summaryrefslogtreecommitdiff
path: root/cut-n-paste-code/freetype/ftgrays.c
diff options
context:
space:
mode:
Diffstat (limited to 'cut-n-paste-code/freetype/ftgrays.c')
-rw-r--r--cut-n-paste-code/freetype/ftgrays.c1979
1 files changed, 0 insertions, 1979 deletions
diff --git a/cut-n-paste-code/freetype/ftgrays.c b/cut-n-paste-code/freetype/ftgrays.c
deleted file mode 100644
index 7f03630c2..000000000
--- a/cut-n-paste-code/freetype/ftgrays.c
+++ /dev/null
@@ -1,1979 +0,0 @@
-/***************************************************************************/
-/* */
-/* ftgrays.c */
-/* */
-/* A new `perfect' anti-aliasing renderer (body). */
-/* */
-/* Copyright 2000 by */
-/* David Turner, Robert Wilhelm, and Werner Lemberg. */
-/* */
-/* This file is part of the FreeType project, and may only be used, */
-/* modified, and distributed under the terms of the FreeType project */
-/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
-/* this file you indicate that you have read the license and */
-/* understand and accept it fully. */
-/* */
-/***************************************************************************/
-
- /*************************************************************************/
- /* */
- /* This file can be compiled without the rest of the FreeType engine, */
- /* by defining the _STANDALONE_ macro when compiling it. You also need */
- /* to put the files `ftgrays.h' and `ftimage.h' into the current */
- /* compilation directory. Typically, you could do something like */
- /* */
- /* - copy `src/base/ftgrays.c' to your current directory */
- /* */
- /* - copy `include/freetype/ftimage.h' and */
- /* `include/freetype/ftgrays.h' to the same directory */
- /* */
- /* - compile `ftgrays' with the _STANDALONE_ macro defined, as in */
- /* */
- /* cc -c -D_STANDALONE_ ftgrays.c */
- /* */
- /* The renderer can be initialized with a call to */
- /* `ft_grays_raster.grays_raster_new'; an anti-aliased bitmap can be */
- /* generated with a call to `ft_grays_raster.grays_raster_render'. */
- /* */
- /* See the comments and documentation in the file `ftimage.h' for */
- /* more details on how the raster works. */
- /* */
- /*************************************************************************/
-
- /*************************************************************************/
- /* */
- /* This is a new anti-aliasing scan-converter for FreeType 2. The */
- /* algorithm used here is _very_ different from the one in the standard */
- /* `ftraster' module. Actually, `ftgrays' computes the _exact_ */
- /* coverage of the outline on each pixel cell. */
- /* */
- /* It is based on ideas that I initially found in Raph Levien's */
- /* excellent LibArt graphics library (see http://www.levien.com/libart */
- /* for more information, though the web pages do not tell anything */
- /* about the renderer; you'll have to dive into the source code to */
- /* understand how it works). */
- /* */
- /* Note, however, that this is a _very_ different implementation */
- /* compared to Raph's. Coverage information is stored in a very */
- /* different way, and I don't use sorted vector paths. Also, it */
- /* doesn't use floating point values. */
- /* */
- /* This renderer has the following advantages: */
- /* */
- /* - It doesn't need an intermediate bitmap. Instead, one can supply */
- /* a callback function that will be called by the renderer to draw */
- /* gray spans on any target surface. You can thus do direct */
- /* composition on any kind of bitmap, provided that you give the */
- /* renderer the right callback. */
- /* */
- /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on */
- /* each pixel cell */
- /* */
- /* - It performs a single pass on the outline (the `standard' FT2 */
- /* renderer makes two passes). */
- /* */
- /* - It can easily be modified to render to _any_ number of gray levels */
- /* cheaply. */
- /* */
- /* - For small (< 20) pixel sizes, it is faster than the standard */
- /* renderer. */
- /* */
- /*************************************************************************/
-
-
-#include <string.h> /* for memcpy() */
-
-
- /*************************************************************************/
- /* */
- /* The macro FT_COMPONENT is used in trace mode. It is an implicit */
- /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
- /* messages during execution. */
- /* */
-#undef FT_COMPONENT
-#define FT_COMPONENT trace_aaraster
-
-
-#ifdef _STANDALONE_
-
-
-#define ErrRaster_Invalid_Mode -2
-#define ErrRaster_Invalid_Outline -1
-
-#include "ftimage.h"
-#include "ftgrays.h"
-
- /* This macro is used to indicate that a function parameter is unused. */
- /* Its purpose is simply to reduce compiler warnings. Note also that */
- /* simply defining it as `(void)x' doesn't avoid warnings with certain */
- /* ANSI compilers (e.g. LCC). */
-#define FT_UNUSED( x ) (x) = (x)
-
- /* Disable the tracing mechanism for simplicity -- developers can */
- /* activate it easily by redefining these two macros. */
-#ifndef FT_ERROR
-#define FT_ERROR( x ) do ; while ( 0 ) /* nothing */
-#endif
-
-#ifndef FT_TRACE
-#define FT_TRACE( x ) do ; while ( 0 ) /* nothing */
-#endif
-
-
