summaryrefslogtreecommitdiff
path: root/abs.c
blob: dd9e0ef5661959e3ac59a767f2a22ec8840dde70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/* mpc_abs -- Absolute value of a complex number.

Copyright (C) 2002, 2004, 2005 Andreas Enge, Paul Zimmermann

This file is part of the MPC Library.

The MPC Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The MPC Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the MPC Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */

#include "gmp.h"
#include "mpfr.h"
#include "mpc.h"
#include "mpc-impl.h"

int
mpc_abs_basic (mpfr_ptr a, mpc_srcptr b, mp_rnd_t rnd)
{
  mpfr_t u, v;
  mp_prec_t prec;
  int inexact;

  prec = MPFR_PREC(a);

  mpfr_init2 (u, 2*prec);
  mpfr_init2 (v, 2*prec);

  do
    {
      prec += mpc_ceil_log2 (prec) + 3;

      mpfr_set_prec (u, prec);
      mpfr_set_prec (v, prec);

      /* first compute norm(b)^2 */
      inexact = mpfr_sqr (u, MPC_RE(b), GMP_RNDU); /* err<=1ulp */
      inexact |= mpfr_sqr (v, MPC_IM(b), GMP_RNDU); /* err<=1ulp*/

      inexact |= mpfr_add (u, u, v, GMP_RNDU);            /* err <= 3 ulps */
      inexact |= mpfr_sqrt (u, u, GMP_RNDU); /* err <= 4 ulps */
    }
  while (inexact != 0 &&
         mpfr_can_round (u, prec - 2, GMP_RNDU, rnd, MPFR_PREC(a)) == 0);

  inexact |= mpfr_set (a, u, rnd);

  mpfr_clear (u);
  mpfr_clear (v);

  return inexact;
}


int
mpc_abs (mpfr_ptr a, mpc_srcptr b, mp_rnd_t rnd)
   /* a more sophisticated version treating special cases separately */
{
  mpfr_t u, v;
  mp_prec_t prec;
  int inexact;

  if (MPFR_IS_ZERO (MPC_RE (b)))
     return mpfr_abs (a, MPC_IM (b), rnd);
  else if (MPFR_IS_ZERO (MPC_IM (b)))
     return mpfr_abs (a, MPC_RE (b), rnd);
  
  prec = MPFR_PREC(a);
  if (prec >= MPFR_PREC (MPC_RE (b))
        && 2 * (MPFR_EXP (MPC_RE (b)) - MPFR_EXP (MPC_IM (b)) - 1) >
           (signed long) prec)
     /* try to detect the case that the imaginary part is negligible;
        this is the case, independently of the rounding mode, whenever
        setting the result to the real part is exact, and the imaginary
        part contributes less than 1/2 ulp                              */
  {
     mpfr_abs (a, MPC_RE (b), GMP_RNDN); /* exact */
     if (rnd == GMP_RNDU)
     {
        mpfr_add_one_ulp (a, GMP_RNDN);
        return 1;
     }
     else
        return -1;
  }
  else if (prec >= MPFR_PREC (MPC_IM (b))
        && 2 * (MPFR_EXP (MPC_IM (b)) - MPFR_EXP (MPC_RE (b)) - 1) >
           (signed long) prec)
  {
     mpfr_abs (a, MPC_IM (b), GMP_RNDN); /* exact */
     if (rnd == GMP_RNDU)
     {
        mpfr_add_one_ulp (a, GMP_RNDN);
        return 1;
     }
     else
        return -1;
  }
  
  mpfr_init2 (u, 2*prec);
  mpfr_init2 (v, 2*prec);
  
  do
    {
      prec += mpc_ceil_log2 (prec) + 3;

      mpfr_set_prec (u, prec);
      mpfr_set_prec (v, prec);

      if (4*(MPFR_EXP(MPC_RE(b)) - MPFR_EXP(MPC_IM(b))) > (signed long) prec)
         /* |Re (b)| >> |Im (b)|, use the Taylor series sqrt (a^2 + b^2)
            = |a| + b^2 / (2 |a|) - e with 0 <= e <= 1 ulp of the target;
            so we round towards infinity                                 */
      {
         inexact = 1;
         mpfr_sqr (u, MPC_IM (b), GMP_RNDU); /* err <= 1 ulp */
         if (MPFR_SIGN (MPC_RE (b)) > 0)
         {
            mpfr_div (u, u, MPC_RE (b), GMP_RNDU); /* err <= 3 ulp */
            mpfr_div_2ui (u, u, 1, GMP_RNDU);
            mpfr_add (u, u, MPC_RE (b), GMP_RNDU); /* err <= 4 ulp */
         }
         else
         {
            mpfr_div (u, u, MPC_RE (b), GMP_RNDD);
            mpfr_div_2ui (u, u, 1, GMP_RNDD);
            mpfr_add (u, u, MPC_RE (b), GMP_RNDD);
            mpfr_neg (u, u, GMP_RNDU);
         }
         /* err <= 5 ulps (one for Taylor approximation) */
      }
      else if (4*(MPFR_EXP(MPC_IM(b)) - MPFR_EXP(MPC_RE(b))) >
               (signed long) prec)
      {
         inexact = 1;
         mpfr_sqr (u, MPC_RE (b), GMP_RNDU);
         if (MPFR_SIGN (MPC_IM (b)) > 0)
         {
            mpfr_div (u, u, MPC_IM (b), GMP_RNDU);
            mpfr_div_2ui (u, u, 1, GMP_RNDU);
            mpfr_add (u, u, MPC_IM (b), GMP_RNDU);
         }
         else
         {
            mpfr_div (u, u, MPC_IM (b), GMP_RNDD);
            mpfr_div_2ui (u, u, 1, GMP_RNDD);
            mpfr_add (u, u, MPC_IM (b), GMP_RNDD);
            mpfr_neg (u, u, GMP_RNDU);
         }
      }
      else
      {
         /* first compute norm(b)^2 */
         inexact = mpfr_sqr (u, MPC_RE(b), GMP_RNDU); /* err<=1ulp */
         inexact |= mpfr_sqr (v, MPC_IM(b), GMP_RNDU); /* err<=1ulp*/
         inexact |= mpfr_add (u, u, v, GMP_RNDU);            /* err <= 3 ulps */
         inexact |= mpfr_sqrt (u, u, GMP_RNDU); /* err <= 4 ulps */
      }
   }
  while (inexact != 0 &&
         mpfr_can_round (u, prec - 3, GMP_RNDU, rnd, MPFR_PREC(a)) == 0);

  inexact |= mpfr_set (a, u, rnd);

  mpfr_clear (u);
  mpfr_clear (v);

  return inexact;
}