1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
|
/* mpfr_get_str -- output a floating-point number to a string
Copyright 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
This function was contributed by Alain Delplanque and Paul Zimmermann.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <limits.h>
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
static double mpfr_ceil_double _MPFR_PROTO ((double));
static int mpfr_get_str_aux _MPFR_PROTO ((char *, mp_exp_t *, mp_limb_t *,
mp_size_t, mp_exp_t, long, int, size_t, mp_rnd_t));
static mp_exp_t mpfr_get_str_compute_g _MPFR_PROTO ((int, mp_exp_t));
static char num_to_text[] = "0123456789abcdefghijklmnopqrstuvwxyz";
/* for 2 <= b <= 36, log_b2[b-2] + log_b2_low[b-2] is a 76-bit upper
approximation of log(2)/log(b), with log_b2[b-2] having 23 significative
bits only. These approximations were computed with the following program.
#include <stdio.h>
double log_b2[35], log_b2_low[35];
main()
{
int beta;
mpfr_t l, l0;
for (beta=2;beta<=36;beta++)
{
mpfr_init2 (l, 77);
mpfr_set_ui (l, beta, GMP_RNDD);
mpfr_log2 (l, l, GMP_RNDD);
mpfr_ui_div (l, 1, l, GMP_RNDU);
mpfr_init2 (l0, 23);
mpfr_set (l0, l, GMP_RNDD);
mpfr_sub (l, l, l0, GMP_RNDU);
mpfr_prec_round (l, 53, GMP_RNDU);
log_b2[beta-2] = mpfr_get_d (l0, GMP_RNDU);
log_b2_low[beta-2] = mpfr_get_d (l, GMP_RNDU);
mpfr_clear (l0);
mpfr_clear (l);
}
printf ("static const double log_b2[35] = {");
for (beta=2;beta<=36;beta++)
{
printf ("\n%1.20e", log_b2[beta-2]);
if (beta < 36) printf (",");
}
printf ("\n};\n");
printf ("static const double log_b2_low[35] = {");
for (beta=2;beta<=36;beta++)
{
printf ("\n%1.20e", log_b2_low[beta-2]);
if (beta < 36) printf (",");
}
printf ("\n};\n");
}
*/
static const double log_b2[35] = {
1.00000000000000000000e+00,
6.30929708480834960938e-01,
5.00000000000000000000e-01,
4.30676519870758056641e-01,
3.86852800846099853516e-01,
3.56207132339477539062e-01,
3.33333313465118408203e-01,
3.15464854240417480469e-01,
3.01029980182647705078e-01,
2.89064824581146240234e-01,
2.78942942619323730469e-01,
2.70238101482391357422e-01,
2.62649476528167724609e-01,
2.55958020687103271484e-01,
2.50000000000000000000e-01,
2.44650512933731079102e-01,
2.39812463521957397461e-01,
2.35408902168273925781e-01,
2.31378197669982910156e-01,
2.27670222520828247070e-01,
2.24243819713592529297e-01,
2.21064716577529907227e-01,
2.18104273080825805664e-01,
2.15338259935379028320e-01,
2.12746024131774902344e-01,
2.10309892892837524414e-01,
2.08014577627182006836e-01,
2.05846816301345825195e-01,
2.03795045614242553711e-01,
2.01849073171615600586e-01,
1.99999988079071044922e-01,
1.98239862918853759766e-01,
1.96561604738235473633e-01,
1.94959014654159545898e-01,
1.93426400423049926758e-01
};
static const double log_b2_low[35] = {
0.00000000000000000000e+00,
4.50906224761620348192e-08,
0.00000000000000000000e+00,
3.82026349940294905572e-08,
6.38844173335462308442e-09,
5.47685446374516835508e-08,
1.98682149251302105391e-08,
2.25453112380810174096e-08,
1.54813334901356166450e-08,
1.73674161903183898500e-09,
3.03180611272229558617e-09,
5.29449283838722401896e-08,
5.85090258233695360801e-08,
4.12271221790330610183e-09,
0.00000000000000000000e+00,
2.91844949512882013763e-08,
3.04617404727474892263e-09,
1.11983643106657188415e-08,
