summaryrefslogtreecommitdiff
path: root/twofish.c
blob: 6450b1c5a5fc9a54aed63c1c7a9a3af6d2355272 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
/* twofish.c
 *
 * The twofish block cipher.
 */

/* twofish - An implementation of the twofish cipher.
 * Copyright (C) 1999 Ruud de Rooij <ruud@debian.org>
 *
 * Modifications for lsh, integrated testing
 * Copyright (C) 1999 J.H.M. Dassen (Ray) <jdassen@wi.LeidenUniv.nl>
 *
 * Integrated with the nettle library,
 * Copyright (C) 2001 Niels Möller
 */

/* nettle, low-level cryptographics library
 *
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * The GNU MP Library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 */

#include "twofish.h"

/* Bitwise rotations on 32-bit words.  These are defined as macros that
 * evaluate their argument twice, so do not apply to any expressions with
 * side effects.
 */

#define rol1(x) (((x) << 1) | (((x) & 0x80000000) >> 31))
#define rol8(x) (((x) << 8) | (((x) & 0xFF000000) >> 24))
#define rol9(x) (((x) << 9) | (((x) & 0xFF800000) >> 23))
#define ror1(x) (((x) >> 1) | (((x) & 0x00000001) << 31))

/* void bytes_to_words(word * dest, const byte * src, int n);
 * void words_to_bytes(byte * dest, const byte * src, int n);
 *
 * Copy n*4 bytes to n words and vice versa.
 */

#if defined(__i386__)

/* In the i386 case, these are simply memcpy's since the memory layout
 * of an array of bytes and an array of words is identical.
 */

#define bytes_to_words(dest,src,n) memcpy(dest,src,(n)*4)
#define words_to_bytes(dest,src,n) memcpy(dest,src,(n)*4)

#else

/* These versions are independent of endianness and word size. */

static void
bytes_to_words(word *dest, const byte *src, int n)
{
  while (n-- > 0)
    {
      *dest++ = src[0] | src[1] << 8 | src[2] << 16 | src[3] << 24;
      src += 4;
    }
}

static void
words_to_bytes(byte *dest, const word *src, int n)
{
  while (n-- > 0)
    {
      *dest++ = *src;
      *dest++ = *src >> 8;
      *dest++ = *src >> 16;
      *dest++ = *src >> 24;
      src++;
    }
}

#endif

/* ------------------------------------------------------------------------- */

/* The permutations q0 and q1.  These are fixed permutations on 8-bit values.
 * The permutations have been computed using the program generate_q
 * which is distributed along with this file.
 */

static byte q0[] = { 0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76,
                     0x9A, 0x92, 0x80, 0x78, 0xE4, 0xDD, 0xD1, 0x38,
                     0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
                     0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48,
                     0xF2, 0xD0, 0x8B, 0x30, 0x84, 0x54, 0xDF, 0x23,
                     0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
                     0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C,
                     0xA6, 0xEB, 0xA5, 0xBE, 0x16, 0x0C, 0xE3, 0x61,
                     0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
                     0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1,
                     0xE1, 0xE6, 0xBD, 0x45, 0xE2, 0xF4, 0xB6, 0x66,
                     0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
                     0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA,
                     0xEA, 0x77, 0x39, 0xAF, 0x33, 0xC9, 0x62, 0x71,
                     0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
                     0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7,
                     0xA1, 0x1D, 0xAA, 0xED, 0x06, 0x70, 0xB2, 0xD2,
                     0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
                     0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB,
                     0x9E, 0x9C, 0x52, 0x1B, 0x5F, 0x93, 0x0A, 0xEF,
                     0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
                     0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64,
                     0x2A, 0xCE, 0xCB, 0x2F, 0xFC, 0x97, 0x05, 0x7A,
                     0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
                     0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02,
                     0xB8, 0xDA, 0xB0, 0x17, 0x55, 0x1F, 0x8A, 0x7D,
                     0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
                     0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34,
                     0x6E, 0x50, 0xDE, 0x68, 0x65, 0xBC, 0xDB, 0xF8,
                     0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
                     0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00,
                     0x6F, 0x9D, 0x36, 0x42, 0x4A, 0x5E, 0xC1, 0xE0, };

