summaryrefslogtreecommitdiff
path: root/mfbt/HashFunctions.h
diff options
context:
space:
mode:
Diffstat (limited to 'mfbt/HashFunctions.h')
-rw-r--r--mfbt/HashFunctions.h359
1 files changed, 359 insertions, 0 deletions
diff --git a/mfbt/HashFunctions.h b/mfbt/HashFunctions.h
new file mode 100644
index 0000000..e5f971b
--- /dev/null
+++ b/mfbt/HashFunctions.h
@@ -0,0 +1,359 @@
+/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this file,
+ * You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/* Utilities for hashing. */
+
+/*
+ * This file exports functions for hashing data down to a 32-bit value,
+ * including:
+ *
+ * - HashString Hash a char* or uint16_t/wchar_t* of known or unknown
+ * length.
+ *
+ * - HashBytes Hash a byte array of known length.
+ *
+ * - HashGeneric Hash one or more values. Currently, we support uint32_t,
+ * types which can be implicitly cast to uint32_t, data
+ * pointers, and function pointers.
+ *
+ * - AddToHash Add one or more values to the given hash. This supports the
+ * same list of types as HashGeneric.
+ *
+ *
+ * You can chain these functions together to hash complex objects. For example:
+ *
+ * class ComplexObject
+ * {
+ * char* str;
+ * uint32_t uint1, uint2;
+ * void (*callbackFn)();
+ *
+ * public:
+ * uint32_t hash() {
+ * uint32_t hash = HashString(str);
+ * hash = AddToHash(hash, uint1, uint2);
+ * return AddToHash(hash, callbackFn);
+ * }
+ * };
+ *
+ * If you want to hash an nsAString or nsACString, use the HashString functions
+ * in nsHashKeys.h.
+ */
+
+#ifndef mozilla_HashFunctions_h_
+#define mozilla_HashFunctions_h_
+
+#include "mozilla/Assertions.h"
+#include "mozilla/Attributes.h"
+#include "mozilla/StandardInteger.h"
+#include "mozilla/Types.h"
+
+#ifdef __cplusplus
+namespace mozilla {
+
+/**
+ * The golden ratio as a 32-bit fixed-point value.
+ */
+static const uint32_t GoldenRatioU32 = 0x9E3779B9U;
+
+inline uint32_t
+RotateBitsLeft32(uint32_t value, uint8_t bits)
+{
+ MOZ_ASSERT(bits < 32);
+ return (value << bits) | (value >> (32 - bits));
+}
+
+namespace detail {
+
+inline uint32_t
+AddU32ToHash(uint32_t hash, uint32_t value)
+{
+ /*
+ * This is the meat of all our hash routines. This hash function is not
+ * particularly sophisticated, but it seems to work well for our mostly
+ * plain-text inputs. Implementation notes follow.
+ *
+ * Our use of the golden ratio here is arbitrary; we could pick almost any
+ * number which:
+ *
+ * * is odd (because otherwise, all our hash values will be even)
+ *
+ * * has a reasonably-even mix of 1's and 0's (consider the extreme case
+ * where we multiply by 0x3 or 0xeffffff -- this will not produce good
+ * mixing across all bits of the hash).
+ *
+ * The rotation length of 5 is also arbitrary, although an odd number is again
+ * preferable so our hash explores the whole universe of possible rotations.
+ *
+ * Finally, we multiply by the golden ratio *after* xor'ing, not before.
+ * Otherwise, if |hash| is 0 (as it often is for the beginning of a message),
+ * the expression
+ *
+ * (GoldenRatioU32 * RotateBitsLeft(hash, 5)) |xor| value
+ *
+ * evaluates to |value|.
+ *
+ * (Number-theoretic aside: Because any odd number |m| is relatively prime to
+ * our modulus (2^32), the list
+ *
+ * [x * m (mod 2^32) for 0 <= x < 2^32]
+ *
+ * has no duplicate elements. This means that multiplying by |m| does not
+ * cause us to skip any possible hash values.