1.54897762641074502508e-08,
2.61761247509117662805e-08,
4.50398291018069050027e-09,
1.28799738389232369510e-08,
1.89047057535652783545e-08,
1.91013174970147452786e-08,
2.94215882512624420131e-08,
2.49643149546191168760e-08,
2.00493274507626165734e-08,
1.61590886321114899524e-08,
1.47626363632181082532e-09,
1.34104842501325808254e-08,
1.19209289550781256617e-08,
2.51706771840338761560e-10,
2.74945871340834855649e-08,
7.23962676182708790191e-09,
3.19422086667731154221e-09
};
/* copy most important limbs of {op, n2} in {rp, n1} */
/* if n1 > n2 put 0 in low limbs of {rp, n1} */
#define MPN_COPY2(rp, n1, op, n2) \
if ((n1) <= (n2)) \
{ \
MPN_COPY ((rp), (op) + (n2) - (n1), (n1)); \
} \
else \
{ \
MPN_COPY ((rp) + (n1) - (n2), (op), (n2)); \
MPN_ZERO ((rp), (n1) - (n2)); \
}
static double
mpfr_ceil_double (double x)
{
double y;
/* Note: this function should be rewritten to avoid the possible
overflow. */
MPFR_ASSERTN(x >= (double) LONG_MIN && x <= (double) LONG_MAX);
y = (double) (long int) x;
return ((y < x) ? y + 1.0 : y);
}
#define MPFR_ROUND_FAILED 3
/* Input: an approximation r*2^f of an real Y, with |r*2^f-Y| <= 2^(e+f).
Returns if possible in the string s the mantissa corresponding to
the integer nearest to Y, within the direction rnd, and returns the
the exponent in exp.
n is the number of limbs of r.
e represents the maximal error in the approximation of Y
(e < 0 iff the approximation is exact, i.e. r*2^f = Y).
b is the wanted base (2 <= b <= 36).
m is the number of wanted digits in the mantissa.
rnd is the rounding mode.
It is assumed that b^(m-1) <= Y < b^(m+1), thus the returned value
satisfies b^(m-1) <= rnd(Y) < b^(m+1).
Rounding may fail for two reasons:
- the error is too large to determine the integer N nearest to Y
- either the number of digits of N in base b is too large (m+1),
N=2*N1+(b/2) and the rounding mode is too nearest. This can
only happen when b is even.
Return value:
- the direction of rounding (-1, 0, 1) if rounding is possible
- -MPFR_ROUND_FAILED if rounding not possible because m+1 digits
- MPFR_ROUND_FAILED otherwise (too large error)
*/
static int
mpfr_get_str_aux (char *const str, mp_exp_t *const exp, mp_limb_t *const r,
mp_size_t n, mp_exp_t f, long e, int b, size_t m,
mp_rnd_t rnd)
{
int dir; /* direction of the rounded result */
mp_limb_t ret = 0; /* possible carry in addition */
mp_size_t i0, j0; /* number of limbs and bits of Y */
unsigned char *str1; /* string of m+2 characters */
size_t size_s1; /* length of str1 */
mp_rnd_t rnd1;
size_t i;
int exact = (e < 0);
TMP_DECL(marker);
/* if f > 0, then the maximal error 2^(e+f) is larger than 2 so we can't
determine the integer Y */
MPFR_ASSERTN(f <= 0);
/* if f is too small, then r*2^f is smaller than 1 */
MPFR_ASSERTN(f > (-n * BITS_PER_MP_LIMB));
TMP_MARK(marker);
/* R = 2^f sum r[i]K^(i)
r[i] = (r_(i,k-1)...r_(i,0))_2
R = sum r(i,j)2^(j+ki+f)
the bits from R are referenced by pairs (i,j) */
/* check if is possible to round r with rnd mode
where |r*2^f-Y| <= 2^(e+f)
the exponent of R is: f + n*BITS_PER_MP_LIMB
we must have e + f == f + n*BITS_PER_MP_LIMB - err
err = n*BITS_PER_MP_LIMB - e
R contains exactly -f bits after the integer point:
to determine the nearest integer, we thus need a precision of
n * BITS_PER_MP_LIMB + f */
