1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
|
/* mpfr_gamma -- gamma function
Copyright 2001-2020 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
#define IS_GAMMA
#include "lngamma.c"
#undef IS_GAMMA
/* return a sufficient precision such that 2-x is exact, assuming x < 0
and x is not an integer */
static mpfr_prec_t
mpfr_gamma_2_minus_x_exact (mpfr_srcptr x)
{
/* Since x < 0, 2-x = 2+y with y := -x.
If y < 2, a precision w >= PREC(y) + EXP(2)-EXP(y) = PREC(y) + 2 - EXP(y)
is enough, since no overlap occurs in 2+y, so no carry happens.
If y >= 2, either ULP(y) <= 2, and we need w >= PREC(y)+1 since a
carry can occur, or ULP(y) > 2, and we need w >= EXP(y)-1:
(a) if EXP(y) <= 1, w = PREC(y) + 2 - EXP(y)
(b) if EXP(y) > 1 and EXP(y)-PREC(y) <= 1, w = PREC(y) + 1
(c) if EXP(y) > 1 and EXP(y)-PREC(y) > 1, w = EXP(y) - 1.
Note: case (c) cannot happen in practice since this would imply that
y is integer, thus x is negative integer */
return (MPFR_GET_EXP(x) <= 1) ? MPFR_PREC(x) + 2 - MPFR_GET_EXP(x)
: MPFR_PREC(x) + 1;
}
/* return a sufficient precision such that 1-x is exact, assuming x < 1
and x is not an integer */
static mpfr_prec_t
mpfr_gamma_1_minus_x_exact (mpfr_srcptr x)
{
if (MPFR_IS_POS(x))
return MPFR_PREC(x) - MPFR_GET_EXP(x);
else if (MPFR_GET_EXP(x) <= 0)
return MPFR_PREC(x) + 1 - MPFR_GET_EXP(x);
else /* necessarily MPFR_PREC(x) > MPFR_GET_EXP(x) since otherwise
x would be an integer */
return MPFR_PREC(x) + 1;
}
/* returns a lower bound of the number of significant bits of n!
(not counting the low zero bits).
We know n! >= (n/e)^n*sqrt(2*Pi*n) for n >= 1, and the number of zero bits
is floor(n/2) + floor(n/4) + floor(n/8) + ...
This approximation is exact for n <= 500000, except for n = 219536, 235928,
298981, 355854, 464848, 493725, 498992 where it returns a value 1 too small.
*/
static unsigned long
bits_fac (unsigned long n)
{
mpfr_t x, y;
unsigned long r, k;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ASSERTD (n >= 1);
MPFR_SAVE_EXPO_MARK (expo);
mpfr_init2 (x, 38);
mpfr_init2 (y, 38);
mpfr_set_ui (x, n, MPFR_RNDZ);
mpfr_set_str_binary (y, "10.101101111110000101010001011000101001"); /* upper bound of e */
mpfr_div (x, x, y, MPFR_RNDZ);
mpfr_pow_ui (x, x, n, MPFR_RNDZ);
mpfr_const_pi (y, MPFR_RNDZ);
mpfr_mul_ui (y, y, 2 * n, MPFR_RNDZ);
mpfr_sqrt (y, y, MPFR_RNDZ);
mpfr_mul (x, x, y, MPFR_RNDZ);
mpfr_log2 (x, x, MPFR_RNDZ);
r = mpfr_get_ui (x, MPFR_RNDU); /* lower bound on ceil(x) */
for (k = 2; k <= n; k *= 2)
{
/* Note: the approximation is accurate enough so that the
subtractions do not wrap. */
MPFR_ASSERTD (r >= n / k);
r -= n / k;
}
mpfr_clear (x);
mpfr_clear (y);
MPFR_SAVE_EXPO_FREE (expo);
return r;
}
/* We use the reflection formula
Gamma(1+t) Gamma(1-t) = - Pi t / sin(Pi (1 + t))
in order to treat the case x <= 1,
i.e. with x = 1-t, then Gamma(x) = -Pi*(1-x)/sin(Pi*(2-x))/GAMMA(2-x)
*/
int
mpfr_gamma (mpfr_ptr gamma, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_t xp, GammaTrial, tmp, tmp2;
mpz_t fact;
mpfr_prec_t realprec;
int compared, is_integer;
int inex = 0; /* 0 means: result gamma not set yet */
MPFR_GROUP_DECL (group);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
("gamma[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec (gamma), mpfr_log_prec, gamma, inex));
/* Trivial cases */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (gamma);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
if (MPFR_IS_NEG (x))
{
/* gamma(x) has a pole at negative integers, thus even if it goes to zero
for other values, we return NaN */
MPFR_SET_NAN (gamma);
MPFR_RET_NAN;
}
else
{
MPFR_SET_INF (gamma);
MPFR_SET_POS (gamma);
MPFR_RET (0); /* exact */
}
}
else /* x is zero */
{
MPFR_ASSERTD(MPFR_IS_ZERO(x));
MPFR_SET_INF(gamma);
MPFR_SET_SAME_SIGN(gamma, x);
MPFR_SET_DIVBY0 ();
MPFR_RET (0); /* exact */
}
}
/* Check for tiny arguments, where gamma(x) ~ 1/x - euler + ... can be
approximated by 1/x, with some error term ~= - euler.
