summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorzimmerma <zimmerma@211d60ee-9f03-0410-a15a-8952a2c7a4e4>2009-08-25 14:28:05 +0000
committerzimmerma <zimmerma@211d60ee-9f03-0410-a15a-8952a2c7a4e4>2009-08-25 14:28:05 +0000
commit0efbdf96af0314e6c0d0c555738a221cccab8d55 (patch)
treec37b3d77581fabae94a391b7522c6f3b8127f662
parentd7ad85b4101829c7fc46440802fdac98de158e9b (diff)
downloadmpc-0efbdf96af0314e6c0d0c555738a221cccab8d55.tar.gz
[algorithms.tex] review of Philippe Theveny's work on sign of zeroes for pow
git-svn-id: svn://scm.gforge.inria.fr/svn/mpc/trunk@660 211d60ee-9f03-0410-a15a-8952a2c7a4e4
-rw-r--r--doc/algorithms.tex119
1 files changed, 61 insertions, 58 deletions
diff --git a/doc/algorithms.tex b/doc/algorithms.tex
index bee5b3f..141c11e 100644
--- a/doc/algorithms.tex
+++ b/doc/algorithms.tex
@@ -5,7 +5,7 @@
\usepackage[T1]{fontenc}
\usepackage{amsmath,amssymb}
\usepackage{url}
-\usepackage[notref,notcite]{showkeys}
+%\usepackage[notref,notcite]{showkeys}
\newcommand {\corr}[1]{\widetilde {#1}}
\newcommand {\appro}[1]{\overline {#1}}
@@ -1198,7 +1198,7 @@ determines the sign of each part of $x^y$.
Note that $A(\overline{x},y) = A(x,\overline{y})$ and $B(\overline{x},
y)=-B(x,\overline{y})$, so $\overline{x}^y = \overline{x^{\overline{y}}}$ and
we can restrict the study below to $x$ with nonnegative imaginary value
-(i.e. $x_2 \geq 0$ and $\pi \geq \phi \geq 0$).
+(i.e., $x_2 \geq 0$ and $\pi \geq \phi \geq 0$).
To determine the sign of the zero part of $x^y$ when it is pure real or pure
imaginary, special study is needed around points $(x, y)$ where $B(x, y)$ is a
@@ -1213,8 +1213,8 @@ y) = 0$.
For any integer $k$, we assume that the surface $S_k$ is orientable and not
reduced to a single point, then each neighborhood of a point $(x_0, y_0)$ of
-$S_k$ intersects the region where $B(x, y) > k\pi$ and the region where $B(x,
-y) < k\pi$.
+$S_k$ intersects the region where $B(x, y) > k\pi/2$ and the region where $B(x,
+y) < k\pi/2$.
Thus for an even $k$, we can make $(x, y)$ tend continuously to $(x_0, y_0)$
so that $\Re(x^y) > 0$ or we can make it tend to $(x_0, y_0)$ so that
$\Re(x^y) < 0$ (the same applies with $k$ odd and $\Im(x^y)$).
@@ -1226,33 +1226,34 @@ Then, if $Q_{x_0}$ (resp. $Q_{y_0}$) denotes the quadrant where $x_0$
(resp. $y_0$) lies, it is possible that the sign of $B_k(x,y)$ remains
constant for $(x,y)$ in the intersection $I$ of a neighborhood of $(x_0, y_0)$
with $Q_{x_0}\times Q_{y_0}$, determining the sign of the zero part of $x^y$.
-Let $dB_k(x,y)$ the derivative of $B_k(x, y)$, we have
+Let $dB_k(x,y)$ be the derivative of $B_k(x, y)$, we have
\begin {equation}
\label {eqn:BkDerivative}
dB_k(x, y)\cdot(\delta_1, \delta_2, \epsilon_1, \epsilon_2) =
\frac{x_1y_2-x_2y_1}{x_1^2+x_2^2}\delta_1 +
\frac{x_1y_1+x_2y_2}{x_1^2+x_2^2}\delta_2 +
\phi\epsilon_1 +
- \log(|x|) \epsilon_2
+ \log|x| \epsilon_2
\end {equation}
If $dB_k(x_0, y_0)\cdot(\delta_1, \delta_2, \epsilon_1, \epsilon_2)$ is not
-null and if its sign remains constant for all real numbers $\delta_1$,
+zero and if its sign remains constant for all real numbers $\delta_1$,
$\delta_2$, $\epsilon_1$, and $\epsilon_2$ so that $x = x_0 + \delta_1 +
\delta_2i$, $y = y_0 +\epsilon_1 + \epsilon_2i$, and $(x,y)$ is in the given
neighborhood $I$ of $(x_0, y_0)$ defined above, then the sign of $dB_k(x_0,
y_0)\cdot(\delta_1, \delta_2, \epsilon_1, \epsilon_2)$ determines the sign of
the zero part of $x^y$.
