summaryrefslogtreecommitdiff
path: root/camellia-set-encrypt-key.c
diff options
context:
space:
mode:
authorNiels Möller <nisse@lysator.liu.se>2010-07-24 18:05:37 +0200
committerNiels Möller <nisse@lysator.liu.se>2010-07-24 18:05:37 +0200
commitc1552ab2821946603a57e0fc4a35cb1afb20454b (patch)
tree5a0061d1b28a5961b09243aca22dc2f641540fd8 /camellia-set-encrypt-key.c
parent5af860741ff620190b330e1bda26312c9abc902c (diff)
downloadnettle-c1552ab2821946603a57e0fc4a35cb1afb20454b.tar.gz
* camellia-set-encrypt-key.c (camellia_setup128): Generate
unmodified subkeys according to the spec. Moved clever combination of subkeys to camellia_set_encrypt_key. (camellia_setup256): Likewise. (camellia_set_encrypt_key): Moved subkey post-processing code here, and reduce code duplication between 128-bit keys and larger keys. * camellia.c: Deleted file, split into several new files... * camellia-table.c (_camellia_table): New file with the constant sbox tables. * camellia-set-encrypt-key.c: New file. (camellia_setup128): Generate unmodified subkeys according to the spec. Moved clever combination of subkeys to camellia_set_encrypt_key. (camellia_setup256): Likewise. * camellia-set-decrypt-key.c: New file. (camellia_invert_key): Key inversion function. (camellia_set_decrypt_key): New key setup function. * camellia-internal.h: New file. * camellia-crypt.c (camellia_crypt): New file, new wrapper function passing the sbox table to _camellia_crypt. * camellia-crypt-internal.c (_camellia_crypt): New file, with main encrypt/decrypt function. * Makefile.in (nettle_SOURCES): Updated list of camellia source files. (DISTFILES): Added camellia-internal.h. Rev: nettle/ChangeLog:1.96 Rev: nettle/Makefile.in:1.26 Rev: nettle/camellia-crypt-internal.c:1.1 Rev: nettle/camellia-crypt.c:1.1 Rev: nettle/camellia-internal.h:1.1 Rev: nettle/camellia-set-decrypt-key.c:1.1 Rev: nettle/camellia-set-encrypt-key.c:1.1 Rev: nettle/camellia-table.c:1.1 Rev: nettle/camellia.c:1.5(DEAD)
Diffstat (limited to 'camellia-set-encrypt-key.c')
-rw-r--r--camellia-set-encrypt-key.c436
1 files changed, 436 insertions, 0 deletions
diff --git a/camellia-set-encrypt-key.c b/camellia-set-encrypt-key.c
new file mode 100644
index 00000000..dc635642
--- /dev/null
+++ b/camellia-set-encrypt-key.c
@@ -0,0 +1,436 @@
+/* camellia-set-encrypt-key.c
+ *
+ * Key setup for the camellia block cipher.
+ */
+/*
+ * Copyright (C) 2006,2007
+ * NTT (Nippon Telegraph and Telephone Corporation).
+ *
+ * Copyright (C) 2010 Niels Möller
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/*
+ * Algorithm Specification
+ * http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html
+ */
+
+/* Based on camellia.c ver 1.2.0, see
+ http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/camellia-LGPL-1.2.0.tar.gz.