if (exact || mpfr_can_round_raw (r, n, (mp_size_t) 1,
n * BITS_PER_MP_LIMB - e, GMP_RNDN, rnd, n * BITS_PER_MP_LIMB + f))
{
/* compute the nearest integer to R */
/* bit of weight 0 in R has position j0 in limb r[i0] */
i0 = (-f) / BITS_PER_MP_LIMB;
j0 = (-f) % BITS_PER_MP_LIMB;
ret = mpfr_round_raw (r + i0, r, n * BITS_PER_MP_LIMB, 0,
n * BITS_PER_MP_LIMB + f, rnd, &dir);
MPFR_ASSERTD(dir != MPFR_ROUND_FAILED);
/* warning: mpfr_round_raw_generic returns MPFR_EVEN_INEX (2) or
-MPFR_EVEN_INEX (-2) in case of even rounding */
if (ret) /* Y is a power of 2 */
{
if (j0)
r[n - 1] = MPFR_LIMB_HIGHBIT >> (j0 - 1);
else /* j0=0, necessarily i0 >= 1 otherwise f=0 and r is exact */
{
r[n - 1] = ret;
r[--i0] = 0; /* set to zero the new low limb */
}
}
else /* shift r to the right by (-f) bits (i0 already done) */
{
if (j0)
mpn_rshift (r + i0, r + i0, n - i0, j0);
}
/* now the rounded value Y is in {r+i0, n-i0} */
/* convert r+i0 into base b */
str1 = (unsigned char*) TMP_ALLOC (m + 3); /* need one extra character for mpn_get_str */
size_s1 = mpn_get_str (str1, b, r + i0, n - i0);
/* round str1 */
MPFR_ASSERTN(size_s1 >= m);
*exp = size_s1 - m; /* number of superfluous characters */
/* if size_s1 = m + 2, necessarily we have b^(m+1) as result,
and the result will not change */
/* so we have to double-round only when size_s1 = m + 1 and
(i) the result is inexact
(ii) or the last digit is non-zero */
if ((size_s1 == m + 1) && ((dir != 0) || (str1[size_s1 - 1] != 0)))
{
/* rounding mode */
rnd1 = rnd;
/* round to nearest case */
if (rnd == GMP_RNDN)
{
if (2 * str1[size_s1 - 1] == b)
{
if (dir == 0 && exact) /* exact: even rounding */
{
rnd1 = ((str1[size_s1-2] & 1) == 0)
? GMP_RNDD : GMP_RNDU;
}
else
{
/* otherwise we cannot round correctly: for example
if b=10, we might have a mantissa of
xxxxxxx5.00000000 which can be rounded to nearest
to 8 digits but not to 7 */
dir = -MPFR_ROUND_FAILED;
MPFR_ASSERTD(dir != MPFR_EVEN_INEX);
goto free_and_return;
}
}
else if (2 * str1[size_s1 - 1] < b)
rnd1 = GMP_RNDD;
else
rnd1 = GMP_RNDU;
}
/* now rnd1 is either GMP_RNDD or GMP_RNDZ -> truncate
or GMP_RDNU -> round towards infinity */
/* round away from zero */
if (rnd1 == GMP_RNDU)
{
if (str1[size_s1 - 1] != 0)
{
/* the carry cannot propagate to the whole string, since
Y = x*b^(m-g) < 2*b^m <= b^(m+1)-b
where x is the input float */
MPFR_ASSERTN(size_s1 >= 2);
i = size_s1 - 2;
while (str1[i] == b - 1)
{
MPFR_ASSERTD(i > 0);
str1[i--] = 0;
}
str1[i]++;
}
dir = 1;
}
/* round toward zero (truncate) */
else
dir = -1;
}
/* copy str1 into str and convert to ASCII */
for (i = 0; i < m; i++)
str[i] = num_to_text[(int) str1[i]];
str[m] = 0;
}
/* mpfr_can_round_raw failed: rounding is not possible */
else
{
dir = MPFR_ROUND_FAILED; /* should be different from MPFR_EVEN_INEX */
MPFR_ASSERTD(dir != MPFR_EVEN_INEX);
}
free_and_return:
TMP_FREE(marker);
return dir;
}
/* returns ceil(e/log_2(beta)) */
static mp_exp_t
mpfr_get_str_compute_g (int beta, mp_exp_t e)
{
double g0, g1;
mp_exp_t g;
g0 = (double) e * log_b2[beta - 2];
g1 = (double) e * log_b2_low[beta - 2];
g = (mp_exp_t) mpfr_ceil_double (g0);
g0 -= (double) g;
return g + (mp_exp_t) mpfr_ceil_double (g0 + g1);
}
/* prints the mantissa of x in the string s, and writes the corresponding
exponent in e.