-In following discussion, we write $B_k$ as a function of four real arguments,
-so that $B_k(x_1, x_2, y_1, y_2) = B_k(x_1+x_2i, y_1+y_2i)$.
+In following discussion, we write
+$B_k(x_1, x_2, y_1, y_2) := B_k(x_1+x_2i, y_1+y_2i)$,
+as a function of four real arguments.
Let $\sigma_1 = -1,+1$ (resp. $\sigma_2$, $\rho_1$, $\rho_2$) denote the sign
of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
\begin {enumerate}
-\item If $B_k(\sigma_1 0, x_2, y_1, y_2)=0$ for $x_2 > 0$.
+\item Case $B_k(\sigma_1 0, x_2, y_1, y_2)=0$ for $x_2 > 0$.
Here $\phi = +\frac{\pi}{2}$.
\begin {enumerate}
- \item if $y_2=\rho_2 0$, then replacing $x_1$ and $y_2$ by their value in
- \ref {eqn:Bk}, we have $y_1= k$ and \ref {eqn:BkDerivative} gives
+ \item if $y_2=\rho_2 0$, then replacing $\phi$ and $y_2$ by their value in
+ (\ref{eqn:Bk}), we have $y_1= k$ and (\ref{eqn:BkDerivative}) gives
\[
dB_k(\sigma_1 0, x_2, k, \rho_2 0)\cdot(\delta_1, \delta_2, \epsilon_1,
\epsilon_2) = - \frac{k}{x_2} \delta_1 + 0 \delta_2 + \frac{\pi}{2}
@@ -1263,13 +1264,13 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
the same quadrant $Q_{x_0}$ (resp. $Q_{y_0}$) as $x_0=\sigma_1 0 +x_2 i$
(resp. $y_0=k +\rho_2 0i$).
- We have to eliminate the case $k \neq 0$, because, in last expression,
- $\epsilon_1$ would take positive as well as negative values if $k \neq 0$,
+ When $k \neq 0$, because, in the last expression,
+ $\epsilon_1$ would take positive as well as negative values,
so the sign of $\frac{\pi}{2} \epsilon_1$, and therefore the sign of
- $dB_k(x, y)\cdot (\delta_1, \delta_2, \epsilon_1, \epsilon_2)$, would not
- be constant.
+ $dB_k(x, y)\cdot (\delta_1, \delta_2, \epsilon_1, \epsilon_2)$ is not
+ constant.
- If $k=0$, then $y_1=\rho_1 0$ and $\rho_1 \epsilon_1 > 0$ .
+ If $k=0$, then $y_1=\rho_1 0$ with $\rho_1 \epsilon_1 > 0$.
In this case,
\begin {align*}
dB_0(\pm 0, x_2, +0, +0)\cdot(\delta_1, \delta_2, \epsilon_1,
@@ -1285,14 +1286,14 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
\delta_2, \epsilon_1, \epsilon_2)$ is not constant in all other
combinations of $k$, $\sigma_1$, $x_2>0$, $\rho_1$, and $\rho_2$.
- \item if $y_2\neq 0$, then from \ref {eqn:Bk}
+ \item if $y_2\neq 0$, then from (\ref{eqn:Bk})
\[
- x_2 = \exp\left(\frac{k-y_1}{2y_2}\pi\right)
+ x_2 = \exp\left(\frac{k-y_1}{2y_2}\pi\right).
\]
But the number in the right hand side of the last equation is
known to be transcendental unless $k-y_1=0$.
As $x_2$ is dyadic, we have $y_1= k$ and $x_2=+1$.