We need to make sure that there are no breakpoints (discontinuity
points of the rounding function) between gamma(x) and 1/x (included),
where the possible breakpoints (for all rounding modes) are the numbers
that fit on PREC(gamma)+1 bits. There will be a special case when |x|
is a power of two, since such values are breakpoints. We will choose n
minimum such that x fits on n bits and the breakpoints fit on n+1 bits,
thus
n = MAX(MPFR_PREC(x), MPFR_PREC(gamma)).
We know from "Bound on Runs of Zeros and Ones for Algebraic Functions",
Proceedings of Arith15, T. Lang and J.-M. Muller, 2001, that the maximal
number of consecutive zeroes or ones after the round bit for 1/x is n-1
for an input x of n bits [this is an actually much older result!].
But we need a more precise lower bound. Assume that 1/x is near a
breakpoint y. From the definition of n, the input x fits on n bits
and the breakpoint y fits on of n+1 bits. We can write x = X*2^e,
y = Y/2^f with X, Y integers of n and n+1 bits respectively.
Thus X*Y^2^(e-f) is near 1, i.e., X*Y is near the integer 2^(f-e).
Two cases can happen:
(i) either X*Y is exactly 2^(f-e), but this can happen only if X and Y
are themselves powers of two, i.e., x is a power of two;
(ii) or X*Y is at distance at least one from 2^(f-e), thus
|xy-1| >= 2^(e-f), or |y-1/x| >= 2^(e-f)/x = 2^(-f)/X >= 2^(-f-n).
Since ufp(y) = 2^(n-f) [ufp = unit in first place], this means
that the distance |y-1/x| >= 2^(-2n) ufp(y).
Now, assuming |gamma(x)-1/x| < 1, which is true for 0 < x <= 1,
if 2^(-2n) ufp(y) >= 1, then gamma(x) and 1/x round in the same
way, so that rounding 1/x gives the correct result and correct
(nonzero) ternary value.
If x < 2^E, then y >= 2^(-E), thus ufp(y) >= 2^(-E).
A sufficient condition is thus EXP(x) <= -2n, where
n = MAX(MPFR_PREC(x), MPFR_PREC(gamma)).
*/
/* TODO: The above proof uses the same precision for input and output.
Without this assumption, one might obtain a bound like
PREC(x) + PREC(y) instead of 2 MAX(PREC(x),PREC(y)). */
/* TODO: Handle the very small arguments that do not satisfy the condition,
by using the approximation 1/x - euler and a Ziv loop. Otherwise, after
some tests, even Gamma(1+x)/x would be faster than the generic code. */
if (MPFR_GET_EXP (x)
<= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(gamma)))
{
int sign = MPFR_SIGN (x); /* retrieve sign before possible override */
int special;
MPFR_BLOCK_DECL (flags);
MPFR_SAVE_EXPO_MARK (expo);
/* for overflow cases, see below; this needs to be done
before x possibly gets overridden. */
special =
MPFR_GET_EXP (x) == 1 - MPFR_EMAX_MAX &&
MPFR_IS_POS_SIGN (sign) &&
MPFR_IS_LIKE_RNDD (rnd_mode, sign) &&
mpfr_powerof2_raw (x);
MPFR_BLOCK (flags, inex = mpfr_ui_div (gamma, 1, x, rnd_mode));
if (inex == 0) /* |x| is a power of two */
{
/* return RND(1/x - euler) = RND(+/- 2^k - eps) with eps > 0 */
if (rnd_mode == MPFR_RNDN || MPFR_IS_LIKE_RNDU (rnd_mode, sign))
inex = 1;
else
{
mpfr_nextbelow (gamma);
inex = -1;
}
}
else if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
{
/* Overflow in the division 1/x. This is a real overflow, except
in RNDZ or RNDD when 1/x = 2^emax, i.e. x = 2^(-emax): due to
the "- euler", the rounded value in unbounded exponent range
is 0.111...11 * 2^emax (not an overflow). */
if (!special)
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, flags);
}
MPFR_SAVE_EXPO_FREE (expo);
/* Note: an overflow is possible with an infinite result;
in this case, the overflow flag will automatically be
restored by mpfr_check_range. */
return mpfr_check_range (gamma, inex, rnd_mode);
}
is_integer = mpfr_integer_p (x);
/* gamma(x) for x a negative integer gives NaN */
if (is_integer && MPFR_IS_NEG(x))
{
MPFR_SET_NAN (gamma);
MPFR_RET_NAN;
}
compared = mpfr_cmp_ui (x, 1);
if (compared == 0)
return mpfr_set_ui (gamma, 1, rnd_mode);
/* if x is an integer that fits into an unsigned long, use mpfr_fac_ui
if argument is not too large.
