summaryrefslogtreecommitdiff
path: root/algorithms.tex
diff options
context:
space:
mode:
authorzimmerma <zimmerma@280ebfd0-de03-0410-8827-d642c229c3f4>2009-03-04 17:09:02 +0000
committerzimmerma <zimmerma@280ebfd0-de03-0410-8827-d642c229c3f4>2009-03-04 17:09:02 +0000
commit8e52d3a0cd25a26000534788d85d8806c705ae0b (patch)
treee5c45763f1e599494151a3412e7c18a01c88e05b /algorithms.tex
parent8503ab4e436a01779a8e6548c0a691600224c141 (diff)
downloadmpfr-8e52d3a0cd25a26000534788d85d8806c705ae0b.tar.gz
[algorithms.bib] added new reference
[TODO] added pointers git-svn-id: svn://scm.gforge.inria.fr/svn/mpfr/trunk@6065 280ebfd0-de03-0410-8827-d642c229c3f4
Diffstat (limited to 'algorithms.tex')
-rw-r--r--algorithms.tex2
1 files changed, 2 insertions, 0 deletions
diff --git a/algorithms.tex b/algorithms.tex
index 067d99a5a..474a18455 100644
--- a/algorithms.tex
+++ b/algorithms.tex
@@ -2958,6 +2958,7 @@ Here, we choose the free parameter $a$ to be an integer.
According to \cite[Section 2.6]{Pugh04}, the relative error is bounded by
$a^{-1/2} (2\pi)^{-a-1/2}$ for $a \ge 3$ and $\Re(z) \ge 0$.
+See also \cite{Smith01}.
\subsection{The Riemann Zeta function}
@@ -4031,6 +4032,7 @@ where:
R(n) = \int_n^{\infty} \frac{\exp(-u)}{u} du \sim \frac{\exp(-n)}{n}
\sum_{k=0}^{\infty} \frac{k!}{(-n)^k}. \]
This identity is attributed to Sweeney by Brent \cite{Brent78}.
+(See also \cite{Smith01}.)
We have $S(n) = _2 F_2(1,1;2,2;-n)$ and $R(n) = {\rm Ei}(1, n)$.
\medskip