+ */
+#if HAVE_CONFIG_H
+# include "config.h"
+#endif
+
+#include <assert.h>
+
+#include "camellia-internal.h"
+
+#include "macros.h"
+
+/* key constants */
+
+#define SIGMA1 0xA09E667F3BCC908BULL
+#define SIGMA2 0xB67AE8584CAA73B2ULL
+#define SIGMA3 0xC6EF372FE94F82BEULL
+#define SIGMA4 0x54FF53A5F1D36F1CULL
+#define SIGMA5 0x10E527FADE682D1DULL
+#define SIGMA6 0xB05688C2B3E6C1FDULL
+
+#define CAMELLIA_SP1110(INDEX) (_nettle_camellia_table.sp1110[(int)(INDEX)])
+#define CAMELLIA_SP0222(INDEX) (_nettle_camellia_table.sp0222[(int)(INDEX)])
+#define CAMELLIA_SP3033(INDEX) (_nettle_camellia_table.sp3033[(int)(INDEX)])
+#define CAMELLIA_SP4404(INDEX) (_nettle_camellia_table.sp4404[(int)(INDEX)])
+
+#define CAMELLIA_F(x, k, y) do { \
+ uint32_t __yl, __yr; \
+ uint64_t __i = (x) ^ (k); \
+ __yl \
+ = CAMELLIA_SP1110( __i & 0xff) \
+ ^ CAMELLIA_SP0222((__i >> 24) & 0xff) \
+ ^ CAMELLIA_SP3033((__i >> 16) & 0xff) \
+ ^ CAMELLIA_SP4404((__i >> 8) & 0xff); \
+ __yr \
+ = CAMELLIA_SP1110( __i >> 56) \
+ ^ CAMELLIA_SP0222((__i >> 48) & 0xff) \
+ ^ CAMELLIA_SP3033((__i >> 40) & 0xff) \
+ ^ CAMELLIA_SP4404((__i >> 32) & 0xff); \
+ __yl ^= __yr; \
+ __yr = ROL32(24, __yr); \
+ __yr ^= __yl; \
+ (y) = ((uint64_t) __yl << 32) | __yr; \
+ } while (0)
+
+#define CAMELLIA_F_HALF_INV(x) do { \
+ uint32_t __t, __w; \
+ __t = (x) >> 32; \
+ __w = __t ^(x); \
+ __w = ROL32(8, __w); \
+ (x) = ((uint64_t) __w << 32) | (__t ^ __w); \
+ } while (0)
+
+
+static void
+camellia_setup128(uint64_t *subkey, const uint64_t *key)
+{
+ uint64_t k0, k1, w;
+
+ /**
+ * k == k0 || k1 (|| is concatenation)
+ */
+ k0 = key[0];
+ k1 = key[1];
+
+ /**
+ * generate KL dependent subkeys
+ */
+ subkey[0] = k0; subkey[1] = k1;
+ ROL128(15, k0, k1);
+ subkey[4] = k0; subkey[5] = k1;
+ ROL128(30, k0, k1);
+ subkey[10] = k0; subkey[11] = k1;
+ ROL128(15, k0, k1);
+ subkey[13] = k1;
+ ROL128(17, k0, k1);
+ subkey[16] = k0; subkey[17] = k1;
+ ROL128(17, k0, k1);
+ subkey[18] = k0; subkey[19] = k1;
+ ROL128(17, k0, k1);
+ subkey[22] = k0; subkey[23] = k1;
+
+ /* generate KA. D1 is k0, d2 is k1. */
+ /* FIXME: Make notation match the spec better. */
+ /* For the 128-bit case, KR = 0, the construvtion of KA reduces to:
+
+ D1 = KL >> 64;
+ W = KL & MASK64;
+ D2 = F(D1, Sigma1);
+ W = D2 ^ W
+ D1 = F(W, Sigma2)
+ D2 = D2 ^ F(D1, Sigma3);
+ D1 = D1 ^ F(D2, Sigma4);
+ KA = (D1 << 64) | D2;
+ */
+ k0 = subkey[0]; w = subkey[1];
+ CAMELLIA_F(k0, SIGMA1, k1);
+ w ^= k1;
+ CAMELLIA_F(w, SIGMA2, k0);
