1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
/* mpfr_asinh -- inverse hyperbolic sine
Copyright 2001, 2002, 2003, 2004 Free Software Foundation.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include "mpfr-impl.h"
/* The computation of asinh is done by
asinh = ln(x + sqrt(x^2 + 1))
*/
int
mpfr_asinh (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
int inexact;
int neg = 0;
mp_prec_t Nx, Ny, Nt;
mpfr_t t, te, ti; /* auxiliary variables */
long int err;
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(x) ))
{
if (MPFR_IS_NAN(x))
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF(x))
{
MPFR_SET_INF(y);
MPFR_SET_SAME_SIGN(y, x);
MPFR_RET(0);
}
else /* x is necessarily 0 */
{
MPFR_ASSERTD(MPFR_IS_ZERO(x));
MPFR_SET_ZERO(y); /* asinh(0) = 0 */
MPFR_SET_SAME_SIGN(y, x);
MPFR_RET(0);
}
}
MPFR_CLEAR_FLAGS(y);
Nx = MPFR_PREC(x); /* Precision of input variable */
Ny = MPFR_PREC(y); /* Precision of output variable */
neg = MPFR_IS_NEG(x);
/* General case */
/* compute the precision of intermediary variable */
Nt = MAX(Nx, Ny);
/* the optimal number of bits : see algorithms.ps */
Nt = Nt + 4 + __gmpfr_ceil_log2 (Nt);
/* initialize intermediary variables */
mpfr_init2 (t, 2);
mpfr_init2 (te, 2);
mpfr_init2 (ti, 2);
mpfr_save_emin_emax ();
/* First computation of asinh */
do
{
/* reactualisation of the precision */
mpfr_set_prec (t, Nt);
mpfr_set_prec (te, Nt);
mpfr_set_prec (ti, Nt);
/* compute asinh */
mpfr_mul (te, x, x, GMP_RNDD); /* x^2 */
mpfr_add_ui (ti, te, 1, GMP_RNDD); /* x^2+1 */
mpfr_sqrt (t, ti, GMP_RNDN); /* sqrt(x^2+1) */
(neg ? mpfr_sub : mpfr_add) (t, t, x, GMP_RNDN); /* sqrt(x^2+1)+x */
mpfr_log (t, t, GMP_RNDN); /* ln(sqrt(x^2+1)+x)*/
/* error estimate -- see algorithms.ps */
err = Nt - (MAX(3 - MPFR_GET_EXP (t), 0) + 1);
/* actualisation of the precision */
Nt += 10;
}
while ((err < 0) || (!mpfr_can_round (t, err, GMP_RNDN, GMP_RNDZ,
Ny + (rnd_mode == GMP_RNDN))
|| MPFR_IS_ZERO(t)));
mpfr_restore_emin_emax ();
if (neg)
MPFR_CHANGE_SIGN(t);
inexact = mpfr_set (y, t, rnd_mode);
mpfr_clear (t);
mpfr_clear (ti);
mpfr_clear (te);
return mpfr_check_range (y, inexact, rnd_mode);
}
|