-#else /* _STANDALONE_ */
-
-
-#ifdef FT_FLAT_COMPILE
-
-#include "ftgrays.h"
-
-#else
-
-#include <smooth/ftgrays.h>
-
-#endif
-
-
-#ifdef FT_FLAT_COMPILE
-
-#include "ftobjs.h" /* for FT_UNUSED() */
-#include "ftdebug.h" /* for FT_TRACE() and FT_ERROR() */
-#include "ftoutln.h" /* for FT_Outline_Decompose() */
-
-#else
-
-#include <freetype/internal/ftobjs.h> /* for FT_UNUSED() */
-#include <freetype/internal/ftdebug.h> /* for FT_TRACE() and FT_ERROR() */
-#include <freetype/ftoutln.h> /* for FT_Outline_Decompose() */
-
-#endif
-
-#define ErrRaster_Invalid_Mode FT_Err_Cannot_Render_Glyph
-#define ErrRaster_Invalid_Outline FT_Err_Invalid_Outline
-
-
-#endif /* _STANDALONE_ */
-
-
- /* define this to dump debugging information */
-#define xxxDEBUG_GRAYS
-
- /* as usual, for the speed hungry :-) */
-
-#ifndef FT_STATIC_RASTER
-
-
-#define RAS_ARG PRaster raster
-#define RAS_ARG_ PRaster raster,
-
-#define RAS_VAR raster
-#define RAS_VAR_ raster,
-
-#define ras (*raster)
-
-
-#else /* FT_STATIC_RASTER */
-
-
-#define RAS_ARG /* empty */
-#define RAS_ARG_ /* empty */
-#define RAS_VAR /* empty */
-#define RAS_VAR_ /* empty */
-
- static TRaster ras;
-
-
-#endif /* FT_STATIC_RASTER */
-
-
- /* must be at least 6 bits! */
-#define PIXEL_BITS 8
-
-#define ONE_PIXEL ( 1L << PIXEL_BITS )
-#define PIXEL_MASK ( -1L << PIXEL_BITS )
-#define TRUNC( x ) ( (x) >> PIXEL_BITS )
-#define SUBPIXELS( x ) ( (x) << PIXEL_BITS )
-#define FLOOR( x ) ( (x) & -ONE_PIXEL )
-#define CEILING( x ) ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
-#define ROUND( x ) ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
-
-#if PIXEL_BITS >= 6
-#define UPSCALE( x ) ( (x) << ( PIXEL_BITS - 6 ) )
-#define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) )
-#else
-#define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) )
-#define DOWNSCALE( x ) ( (x) << ( 6 - PIXEL_BITS ) )
-#endif
-
- /* Define this if you want to use a more compact storage scheme. This */
- /* increases the number of cells available in the render pool but slows */
- /* down the rendering a bit. It is useful if you have a really tiny */
- /* render pool. */
-#define xxxGRAYS_COMPACT
-
-
- /*************************************************************************/
- /* */
- /* TYPE DEFINITIONS */
- /* */
- typedef int TScan; /* integer scanline/pixel coordinate */
- typedef long TPos; /* sub-pixel coordinate */
-
- /* maximal number of gray spans in a call to the span callback */
-#define FT_MAX_GRAY_SPANS 32
-
-
-#ifdef GRAYS_COMPACT
-
- typedef struct TCell_
- {
- short x : 14;
- short y : 14;
- int cover : PIXEL_BITS + 2;
- int area : PIXEL_BITS * 2 + 2;
-
- } TCell, *PCell;
-
-#else /* GRAYS_COMPACT */
-
- typedef struct TCell_
- {
- TScan x;
- TScan y;
- int cover;
- int area;
-
- } TCell, *PCell;
-
-#endif /* GRAYS_COMPACT */
-
-
- typedef struct TRaster_
- {
- PCell cells;
- int max_cells;
- int num_cells;
-
- TScan min_ex, max_ex;
- TScan min_ey, max_ey;
-
- int area;
- int cover;
- int invalid;
-
- TScan ex, ey;
- TScan cx, cy;
- TPos x, y;
-
- TScan last_ey;
-
- FT_Vector bez_stack[32 * 3];
- int lev_stack[32];
-
- FT_Outline outline;
- FT_Bitmap target;
-
- FT_Span gray_spans[FT_MAX_GRAY_SPANS];
- int num_gray_spans;
-
- FT_Raster_Span_Func render_span;
- void* render_span_data;
- int span_y;
-
- int band_size;
- int band_shoot;
- int conic_level;
- int cubic_level;
-
- void* memory;
-
- } TRaster, *PRaster;
-
-
- /*************************************************************************/
- /* */
- /* Initialize the cells table. */
- /* */
- static
- void init_cells( RAS_ARG_ void* buffer,
- long byte_size )
- {
- ras.cells = (PCell)buffer;
- ras.max_cells = byte_size / sizeof ( TCell );
- ras.num_cells = 0;
- ras.area = 0;
- ras.cover = 0;
- ras.invalid = 1;
- }
-
-
- /*************************************************************************/
- /* */
- /* Compute the outline bounding box. */
- /* */
- static
- void compute_cbox( RAS_ARG_ FT_Outline* outline )
- {
- FT_Vector* vec = outline->points;
- FT_Vector* limit = vec + outline->n_points;
-
-
- if ( outline->n_points <= 0 )
- {
- ras.min_ex = ras.max_ex = 0;
- ras.min_ey = ras.max_ey = 0;
- return;
- }
-
- ras.min_ex = ras.max_ex = vec->x;
- ras.min_ey = ras.max_ey = vec->y;
-
- vec++;
-
- for ( ; vec < limit; vec++ )
- {
- TPos x = vec->x;
- TPos y = vec->y;
-
-
- if ( x < ras.min_ex ) ras.min_ex = x;
- if ( x > ras.max_ex ) ras.max_ex = x;
- if ( y < ras.min_ey ) ras.min_ey = y;
- if ( y > ras.max_ey ) ras.max_ey = y;
- }
-
- /* truncate the bounding box to integer pixels */
- ras.min_ex = ras.min_ex >> 6;
- ras.min_ey = ras.min_ey >> 6;
- ras.max_ex = ( ras.max_ex + 63 ) >> 6;
- ras.max_ey = ( ras.max_ey + 63 ) >> 6;
- }
-
-
- /*************************************************************************/
- /* */
- /* Record the current cell in the table. */
- /* */
- static
- int record_cell( RAS_ARG )
- {
- PCell cell;
-
-
- if ( !ras.invalid && ( ras.area | ras.cover ) )
- {
- if ( ras.num_cells >= ras.max_cells )
- return 1;
-
- cell = ras.cells + ras.num_cells++;
- cell->x = ras.ex - ras.min_ex;
- cell->y = ras.ey - ras.min_ey;
- cell->area = ras.area;
