedInt");
+ }
+
+ /** @returns the actual value */
+ T value() const
+ {
+ MOZ_ASSERT(mIsValid, "Invalid checked integer (division by zero or integer overflow)");
+ return mValue;
+ }
+
+ /**
+ * @returns true if the checked integer is valid, i.e. is not the result
+ * of an invalid operation or of an operation involving an invalid checked
+ * integer
+ */
+ bool isValid() const
+ {
+ return mIsValid;
+ }
+
+ template<typename U>
+ friend CheckedInt<U> operator +(const CheckedInt<U>& lhs,
+ const CheckedInt<U>& rhs);
+ template<typename U>
+ CheckedInt& operator +=(U rhs);
+
+ template<typename U>
+ friend CheckedInt<U> operator -(const CheckedInt<U>& lhs,
+ const CheckedInt<U>& rhs);
+ template<typename U>
+ CheckedInt& operator -=(U rhs);
+
+ template<typename U>
+ friend CheckedInt<U> operator *(const CheckedInt<U>& lhs,
+ const CheckedInt<U>& rhs);
+ template<typename U>
+ CheckedInt& operator *=(U rhs);
+
+ template<typename U>
+ friend CheckedInt<U> operator /(const CheckedInt<U>& lhs,
+ const CheckedInt<U>& rhs);
+ template<typename U>
+ CheckedInt& operator /=(U rhs);
+
+ template<typename U>
+ friend CheckedInt<U> operator %(const CheckedInt<U>& lhs,
+ const CheckedInt<U>& rhs);
+ template<typename U>
+ CheckedInt& operator %=(U rhs);
+
+ CheckedInt operator -() const
+ {
+ return detail::NegateImpl<T>::negate(*this);
+ }
+
+ /**
+ * @returns true if the left and right hand sides are valid
+ * and have the same value.
+ *
+ * Note that these semantics are the reason why we don't offer
+ * a operator!=. Indeed, we'd want to have a!=b be equivalent to !(a==b)
+ * but that would mean that whenever a or b is invalid, a!=b
+ * is always true, which would be very confusing.
+ *
+ * For similar reasons, operators <, >, <=, >= would be very tricky to
+ * specify, so we just avoid offering them.
+ *
+ * Notice that these == semantics are made more reasonable by these facts:
+ * 1. a==b implies equality at the raw data level
+ * (the converse is false, as a==b is never true among invalids)
+ * 2. This is similar to the behavior of IEEE floats, where a==b
+ * means that a and b have the same value *and* neither is NaN.
+ */
+ bool operator ==(const CheckedInt& other) const
+ {
+ return mIsValid && other.mIsValid && mValue == other.mValue;
+ }
+
+ /** prefix ++ */
+ CheckedInt& operator++()
+ {
+ *this += 1;
+ return *this;
+ }
+
+ /** postfix ++ */
+ CheckedInt operator++(int)
+ {
+ CheckedInt tmp = *this;
+ *this += 1;
+ return tmp;
+ }
+
+ /** prefix -- */
+ CheckedInt& operator--()
+ {
+ *this -= 1;
+ return *this;
+ }
+
+ /** postfix -- */
+ CheckedInt operator--(int)
+ {
+ CheckedInt tmp = *this;
+ *this -= 1;
+ return tmp;
+ }
+
+ private:
+ /**
+ * The !=, <, <=, >, >= operators are disabled:
+ * see the comment on operator==.
+ */
+ template<typename U>
+ bool operator !=(U other) const MOZ_DELETE;
+ template<typename U>
+ bool operator <(U other) const MOZ_DELETE;
+ template<typename U>
+ bool operator <=(U other) const MOZ_DELETE;
+ template<typename U>
+ bool operator >(U other) const MOZ_DELETE;
+ template<typename U>
+ bool operator >=(U other) const MOZ_DELETE;
+};
+
+#define MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(NAME, OP) \
+template<typename T> \
+inline CheckedInt<T> operator OP(const CheckedInt<T> &lhs, \
+ const CheckedInt<T> &rhs) \
+{ \
+ if (!detail::Is##NAME##Valid(lhs.mValue, rhs.mValue)) \
+ return CheckedInt<T>(0, false); \
+ \
+ return CheckedInt<T>(lhs.mValue OP rhs.mValue, \
+ lhs.mIsValid && rhs.mIsValid); \
+}
+
+MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Add, +)
+MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Sub, -)
+MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Mul, *)
+MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Div, /)
+MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Mod, %)
+
+#undef MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR
+
+// Implement castToCheckedInt<T>(x), making sure that
+// - it allows x to be either a CheckedInt<T> or any integer type
+// that can be casted to T
+// - if x is already a CheckedInt<T>, we just return a reference to it,
+// instead of copying it (optimization)
+
+namespace detail {
+
+template<typename T, typename U>
+struct CastToCheckedIntImpl
+{
+ typedef CheckedInt<T> ReturnType;
+ static CheckedInt<T> run(U u) { return u; }
+};
+
+template<typename T>
+struct CastToCheckedIntImpl<T, CheckedInt<T> >
+{
+ typedef const CheckedInt<T>& ReturnType;
+ static const CheckedInt<T>& run(const CheckedInt<T>& u) { return u; }
+};
+
+} // namespace detail
+
+template<typename T, typename U>
+inline typename detail::CastToCheckedIntImpl<T, U>::ReturnType
+castToCheckedInt(U u)
+{
+ MOZ_STATIC_ASSERT(detail::IsSupported<T>::value &&
+ detail::IsSupported<U>::value,
+ "This type is not supported by CheckedInt");
+ return detail::CastToCheckedIntImpl<T, U>::run(u);
+}
+
+#define MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(OP, COMPOUND_OP) \
+template<typename T> \
+template<typename U> \
+CheckedInt<T>& CheckedInt<T>::operator COMPOUND_OP(U rhs) \
+{ \
+ *this = *this OP castToCheckedInt<T>(rhs); \
+ return *this; \
+} \
+template<typename T, typename U> \
+inline CheckedInt<T> operator OP(const CheckedInt<T> &lhs, U rhs) \
+{ \
+ return lhs OP castToCheckedInt<T>(rhs); \
+} \
+template<typename T, typename U> \
+inline CheckedInt<T> operator OP(U lhs, const CheckedInt<T> &rhs) \
+{ \
+ return castToCheckedInt<T>(lhs) OP rhs; \
+}
+
+MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(+, +=)
+MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(*, *=)
+MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(-, -=)
+MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(/, /=)
+MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(%, %=)
+
+#undef MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS
+
+template<typename T, typename U>
+inline bool
+operator ==(const CheckedInt<T> &lhs, U rhs)
+{
+ return lhs == castToCheckedInt<T>(rhs);
+}
+
+template<typename T, typename U>
+inline bool
+operator ==(U lhs, const CheckedInt<T> &rhs)
+{
+ return castToCheckedInt<T>(lhs) == rhs;
+}
+
+// Convenience typedefs.
+typedef CheckedInt<int8_t> CheckedInt8;
+typedef CheckedInt<uint8_t> CheckedUint8;
+typedef CheckedInt<int16_t> CheckedInt16;
+typedef CheckedInt<uint16_t> CheckedUint16;
+typedef CheckedInt<int32_t> CheckedInt32;
+typedef CheckedInt<uint32_t> CheckedUint32;
+typedef CheckedInt<int64_t> CheckedInt64;
+typedef CheckedInt<uint64_t> CheckedUint64;
+
+} // namespace mozilla
+
+#endif /* mozilla_CheckedInt_h_ */