+ CAMELLIA_F(k0, SIGMA3, w);
+ k1 ^= w;
+ CAMELLIA_F(k1, SIGMA4, w);
+ k0 ^= w;
+
+ /* generate KA dependent subkeys */
+ subkey[2] = k0; subkey[3] = k1;
+ ROL128(15, k0, k1);
+ subkey[6] = k0; subkey[7] = k1;
+ ROL128(15, k0, k1);
+ subkey[8] = k0; subkey[9] = k1;
+ ROL128(15, k0, k1);
+ subkey[12] = k0;
+ ROL128(15, k0, k1);
+ subkey[14] = k0; subkey[15] = k1;
+ ROL128(34, k0, k1);
+ subkey[20] = k0; subkey[21] = k1;
+ ROL128(17, k0, k1);
+ subkey[24] = k0; subkey[25] = k1;
+
+ return;
+}
+
+static void
+camellia_setup256(uint64_t *subkey, const uint64_t *key)
+{
+ uint64_t k0, k1, k2, k3;
+ uint64_t w;
+
+ /**
+ * key = (kll || klr || krl || krr || krll || krlr || krrl || krrr)
+ * (|| is concatenation)
+ */
+
+ k0 = key[0];
+ k1 = key[1];
+ k2 = key[2];
+ k3 = key[3];
+
+ /* generate KL dependent subkeys */
+ subkey[0] = k0; subkey[1] = k1;
+ ROL128(45, k0, k1);
+ subkey[12] = k0; subkey[13] = k1;
+ ROL128(15, k0, k1);
+ subkey[16] = k0; subkey[17] = k1;
+ ROL128(17, k0, k1);
+ subkey[22] = k0; subkey[23] = k1;
+ ROL128(34, k0, k1);
+ subkey[30] = k0; subkey[31] = k1;
+
+ /* generate KR dependent subkeys */
+ ROL128(15, k2, k3);
+ subkey[4] = k2; subkey[5] = k3;
+ ROL128(15, k2, k3);
+ subkey[8] = k2; subkey[9] = k3;
+ ROL128(30, k2, k3);
+ subkey[18] = k2; subkey[19] = k3;
+ ROL128(34, k2, k3);
+ subkey[26] = k2; subkey[27] = k3;
+ ROL128(34, k2, k3);
+
+ /* generate KA */
+ /* The construction of KA is done as
+
+ D1 = (KL ^ KR) >> 64
+ D2 = (KL ^ KR) & MASK64
+ W = F(D1, SIGMA1)
+ D2 = D2 ^ W
+ D1 = F(D2, SIGMA2) ^ (KR >> 64)
+ D2 = F(D1, SIGMA3) ^ W ^ (KR & MASK64)
+ D1 = D1 ^ F(W, SIGMA2)
+ D2 = D2 ^ F(D1, SIGMA3)
+ D1 = D1 ^ F(D2, SIGMA4)
+ */
+
+ k0 = subkey[0] ^ k2;
+ k1 = subkey[1] ^ k3;
+
+ CAMELLIA_F(k0, SIGMA1, w);
+ k1 ^= w;
+
+ CAMELLIA_F(k1, SIGMA2, k0);
+ k0 ^= k2;
+
+ CAMELLIA_F(k0, SIGMA3, k1);
+ k1 ^= w ^ k3;
+
+ CAMELLIA_F(k1, SIGMA4, w);
+ k0 ^= w;
+
+ /* generate KB */
+ k2 ^= k0; k3 ^= k1;
+ CAMELLIA_F(k2, SIGMA5, w);
+ k3 ^= w;
+ CAMELLIA_F(k3, SIGMA6, w);
+ k2 ^= w;
+
+ /* generate KA dependent subkeys */
+ ROL128(15, k0, k1);
+ subkey[6] = k0; subkey[7] = k1;
+ ROL128(30, k0, k1);
+ subkey[14] = k0; subkey[15] = k1;
+ ROL128(32, k0, k1);
+ subkey[24] = k0; subkey[25] = k1;
+ ROL128(17, k0, k1);
+ subkey[28] = k0; subkey[29] = k1;
+
+ /* generate KB dependent subkeys */
+ subkey[2] = k2; subkey[3] = k3;
+ ROL128(30, k2, k3);
+ subkey[10] = k2; subkey[11] = k3;
+ ROL128(30, k2, k3);
+ subkey[20] = k2; subkey[21] = k3;