- Using \ref {eqn:BkDerivative}, we write
+ Using (\ref{eqn:BkDerivative}), we write
\[
dB_k(\sigma_1 0, +1, k, y_2)\cdot(\delta_1, \delta_2, \epsilon_1,
\epsilon_2) = - k \delta_1 + y_2 \delta_2 + \frac{\pi}{2} \epsilon_1 + 0
@@ -1305,16 +1306,17 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
\epsilon_2)$ from being constant.
\end {enumerate}
-\item If $B_k(x_1, +0, y_1, y_2)=0$.
+\item Case $B_k(x_1, +0, y_1, y_2)=0$ with $x_1 \neq 0$.
+ (Remember we assumed $x_2 \geq 0$.]
\begin {enumerate}
\item if $x_1 >0$, then $\phi = +0$.
- From \ref {eqn:Bk}, we have
+ From (\ref{eqn:Bk}), we have
\[
- y_2 \log x_1 = k \frac{\pi}{2}
+ y_2 \log x_1 = k \frac{\pi}{2}.
\]
\begin {enumerate}
\item if $y_2 = \rho_2 0$, the last equation implies $k = 0$, and from
- \ref {eqn:BkDerivative} we have
+ (\ref{eqn:BkDerivative}) we have
\[
dB_0(x_1, +0, y_1, \rho_2 0)\cdot(\delta_1, \delta_2, \epsilon_1,
\epsilon_2) = 0 \delta_1 + \frac{y_1}{x_1} \delta_2 + 0 \epsilon_1 +
@@ -1322,7 +1324,7 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
\]
with $\delta_2 > 0$ and $\rho_2 \epsilon_2 > 0$.
- Then the sign of the last expression in constant only in the following
+ The sign of the last expression in constant only in the following
cases,
\begin {align*}
dB_0(x_1, +0, y_1, +0)\cdot(\delta_1, \delta_2, \epsilon_1,
@@ -1336,15 +1338,15 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
dB_0(+1, +0, y_1, \pm 0)\cdot(\delta_1, \delta_2, \epsilon_1,
\epsilon_2) &< 0 \;\text{if}\; y_1 < 0\\
dB_0(x_1, +0, y_1, +0)\cdot(\delta_1, \delta_2, \epsilon_1,
- \epsilon_2) &< 0 \;\text{if}\; y_1 \leq 0 \;\text{and}\; 1 > x_1 > 0\\
+ \epsilon_2) &< 0 \;\text{if}\; y_1 \leq 0 \;\text{and}\; 1 > x_1 > 0.
\end {align*}
- Notice that we cannot conclude when $dB_0(x,y)$ is identically null,
+ Notice that we cannot conclude when $dB_0(x,y)$ is identically zero,
so the cases $x=+1+0i$, $y=y_1 \pm0i$ cannot be determined by this
means.
\item If $y_2 \neq 0$, then $x_1 = \exp\left(\frac{k}{2y_2}\pi\right)$
is a dyadic number only if $k=0$ and then $x_1=1$.
- We have, using \ref {eqn:BkDerivative},
+ We have, using (\ref{eqn:BkDerivative}),
\[
dB_0(+1, +0, y_1, y_2)\cdot(\delta_1, \delta_2, \epsilon_1,
\epsilon_2) = y_2 \delta_1 + y_1 \delta_2 + 0 \epsilon_1 + 0
@@ -1352,13 +1354,13 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
\]
with $\delta_2 > 0$.
- But here $y_2 \delta_1$ can take negative as well as positive values
+ Here $y_2 \delta_1$ can take negative as well as positive values
preventing the sign of $dB_0(+1, +0, y_1, y_2)\cdot(\delta_1,
\delta_2, \epsilon_1, \epsilon_2)$ from being constant.
\end {enumerate}
\item if $x_1 < 0$, then $\phi = \pi$.
- Using \ref {eqn:BkDerivative}, we have
+ Using (\ref{eqn:BkDerivative}), we have
\[
dB_k(x_1, +0, y_1, y_2)\cdot(\delta_1, \delta_2, \epsilon_1, \epsilon_2)
= \frac{y_2}{x_1} \delta_1 + \frac{y_1}{x_1} \delta_2 + \pi \epsilon_1 +
@@ -1368,10 +1370,11 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
If $y_1 \neq 0$, then $\epsilon_1$ can take negative as well as positive
values, preventing $dB_k$ from having a constant sign.
- Thus $y_1 = 0$.
+ Assume thus $y_1 = 0$.