x is rounded with direction rnd, m is the number of digits of the mantissa,
b is the given base (2 <= b <= 36).
Return value:
if s=NULL, allocates a string to store the mantissa, with
m characters, plus a final '\0', plus a possible minus sign
(thus m+1 or m+2 characters).
Important: when you call this function with s=NULL, don't forget to free
the memory space allocated, with free(s, strlen(s)).
*/
char*
mpfr_get_str (char *s, mp_exp_t *e, int b, size_t m, mpfr_srcptr x, mp_rnd_t rnd)
{
int exact; /* exact result */
mp_exp_t exp, g;
mp_exp_t prec, log_2prec; /* precision of the computation */
long err;
mp_limb_t *a;
mp_exp_t exp_a;
mp_limb_t *result;
mp_limb_t *xp, *x1;
mp_limb_t *reste;
size_t nx, nx1;
size_t n, i;
char *s0;
int neg;
int ret; /* return value of mpfr_get_str_aux */
TMP_DECL(marker);
/* if exact = 1 then err is undefined */
/* otherwise err is such that |x*b^(m-g)-a*2^exp_a| < 2^(err+exp_a) */
/* is the base valid? */
if (b < 2 || b > 36)
return NULL;
if (m == 0)
{
m = MPFR_PREC(x);
if (IS_POW2(b) && b >= 4)
/* when the base is a power of two, we can compute exactly the number
of digits sufficient to print the number exactly.
Warning: we may loose some bits in the first digit.
If EXP(x)=0, no bit is lost.
If EXP(x)=-1, one bit is lost... */
{
int k, lost;
count_leading_zeros (k, (mp_limb_t) b);
k = BITS_PER_MP_LIMB - k - 1; /* b = 2^k */
lost = (-MPFR_EXP(x)) % k;
if (lost < 0)
lost += k;
m += lost;
}
m = (size_t) mpfr_ceil_double (__mp_bases[b].chars_per_bit_exactly * (double) m);
if (m < 2)
m = 2;
}
/* Do not use MPFR_PREC_MIN as this applies to base 2 only. Perhaps we
should allow n == 1 for directed rounding modes and odd bases. */
MPFR_ASSERTN (m >= 2);
if (MPFR_IS_NAN(x))
{
if (s == NULL)
s = (char*) (*__gmp_allocate_func) (6);
strcpy (s, "@NaN@");
return s;
}
neg = MPFR_SIGN(x) < 0; /* 0 if positive, 1 if negative */
if (MPFR_IS_INF(x))
{
if (s == NULL)
s = (char*) (*__gmp_allocate_func) (neg + 6);
strcpy (s, (neg) ? "-@Inf@" : "@Inf@");
return s;
}
/* x is a floating-point number */
if (MPFR_IS_ZERO(x))
{
if (s == NULL)
s = (char*) (*__gmp_allocate_func) (neg + m + 1);
s0 = s;
if (neg)
*s++ = '-';
memset (s, '0', m);
s[m] = '\0';
*e = 0; /* a bit like frexp() in ISO C99 */
return s0; /* strlen(s0) = neg + m */
}
if (s == NULL)
s = (char*) (*__gmp_allocate_func) (neg + m + 1);
s0 = s;
if (neg)
*s++ = '-';
xp = MPFR_MANT(x);
if (IS_POW2(b))
{
int pow2;
mp_exp_t f, r;