+ ROL128(51, k2, k3);
+ subkey[32] = k2; subkey[33] = k3;
+
+ return;
+}
+
+void
+camellia_set_encrypt_key(struct camellia_ctx *ctx,
+ unsigned length, const uint8_t *key)
+{
+ uint64_t k[4];
+
+ /* Subkeys according to the spec, 26 for short keys and 34 for large
+ keys */
+ uint64_t subkey[34];
+ uint64_t kw4;
+
+ uint32_t dw, tl, tr;
+ unsigned i;
+
+ k[0] = READ_UINT64(key);
+ k[1] = READ_UINT64(key + 8);
+
+ if (length == 16)
+ {
+ ctx->nkeys = 26;
+ camellia_setup128(subkey, k);
+ }
+ else
+ {
+ ctx->nkeys = 34;
+ k[2] = READ_UINT64(key + 16);
+
+ if (length == 24)
+ k[3] = ~k[2];
+ else
+ {
+ assert (length == 32);
+ k[3] = READ_UINT64(key + 24);
+ }
+ camellia_setup256(subkey, k);
+ }
+
+ /* absorb kw2 to other subkeys */
+ subkey[3] ^= subkey[1];
+ subkey[5] ^= subkey[1];
+ subkey[7] ^= subkey[1];
+ /* FIXME: gcc for x86_32 is smart enough to fetch the 32 low bits
+ and xor the result into the 32 high bits, but it still generates
+ worse code than for explicit 32-bit operations. */
+ subkey[1] ^= (subkey[1] & ~subkey[9]) << 32;
+ dw = (subkey[1] & subkey[9]) >> 32; subkey[1] ^= ROL32(1, dw);
+
+ subkey[11] ^= subkey[1];
+ subkey[13] ^= subkey[1];
+ subkey[15] ^= subkey[1];
+ subkey[1] ^= (subkey[1] & ~subkey[17]) << 32;
+ dw = (subkey[1] & subkey[17]) >> 32; subkey[1] ^= ROL32(1, dw);
+
+ subkey[19] ^= subkey[1];
+ subkey[21] ^= subkey[1];
+ subkey[23] ^= subkey[1];
+ if (ctx->nkeys < 32)
+ {
+ subkey[24] ^= subkey[1];
+ }
+ else
+ {
+ subkey[1] ^= (subkey[1] & ~subkey[25]) << 32;
+ dw = (subkey[1] & subkey[25]) >> 32; subkey[1] ^= ROL32(1, dw);
+
+ subkey[27] ^= subkey[1];
+ subkey[29] ^= subkey[1];
+ subkey[31] ^= subkey[1];
+ subkey[32] ^= subkey[1];
+ }
+
+ /* absorb kw4 to other subkeys */
+ kw4 = subkey[ctx->nkeys - 1];
+
+ if (ctx->nkeys >= 32)
+ {
+ subkey[30] ^= kw4;
+ subkey[28] ^= kw4;
+ subkey[26] ^= kw4;
+ kw4 ^= (kw4 & ~subkey[24]) << 32;
+ dw = (kw4 & subkey[24]) >> 32; kw4 ^= ROL32(1, dw);
+ }
+
+ subkey[22] ^= kw4;
+ subkey[20] ^= kw4;
+ subkey[18] ^= kw4;
+ kw4 ^= (kw4 & ~subkey[16]) << 32;
+ dw = (kw4 & subkey[16]) >> 32; kw4 ^= ROL32(1, dw);
+
+ subkey[14] ^= kw4;
+ subkey[12] ^= kw4;
+ subkey[10] ^= kw4;
+ kw4 ^= (kw4 & ~subkey[8]) << 32;
+ dw = (kw4 & subkey[8]) >> 32; kw4 ^= ROL32(1, dw);
+
+ subkey[6] ^= kw4;
+ subkey[4] ^= kw4;
+ subkey[2] ^= kw4;
+ subkey[0] ^= kw4;
+
+ /* key XOR is end of F-function */
+ ctx->keys[0] = subkey[0] ^subkey[2];
+
+ ctx->keys[2] = subkey[3];
+ ctx->keys[3] = subkey[2] ^ subkey[4];