- cell->cover = ras.cover;
- }
-
- return 0;
- }
-
-
- /*************************************************************************/
- /* */
- /* Set the current cell to a new position. */
- /* */
- static
- int set_cell( RAS_ARG_ TScan ex,
- TScan ey )
- {
- int invalid, record, clean;
-
-
- /* Move the cell pointer to a new position. We set the `invalid' */
- /* flag to indicate that the cell isn't part of those we're interested */
- /* in during the render phase. This means that: */
- /* */
- /* . the new vertical position must be within min_ey..max_ey-1. */
- /* . the new horizontal position must be strictly less than max_ex */
- /* */
- /* Note that if a cell is to the left of the clipping region, it is */
- /* actually set to the (min_ex-1) horizontal position. */
-
- record = 0;
- clean = 1;
-
- invalid = ( ey < ras.min_ey || ey >= ras.max_ey || ex >= ras.max_ex );
- if ( !invalid )
- {
- /* All cells that are on the left of the clipping region go to the */
- /* min_ex - 1 horizontal position. */
- if ( ex < ras.min_ex )
- ex = ras.min_ex - 1;
-
- /* if our position is new, then record the previous cell */
- if ( ex != ras.ex || ey != ras.ey )
- record = 1;
- else
- clean = ras.invalid; /* do not clean if we didn't move from */
- /* a valid cell */
- }
-
- /* record the previous cell if needed (i.e., if we changed the cell */
- /* position, of changed the `invalid' flag) */
- if ( ( ras.invalid != invalid || record ) && record_cell( RAS_VAR ) )
- return 1;
-
- if ( clean )
- {
- ras.area = 0;
- ras.cover = 0;
- }
-
- ras.invalid = invalid;
- ras.ex = ex;
- ras.ey = ey;
- return 0;
- }
-
-
- /*************************************************************************/
- /* */
- /* Start a new contour at a given cell. */
- /* */
- static
- void start_cell( RAS_ARG_ TScan ex,
- TScan ey )
- {
- if ( ex < ras.min_ex )
- ex = ras.min_ex - 1;
-
- ras.area = 0;
- ras.cover = 0;
- ras.ex = ex;
- ras.ey = ey;
- ras.last_ey = SUBPIXELS( ey );
- ras.invalid = 0;
-
- (void)set_cell( RAS_VAR_ ex, ey );
- }
-
-
- /*************************************************************************/
- /* */
- /* Render a scanline as one or more cells. */
- /* */
- static
- int render_scanline( RAS_ARG_ TScan ey,
- TPos x1,
- TScan y1,
- TPos x2,
- TScan y2 )
- {
- TScan ex1, ex2, fx1, fx2, delta;
- long p, first, dx;
- int incr, lift, mod, rem;
-
-
- dx = x2 - x1;
-
- ex1 = TRUNC( x1 ); /* if (ex1 >= ras.max_ex) ex1 = ras.max_ex-1; */
- ex2 = TRUNC( x2 ); /* if (ex2 >= ras.max_ex) ex2 = ras.max_ex-1; */
- fx1 = x1 - SUBPIXELS( ex1 );
- fx2 = x2 - SUBPIXELS( ex2 );
-
- /* trivial case. Happens often */
- if ( y1 == y2 )
- return set_cell( RAS_VAR_ ex2, ey );
-
- /* everything is located in a single cell. That is easy! */
- /* */
- if ( ex1 == ex2 )
- {
- delta = y2 - y1;
- ras.area += ( fx1 + fx2 ) * delta;
- ras.cover += delta;
- return 0;
- }
-
- /* ok, we'll have to render a run of adjacent cells on the same */
- /* scanline... */
- /* */
- p = ( ONE_PIXEL - fx1 ) * ( y2 - y1 );
- first = ONE_PIXEL;
- incr = 1;
-
- if ( dx < 0 )
- {
- p = fx1 * ( y2 - y1 );
- first = 0;
- incr = -1;
- dx = -dx;
- }
-
- delta = p / dx;
- mod = p % dx;
- if ( mod < 0 )
- {
- delta--;
- mod += dx;
- }
-
- ras.area += ( fx1 + first ) * delta;
- ras.cover += delta;
-
- ex1 += incr;
- if ( set_cell( RAS_VAR_ ex1, ey ) )
- goto Error;
- y1 += delta;
-
- if ( ex1 != ex2 )
- {
- p = ONE_PIXEL * ( y2 - y1 );
- lift = p / dx;
- rem = p % dx;
- if ( rem < 0 )
- {
- lift--;
- rem += dx;
- }
-
- mod -= dx;
-
- while ( ex1 != ex2 )
- {
- delta = lift;
- mod += rem;
- if ( mod >= 0 )
- {
- mod -= dx;
- delta++;
- }
-
- ras.area += ONE_PIXEL * delta;
- ras.cover += delta;
- y1 += delta;
- ex1 += incr;
- if ( set_cell( RAS_VAR_ ex1, ey ) )
- goto Error;
- }
- }
-
- delta = y2 - y1;
- ras.area += ( fx2 + ONE_PIXEL - first ) * delta;
- ras.cover += delta;
-
- return 0;
-
- Error:
- return 1;
- }
-
-
- /*************************************************************************/
- /* */
- /* Render a given line as a series of scanlines. */
- /* */
- static
- int render_line( RAS_ARG_ TPos to_x,
- TPos to_y )
- {
- TScan ey1, ey2, fy1, fy2;
- TPos dx, dy, x, x2;
- int p, rem, mod, lift, delta, first, incr;
-
-
- ey1 = TRUNC( ras.last_ey );
- ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
- fy1 = ras.y - ras.last_ey;
- fy2 = to_y - SUBPIXELS( ey2 );
-
- dx = to_x - ras.x;
- dy = to_y - ras.y;
-
- /* XXX: we should do something about the trivial case where dx == 0, */
- /* as it happens very often! */
-
- /* perform vertical clipping */
- {
- TScan min, max;
-
-
- min = ey1;
- max = ey2;
- if ( ey1 > ey2 )
- {
- min = ey2;
- max = ey1;
- }
- if ( min >= ras.max_ey || max < ras.min_ey )
- goto End;
- }
-
- /* everything is on a single scanline */
- if ( ey1 == ey2 )
- {
- if ( render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 ) )
- goto Error;
- goto End;
- }
-
- /* ok, we have to render several scanlines */
- p = ( ONE_PIXEL - fy1 ) * dx;
- first = ONE_PIXEL;
- incr = 1;
-
- if ( dy < 0 )
- {
- p = fy1 * dx;
- first = 0;
- incr = -1;
- dy = -dy;
- }
-
- delta = p / dy;
- mod = p % dy;
- if ( mod < 0 )
- {
- delta--;
- mod += dy;
- }
-