mp_limb_t *x1;
mp_size_t nb;
int inexp;
count_leading_zeros (pow2, (mp_limb_t) b);
pow2 = BITS_PER_MP_LIMB - pow2 - 1; /* base = 2^pow2 */
/* set MPFR_EXP(x) = f*pow2 + r, 1 <= r <= pow2 */
f = (MPFR_GET_EXP (x) - 1) / pow2;
r = MPFR_GET_EXP (x) - f * pow2;
if (r <= 0)
{
f --;
r += pow2;
}
/* the first digit will contain only r bits */
prec = (m - 1) * pow2 + r; /* total number of bits */
n = (prec - 1) / BITS_PER_MP_LIMB + 1;
TMP_MARK (marker);
x1 = (mp_limb_t*) TMP_ALLOC((n + 1) * sizeof (mp_limb_t));
nb = n * BITS_PER_MP_LIMB - prec;
/* round xp to the precision prec, and put it into x1
put the carry into x1[n] */
if ((x1[n] = mpfr_round_raw (x1, xp, MPFR_PREC(x),
MPFR_IS_STRICTNEG(x),
prec, rnd, &inexp)))
{
/* overflow when rounding x: x1 = 2^prec */
if (r == pow2) /* prec = m * pow2,
2^prec will need (m+1) digits in base 2^pow2 */
{
/* divide x1 by 2^pow2, and increase the exponent */
mpn_rshift (x1, x1, n + 1, pow2);
f ++;
}
else /* 2^prec needs still m digits, but x1 may need n+1 limbs */
n ++;
}
/* it remains to shift x1 by nb limbs to the right, since mpn_get_str
expects a right-normalized number */
if (nb != 0)
{
mpn_rshift (x1, x1, n, nb);
/* the most significant word may be zero */
if (x1[n - 1] == 0)
n --;
}
mpn_get_str ((unsigned char*) s, b, x1, n);
for (i=0; i<m; i++)
s[i] = num_to_text[(int) s[i]];
s[m] = 0;
/* the exponent of s is f + 1 */
*e = f + 1;
TMP_FREE(marker);
return (s0);
}
/* if x < 0, reduce to x > 0 */
if (neg)
rnd = MPFR_INVERT_RND(rnd);
g = mpfr_get_str_compute_g (b, MPFR_GET_EXP (x) - 1);
exact = 1;
prec = (mp_exp_t) mpfr_ceil_double ((double) m / log_b2[b-2]) + 1;
exp = ((mp_exp_t) m < g) ? g - (mp_exp_t) m : (mp_exp_t) m - g;
log_2prec = (mp_exp_t) __gmpfr_ceil_log2 ((double) prec);
prec += log_2prec; /* number of guard bits */
if (exp != 0) /* add maximal exponentiation error */
prec += 3 * (mp_exp_t) __gmpfr_ceil_log2 ((double) exp);
for (;;)
{
TMP_MARK(marker);
exact = 1;
/* number of limbs */
n = 1 + (prec - 1) / BITS_PER_MP_LIMB;
/* a will contain the approximation of the mantissa */
a = (mp_limb_t*) TMP_ALLOC (n * sizeof (mp_limb_t));
nx = 1 + (MPFR_PREC(x) - 1) / BITS_PER_MP_LIMB;
if ((mp_exp_t) m == g) /* final exponent is 0, no multiplication or
division to perform */
{
if (nx > n)
exact = mpn_scan1 (xp, 0) >= (nx - n) * BITS_PER_MP_LIMB;
err = !exact;
MPN_COPY2 (a, n, xp, nx);
exp_a = MPFR_GET_EXP (x) - n * BITS_PER_MP_LIMB;
}
else if ((mp_exp_t) m > g) /* we have to multiply x by b^exp */