+ ctx->keys[4] = subkey[3] ^ subkey[5];
+ ctx->keys[5] = subkey[4] ^ subkey[6];
+ ctx->keys[6] = subkey[5] ^ subkey[7];
+
+ tl = (subkey[10] >> 32) ^ (subkey[10] & ~subkey[8]);
+ dw = tl & (subkey[8] >> 32);
+ tr = subkey[10] ^ROL32(1, dw);
+ ctx->keys[7] = subkey[6] ^ ( ((uint64_t) tl << 32) | tr);
+
+ ctx->keys[8] = subkey[8];
+ ctx->keys[9] = subkey[9];
+
+ tl = (subkey[7] >> 32) ^ (subkey[7] & ~subkey[9]);
+ dw = tl & (subkey[9] >> 32);
+ tr = subkey[7] ^ ROL32(1, dw);
+ ctx->keys[10] = subkey[11] ^ ( ((uint64_t) tl << 32) | tr);
+
+ ctx->keys[11] = subkey[10] ^ subkey[12];
+ ctx->keys[12] = subkey[11] ^ subkey[13];
+ ctx->keys[13] = subkey[12] ^ subkey[14];
+ ctx->keys[14] = subkey[13] ^ subkey[15];
+
+ tl = (subkey[18] >> 32) ^ (subkey[18] & ~subkey[16]);
+ dw = tl & (subkey[16] >> 32);
+ tr = subkey[18] ^ ROL32(1, dw);
+ ctx->keys[15] = subkey[14] ^ ( ((uint64_t) tl << 32) | tr);
+
+ ctx->keys[16] = subkey[16];
+ ctx->keys[17] = subkey[17];
+
+ tl = (subkey[15] >> 32) ^ (subkey[15] & ~subkey[17]);
+ dw = tl & (subkey[17] >> 32);
+ tr = subkey[15] ^ ROL32(1, dw);
+ ctx->keys[18] = subkey[19] ^ ( ((uint64_t) tl << 32) | tr);
+
+ ctx->keys[19] = subkey[18] ^ subkey[20];
+ ctx->keys[20] = subkey[19] ^ subkey[21];
+ ctx->keys[21] = subkey[20] ^ subkey[22];
+ ctx->keys[22] = subkey[21] ^ subkey[23];
+
+ if (ctx->nkeys < 32)
+ {
+ ctx->keys[23] = subkey[22];
+ ctx->keys[24] = subkey[24] ^ subkey[23];
+
+ }
+ else
+ {
+ tl = (subkey[26] >> 32) ^ (subkey[26] & ~subkey[24]);
+ dw = tl & (subkey[24] >> 32);
+ tr = subkey[26] ^ ROL32(1, dw);
+ ctx->keys[23] = subkey[22] ^ ( ((uint64_t) tl << 32) | tr);
+
+ ctx->keys[24] = subkey[24];
+ ctx->keys[25] = subkey[25];
+
+ tl = (subkey[23] >> 32) ^ (subkey[23] & ~subkey[25]);
+ dw = tl & (subkey[25] >> 32);
+ tr = subkey[23] ^ ROL32(1, dw);
+ ctx->keys[26] = subkey[27] ^ ( ((uint64_t) tl << 32) | tr);
+
+ ctx->keys[27] = subkey[26] ^ subkey[28];
+ ctx->keys[28] = subkey[27] ^ subkey[29];
+ ctx->keys[29] = subkey[28] ^ subkey[30];
+ ctx->keys[30] = subkey[29] ^ subkey[31];
+
+ ctx->keys[31] = subkey[30];
+ ctx->keys[32] = subkey[32] ^ subkey[31];
+
+ }
+ for (i = 0; i < ctx->nkeys - 2; i += 8)
+ {
+
+ /* apply the inverse of the last half of F-function */
+ CAMELLIA_F_HALF_INV(ctx->keys[i+2]);
+ CAMELLIA_F_HALF_INV(ctx->keys[i+3]);
+ CAMELLIA_F_HALF_INV(ctx->keys[i+4]);
+ CAMELLIA_F_HALF_INV(ctx->keys[i+5]);
+ CAMELLIA_F_HALF_INV(ctx->keys[i+6]);
+ CAMELLIA_F_HALF_INV(ctx->keys[i+7]);
+ }
+}