If precision is p, fac_ui costs O(u*p), whereas gamma costs O(p*M(p)),
so for u <= M(p), fac_ui should be faster.
We approximate here M(p) by p*log(p)^2, which is not a bad guess.
Warning: since the generic code does not handle exact cases,
we want all cases where gamma(x) is exact to be treated here.
*/
if (is_integer && mpfr_fits_ulong_p (x, MPFR_RNDN))
{
unsigned long int u;
mpfr_prec_t p = MPFR_PREC(gamma);
u = mpfr_get_ui (x, MPFR_RNDN);
MPFR_ASSERTD (u >= 2);
if (u < 44787929UL && bits_fac (u - 1) <= p + (rnd_mode == MPFR_RNDN))
/* bits_fac: lower bound on the number of bits of m,
where gamma(x) = (u-1)! = m*2^e with m odd. */
return mpfr_fac_ui (gamma, u - 1, rnd_mode);
/* if bits_fac(...) > p (resp. p+1 for rounding to nearest),
then gamma(x) cannot be exact in precision p (resp. p+1).
FIXME: remove the test u < 44787929UL after changing bits_fac
to return a mpz_t or mpfr_t. */
}
MPFR_SAVE_EXPO_MARK (expo);
/* check for overflow: according to (6.1.37) in Abramowitz & Stegun,
gamma(x) >= exp(-x) * x^(x-1/2) * sqrt(2*Pi)
>= 2 * (x/e)^x / x for x >= 1 */
if (compared > 0)
{
mpfr_t yp, zp;
mpfr_exp_t expxp;
MPFR_BLOCK_DECL (flags);
MPFR_GROUP_DECL (group);
/* quick test for the default exponent range */
if (mpfr_get_emax () >= 1073741823UL && MPFR_GET_EXP(x) <= 25)
{
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_gamma_aux (gamma, x, rnd_mode);
}
MPFR_GROUP_INIT_3 (group, 53, xp, yp, zp);
/* 1/e rounded down to 53 bits */
mpfr_set_str_binary (zp,
"0.010111100010110101011000110110001011001110111100111");
mpfr_mul (xp, x, zp, MPFR_RNDZ);
mpfr_sub_ui (yp, x, 2, MPFR_RNDZ);
mpfr_pow (xp, xp, yp, MPFR_RNDZ); /* (x/e)^(x-2) */
mpfr_mul (xp, xp, zp, MPFR_RNDZ); /* x^(x-2) / e^(x-1) */
mpfr_mul (xp, xp, zp, MPFR_RNDZ); /* x^(x-2) / e^x */
mpfr_mul (xp, xp, x, MPFR_RNDZ); /* lower bound on x^(x-1) / e^x */
MPFR_BLOCK (flags, mpfr_mul_2ui (xp, xp, 1, MPFR_RNDZ));
expxp = MPFR_GET_EXP (xp);
MPFR_GROUP_CLEAR (group);
MPFR_SAVE_EXPO_FREE (expo);
return MPFR_OVERFLOW (flags) || expxp > __gmpfr_emax ?
mpfr_overflow (gamma, rnd_mode, 1) :
mpfr_gamma_aux (gamma, x, rnd_mode);
}
/* now compared < 0 */
/* check for underflow: for x < 1,
gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x).
Since gamma(2-x) >= 2 * ((2-x)/e)^(2-x) / (2-x), we have
|gamma(x)| <= Pi*(1-x)*(2-x)/2/((2-x)/e)^(2-x) / |sin(Pi*(2-x))|
<= 12 * ((2-x)/e)^x / |sin(Pi*(2-x))|.