As $x_1 \neq 0$, $\delta_1$ can also take negative and positive values,
and $-y_2 \delta_1$ does not have a constant sign unless $y_2 = 0$.
- But from \ref {eqn:Bk}, we know that $B_k(x, 0)=0$ implies $k = 0$.
+ But from \ref {eqn:Bk}, we know that $B_k(x, 0)=0$ implies $k = 0$
+ since $x_1 = - \exp(\frac{k \pi}{2 y_2})$ is dyadic.
When $y = 0$, the derivative of $B_k$ is
\[
@@ -1379,7 +1382,7 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
\epsilon_2) = 0 \delta_1 + 0 \delta_2 + \pi \epsilon_1 + \log(-x_1)
\epsilon_2
\]
- with $\delta_2 >0$, $\rho_1 \epsilon_1 >0$, and $\rho_2 \epsilon_2 >0$.
+ with $\delta_2 >0$, $\rho_1 \epsilon_1 >0$ and $\rho_2 \epsilon_2 >0$.
Then,
\begin {align*}
@@ -1397,14 +1400,14 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
combinations of $k$, $x_1<0$, $\rho_1$, and $\rho_2$.
\end {enumerate}
-\item If $B_k(x_1, x_2, \rho_1 0, y_2)=0$ for $x_2 \geq 0$.
+\item Case $B_k(x_1, x_2, \rho_1 0, y_2)=0$ for $x_2 \geq 0$.
Here, we have
\[
- y_2\log|x|-k\frac{\pi}{2} = 0
+ y_2\log|x|-k\frac{\pi}{2} = 0.
\]
\begin{enumerate}
\item If $y_2=0$, then from the last equation $k=0$.
- Using \ref {eqn:BkDerivative}
+ Using (\ref{eqn:BkDerivative})
\[
dB_0(x_1,x_2,\rho_10,\rho_20)\cdot(\delta_1, \delta_2, \epsilon_1, \epsilon_2) =
0\delta_1 + 0\delta_2 + \phi \epsilon_1 +\log|x| \epsilon_2
@@ -1412,8 +1415,8 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
where $\rho_1 \epsilon_1 > 0$ and $\rho_2 \epsilon_2 > 0$.
The case $\phi = 0$, that is $x_1 > 0$ and $x_2 = 0$, has already been
- processed above.
- Let $\phi > 0$, then $x_2$ is not null or $x_1 < 0$.
+ processed above in Case (b)(i).
+ Let $\phi > 0$, then $x_2$ is not zero or $x_1 < 0$.
Using the expression of the derivative given above, we have
\begin{align*}
dB_0(x_1, x_2, +0, +0)\cdot(\delta_1, \delta_2, \epsilon_1, \epsilon_2)
@@ -1425,14 +1428,14 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
dB_0(x_1, x_2, -0, +0)\cdot(\delta_1, \delta_2, \epsilon_1, \epsilon_2)
&< 0 \;\text{if}\; 1 \geq |x| > 0 \;\text{and}\; \pi \geq \phi > 0
\end{align*}
- \item If $y_2 \neq 0$, from \ref {eqn:Bk}, we have
+ \item If $y_2 \neq 0$, from (\ref{eqn:Bk}), we have
\[
- |x|^2=\exp\left(\frac{k}{y_2}\pi\right)
+ |x|=\exp\left(\frac{k\pi}{2y_2}\right).
\]
- The right hand side member of the equation is known to be transcendental
+ The right hand side of the equation is known to be transcendental
unless $k=0$.
- As the left hand side member is dyadic, we have $k=0$, and then $|x|=1$.
- Here, \ref {eqn:BkDerivative} gives
+ As the left hand side is dyadic, we have $k=0$, and then $|x|=1$.
+ Here, (\ref{eqn:BkDerivative}) gives
\[
dB_0(x_1,x_2,\rho_10,y_2)\cdot(\delta_1, \delta_2, \epsilon_1, \epsilon_2)
= x_1y_2\delta_1 + x_2y_2\delta_2 + \phi \epsilon_1 + 0\epsilon_2
@@ -1441,33 +1444,33 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
If $x_2 \neq 0$, then $x_2y_2\delta_2$ can take negative as well as
positive values and the sign of the derivative is not constant.
- Thus $x_2 = 0$.
+ Assume thus $x_2 = 0$.