- x = ras.x + delta;
- if ( render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first ) )
- goto Error;
-
- ey1 += incr;
- if ( set_cell( RAS_VAR_ TRUNC( x ), ey1 ) )
- goto Error;
-
- if ( ey1 != ey2 )
- {
- p = ONE_PIXEL * dx;
- lift = p / dy;
- rem = p % dy;
- if ( rem < 0 )
- {
- lift--;
- rem += dy;
- }
- mod -= dy;
-
- while ( ey1 != ey2 )
- {
- delta = lift;
- mod += rem;
- if ( mod >= 0 )
- {
- mod -= dy;
- delta++;
- }
-
- x2 = x + delta;
- if ( render_scanline( RAS_VAR_ ey1,
- x, ONE_PIXEL - first, x2, first ) )
- goto Error;
- x = x2;
- ey1 += incr;
- if ( set_cell( RAS_VAR_ TRUNC( x ), ey1 ) )
- goto Error;
- }
- }
-
- if ( render_scanline( RAS_VAR_ ey1,
- x, ONE_PIXEL - first, to_x, fy2 ) )
- goto Error;
-
- End:
- ras.x = to_x;
- ras.y = to_y;
- ras.last_ey = SUBPIXELS( ey2 );
-
- return 0;
-
- Error:
- return 1;
- }
-
-
- static
- void split_conic( FT_Vector* base )
- {
- TPos a, b;
-
-
- base[4].x = base[2].x;
- b = base[1].x;
- a = base[3].x = ( base[2].x + b ) / 2;
- b = base[1].x = ( base[0].x + b ) / 2;
- base[2].x = ( a + b ) / 2;
-
- base[4].y = base[2].y;
- b = base[1].y;
- a = base[3].y = ( base[2].y + b ) / 2;
- b = base[1].y = ( base[0].y + b ) / 2;
- base[2].y = ( a + b ) / 2;
- }
-
-
- static
- int render_conic( RAS_ARG_ FT_Vector* control,
- FT_Vector* to )
- {
- TPos dx, dy;
- int top, level;
- int* levels;
- FT_Vector* arc;
-
-
- dx = DOWNSCALE( ras.x ) + to->x - ( control->x << 1 );
- if ( dx < 0 )
- dx = -dx;
- dy = DOWNSCALE( ras.y ) + to->y - ( control->y << 1 );
- if ( dy < 0 )
- dy = -dy;
- if ( dx < dy )
- dx = dy;
-
- level = 1;
- dx = dx / ras.conic_level;
- while ( dx > 0 )
- {
- dx >>= 1;
- level++;
- }
-
- /* a shortcut to speed things up */
- if ( level <= 1 )
- {
- /* we compute the mid-point directly in order to avoid */
- /* calling split_conic() */
- TPos to_x, to_y, mid_x, mid_y;
-
-
- to_x = UPSCALE( to->x );
- to_y = UPSCALE( to->y );
- mid_x = ( ras.x + to_x + 2 * UPSCALE( control->x ) ) / 4;
- mid_y = ( ras.y + to_y + 2 * UPSCALE( control->y ) ) / 4;
-
- return render_line( RAS_VAR_ mid_x, mid_y ) ||
- render_line( RAS_VAR_ to_x, to_y );
- }
-
- arc = ras.bez_stack;
- levels = ras.lev_stack;
- top = 0;
- levels[0] = level;
-
- arc[0].x = UPSCALE( to->x );
- arc[0].y = UPSCALE( to->y );
- arc[1].x = UPSCALE( control->x );
- arc[1].y = UPSCALE( control->y );
- arc[2].x = ras.x;
- arc[2].y = ras.y;
-
- while ( top >= 0 )
- {
- level = levels[top];
- if ( level > 1 )
- {
- /* check that the arc crosses the current band */
- TPos min, max, y;
-
-
- min = max = arc[0].y;
-
- y = arc[1].y;
- if ( y < min ) min = y;
- if ( y > max ) max = y;
-
- y = arc[2].y;
- if ( y < min ) min = y;
- if ( y > max ) max = y;
-
- if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < 0 )
- goto Draw;
-
- split_conic( arc );
- arc += 2;
- top++;
- levels[top] = levels[top - 1] = level - 1;
- continue;
- }
-
- Draw:
- {
- TPos to_x, to_y, mid_x, mid_y;
-
-
- to_x = arc[0].x;
- to_y = arc[0].y;
- mid_x = ( ras.x + to_x + 2 * arc[1].x ) / 4;
- mid_y = ( ras.y + to_y + 2 * arc[1].y ) / 4;
-
- if ( render_line( RAS_VAR_ mid_x, mid_y ) ||
- render_line( RAS_VAR_ to_x, to_y ) )
- return 1;
-
- top--;
- arc -= 2;
- }
- }
- return 0;
- }
-
-
- static
- void split_cubic( FT_Vector* base )
- {
- TPos a, b, c, d;
-
-
- base[6].x = base[3].x;
- c = base[1].x;
- d = base[2].x;
- base[1].x = a = ( base[0].x + c ) / 2;
- base[5].x = b = ( base[3].x + d ) / 2;
- c = ( c + d ) / 2;
- base[2].x = a = ( a + c ) / 2;
- base[4].x = b = ( b + c ) / 2;
- base[3].x = ( a + b ) / 2;
-
- base[6].y = base[3].y;
- c = base[1].y;
- d = base[2].y;
- base[1].y = a = ( base[0].y + c ) / 2;
- base[5].y = b = ( base[3].y + d ) / 2;
- c = ( c + d ) / 2;
- base[2].y = a = ( a + c ) / 2;
- base[4].y = b = ( b + c ) / 2;
- base[3].y = ( a + b ) / 2;
- }
-
-
- static
- int render_cubic( RAS_ARG_ FT_Vector* control1,
- FT_Vector* control2,
- FT_Vector* to )
- {
- TPos dx, dy, da, db;
- int top, level;
- int* levels;
- FT_Vector* arc;
-
-
- dx = DOWNSCALE( ras.x ) + to->x - ( control1->x << 1 );
- if ( dx < 0 )
- dx = -dx;
- dy = DOWNSCALE( ras.y ) + to->y - ( control1->y << 1 );
- if ( dy < 0 )
- dy = -dy;
- if ( dx < dy )
- dx = dy;
- da = dx;
-
- dx = DOWNSCALE( ras.x ) + to->x - 3 * ( control1->x + control2->x );
- if ( dx < 0 )
- dx = -dx;
- dy = DOWNSCALE( ras.y ) + to->y - 3 * ( control1->x + control2->y );
- if ( dy < 0 )
- dy = -dy;
- if ( dx < dy )
- dx = dy;
- db = dx;
-
- level = 1;
- da = da / ras.cubic_level;
- db = db / ras.conic_level;
- while ( da > 0 || db > 0 )
- {
- da >>= 1;
- db >>= 2;
- level++;
- }
-
- if ( level <= 1 )
- {
- TPos to_x, to_y, mid_x, mid_y;
-
-
- to_x = UPSCALE( to->x );
- to_y = UPSCALE( to->y );
- mid_x = ( ras.x + to_x +
- 3 * UPSCALE( control1->x + control2->x ) ) / 8;
- mid_y = ( ras.y + to_y +
- 3 * UPSCALE( control1->y + control2->y ) ) / 8;
-
- return render_line( RAS_VAR_ mid_x, mid_y ) ||
- render_line( RAS_VAR_ to_x, to_y );
- }
-
- arc = ras.bez_stack;
- arc[0].x = UPSCALE( to->x );
- arc[0].y = UPSCALE( to->y );
- arc[1].x = UPSCALE( control2->x );
- arc[1].y = UPSCALE( control2->y );
- arc[2].x = UPSCALE( control1->x );
