summaryrefslogtreecommitdiff
path: root/deps/v8/src/objects-inl.h
diff options
context:
space:
mode:
authorRyan <ry@tinyclouds.org>2009-04-22 19:35:47 +0200
committerRyan <ry@tinyclouds.org>2009-04-22 19:35:47 +0200
commit40c0f755c998d2615fe8466aab20c6d81bd463e7 (patch)
tree51fcb08ba1bd3f745ceb43fd5f814a5700079881 /deps/v8/src/objects-inl.h
parenta93cf503073ba0258c55dec4dc325bdc1509b739 (diff)
downloadnode-new-40c0f755c998d2615fe8466aab20c6d81bd463e7.tar.gz
import full versions of dependency libraries!
Diffstat (limited to 'deps/v8/src/objects-inl.h')
-rw-r--r--deps/v8/src/objects-inl.h2597
1 files changed, 2597 insertions, 0 deletions
diff --git a/deps/v8/src/objects-inl.h b/deps/v8/src/objects-inl.h
new file mode 100644
index 0000000000..c2143ea026
--- /dev/null
+++ b/deps/v8/src/objects-inl.h
@@ -0,0 +1,2597 @@
+// Copyright 2006-2008 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Review notes:
+//
+// - The use of macros in these inline functions may seem superfluous
+// but it is absolutely needed to make sure gcc generates optimal
+// code. gcc is not happy when attempting to inline too deep.
+//
+
+#ifndef V8_OBJECTS_INL_H_
+#define V8_OBJECTS_INL_H_
+
+#include "objects.h"
+#include "contexts.h"
+#include "conversions-inl.h"
+#include "property.h"
+
+namespace v8 { namespace internal {
+
+PropertyDetails::PropertyDetails(Smi* smi) {
+ value_ = smi->value();
+}
+
+
+Smi* PropertyDetails::AsSmi() {
+ return Smi::FromInt(value_);
+}
+
+
+#define CAST_ACCESSOR(type) \
+ type* type::cast(Object* object) { \
+ ASSERT(object->Is##type()); \
+ return reinterpret_cast<type*>(object); \
+ }
+
+
+#define INT_ACCESSORS(holder, name, offset) \
+ int holder::name() { return READ_INT_FIELD(this, offset); } \
+ void holder::set_##name(int value) { WRITE_INT_FIELD(this, offset, value); }
+
+
+#define ACCESSORS(holder, name, type, offset) \
+ type* holder::name() { return type::cast(READ_FIELD(this, offset)); } \
+ void holder::set_##name(type* value, WriteBarrierMode mode) { \
+ WRITE_FIELD(this, offset, value); \
+ CONDITIONAL_WRITE_BARRIER(this, offset, mode); \
+ }
+
+
+
+#define SMI_ACCESSORS(holder, name, offset) \
+ int holder::name() { \
+ Object* value = READ_FIELD(this, offset); \
+ return Smi::cast(value)->value(); \
+ } \
+ void holder::set_##name(int value) { \
+ WRITE_FIELD(this, offset, Smi::FromInt(value)); \
+ }
+
+
+#define BOOL_ACCESSORS(holder, field, name, offset) \
+ bool holder::name() { \
+ return BooleanBit::get(field(), offset); \
+ } \
+ void holder::set_##name(bool value) { \
+ set_##field(BooleanBit::set(field(), offset, value)); \
+ }
+
+
+bool Object::IsSmi() {
+ return HAS_SMI_TAG(this);
+}
+
+
+bool Object::IsHeapObject() {
+ return HAS_HEAP_OBJECT_TAG(this);
+}
+
+
+bool Object::IsHeapNumber() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == HEAP_NUMBER_TYPE;
+}
+
+
+bool Object::IsString() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() < FIRST_NONSTRING_TYPE;
+}
+
+
+bool Object::IsSymbol() {
+ if (!this->IsHeapObject()) return false;
+ uint32_t type = HeapObject::cast(this)->map()->instance_type();
+ return (type & (kIsNotStringMask | kIsSymbolMask)) ==
+ (kStringTag | kSymbolTag);
+}
+
+
+bool Object::IsConsString() {
+ if (!this->IsHeapObject()) return false;
+ uint32_t type = HeapObject::cast(this)->map()->instance_type();
+ return (type & (kIsNotStringMask | kStringRepresentationMask)) ==
+ (kStringTag | kConsStringTag);
+}
+
+
+#ifdef DEBUG
+// These are for cast checks. If you need one of these in release
+// mode you should consider using a StringShape before moving it out
+// of the ifdef
+
+bool Object::IsSeqString() {
+ if (!IsString()) return false;
+ return StringShape(String::cast(this)).IsSequential();
+}
+
+
+bool Object::IsSeqAsciiString() {
+ if (!IsString()) return false;
+ return StringShape(String::cast(this)).IsSequential() &&
+ StringShape(String::cast(this)).IsAsciiRepresentation();
+}
+
+
+bool Object::IsSeqTwoByteString() {
+ if (!IsString()) return false;
+ return StringShape(String::cast(this)).IsSequential() &&
+ StringShape(String::cast(this)).IsTwoByteRepresentation();
