summaryrefslogtreecommitdiff
path: root/yarrow256.c
blob: 16722c3aa3c82d74ad3180e6beb263f6a51347cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/* yarrow256.c
 *
 * The yarrow pseudo-randomness generator.
 */

/* nettle, low-level cryptographics library
 *
 * Copyright (C) 2001 Niels Möller
 *  
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * The nettle library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 */

#include "yarrow.h"

#include <assert.h>
#include <string.h>

/* Parameters */

/* An upper limit on the entropy (in bits) in one octet of sample
 * data. */
#define YARROW_MULTIPLIER 4

/* Generator gate threshold */
#define YARROW_GATE_THRESHOLD 10

/* Entropy estimates sticks to this value, it is treated as infinity
 * in calculations. It should fit comfortably in an uint32_t, to avoid
 * overflows. */
#define YARROW_MAX_ENTROPY 0x100000

void
yarrow256_init(struct yarrow256_ctx *ctx,
	       int n,
	       struct yarrow_source *s)
{
  sha256_init(&ctx->pools[0]);
  sha256_init(&ctx->pools[1]);

  ctx->seeded = 0;

  ctx->nsources = n;
  ctx->sources = s;
}

void
yarrow256_update(struct yarrow256_ctx *ctx,
		 unsigned source_index, unsigned entropy,
		 unsigned length, const uint8_t *data)
{
  enum yarrow_pool_id current;
  struct yarrow_source *source;
  
  assert(source_index < ctx->nsources);

  if (!length)
    /* Nothing happens */
    return;

  source = &ctx->sources[source_index];
  
  if (!ctx->seeded)
    /* While seeding, use the slow pool */
    current = YARROW_SLOW;
  else
    {
      current = source->next;
      source->next = !source->next;
    }

  sha256_update(&ctx->pools[current], length, data);
 
  /* FIXME: Use different counters for fast and slow poll? Or a total
   * for fast poll, and individual for slow poll? */

  /* NOTE: We should be careful to avoid overflows in the estimates. */
  if (source->estimate[current] < YARROW_MAX_ENTROPY)
    {
      if (entropy > YARROW_MAX_ENTROPY)
	entropy = YARROW_MAX_ENTROPY;

      if ( (length < (YARROW_MAX_ENTROPY / YARROW_MULTIPLIER))
	   && (entropy > YARROW_MULTIPLIER * length) )
	entropy = YARROW_MULTIPLIER * length;

      /* FIXME: Calling a more sophisticated estimater should be done
       * here. */

      entropy += source->estimate[current];
      if (entropy > YARROW_MAX_ENTROPY)
	entropy = YARROW_MAX_ENTROPY;

      source->estimate[current] = entropy;
    }

  /* Check for seed/reseed */
  
}

static void
yarrow_generate_block(struct yarrow256_ctx *ctx,
		      uint8_t *block)
{
  unsigned i;
  
  aes_encrypt(&ctx->key, AES_BLOCK_SIZE, block, ctx->counter);

  /* Increment counter, treating it as a big-endian number.
   *
   * We could keep a representation of th counter as 4 32-bit values,
   * and write entire words (in big-endian byteorder) into the counter
   * block, whenever they change. */
  for (i = AES_BLOCK_SIZE; i--; )
    {
      if (++ctx->counter[i])
	break;
    }
}

static void
yarrow_generate_block_with_gate(struct yarrow256_ctx *ctx,
				uint8_t *block)
{
  if (ctx->block_count < YARROW_GATE_THRESHOLD)
    {
      yarrow_generate_block(ctx, block);
      ctx->block_count++;
    }
  else
    {
      uint8_t key[AES_MAX_KEY_SIZE];
      unsigned i;

      for (i = 0; i < sizeof(key); i+= AES_BLOCK_SIZE)
	yarrow_generate_block(ctx, key + i);

      aes_set_key(&ctx->key, sizeof(key), key);

      yarrow_generate_block(ctx, block);
      ctx->block_count = 1;
    }
}

void
yarrow256_random(struct yarrow256_ctx *ctx, unsigned length, uint8_t *dst)
{
  assert(ctx->seeded);

  if (ctx->index < AES_BLOCK_SIZE)
    {
      unsigned left = AES_BLOCK_SIZE - ctx->index;

      if (length <= left)
	{
	  memcpy(dst, ctx->buffer + ctx->index, length);
	  ctx->index += length;
	  return;
	}

      memcpy(dst, ctx->buffer + ctx->index, left);
      dst += left;
      length -= left;

      assert(length);
    }

  while (length > AES_BLOCK_SIZE)
    {
      yarrow_generate_block_with_gate(ctx, dst);
      dst += AES_BLOCK_SIZE;
      length -= AES_BLOCK_SIZE;
    }
  if (length)
    {
      assert(length < AES_BLOCK_SIZE);
      yarrow_generate_block_with_gate(ctx, ctx->buffer);
      memcpy(dst, ctx->buffer, length);
      ctx->index = length;
    }
}