diff options
author | zimmerma <zimmerma@280ebfd0-de03-0410-8827-d642c229c3f4> | 2009-03-04 17:09:02 +0000 |
---|---|---|
committer | zimmerma <zimmerma@280ebfd0-de03-0410-8827-d642c229c3f4> | 2009-03-04 17:09:02 +0000 |
commit | 8e52d3a0cd25a26000534788d85d8806c705ae0b (patch) | |
tree | e5c45763f1e599494151a3412e7c18a01c88e05b /algorithms.tex | |
parent | 8503ab4e436a01779a8e6548c0a691600224c141 (diff) | |
download | mpfr-8e52d3a0cd25a26000534788d85d8806c705ae0b.tar.gz |
[algorithms.bib] added new reference
[TODO] added pointers
git-svn-id: svn://scm.gforge.inria.fr/svn/mpfr/trunk@6065 280ebfd0-de03-0410-8827-d642c229c3f4
Diffstat (limited to 'algorithms.tex')
-rw-r--r-- | algorithms.tex | 2 |
1 files changed, 2 insertions, 0 deletions
diff --git a/algorithms.tex b/algorithms.tex index 067d99a5a..474a18455 100644 --- a/algorithms.tex +++ b/algorithms.tex @@ -2958,6 +2958,7 @@ Here, we choose the free parameter $a$ to be an integer. According to \cite[Section 2.6]{Pugh04}, the relative error is bounded by $a^{-1/2} (2\pi)^{-a-1/2}$ for $a \ge 3$ and $\Re(z) \ge 0$. +See also \cite{Smith01}. \subsection{The Riemann Zeta function} @@ -4031,6 +4032,7 @@ where: R(n) = \int_n^{\infty} \frac{\exp(-u)}{u} du \sim \frac{\exp(-n)}{n} \sum_{k=0}^{\infty} \frac{k!}{(-n)^k}. \] This identity is attributed to Sweeney by Brent \cite{Brent78}. +(See also \cite{Smith01}.) We have $S(n) = _2 F_2(1,1;2,2;-n)$ and $R(n) = {\rm Ei}(1, n)$. \medskip |