+}
+
+
+bool Object::IsExternalString() {
+ if (!IsString()) return false;
+ return StringShape(String::cast(this)).IsExternal();
+}
+
+
+bool Object::IsExternalAsciiString() {
+ if (!IsString()) return false;
+ return StringShape(String::cast(this)).IsExternal() &&
+ StringShape(String::cast(this)).IsAsciiRepresentation();
+}
+
+
+bool Object::IsExternalTwoByteString() {
+ if (!IsString()) return false;
+ return StringShape(String::cast(this)).IsExternal() &&
+ StringShape(String::cast(this)).IsTwoByteRepresentation();
+}
+
+
+bool Object::IsSlicedString() {
+ if (!IsString()) return false;
+ return StringShape(String::cast(this)).IsSliced();
+}
+
+
+#endif // DEBUG
+
+
+StringShape::StringShape(String* str)
+ : type_(str->map()->instance_type()) {
+ set_valid();
+ ASSERT((type_ & kIsNotStringMask) == kStringTag);
+}
+
+
+StringShape::StringShape(Map* map)
+ : type_(map->instance_type()) {
+ set_valid();
+ ASSERT((type_ & kIsNotStringMask) == kStringTag);
+}
+
+
+StringShape::StringShape(InstanceType t)
+ : type_(static_cast<uint32_t>(t)) {
+ set_valid();
+ ASSERT((type_ & kIsNotStringMask) == kStringTag);
+}
+
+
+bool StringShape::IsSymbol() {
+ ASSERT(valid());
+ return (type_ & kIsSymbolMask) == kSymbolTag;
+}
+
+
+bool StringShape::IsAsciiRepresentation() {
+ return (type_ & kStringEncodingMask) == kAsciiStringTag;
+}
+
+
+bool StringShape::IsTwoByteRepresentation() {
+ return (type_ & kStringEncodingMask) == kTwoByteStringTag;
+}
+
+
+bool StringShape::IsCons() {
+ return (type_ & kStringRepresentationMask) == kConsStringTag;
+}
+
+
+bool StringShape::IsSliced() {
+ return (type_ & kStringRepresentationMask) == kSlicedStringTag;
+}
+
+
+bool StringShape::IsExternal() {
+ return (type_ & kStringRepresentationMask) == kExternalStringTag;
+}
+
+
+bool StringShape::IsSequential() {
+ return (type_ & kStringRepresentationMask) == kSeqStringTag;
+}
+
+
+StringRepresentationTag StringShape::representation_tag() {
+ uint32_t tag = (type_ & kStringRepresentationMask);
+ return static_cast<StringRepresentationTag>(tag);
+}
+
+
+uint32_t StringShape::full_representation_tag() {
+ return (type_ & (kStringRepresentationMask | kStringEncodingMask));
+}
+
+
+uint32_t StringShape::size_tag() {
+ return (type_ & kStringSizeMask);
+}
+
+
+bool StringShape::IsSequentialAscii() {
+ return full_representation_tag() == (kSeqStringTag | kAsciiStringTag);
+}
+
+
+bool StringShape::IsSequentialTwoByte() {
+ return full_representation_tag() == (kSeqStringTag | kTwoByteStringTag);
+}
+
+
+bool StringShape::IsExternalAscii() {
+ return full_representation_tag() == (kExternalStringTag | kAsciiStringTag);
+}
+
+
+bool StringShape::IsExternalTwoByte() {
+ return full_representation_tag() == (kExternalStringTag | kTwoByteStringTag);
+}
+
+
+uc32 FlatStringReader::Get(int index) {
+ ASSERT(0 <= index && index <= length_);
+ if (is_ascii_) {
+ return static_cast<const byte*>(start_)[index];
+ } else {
+ return static_cast<const uc16*>(start_)[index];
+ }
+}
+
+
+bool Object::IsNumber() {
+ return IsSmi() || IsHeapNumber();
+}
+
+
+bool Object::IsByteArray() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == BYTE_ARRAY_TYPE;
+}
+
+
+bool Object::IsFailure() {
+ return HAS_FAILURE_TAG(this);
+}
+
+
+bool Object::IsRetryAfterGC() {
+ return HAS_FAILURE_TAG(this)
+ && Failure::cast(this)->type() == Failure::RETRY_AFTER_GC;
+}
+
+
+bool Object::IsOutOfMemoryFailure() {
+ return HAS_FAILURE_TAG(this)
+ && Failure::cast(this)->IsOutOfMemoryException();
+}
+
+
+bool Object::IsException() {
+ return this == Failure::Exception();
+}
+
+
+bool Object::IsJSObject() {
+ return IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_OBJECT_TYPE;
+}
+
+
+bool Object::IsJSContextExtensionObject() {
+ return IsHeapObject()
+ && (HeapObject::cast(this)->map()->instance_type() ==
+ JS_CONTEXT_EXTENSION_OBJECT_TYPE);
+}
+
+
+bool Object::IsMap() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == MAP_TYPE;
+}
+
+
+bool Object::IsFixedArray() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == FIXED_ARRAY_TYPE;
+}
+
+