static byte q1[] = { 0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8,
                     0x4A, 0xD3, 0xE6, 0x6B, 0x45, 0x7D, 0xE8, 0x4B,
                     0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
                     0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F,
                     0x5E, 0xBA, 0xAE, 0x5B, 0x8A, 0x00, 0xBC, 0x9D,
                     0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
                     0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3,
                     0xB2, 0x73, 0x4C, 0x54, 0x92, 0x74, 0x36, 0x51,
                     0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
                     0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C,
                     0x13, 0x95, 0x9C, 0xC7, 0x24, 0x46, 0x3B, 0x70,
                     0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
                     0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC,
                     0x03, 0x6F, 0x08, 0xBF, 0x40, 0xE7, 0x2B, 0xE2,
                     0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
                     0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17,
                     0x66, 0x94, 0xA1, 0x1D, 0x3D, 0xF0, 0xDE, 0xB3,
                     0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
                     0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49,
                     0x81, 0x88, 0xEE, 0x21, 0xC4, 0x1A, 0xEB, 0xD9,
                     0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
                     0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48,
                     0x4F, 0xF2, 0x65, 0x8E, 0x78, 0x5C, 0x58, 0x19,
                     0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
                     0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5,
                     0xCE, 0xE9, 0x68, 0x44, 0xE0, 0x4D, 0x43, 0x69,
                     0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
                     0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC,
                     0x22, 0xC9, 0xC0, 0x9B, 0x89, 0xD4, 0xED, 0xAB,
                     0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
                     0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2,
                     0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xBE, 0x91, };

/* ------------------------------------------------------------------------- */

/* byte gf_multiply(byte p, byte a, byte b)
 *
 * Multiplication in GF(2^8).
 *
 * This function multiplies a times b in the Galois Field GF(2^8) with
 * primitive polynomial p.
 * The representation of the polynomials a, b, and p uses bits with
 * values 2^i to represent the terms x^i.  The polynomial p contains an
 * implicit term x^8.
 *
 * Note that addition and subtraction in GF(2^8) is simply the XOR
 * operation.
 */

static byte
gf_multiply(byte p, byte a, byte b)
{
  word shift  = b;
  byte result = 0;
  while (a)
    {
      if (a & 1) result ^= shift;
      a = a >> 1;
      shift = shift << 1;
      if (shift & 0x100) shift ^= p;
    }
  return result;
}

/* ------------------------------------------------------------------------- */

/* The matrix RS as specified in section 4.3 the twofish paper. */

static byte rs_matrix[4][8] = {
    { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
    { 0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5 },
    { 0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19 },
    { 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03 } };

/* word compute_s(word m1, word m2);
 *
 * Computes the value RS * M, where M is a byte vector composed of the
 * bytes of m1 and m2.  Arithmetic is done in GF(2^8) with primitive
 * polynomial x^8 + x^6 + x^3 + x^2 + 1.
 *
 * This function is used to compute the sub-keys S which are in turn used
 * to generate the S-boxes.
 */

static word
compute_s(word m1, word m2)
{
  word s = 0;
  int i;
  for (i = 0; i < 4; i++)
    s |=  ((  gf_multiply(0x4D, m1,       rs_matrix[i][0])
	    ^ gf_multiply(0x4D, m1 >> 8,  rs_matrix[i][1])
	    ^ gf_multiply(0x4D, m1 >> 16, rs_matrix[i][2])
	    ^ gf_multiply(0x4D, m1 >> 24, rs_matrix[i][3])
	    ^ gf_multiply(0x4D, m2,       rs_matrix[i][4])
	    ^ gf_multiply(0x4D, m2 >> 8,  rs_matrix[i][5])
	    ^ gf_multiply(0x4D, m2 >> 16, rs_matrix[i][6])
	    ^ gf_multiply(0x4D, m2 >> 24, rs_matrix[i][7])) << (i*8));
  return s;
}