- arc[2].y = UPSCALE( control1->y );
- arc[3].x = ras.x;
- arc[3].y = ras.y;
-
- levels = ras.lev_stack;
- top = 0;
- levels[0] = level;
-
- while ( top >= 0 )
- {
- level = levels[top];
- if ( level > 1 )
- {
- /* check that the arc crosses the current band */
- TPos min, max, y;
-
-
- min = max = arc[0].y;
- y = arc[1].y;
- if ( y < min ) min = y;
- if ( y > max ) max = y;
- y = arc[2].y;
- if ( y < min ) min = y;
- if ( y > max ) max = y;
- y = arc[3].y;
- if ( y < min ) min = y;
- if ( y > max ) max = y;
- if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < 0 )
- goto Draw;
- split_cubic( arc );
- arc += 3;
- top ++;
- levels[top] = levels[top - 1] = level - 1;
- continue;
- }
-
- Draw:
- {
- TPos to_x, to_y, mid_x, mid_y;
-
-
- to_x = arc[0].x;
- to_y = arc[0].y;
- mid_x = ( ras.x + to_x + 3 * ( arc[1].x + arc[2].x ) ) / 8;
- mid_y = ( ras.y + to_y + 3 * ( arc[1].y + arc[2].y ) ) / 8;
-
- if ( render_line( RAS_VAR_ mid_x, mid_y ) ||
- render_line( RAS_VAR_ to_x, to_y ) )
- return 1;
- top --;
- arc -= 3;
- }
- }
- return 0;
- }
-
-
- /* a macro comparing two cell pointers. Returns true if a <= b. */
-#if 1
-
-#define PACK( a ) ( ( (long)(a)->y << 16 ) + (a)->x )
-#define LESS_THAN( a, b ) ( PACK( a ) < PACK( b ) )
-
-#else /* 1 */
-
-#define LESS_THAN( a, b ) ( (a)->y < (b)->y || \
- ( (a)->y == (b)->y && (a)->x < (b)->x ) )
-
-#endif /* 1 */
-
-#define SWAP_CELLS( a, b, temp ) do \
- { \
- temp = *(a); \
- *(a) = *(b); \
- *(b) = temp; \
- } while ( 0 )
-#define DEBUG_SORT
-#define QUICK_SORT
-
-#ifdef SHELL_SORT
-
- /* a simple shell sort algorithm that works directly on our */
- /* cells table */
- static
- void shell_sort ( PCell cells,
- int count )
- {
- PCell i, j, limit = cells + count;
- TCell temp;
- int gap;
-
-
- /* compute initial gap */
- for ( gap = 0; ++gap < count; gap *= 3 )
- ;
-
- while ( gap /= 3 )
- {
- for ( i = cells + gap; i < limit; i++ )
- {
- for ( j = i - gap; ; j -= gap )
- {
- PCell k = j + gap;
-
-
- if ( LESS_THAN( j, k ) )
- break;
-
- SWAP_CELLS( j, k, temp );
-
- if ( j < cells + gap )
- break;
- }
- }
- }
- }
-
-#endif /* SHELL_SORT */
-
-
-#ifdef QUICK_SORT
-
- /* This is a non-recursive quicksort that directly process our cells */
- /* array. It should be faster than calling the stdlib qsort(), and we */
- /* can even tailor our insertion threshold... */
-
-#define QSORT_THRESHOLD 9 /* below this size, a sub-array will be sorted */
- /* through a normal insertion sort */
-
- static
- void quick_sort( PCell cells,
- int count )
- {
- PCell stack[40]; /* should be enough ;-) */
- PCell* top; /* top of stack */
- PCell base, limit;
- TCell temp;
-
-
- limit = cells + count;
- base = cells;
- top = stack;
-
- for (;;)
- {
- int len = limit - base;
- PCell i, j, pivot;
-
-
- if ( len > QSORT_THRESHOLD )
- {
- /* we use base + len/2 as the pivot */
- pivot = base + len / 2;
- SWAP_CELLS( base, pivot, temp );
-
- i = base + 1;
- j = limit - 1;
-
- /* now ensure that *i <= *base <= *j */
- if ( LESS_THAN( j, i ) )
- SWAP_CELLS( i, j, temp );
-
- if ( LESS_THAN( base, i ) )
- SWAP_CELLS( base, i, temp );
-
- if ( LESS_THAN( j, base ) )
- SWAP_CELLS( base, j, temp );
-
- for (;;)
- {
- do i++; while ( LESS_THAN( i, base ) );
- do j--; while ( LESS_THAN( base, j ) );
-
- if ( i > j )
- break;
-
- SWAP_CELLS( i, j, temp );
- }
-
- SWAP_CELLS( base, j, temp );
-
- /* now, push the largest sub-array */
- if ( j - base > limit - i )
- {
- top[0] = base;
- top[1] = j;
- base = i;
- }
- else
- {
- top[0] = i;
- top[1] = limit;
- limit = j;
- }
- top += 2;
- }
- else
- {
- /* the sub-array is small, perform insertion sort */
- j = base;
- i = j + 1;
-
- for ( ; i < limit; j = i, i++ )
- {
- for ( ; LESS_THAN( j + 1, j ); j-- )
- {
- SWAP_CELLS( j + 1, j, temp );
- if ( j == base )
- break;
- }
- }
- if ( top > stack )
- {
- top -= 2;
- base = top[0];
- limit = top[1];
- }
- else
- break;
- }
- }
- }
-
-#endif /* QUICK_SORT */
-
-
-#ifdef DEBUG_GRAYS
-#ifdef DEBUG_SORT
-
- static
- int check_sort( PCell cells,
- int count )
- {
- PCell p, q;
-
-
- for ( p = cells + count - 2; p >= cells; p-- )
- {
- q = p + 1;
- if ( !LESS_THAN( p, q ) )
- return 0;
- }
- return 1;
- }
-
-#endif /* DEBUG_SORT */
-#endif /* DEBUG_GRAYS */
-
-
- static
- int Move_To( FT_Vector* to,
- FT_Raster raster )
- {
- TPos x, y;
-
-
- /* record current cell, if any */
- record_cell( (PRaster)raster );
-
- /* start to a new position */
- x = UPSCALE( to->x );
- y = UPSCALE( to->y );
- start_cell( (PRaster)raster, TRUNC( x ), TRUNC( y ) );
- ((PRaster)raster)->x = x;
- ((PRaster)raster)->y = y;
- return 0;
- }
-
-
- static
- int Line_To( FT_Vector* to,
- FT_Raster raster )
- {
- return render_line( (PRaster)raster,
- UPSCALE( to->x ), UPSCALE( to->y ) );
- }
-
-
- static
- int Conic_To( FT_Vector* control,
- FT_Vector* to,
- FT_Raster raster )
- {
- return render_conic( (PRaster)raster, control, to );
- }
-
-
- static
- int Cubic_To( FT_Vector* control1,
- FT_Vector* control2,
- FT_Vector* to,
- FT_Raster raster )
- {
- return render_cubic( (PRaster)raster, control1, control2, to );
- }
-
-
- static
- void grays_render_span( int y,
- int count,
- FT_Span* spans,
- PRaster raster )
- {
- unsigned char* p;