+ *
+ * It's also nice if |m| has large-ish order mod 2^32 -- that is, if the
+ * smallest k such that m^k == 1 (mod 2^32) is large -- so we can safely
+ * multiply our hash value by |m| a few times without negating the
+ * multiplicative effect. Our golden ratio constant has order 2^29, which is
+ * more than enough for our purposes.)
+ */
+ return GoldenRatioU32 * (RotateBitsLeft32(hash, 5) ^ value);
+}
+
+/**
+ * AddUintptrToHash takes sizeof(uintptr_t) as a template parameter.
+ */
+template<size_t PtrSize>
+inline uint32_t
+AddUintptrToHash(uint32_t hash, uintptr_t value);
+
+template<>
+inline uint32_t
+AddUintptrToHash<4>(uint32_t hash, uintptr_t value)
+{
+ return AddU32ToHash(hash, static_cast<uint32_t>(value));
+}
+
+template<>
+inline uint32_t
+AddUintptrToHash<8>(uint32_t hash, uintptr_t value)
+{
+ /*
+ * The static cast to uint64_t below is necessary because this function
+ * sometimes gets compiled on 32-bit platforms (yes, even though it's a
+ * template and we never call this particular override in a 32-bit build). If
+ * we do value >> 32 on a 32-bit machine, we're shifting a 32-bit uintptr_t
+ * right 32 bits, and the compiler throws an error.
+ */
+ uint32_t v1 = static_cast<uint32_t>(value);
+ uint32_t v2 = static_cast<uint32_t>(static_cast<uint64_t>(value) >> 32);
+ return AddU32ToHash(AddU32ToHash(hash, v1), v2);
+}
+
+} /* namespace detail */
+
+/**
+ * AddToHash takes a hash and some values and returns a new hash based on the
+ * inputs.
+ *
+ * Currently, we support hashing uint32_t's, values which we can implicitly
+ * convert to uint32_t, data pointers, and function pointers.
+ */
+template<typename A>
+MOZ_WARN_UNUSED_RESULT
+inline uint32_t
+AddToHash(uint32_t hash, A a)
+{
+ /*
+ * Try to convert |A| to uint32_t implicitly. If this works, great. If not,
+ * we'll error out.
+ */
+ return detail::AddU32ToHash(hash, a);
+}
+
+template<typename A>
+MOZ_WARN_UNUSED_RESULT
+inline uint32_t
+AddToHash(uint32_t hash, A* a)
+{
+ /*
+ * You might think this function should just take a void*. But then we'd only
+ * catch data pointers and couldn't handle function pointers.
+ */
+
+ MOZ_STATIC_ASSERT(sizeof(a) == sizeof(uintptr_t),
+ "Strange pointer!");
+
+ return detail::AddUintptrToHash<sizeof(uintptr_t)>(hash, uintptr_t(a));
+}
+
+template<>
+MOZ_WARN_UNUSED_RESULT
+inline uint32_t
+AddToHash(uint32_t hash, uintptr_t a)
+{
+ return detail::AddUintptrToHash<sizeof(uintptr_t)>(hash, a);
+}
+
+template<typename A, typename B>
+MOZ_WARN_UNUSED_RESULT
+uint32_t
+AddToHash(uint32_t hash, A a, B b)
+{
+ return AddToHash(AddToHash(hash, a), b);
+}
+
+template<typename A, typename B, typename C>
+MOZ_WARN_UNUSED_RESULT
+uint32_t
+AddToHash(uint32_t hash, A a, B b, C c)
+{
+ return AddToHash(AddToHash(hash, a, b), c);
+}
+
+template<typename A, typename B, typename C, typename D>
+MOZ_WARN_UNUSED_RESULT
+uint32_t
+AddToHash(uint32_t hash, A a, B b, C c, D d)
+{
+ return AddToHash(AddToHash(hash, a, b, c), d);
+}
+
+template<typename A, typename B, typename C, typename D, typename E>
+MOZ_WARN_UNUSED_RESULT
+uint32_t
+AddToHash(uint32_t hash, A a, B b, C c, D d, E e)
+{
+ return AddToHash(AddToHash(hash, a, b, c, d), e);
+}
+
+/**
+ * The HashGeneric class of functions let you hash one or more values.