/* ------------------------------------------------------------------------- */

/* This table describes which q S-boxes are used for each byte in each stage
 * of the function h, cf. figure 2 of the twofish paper.
 */

static byte * q_table[4][5] = { { q1, q1, q0, q0, q1 },
                                { q0, q1, q1, q0, q0 },
                                { q0, q0, q0, q1, q1 },
                                { q1, q0, q1, q1, q0 } };

/* The matrix MDS as specified in section 4.3.2 of the twofish paper. */

static byte mds_matrix[4][4] = { { 0x01, 0xEF, 0x5B, 0x5B },
				 { 0x5B, 0xEF, 0xEF, 0x01 },
				 { 0xEF, 0x5B, 0x01, 0xEF },
				 { 0xEF, 0x01, 0xEF, 0x5B } };

/* word h_byte(int k, int i, byte x, byte l0, byte l1, byte l2, byte l3);
 *
 * Perform the h function (section 4.3.2) on one byte.  It consists of
 * repeated applications of the q permutation, followed by a XOR with
 * part of a sub-key.  Finally, the value is multiplied by one column of
 * the MDS matrix.  To obtain the result for a full word, the results of
 * h for the individual bytes are XORed.
 *
 * k is the key size (/ 64 bits), i is the byte number (0 = LSB), x is the
 * actual byte to apply the function to; l0, l1, l2, and l3 are the
 * appropriate bytes from the subkey.  Note that only l0..l(k-1) are used.
 */

static word
h_byte(int k, int i, byte x, byte l0, byte l1, byte l2, byte l3)
{
  byte y = q_table[i][4][l0 ^
            q_table[i][3][l1 ^
              q_table[i][2][k == 2 ? x : l2 ^
                q_table[i][1][k == 3 ? x : l3 ^ q_table[i][0][x]]]]];

  return ( ((word)gf_multiply(0x69, mds_matrix[0][i], y))
	   | ((word)gf_multiply(0x69, mds_matrix[1][i], y) << 8)
	   | ((word)gf_multiply(0x69, mds_matrix[2][i], y) << 16)
	   | ((word)gf_multiply(0x69, mds_matrix[3][i], y) << 24) );
}

/* word h(int k, byte x, word l0, word l1, word l2, word l3);
 *
 * Perform the function h on a word.  See the description of h_byte() above.
 */

static word
h(int k, byte x, word l0, word l1, word l2, word l3)
{
  return (  h_byte(k, 0, x, l0,       l1,       l2,       l3)
	  ^ h_byte(k, 1, x, l0 >> 8,  l1 >> 8,  l2 >> 8,  l3 >> 8)
	  ^ h_byte(k, 2, x, l0 >> 16, l1 >> 16, l2 >> 16, l3 >> 16)
	  ^ h_byte(k, 3, x, l0 >> 24, l1 >> 24, l2 >> 24, l3 >> 24) );
}


/*
 * Sanity check using the test vectors from appendix A.1 of the Twofish paper.
 */
int
twofish_selftest(void)
{
  byte testkey128[16] =
  { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
  byte ciphertext128[16] =
  {
    0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32,
    0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A };
  byte testkey192[24] =
  { 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
    0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10,
    0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 };
  byte ciphertext192[16] =
  { 0xCF, 0xD1, 0xD2, 0xE5, 0xA9, 0xBE, 0x9C, 0xDF,
    0x50, 0x1F, 0x13, 0xB8, 0x92, 0xBD, 0x22, 0x48 };

  byte testkey256[32] =
  { 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
    0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10,
    0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
    0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF };
  byte ciphertext256[16] =
  { 0x37, 0x52, 0x7B, 0xE0, 0x05, 0x23, 0x34, 0xB8,
    0x9F, 0x0C, 0xFC, 0xCA, 0xE8, 0x7C, 0xFA, 0x20 };