{
/* a2*2^exp_a = b^e */
err = mpfr_mpn_exp (a, &exp_a, b, exp, n);
/* here, the error on a is at most 2^err ulps */
exact = (err == -1);
/* x = x1*2^(n*BITS_PER_MP_LIMB) */
x1 = (nx >= n) ? xp + nx - n : xp;
nx1 = (nx >= n) ? n : nx; /* nx1 = min(n, nx) */
/* test si exact */
if (nx > n)
exact = (exact &&
((mpn_scan1 (xp, 0) >= (nx - n) * BITS_PER_MP_LIMB)));
/* we loose one more bit in the multiplication,
except when err=0 where we loose two bits */
err = (err <= 0) ? 2 : err + 1;
/* result = a * x */
result = (mp_limb_t*) TMP_ALLOC ((n + nx1) * sizeof (mp_limb_t));
mpn_mul (result, a, n, x1, nx1);
exp_a += MPFR_GET_EXP (x);
if (mpn_scan1 (result, 0) < (nx1 * BITS_PER_MP_LIMB))
exact = 0;
/* normalize a and truncate */
if ((result[n + nx1 - 1] & MPFR_LIMB_HIGHBIT) == 0)
{
mpn_lshift (a, result + nx1, n , 1);
a[0] |= result[nx1 - 1] >> (BITS_PER_MP_LIMB - 1);
exp_a --;
}
else
MPN_COPY (a, result + nx1, n);
}
else
{
/* a2*2^exp_a = b^e */
err = mpfr_mpn_exp (a, &exp_a, b, exp, n);
exact = (err == -1);
/* allocate memory for x1, result and reste */
x1 = (mp_limb_t*) TMP_ALLOC (2 * n * sizeof (mp_limb_t));
result = (mp_limb_t*) TMP_ALLOC ((n + 1) * sizeof (mp_limb_t));
reste = (mp_limb_t*) TMP_ALLOC (n * sizeof (mp_limb_t));
/* initialize x1 = x */
MPN_COPY2 (x1, 2 * n, xp, nx);
if ((exact) && (nx > 2 * n) &&
(mpn_scan1 (xp, 0) < (nx - 2 * n) * BITS_PER_MP_LIMB))
exact = 0;
/* result = x / a */
mpn_tdiv_qr (result, reste, 0, x1, 2 * n, a, n);
exp_a = MPFR_GET_EXP (x) - exp_a - 2 * n * BITS_PER_MP_LIMB;
/* test if division was exact */
if (exact)
exact = mpn_popcount (reste, n) == 0;
/* normalize the result and copy into a */
if (result[n] == 1)
{
mpn_rshift (a, result, n, 1);
a[n - 1] |= MPFR_LIMB_HIGHBIT;;
exp_a ++;
}
else
MPN_COPY (a, result, n);
err = (err == -1) ? 2 : err + 2;
}
/* check if rounding is possible */
if (exact)
err = -1;
ret = mpfr_get_str_aux (s, e, a, n, exp_a, err, b, m, rnd);
if (ret == MPFR_ROUND_FAILED)
{
/* too large error: increment the working precision */
prec += log_2prec;
}
else if (ret == -MPFR_ROUND_FAILED)
{
/* too many digits in mantissa: exp = |m-g| */
if ((mp_exp_t) m > g) /* exp = m - g, multiply by b^exp */
{
g++;
exp --;
}
else /* exp = g - m, divide by b^exp */
{
g++;
exp ++;
}
}
else break;
TMP_FREE(marker);
}
*e += g;
TMP_FREE(marker);
return s0;
}
void mpfr_free_str (char *str)
{
(*__gmp_free_func) (str, strlen (str) + 1);
}
|