- FT_Bitmap* map = &raster->target;
-
-
- /* first of all, compute the scanline offset */
- p = (unsigned char*)map->buffer - y * map->pitch;
- if ( map->pitch >= 0 )
- p += ( map->rows - 1 ) * map->pitch;
-
- for ( ; count > 0; count--, spans++ )
- {
- if ( spans->coverage )
-#if 1
- memset( p + spans->x, (unsigned char)spans->coverage, spans->len );
-#else /* 1 */
- {
- q = p + spans->x;
- limit = q + spans->len;
- for ( ; q < limit; q++ )
- q[0] = (unsigned char)spans->coverage;
- }
-#endif /* 1 */
- }
- }
-
-
-#ifdef DEBUG_GRAYS
-
-#include <stdio.h>
-
- static
- void dump_cells( RAS_ARG )
- {
- PCell cell, limit;
- int y = -1;
-
-
- cell = ras.cells;
- limit = cell + ras.num_cells;
-
- for ( ; cell < limit; cell++ )
- {
- if ( cell->y != y )
- {
- fprintf( stderr, "\n%2d: ", cell->y );
- y = cell->y;
- }
- fprintf( stderr, "[%d %d %d]",
- cell->x, cell->area, cell->cover );
- }
- fprintf(stderr, "\n" );
- }
-
-#endif /* DEBUG_GRAYS */
-
-
- static
- void grays_hline( RAS_ARG_ TScan x,
- TScan y,
- TPos area,
- int acount )
- {
- FT_Span* span;
- int count;
- int coverage;
-
-
- /* compute the coverage line's coverage, depending on the */
- /* outline fill rule */
- /* */
- /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
- /* */
- coverage = area >> ( PIXEL_BITS * 2 + 1 - 8); /* use range 0..256 */
-
- if ( ras.outline.flags & ft_outline_even_odd_fill )
- {
- if ( coverage < 0 )
- coverage = -coverage;
-
- while ( coverage >= 512 )
- coverage -= 512;
-
- if ( coverage > 256 )
- coverage = 512 - coverage;
- else if ( coverage == 256 )
- coverage = 255;
- }
- else
- {
- /* normal non-zero winding rule */
- if ( coverage < 0 )
- coverage = -coverage;
-
- if ( coverage >= 256 )
- coverage = 255;
- }
-
- y += ras.min_ey;
- x += ras.min_ex;
-
- if ( coverage )
- {
- /* see if we can add this span to the current list */
- count = ras.num_gray_spans;
- span = ras.gray_spans + count - 1;
- if ( count > 0 &&
- ras.span_y == y &&
- (int)span->x + span->len == (int)x &&
- span->coverage == coverage )
- {
- span->len += acount;
- return;
- }
-
- if ( ras.span_y != y || count >= FT_MAX_GRAY_SPANS )
- {
- if ( ras.render_span )
- ras.render_span( ras.span_y, count, ras.gray_spans,
- ras.render_span_data );
- /* ras.render_span( span->y, ras.gray_spans, count ); */
-
-#ifdef DEBUG_GRAYS
-
- if ( ras.span_y >= 0 )
- {
- int n;
-
-
- fprintf( stderr, "y=%3d ", ras.span_y );
- span = ras.gray_spans;
- for ( n = 0; n < count; n++, span++ )
- fprintf( stderr, "[%d..%d]:%02x ",
- span->x, span->x + span->len - 1, span->coverage );
- fprintf( stderr, "\n" );
- }
-
-#endif /* DEBUG_GRAYS */
-
- ras.num_gray_spans = 0;
- ras.span_y = y;
-
- count = 0;
- span = ras.gray_spans;
- }
- else
- span++;
-
- /* add a gray span to the current list */
- span->x = (short)x;
- span->len = (unsigned short)acount;
- span->coverage = (unsigned char)coverage;
- ras.num_gray_spans++;
- }
- }
-
-
- static
- void grays_sweep( RAS_ARG_ FT_Bitmap* target )
- {
- TScan x, y, cover, area;
- PCell start, cur, limit;
-
- FT_UNUSED( target );
-
-
- cur = ras.cells;
- limit = cur + ras.num_cells;
-
- cover = 0;
- ras.span_y = -1;
- ras.num_gray_spans = 0;
-
- for (;;)
- {
- start = cur;
- y = start->y;
- x = start->x;
-
- area = start->area;
- cover += start->cover;
-
- /* accumulate all start cells */
- for (;;)
- {
- ++cur;
- if ( cur >= limit || cur->y != start->y || cur->x != start->x )
- break;
-
- area += cur->area;
- cover += cur->cover;
- }
-
- /* if the start cell has a non-null area, we must draw an */
- /* individual gray pixel there */
- if ( area && x >= 0 )
- {
- grays_hline( RAS_VAR_ x, y, cover * ( ONE_PIXEL * 2 ) - area, 1 );
- x++;
- }
-
- if ( x < 0 )
- x = 0;
-
- if ( cur < limit && start->y == cur->y )
- {
- /* draw a gray span between the start cell and the current one */
- if ( cur->x > x )
- grays_hline( RAS_VAR_ x, y,
- cover * ( ONE_PIXEL * 2 ), cur->x - x );
- }
- else
- {
- /* draw a gray span until the end of the clipping region */
- if ( cover && x < ras.max_ex - ras.min_ex )
- grays_hline( RAS_VAR_ x, y,
- cover * ( ONE_PIXEL * 2 ),
- ras.max_ex - x - ras.min_ex );
- cover = 0;
- }
-
- if ( cur >= limit )
- break;
- }
-
- if ( ras.render_span && ras.num_gray_spans > 0 )
- ras.render_span( ras.span_y, ras.num_gray_spans,
- ras.gray_spans, ras.render_span_data );
-
-#ifdef DEBUG_GRAYS
-
- {
- int n;
- FT_Span* span;
-
-
- fprintf( stderr, "y=%3d ", ras.span_y );
- span = ras.gray_spans;
- for ( n = 0; n < ras.num_gray_spans; n++, span++ )
- fprintf( stderr, "[%d..%d]:%02x ",
- span->x, span->x + span->len - 1, span->coverage );
- fprintf( stderr, "\n" );
- }
-
-#endif /* DEBUG_GRAYS */
-
- }
-
-
-#ifdef _STANDALONE_
-
- /*************************************************************************/
- /* */
- /* The following function should only compile in stand_alone mode, */
- /* i.e., when building this component without the rest of FreeType. */
- /* */
- /*************************************************************************/
-
- /*************************************************************************/
- /* */
- /* <Function> */
- /* FT_Outline_Decompose */
- /* */
- /* <Description> */