+ *
+ * If you want to hash together two values x and y, calling HashGeneric(x, y) is
+ * much better than calling AddToHash(x, y), because AddToHash(x, y) assumes
+ * that x has already been hashed.
+ */
+template<typename A>
+MOZ_WARN_UNUSED_RESULT
+inline uint32_t
+HashGeneric(A a)
+{
+ return AddToHash(0, a);
+}
+
+template<typename A, typename B>
+MOZ_WARN_UNUSED_RESULT
+inline uint32_t
+HashGeneric(A a, B b)
+{
+ return AddToHash(0, a, b);
+}
+
+template<typename A, typename B, typename C>
+MOZ_WARN_UNUSED_RESULT
+inline uint32_t
+HashGeneric(A a, B b, C c)
+{
+ return AddToHash(0, a, b, c);
+}
+
+template<typename A, typename B, typename C, typename D>
+MOZ_WARN_UNUSED_RESULT
+inline uint32_t
+HashGeneric(A a, B b, C c, D d)
+{
+ return AddToHash(0, a, b, c, d);
+}
+
+template<typename A, typename B, typename C, typename D, typename E>
+MOZ_WARN_UNUSED_RESULT
+inline uint32_t
+HashGeneric(A a, B b, C c, D d, E e)
+{
+ return AddToHash(0, a, b, c, d, e);
+}
+
+namespace detail {
+
+template<typename T>
+uint32_t
+HashUntilZero(const T* str)
+{
+ uint32_t hash = 0;
+ for (T c; (c = *str); str++)
+ hash = AddToHash(hash, c);
+ return hash;
+}
+
+template<typename T>
+uint32_t
+HashKnownLength(const T* str, size_t length)
+{
+ uint32_t hash = 0;
+ for (size_t i = 0; i < length; i++)
+ hash = AddToHash(hash, str[i]);
+ return hash;
+}
+
+} /* namespace detail */
+
+/**
+ * The HashString overloads below do just what you'd expect.
+ *
+ * If you have the string's length, you might as well call the overload which
+ * includes the length. It may be marginally faster.
+ */
+MOZ_WARN_UNUSED_RESULT
+inline uint32_t
+HashString(const char* str)
+{
+ return detail::HashUntilZero(str);
+}
+
+MOZ_WARN_UNUSED_RESULT
+inline uint32_t
+HashString(const char* str, size_t length)
+{
+ return detail::HashKnownLength(str, length);
+}
+
+MOZ_WARN_UNUSED_RESULT
+inline uint32_t
+HashString(const uint16_t* str)
+{
+ return detail::HashUntilZero(str);
+}
+
+MOZ_WARN_UNUSED_RESULT
+inline uint32_t
+HashString(const uint16_t* str, size_t length)
+{
+ return detail::HashKnownLength(str, length);
+}
+
+/*
+ * On Windows, wchar_t (PRUnichar) is not the same as uint16_t, even though it's
+ * the same width!
+ */
+#ifdef WIN32
+MOZ_WARN_UNUSED_RESULT
+inline uint32_t
+HashString(const wchar_t* str)
+{
+ return detail::HashUntilZero(str);
+}
+
+MOZ_WARN_UNUSED_RESULT
+inline uint32_t
+HashString(const wchar_t* str, size_t length)
+{
+ return detail::HashKnownLength(str, length);
+}
+#endif
+
+/**
+ * Hash some number of bytes.
+ *
+ * This hash walks word-by-word, rather than byte-by-byte, so you won't get the
+ * same result out of HashBytes as you would out of HashString.
+ */
+MOZ_WARN_UNUSED_RESULT
+extern MFBT_API uint32_t
+HashBytes(const void* bytes, size_t length);
+
+} /* namespace mozilla */
+#endif /* __cplusplus */
+#endif /* mozilla_HashFunctions_h_ */