To avoid an underflow in ((2-x)/e)^x, we compute the logarithm.
*/
if (MPFR_IS_NEG(x))
{
int underflow = 0, sgn, ck;
mpfr_prec_t w;
mpfr_init2 (xp, 53);
mpfr_init2 (tmp, 53);
mpfr_init2 (tmp2, 53);
/* we want an upper bound for x * [log(2-x)-1].
since x < 0, we need a lower bound on log(2-x) */
mpfr_ui_sub (xp, 2, x, MPFR_RNDD);
mpfr_log (xp, xp, MPFR_RNDD);
mpfr_sub_ui (xp, xp, 1, MPFR_RNDD);
mpfr_mul (xp, xp, x, MPFR_RNDU);
/* we need an upper bound on 1/|sin(Pi*(2-x))|,
thus a lower bound on |sin(Pi*(2-x))|.
If 2-x is exact, then the error of Pi*(2-x) is (1+u)^2 with u = 2^(-p)
thus the error on sin(Pi*(2-x)) is less than 1/2ulp + 3Pi(2-x)u,
assuming u <= 1, thus <= u + 3Pi(2-x)u */
w = mpfr_gamma_2_minus_x_exact (x); /* 2-x is exact for prec >= w */
w += 17; /* to get tmp2 small enough */
mpfr_set_prec (tmp, w);
mpfr_set_prec (tmp2, w);
MPFR_DBGRES (ck = mpfr_ui_sub (tmp, 2, x, MPFR_RNDN));
MPFR_ASSERTD (ck == 0); /* tmp = 2-x exactly */
mpfr_const_pi (tmp2, MPFR_RNDN);
mpfr_mul (tmp2, tmp2, tmp, MPFR_RNDN); /* Pi*(2-x) */
mpfr_sin (tmp, tmp2, MPFR_RNDN); /* sin(Pi*(2-x)) */
sgn = mpfr_sgn (tmp);
mpfr_abs (tmp, tmp, MPFR_RNDN);
mpfr_mul_ui (tmp2, tmp2, 3, MPFR_RNDU); /* 3Pi(2-x) */
mpfr_add_ui (tmp2, tmp2, 1, MPFR_RNDU); /* 3Pi(2-x)+1 */
mpfr_div_2ui (tmp2, tmp2, mpfr_get_prec (tmp), MPFR_RNDU);
/* if tmp2<|tmp|, we get a lower bound */
if (mpfr_cmp (tmp2, tmp) < 0)
{
mpfr_sub (tmp, tmp, tmp2, MPFR_RNDZ); /* low bnd on |sin(Pi*(2-x))| */
mpfr_ui_div (tmp, 12, tmp, MPFR_RNDU); /* upper bound */
mpfr_log2 (tmp, tmp, MPFR_RNDU);
mpfr_add (xp, tmp, xp, MPFR_RNDU);
/* The assert below checks that expo.saved_emin - 2 always
fits in a long. FIXME if we want to allow mpfr_exp_t to
be a long long, for instance. */
MPFR_ASSERTN (MPFR_EMIN_MIN - 2 >= LONG_MIN);
underflow = mpfr_cmp_si (xp, expo.saved_emin - 2) <= 0;
}
mpfr_clear (xp);
mpfr_clear (tmp);
mpfr_clear (tmp2);
if (underflow) /* the sign is the opposite of that of sin(Pi*(2-x)) */
{
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_underflow (gamma, (rnd_mode == MPFR_RNDN) ? MPFR_RNDZ : rnd_mode, -sgn);
}
}
realprec = MPFR_PREC (gamma);
/* we want both 1-x and 2-x to be exact */
{
mpfr_prec_t w;
w = mpfr_gamma_1_minus_x_exact (x);
if (realprec < w)
realprec = w;
w = mpfr_gamma_2_minus_x_exact (x);
if (realprec < w)
realprec = w;
}
realprec = realprec + MPFR_INT_CEIL_LOG2 (realprec) + 20;
MPFR_ASSERTD(realprec >= 5);
MPFR_GROUP_INIT_4 (group, realprec + MPFR_INT_CEIL_LOG2 (realprec) + 20,
xp, tmp, tmp2, GammaTrial);
mpz_init (fact);
MPFR_ZIV_INIT (loop, realprec);
for (;;)
{
mpfr_exp_t err_g;
int ck;
MPFR_GROUP_REPREC_4 (group, realprec, xp, tmp, tmp2, GammaTrial);
/* reflection formula: gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x) */
ck = mpfr_ui_sub (xp, 2, x, MPFR_RNDN); /* 2-x, exact */
MPFR_ASSERTD(ck == 0); (void) ck; /* use ck to avoid a warning */
mpfr_gamma (tmp, xp, MPFR_RNDN); /* gamma(2-x), error (1+u) */
mpfr_const_pi (tmp2, MPFR_RNDN); /* Pi, error (1+u) */
mpfr_mul (GammaTrial, tmp2, xp, MPFR_RNDN); /* Pi*(2-x), error (1+u)^2 */
err_g = MPFR_GET_EXP(GammaTrial);
mpfr_sin (GammaTrial, GammaTrial, MPFR_RNDN); /* sin(Pi*(2-x)) */
/* If tmp is +Inf, we compute exp(lngamma(x)). */
if (mpfr_inf_p (tmp))
{
inex = mpfr_explgamma (gamma, x, &expo, tmp, tmp2, rnd_mode);
if (inex)
goto end;
else
goto ziv_next;
}
err_g = err_g + 1 - MPFR_GET_EXP(GammaTrial);
/* let g0 the true value of Pi*(2-x), g the computed value.