- /* Walks over an outline's structure to decompose it into individual */
- /* segments and Bezier arcs. This function is also able to emit */
- /* `move to' and `close to' operations to indicate the start and end */
- /* of new contours in the outline. */
- /* */
- /* <Input> */
- /* outline :: A pointer to the source target. */
- /* */
- /* interface :: A table of `emitters', i.e,. function pointers called */
- /* during decomposition to indicate path operations. */
- /* */
- /* user :: A typeless pointer which is passed to each emitter */
- /* during the decomposition. It can be used to store */
- /* the state during the decomposition. */
- /* */
- /* <Return> */
- /* Error code. 0 means sucess. */
- /* */
- static
- int FT_Outline_Decompose( FT_Outline* outline,
- FT_Outline_Funcs* interface,
- void* user )
- {
-#undef SCALED
-#define SCALED( x ) ( ( (x) << shift ) - delta )
-
- FT_Vector v_last;
- FT_Vector v_control;
- FT_Vector v_start;
-
- FT_Vector* point;
- FT_Vector* limit;
- char* tags;
-
- int n; /* index of contour in outline */
- int first; /* index of first point in contour */
- int error;
- char tag; /* current point's state */
-
- int shift = interface->shift;
- FT_Pos delta = interface->delta;
-
-
- first = 0;
-
- for ( n = 0; n < outline->n_contours; n++ )
- {
- int last; /* index of last point in contour */
-
-
- last = outline->contours[n];
- limit = outline->points + last;
-
- v_start = outline->points[first];
- v_last = outline->points[last];
-
- v_start.x = SCALED( v_start.x ); v_start.y = SCALED( v_start.y );
- v_last.x = SCALED( v_last.x ); v_last.y = SCALED( v_last.y );
-
- v_control = v_start;
-
- point = outline->points + first;
- tags = outline->tags + first;
- tag = FT_CURVE_TAG( tags[0] );
-
- /* A contour cannot start with a cubic control point! */
- if ( tag == FT_Curve_Tag_Cubic )
- goto Invalid_Outline;
-
- /* check first point to determine origin */
- if ( tag == FT_Curve_Tag_Conic )
- {
- /* first point is conic control. Yes, this happens. */
- if ( FT_CURVE_TAG( outline->tags[last] ) == FT_Curve_Tag_On )
- {
- /* start at last point if it is on the curve */
- v_start = v_last;
- limit--;
- }
- else
- {
- /* if both first and last points are conic, */
- /* start at their middle and record its position */
- /* for closure */
- v_start.x = ( v_start.x + v_last.x ) / 2;
- v_start.y = ( v_start.y + v_last.y ) / 2;
-
- v_last = v_start;
- }
- point--;
- tags--;
- }
-
- error = interface->move_to( &v_start, user );
- if ( error )
- goto Exit;
-
- while ( point < limit )
- {
- point++;
- tags++;
-
- tag = FT_CURVE_TAG( tags[0] );
- switch ( tag )
- {
- case FT_Curve_Tag_On: /* emit a single line_to */
- {
- FT_Vector vec;
-
-
- vec.x = SCALED( point->x );
- vec.y = SCALED( point->y );
-
- error = interface->line_to( &vec, user );
- if ( error )
- goto Exit;
- continue;
- }
-
- case FT_Curve_Tag_Conic: /* consume conic arcs */
- {
- v_control.x = SCALED( point->x );
- v_control.y = SCALED( point->y );
-
- Do_Conic:
- if ( point < limit )
- {
- FT_Vector vec;
- FT_Vector v_middle;
-
-
- point++;
- tags++;
- tag = FT_CURVE_TAG( tags[0] );
-
- vec.x = SCALED( point->x );
- vec.y = SCALED( point->y );
-
- if ( tag == FT_Curve_Tag_On )
- {
- error = interface->conic_to( &v_control, &vec, user );
- if ( error )
- goto Exit;
- continue;
- }
-
- if ( tag != FT_Curve_Tag_Conic )
- goto Invalid_Outline;
-
- v_middle.x = ( v_control.x + vec.x ) / 2;
- v_middle.y = ( v_control.y + vec.y ) / 2;
-
- error = interface->conic_to( &v_control, &v_middle, user );
- if ( error )
- goto Exit;
-
- v_control = vec;
- goto Do_Conic;
- }
-
- error = interface->conic_to( &v_control, &v_start, user );
- goto Close;
- }
-
- default: /* FT_Curve_Tag_Cubic */
- {
- FT_Vector vec1, vec2;
-
-
- if ( point + 1 > limit ||
- FT_CURVE_TAG( tags[1] ) != FT_Curve_Tag_Cubic )
- goto Invalid_Outline;
-
- point += 2;
- tags += 2;
-
- vec1.x = SCALED( point[-2].x ); vec1.y = SCALED( point[-2].y );
- vec2.x = SCALED( point[-1].x ); vec2.y = SCALED( point[-1].y );
-
- if ( point <= limit )
- {
- FT_Vector vec;
-
-
- vec.x = SCALED( point->x );
- vec.y = SCALED( point->y );
-
- error = interface->cubic_to( &vec1, &vec2, &vec, user );
- if ( error )
- goto Exit;
- continue;
- }
-
- error = interface->cubic_to( &vec1, &vec2, &v_start, user );
- goto Close;
- }
- }
- }
-
- /* close the contour with a line segment */
- error = interface->line_to( &v_start, user );
-
- Close:
- if ( error )
- goto Exit;
-
- first = last + 1;
- }
-
- return 0;
-
- Exit:
- return error;
-
- Invalid_Outline:
- return ErrRaster_Invalid_Outline;
- }
-
-#endif /* _STANDALONE_ */
-
-
- typedef struct TBand_
- {
- FT_Pos min, max;
-
- } TBand;
-
-
- static
- int grays_convert_glyph( RAS_ARG_ FT_Outline* outline )
- {
- static
- FT_Outline_Funcs interface =
- {
- (FT_Outline_MoveTo_Func) Move_To,
- (FT_Outline_LineTo_Func) Line_To,
- (FT_Outline_ConicTo_Func)Conic_To,
- (FT_Outline_CubicTo_Func)Cubic_To,
- 0,
- 0
- };
-
- TBand bands[40], *band;
- int n, num_bands;
- TPos min, max, max_y;
-
-
- /* Set up state in the raster object */
- compute_cbox( RAS_VAR_ outline );
-
- /* clip to target bitmap, exit if nothing to do */