  TWOFISH_context context;
  byte plaintext[16], ciphertext[16];

  twofish_setup(&context, 16, testkey128);
  memset(plaintext, 0, 16);

  twofish_encrypt(&context, plaintext, ciphertext);
  if (memcmp(ciphertext, ciphertext128, 16)) {
    return 0;
  }

  twofish_setup(&context, 24, testkey192);
  memset(plaintext, 0, 16);

  twofish_encrypt(&context, plaintext, ciphertext);
  if (memcmp(ciphertext, ciphertext192, 16)) {
    return 0;
  }

  twofish_setup(&context, 32, testkey256);
  memset(plaintext, 0, 16);

  twofish_encrypt(&context, plaintext, ciphertext);
  if (memcmp(ciphertext, ciphertext256, 16)) {
    return 0;
  }

  return 1;
}

/* ------------------------------------------------------------------------- */

/* API */

/* Structure which contains the tables containing the subkeys and the
 * key-dependent s-boxes.
 */


/* void twofish_setup(TWOFISH_context *ctx, size_t keysize, const UINT8 * key);
 *
 * Set up internal tables required for twofish encryption and decryption.
 *
 * The key size is specified in bytes.  Key sizes up to 32 bytes are
 * supported.  Larger key sizes are silently truncated.  
 */

void
twofish_setup(TWOFISH_context * context, size_t keysize, const UINT8 *key)
{
  byte key_copy[32];
  word m[8], s[4], t;
  int i, j, k;

#ifndef NDEBUG
  static int initialized = 0;

  if (!initialized)
    {
      initialized = 1;
      assert(twofish_selftest());
    }
#endif

  /* Extend or truncate key as necessary */

  memset(key_copy, 0, 32);
  if (keysize > 32)
    keysize = 32;
  memcpy(key_copy, key, keysize);

  bytes_to_words(m, key_copy, (keysize + 3)/4);

  if (keysize <= 16)
    k = 2;
  else if (keysize <= 24)
    k = 3;
  else
    k = 4;

  /* Compute sub-keys */

  for (i = 0; i < 20; i++)
    {
      t = h(k, 2*i+1, m[1], m[3], m[5], m[7]);
      t = rol8(t);
      t += (context->keys[2*i] =
	    t + h(k, 2*i, m[0], m[2], m[4], m[6]));
      t = rol9(t);
      context->keys[2*i+1] = t;
    }

  /* Compute key-dependent S-boxes */

  for (i = 0; i < k; i++)
    s[k-1-i] = compute_s(m[2*i], m[2*i+1]);

  for (i = 0; i < 4; i++)
    for (j = 0; j < 256; j++)
      context->s_box[i][j] = h_byte(k, i, j,
				    s[0] >> (i*8),
				    s[1] >> (i*8),
				    s[2] >> (i*8),
				    s[3] >> (i*8));
}

/* void twofish_encrypt(TWOFISH_context *context,
 *                      const UINT8 *plaintext,
 *                      UINT8 *ciphertext);
 *
 * Encrypt 16 bytes of data with the twofish algorithm.
 *
 * Before this function can be used, twofish_setup() must be used in order to
 * set up various tables required for the encryption algorithm.
 * 
 * This function always encrypts 16 bytes of plaintext to 16 bytes of
 * ciphertext.  The memory areas of the plaintext and the ciphertext can
 * overlap.
 */

void
twofish_encrypt(TWOFISH_context *context,
		const UINT8 *plaintext,
		UINT8 *ciphertext)
{
  word words[4];
  word r0, r1, r2, r3, t0, t1;
  int i;
  word * keys        = context->keys;
  word (*s_box)[256] = context->s_box;

  bytes_to_words(words, plaintext, 4);

  r0 = words[0] ^ keys[0];
  r1 = words[1] ^ keys[1];
  r2 = words[2] ^ keys[2];
  r3 = words[3] ^ keys[3];