We have g = g0 + h with |h| <= |(1+u^2)-1|*g.
Thus sin(g) = sin(g0) + h' with |h'| <= |(1+u^2)-1|*g.
The relative error is thus bounded by |(1+u^2)-1|*g/sin(g)
<= |(1+u^2)-1|*2^err_g. <= 2.25*u*2^err_g for |u|<=1/4.
With the rounding error, this gives (0.5 + 2.25*2^err_g)*u. */
ck = mpfr_sub_ui (xp, x, 1, MPFR_RNDN); /* x-1, exact */
MPFR_ASSERTD(ck == 0); (void) ck; /* use ck to avoid a warning */
mpfr_mul (xp, tmp2, xp, MPFR_RNDN); /* Pi*(x-1), error (1+u)^2 */
mpfr_mul (GammaTrial, GammaTrial, tmp, MPFR_RNDN);
/* [1 + (0.5 + 2.25*2^err_g)*u]*(1+u)^2 = 1 + (2.5 + 2.25*2^err_g)*u
+ (0.5 + 2.25*2^err_g)*u*(2u+u^2) + u^2.
For err_g <= realprec-2, we have (0.5 + 2.25*2^err_g)*u <=
0.5*u + 2.25/4 <= 0.6875 and u^2 <= u/4, thus
(0.5 + 2.25*2^err_g)*u*(2u+u^2) + u^2 <= 0.6875*(2u+u/4) + u/4
<= 1.8*u, thus the rel. error is bounded by (4.5 + 2.25*2^err_g)*u. */
mpfr_div (GammaTrial, xp, GammaTrial, MPFR_RNDN);
/* the error is of the form (1+u)^3/[1 + (4.5 + 2.25*2^err_g)*u].
For realprec >= 5 and err_g <= realprec-2, [(4.5 + 2.25*2^err_g)*u]^2
<= 0.71, and for |y|<=0.71, 1/(1-y) can be written 1+a*y with a<=4.
(1+u)^3 * (1+4*(4.5 + 2.25*2^err_g)*u)
= 1 + (21 + 9*2^err_g)*u + (57+27*2^err_g)*u^2 + (55+27*2^err_g)*u^3
+ (18+9*2^err_g)*u^4
<= 1 + (21 + 9*2^err_g)*u + (57+27*2^err_g)*u^2 + (56+28*2^err_g)*u^3
<= 1 + (21 + 9*2^err_g)*u + (59+28*2^err_g)*u^2
<= 1 + (23 + 10*2^err_g)*u.
The final error is thus bounded by (23 + 10*2^err_g) ulps,
which is <= 2^6 for err_g<=2, and <= 2^(err_g+4) for err_g >= 2. */
err_g = (err_g <= 2) ? 6 : err_g + 4;
if (MPFR_LIKELY (MPFR_CAN_ROUND (GammaTrial, realprec - err_g,
MPFR_PREC(gamma), rnd_mode)))
break;
ziv_next:
MPFR_ZIV_NEXT (loop, realprec);
}
end:
MPFR_ZIV_FREE (loop);
if (inex == 0)
inex = mpfr_set (gamma, GammaTrial, rnd_mode);
MPFR_GROUP_CLEAR (group);
mpz_clear (fact);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (gamma, inex, rnd_mode);
}
|