- if ( ras.max_ex <= 0 || ras.min_ex >= ras.target.width ||
- ras.max_ey <= 0 || ras.min_ey >= ras.target.rows )
- return 0;
-
- if ( ras.min_ex < 0 ) ras.min_ex = 0;
- if ( ras.min_ey < 0 ) ras.min_ey = 0;
-
- if ( ras.max_ex > ras.target.width ) ras.max_ex = ras.target.width;
- if ( ras.max_ey > ras.target.rows ) ras.max_ey = ras.target.rows;
-
- /* simple heuristic used to speed-up the bezier decomposition -- see */
- /* the code in render_conic() and render_cubic() for more details */
- ras.conic_level = 32;
- ras.cubic_level = 16;
-
- {
- int level = 0;
-
-
- if ( ras.max_ex > 24 || ras.max_ey > 24 )
- level++;
- if ( ras.max_ex > 120 || ras.max_ey > 120 )
- level += 2;
-
- ras.conic_level <<= level;
- ras.cubic_level <<= level;
- }
-
- /* setup vertical bands */
- num_bands = ( ras.max_ey - ras.min_ey ) / ras.band_size;
- if ( num_bands == 0 ) num_bands = 1;
- if ( num_bands >= 39 ) num_bands = 39;
-
- ras.band_shoot = 0;
-
- min = ras.min_ey;
- max_y = ras.max_ey;
-
- for ( n = 0; n < num_bands; n++, min = max )
- {
- max = min + ras.band_size;
- if ( n == num_bands - 1 || max > max_y )
- max = max_y;
-
- bands[0].min = min;
- bands[0].max = max;
- band = bands;
-
- while ( band >= bands )
- {
- FT_Pos bottom, top, middle;
- int error;
-
-
- ras.num_cells = 0;
- ras.invalid = 1;
- ras.min_ey = band->min;
- ras.max_ey = band->max;
-
- error = FT_Outline_Decompose( outline, &interface, &ras ) ||
- record_cell( RAS_VAR );
-
- if ( !error )
- {
-#ifdef SHELL_SORT
- shell_sort( ras.cells, ras.num_cells );
-#else
- quick_sort( ras.cells, ras.num_cells );
-#endif
-
-#ifdef DEBUG_GRAYS
- check_sort( ras.cells, ras.num_cells );
- dump_cells( RAS_VAR );
-#endif
-
- grays_sweep( RAS_VAR_ &ras.target );
- band--;
- continue;
- }
-
- /* render pool overflow, we will reduce the render band by half */
- bottom = band->min;
- top = band->max;
- middle = bottom + ( ( top - bottom ) >> 1 );
-
- /* waoow! This is too complex for a single scanline, something */
- /* must be really rotten here! */
- if ( middle == bottom )
- {
-#ifdef DEBUG_GRAYS
- fprintf( stderr, "Rotten glyph!\n" );
-#endif
- return 1;
- }
-
- if ( bottom-top >= ras.band_size )
- ras.band_shoot++;
-
- band[1].min = bottom;
- band[1].max = middle;
- band[0].min = middle;
- band[0].max = top;
- band++;
- }
- }
-
- if ( ras.band_shoot > 8 && ras.band_size > 16 )
- ras.band_size = ras.band_size / 2;
-
- return 0;
- }
-
-
- static
- int grays_raster_render( PRaster raster,
- FT_Raster_Params* params )
- {
- FT_Outline* outline = (FT_Outline*)params->source;
- FT_Bitmap* target_map = params->target;
-
-
- if ( !raster || !raster->cells || !raster->max_cells )
- return -1;
-
- /* return immediately if the outline is empty */
- if ( outline->n_points == 0 || outline->n_contours <= 0 )
- return 0;
-
- if ( !outline || !outline->contours || !outline->points )
- return ErrRaster_Invalid_Outline;
-
- if ( outline->n_points !=
- outline->contours[outline->n_contours - 1] + 1 )
- return ErrRaster_Invalid_Outline;
-
- if ( !target_map || !target_map->buffer )
- return -1;
-
- /* XXX: this version does not support monochrome rendering yet! */
- if ( !(params->flags & ft_raster_flag_aa) )
- return ErrRaster_Invalid_Mode;
-
- ras.outline = *outline;
- ras.target = *target_map;
- ras.num_cells = 0;
- ras.invalid = 1;
-
- ras.render_span = (FT_Raster_Span_Func)grays_render_span;
- ras.render_span_data = &ras;
-
- if ( params->flags & ft_raster_flag_direct )
- {
- ras.render_span = (FT_Raster_Span_Func)params->gray_spans;
- ras.render_span_data = params->user;
- }
-
- return grays_convert_glyph( (PRaster)raster, outline );
- }
-
-
- /**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/
- /**** a static object. *****/
-
-#ifdef _STANDALONE_
-
- static
- int grays_raster_new( void* memory,
- FT_Raster* araster )
- {
- static TRaster the_raster;
-
- FT_UNUSED( memory );
-
-
- *araster = (FT_Raster)&the_raster;
- memset( &the_raster, 0, sizeof ( the_raster ) );
-
- return 0;
- }
-
-
- static
- void grays_raster_done( FT_Raster raster )
- {
- /* nothing */
- FT_UNUSED( raster );
- }
-
-#else /* _STANDALONE_ */
-
- static
- int grays_raster_new( FT_Memory memory,
- FT_Raster* araster )
- {
- FT_Error error;
- PRaster raster;
-
-
- *araster = 0;
- if ( !ALLOC( raster, sizeof ( TRaster ) ) )
- {
- raster->memory = memory;
- *araster = (FT_Raster)raster;
- }
-
- return error;
- }
-
-
- static
- void grays_raster_done( FT_Raster raster )
- {
- FT_Memory memory = (FT_Memory)((PRaster)raster)->memory;
-
-
- FREE( raster );
- }
-
-#endif /* _STANDALONE_ */
-
-
- static
- void grays_raster_reset( FT_Raster raster,
- const char* pool_base,
- long pool_size )
- {
- PRaster rast = (PRaster)raster;
-
-
- if ( raster && pool_base && pool_size >= 4096 )
- init_cells( rast, (char*)pool_base, pool_size );
-
- rast->band_size = ( pool_size / sizeof ( TCell ) ) / 8;
- }
-
-
- FT_Raster_Funcs ft_grays_raster =
- {
- ft_glyph_format_outline,
-
- (FT_Raster_New_Func) grays_raster_new,
- (FT_Raster_Reset_Func) grays_raster_reset,
- (FT_Raster_Set_Mode_Func)0,
- (FT_Raster_Render_Func) grays_raster_render,
- (FT_Raster_Done_Func) grays_raster_done
- };
-
-
-/* END */