summaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authorenge <enge@211d60ee-9f03-0410-a15a-8952a2c7a4e4>2012-09-17 09:15:09 +0000
committerenge <enge@211d60ee-9f03-0410-a15a-8952a2c7a4e4>2012-09-17 09:15:09 +0000
commitdb579a51a75f18aa21b688c076b1e47557833728 (patch)
tree666b90e256ac52271aaf38559a3f4c6919166587 /doc
parentb855c2a59d709cc1e8058946515010933ef2a269 (diff)
downloadmpc-db579a51a75f18aa21b688c076b1e47557833728.tar.gz
algorithms.tex: replaced AGM lemma by corollary in section "complex relative
error" git-svn-id: svn://scm.gforge.inria.fr/svn/mpc/trunk@1264 211d60ee-9f03-0410-a15a-8952a2c7a4e4
Diffstat (limited to 'doc')
-rw-r--r--doc/algorithms.tex34
1 files changed, 16 insertions, 18 deletions
diff --git a/doc/algorithms.tex b/doc/algorithms.tex
index 34d13d7..f3707fa 100644
--- a/doc/algorithms.tex
+++ b/doc/algorithms.tex
@@ -48,7 +48,7 @@
\title {MPC: Algorithms and Error Analysis}
\author {Andreas Enge \and Philippe Th\'eveny \and Paul Zimmermann}
-\date {Draft; June 28, 2012}
+\date {Draft; September 17, 2012}
\begin {document}
\maketitle
@@ -340,6 +340,21 @@ For the converse direction, write
\]
\end {proof}
+As a corollary to Propositions~\ref {prop:relerror}
+and~\ref {prop:comrelerror}, we obtain the following result.
+
+\begin {prop}
+\label {prop:comabserror}
+Let $\corr z = \corr x + i \corr y$, $\appro z = \appro x + i \appro y$
+be represented at precision~$p$. If
+$\error (\appro x) \leq k \, \Ulp (\appro x)$ and
+$\error (\appro y) \leq k \, \Ulp (\appro y)$, then
+\[
+\relerror (\appro z) \leq k \, 2^{1-p}.
+\]
+\end {prop}
+
+
\subsection {Real functions}
@@ -1778,22 +1793,6 @@ and rounding towards $+\infty$. We have $\corr {a_0} = a_0 = 1$ and
$\corr {b_0} = b_0 = z$ (assuming $z$ is exactly representable in precision
$p$).
-\begin{lemma}
-If $z = x + i y$ is a complex number with infinite precision,
-with $x, y \geq 0$,
-is rounded to $z' = x' + i y'$ with precision $p$, with both roundings towards
-$+\infty$, then we can write $z' = z (1 + \theta)$, with $\theta$ a
-complex number satisfying $|\theta| < 2^{1-p}$.
-\end{lemma}
-\begin{proof}
-We have $x' = x (1 + \mu)$ with $0 \leq \mu < 2^{1-p}$, and similarly
-$y' = y (1 + \nu)$ with $0 \leq \nu < 2^{1-p}$.
-Then:
-\[ \frac{z'}{z} = 1 + \frac{x \mu + i y \nu}{x + i y}. \]
-Define $\theta := (x \mu + i y \nu)/(x + i y)$, then
-$|\theta|^2 = (x^2 \mu^2 + y^2 \nu^2)/(x^2 + y^2) \leq {\rm max}(\mu^2, \nu^2)$
-thus $|\theta| < 2^{1-p}$.
-
Each iteration computes $\appro {a_n} = \circ((\appro {a_{n-1}} + \appro {b_{n-1}})/2)$ and
$\appro {b_n} = \circ(\sqrt{\appro {a_{n-1}} \appro {b_{n-1}}})$.
Assume by induction we can write
@@ -1804,7 +1803,6 @@ Then using the above lemma, since the division by $2$ is exact, we can write
$\appro {a_n} = \corr {a_n} (1 + \mu_n)^{e_{n-1} + 1}$, and
$\appro {b_n} = \corr {b_n} (1 + \nu_n)^{e_{n-1} + 2}$.
Thus $e_n \leq e_{n-1} + 2$, which gives $e_n \leq 2n$.
-\end{proof}
\bibliographystyle{acm}