  for (i = 0; i < 8; i++) {
    t1 = (  s_box[1][r1 & 0xFF]
	  ^ s_box[2][(r1 >> 8) & 0xFF]
	  ^ s_box[3][(r1 >> 16) & 0xFF]
	  ^ s_box[0][(r1 >> 24) & 0xFF]);
    t0 = (  s_box[0][r0 & 0xFF]
	  ^ s_box[1][(r0 >> 8) & 0xFF]
	  ^ s_box[2][(r0 >> 16) & 0xFF]
	  ^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
    r3 = (t1 + t0 + keys[4*i+9]) ^ rol1(r3);
    r2 = (t0 + keys[4*i+8]) ^ r2;
    r2 = ror1(r2);

    t1 = (  s_box[1][r3 & 0xFF]
	  ^ s_box[2][(r3 >> 8) & 0xFF]
	  ^ s_box[3][(r3 >> 16) & 0xFF]
	  ^ s_box[0][(r3 >> 24) & 0xFF]);
    t0 = (  s_box[0][r2 & 0xFF]
	  ^ s_box[1][(r2 >> 8) & 0xFF]
	  ^ s_box[2][(r2 >> 16) & 0xFF]
	  ^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
    r1 = (t1 + t0 + keys[4*i+11]) ^ rol1(r1);
    r0 = (t0 + keys[4*i+10]) ^ r0;
    r0 = ror1(r0);
  }

  words[0] = r2 ^ keys[4];
  words[1] = r3 ^ keys[5];
  words[2] = r0 ^ keys[6];
  words[3] = r1 ^ keys[7];

  words_to_bytes(ciphertext, words, 4);
}

/* void twofish_decrypt(TWOFISH_context *context,
 *                      const UINT8 *ciphertext,
 *                      UINT8 *plaintext);
 *
 * Decrypt 16 bytes of data with the twofish algorithm.
 *
 * Before this function can be used, twofish_setup() must be used in order to
 * set up various tables required for the decryption algorithm.
 * 
 * This function always decrypts 16 bytes of ciphertext to 16 bytes of
 * plaintext.  The memory areas of the plaintext and the ciphertext can
 * overlap.
 */

void
twofish_decrypt(TWOFISH_context *context,
		const UINT8 *ciphertext,
		UINT8 *plaintext)
{
  word words[4];
  word r0, r1, r2, r3, t0, t1;
  int i;
  word *keys  = context->keys;
  word (*s_box)[256] = context->s_box;

  bytes_to_words(words, ciphertext, 4);

  r0 = words[2] ^ keys[6];
  r1 = words[3] ^ keys[7];
  r2 = words[0] ^ keys[4];
  r3 = words[1] ^ keys[5];

  for (i = 0; i < 8; i++) {
    t1 = (  s_box[1][r3 & 0xFF]
	  ^ s_box[2][(r3 >> 8) & 0xFF]
	  ^ s_box[3][(r3 >> 16) & 0xFF]
	  ^ s_box[0][(r3 >> 24) & 0xFF]);
    t0 = (  s_box[0][r2 & 0xFF]
	  ^ s_box[1][(r2 >> 8) & 0xFF]
	  ^ s_box[2][(r2 >> 16) & 0xFF]
	  ^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
    r1 = (t1 + t0 + keys[39-4*i]) ^ r1;
    r1 = ror1(r1);
    r0 = (t0 + keys[38-4*i]) ^ rol1(r0);

    t1 = (  s_box[1][r1 & 0xFF]
	  ^ s_box[2][(r1 >> 8) & 0xFF]
	  ^ s_box[3][(r1 >> 16) & 0xFF]
	  ^ s_box[0][(r1 >> 24) & 0xFF]);
    t0 = (  s_box[0][r0 & 0xFF]
	  ^ s_box[1][(r0 >> 8) & 0xFF]
	  ^ s_box[2][(r0 >> 16) & 0xFF]
	  ^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
    r3 = (t1 + t0 + keys[37-4*i]) ^ r3;
    r3 = ror1(r3);
    r2 = (t0 + keys[36-4*i]) ^ rol1(r2);
  }

  words[0] = r0 ^ keys[0];
  words[1] = r1 ^ keys[1];
  words[2] = r2 ^ keys[2];
  words[3] = r3 ^ keys[3];

  words_to_bytes(plaintext, words, 4);
}