Then, $x_1=\pm 1$ because $|x|=1$, and $x_1y_2\delta_1$ can take negative
and positive values.
- So, the sign of the null part of $B_k(x_1, x_2, \pm 0, y_2)$ (if any)
+ So, the sign of the zero part of $B_k(x_1, x_2, \pm 0, y_2)$ (if any)
cannot be determined for all integers $k$ and for all dyadic real numbers
$x_1$, $x_2$, and $y_2 \neq 0$.
\end{enumerate}
\item If $B_k(x_1, x_2, y_1, \rho_2 0)=0$ for $x_2 \geq 0$.
- The case $y_1=0$, $y_2=0$ has already been precessed above.
- Let $y_1 \neq 0$, then from \ref {eqn:Bk} we have
+ The case $y_1=0$ has already been precessed above in Case (c).
+ Let $y_1 \neq 0$, then from (\ref{eqn:Bk}) we have
\[
\phi = \frac{k}{2y_1}\pi
\]
which implies that the argument $\phi$ of $x$ can be written as $r \pi$ for
- some rational number $r$ and, in the same time, $\cos^2 \phi$ ($=
- |x|^2/x_1^2$ if $x_1 \neq 0$, else $=0$) and $\sin^2 \phi$ ($= |x|^2/x_2^2$
- if $x_2 \neq 0$, else $=0$) are rationnal.
+ some rational number $r$ and, in the same time, $\cos^2 \phi =
+ x_1^2/|x|^2$ and $\sin^2 \phi = x_2^2/|x|^2$ are rational.
- The five only possibilities (with $x_2 \geq 0$) are:
+ The five only possibilities (with $x_2 \geq 0$) are:\footnote{This is wrong:
+ consider $\phi = \pi/3$, with $\cos \phi = 1/2$ and $\sin \phi = \sqrt{3}/2$.}
\begin{enumerate}
\item $\phi = 0$, but then $x_2=0$.
This case has been processed above.
\item $\phi = \frac{\pi}{4}$, then $x_1 = x_2 > 0$.
- From \ref {eqn:Bk}, we have $y_1 = 2k \neq 0$, and from \ref
- {eqn:BkDerivative}
+ From (\ref{eqn:Bk}), we have $y_1 = 2k \neq 0$, and from
+ (\ref{eqn:BkDerivative})
\[
dB_k(x_1, x_1, 2k, \rho_2 0)\cdot(\delta_1, \delta_2, \epsilon_1,
\epsilon_2) = -\frac{k}{x_1}\delta_1 + \frac{k}{x_1}\delta_2 +
@@ -1479,13 +1482,13 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
$dB_k(x_1, x_1, 2k, \rho_2 0)\cdot(\delta_1, \delta_2, \epsilon_1,
\epsilon_2)$ as well, has no constant sign.
\item $\phi = \frac{\pi}{2}$, then $x_1 = 0$.
- This case has been processed above.
- \item $\phi = \frac{3\pi}{4}$, then $x_1 = -x_2$, $x_1 < 0$ and \ref
- {eqn:Bk} gives $k \neq 0$ and $y_1 = \frac{2k}{3}$.
+ This case has been processed above in Case (a).
+ \item $\phi = \frac{3\pi}{4}$, then $x_1 = -x_2$, $x_1 < 0$ and
+ (\ref{eqn:Bk}) gives $k \neq 0$ and $y_1 = \frac{2k}{3}$.
As $y_1$ is a dyadic number, the only compatible values for $k$ are
multiple of 3.
Let $n$ be a nonzero integer so that $k = 3n$ and $y_1 = 2n$.
- From \ref {eqn:BkDerivative}, we have
+ From (\ref{eqn:BkDerivative}), we have
\[
dB_{3n}(-x_2, x_2, 2n, \rho_2 0)\cdot(\delta_1, \delta_2, \epsilon_1,
\epsilon_2) = -\frac{n}{x_2}\delta_1 - \frac{n}{x_2}\delta_2 +
@@ -1496,7 +1499,7 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
As $n \neq 0$, $\epsilon_1$ can take negative and positive values and
the term $\frac{3\pi}{4}\epsilon_1$ has not a constant sign.
\item $\phi = \pi$, then $x_1<0$ and $x_2 = 0$.
- This case has been processed above.
+ This case has been processed above in Case (b).
\end{enumerate}
\end {enumerate}