+bool Object::IsDescriptorArray() {
+ return IsFixedArray();
+}
+
+
+bool Object::IsContext() {
+ return Object::IsHeapObject()
+ && (HeapObject::cast(this)->map() == Heap::context_map() ||
+ HeapObject::cast(this)->map() == Heap::catch_context_map() ||
+ HeapObject::cast(this)->map() == Heap::global_context_map());
+}
+
+
+bool Object::IsCatchContext() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map() == Heap::catch_context_map();
+}
+
+
+bool Object::IsGlobalContext() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map() == Heap::global_context_map();
+}
+
+
+bool Object::IsJSFunction() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == JS_FUNCTION_TYPE;
+}
+
+
+template <> inline bool Is<JSFunction>(Object* obj) {
+ return obj->IsJSFunction();
+}
+
+
+bool Object::IsCode() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == CODE_TYPE;
+}
+
+
+bool Object::IsOddball() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == ODDBALL_TYPE;
+}
+
+
+bool Object::IsSharedFunctionInfo() {
+ return Object::IsHeapObject() &&
+ (HeapObject::cast(this)->map()->instance_type() ==
+ SHARED_FUNCTION_INFO_TYPE);
+}
+
+
+bool Object::IsJSValue() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == JS_VALUE_TYPE;
+}
+
+
+bool Object::IsStringWrapper() {
+ return IsJSValue() && JSValue::cast(this)->value()->IsString();
+}
+
+
+bool Object::IsProxy() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == PROXY_TYPE;
+}
+
+
+bool Object::IsBoolean() {
+ return IsTrue() || IsFalse();
+}
+
+
+bool Object::IsJSArray() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == JS_ARRAY_TYPE;
+}
+
+
+bool Object::IsJSRegExp() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == JS_REGEXP_TYPE;
+}
+
+
+template <> inline bool Is<JSArray>(Object* obj) {
+ return obj->IsJSArray();
+}
+
+
+bool Object::IsHashTable() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map() == Heap::hash_table_map();
+}
+
+
+bool Object::IsDictionary() {
+ return IsHashTable() && this != Heap::symbol_table();
+}
+
+
+bool Object::IsSymbolTable() {
+ return IsHashTable() && this == Heap::symbol_table();
+}
+
+
+bool Object::IsCompilationCacheTable() {
+ return IsHashTable();
+}
+
+
+bool Object::IsMapCache() {
+ return IsHashTable();
+}
+
+
+bool Object::IsLookupCache() {
+ return IsHashTable();
+}
+
+
+bool Object::IsPrimitive() {
+ return IsOddball() || IsNumber() || IsString();
+}
+
+
+bool Object::IsJSGlobalProxy() {
+ bool result = IsHeapObject() &&
+ (HeapObject::cast(this)->map()->instance_type() ==
+ JS_GLOBAL_PROXY_TYPE);
+ ASSERT(!result || IsAccessCheckNeeded());
+ return result;
+}
+
+
+bool Object::IsGlobalObject() {
+ if (!IsHeapObject()) return false;
+
+ InstanceType type = HeapObject::cast(this)->map()->instance_type();
+ return type == JS_GLOBAL_OBJECT_TYPE ||
+ type == JS_BUILTINS_OBJECT_TYPE;
+}
+
+
+bool Object::IsJSGlobalObject() {
+ return IsHeapObject() &&
+ (HeapObject::cast(this)->map()->instance_type() ==
+ JS_GLOBAL_OBJECT_TYPE);
+}
+
+
+bool Object::IsJSBuiltinsObject() {
+ return IsHeapObject() &&
+ (HeapObject::cast(this)->map()->instance_type() ==
+ JS_BUILTINS_OBJECT_TYPE);
+}
+
+
+bool Object::IsUndetectableObject() {
+ return IsHeapObject()
+ && HeapObject::cast(this)->map()->is_undetectable();
+}
+
+
+bool Object::IsAccessCheckNeeded() {
+ return IsHeapObject()
+ && HeapObject::cast(this)->map()->is_access_check_needed();
+}
+
+
+bool Object::IsStruct() {
+ if (!IsHeapObject()) return false;
+ switch (HeapObject::cast(this)->map()->instance_type()) {
+#define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: return true;
+ STRUCT_LIST(MAKE_STRUCT_CASE)
+#undef MAKE_STRUCT_CASE
+ default: return false;
+ }
+}
+
+
+#define MAKE_STRUCT_PREDICATE(NAME, Name, name) \
+ bool Object::Is##Name() { \
+ return Object::IsHeapObject() \
+ && HeapObject::cast(this)->map()->instance_type() == NAME##_TYPE; \
+ }
+ STRUCT_LIST(MAKE_STRUCT_PREDICATE)
+#undef MAKE_STRUCT_PREDICATE
+
+
+bool Object::IsUndefined() {
+ return this == Heap::undefined_value();
+}
+
+
+bool Object::IsTheHole() {
+ return this == Heap::the_hole_value();
+}
+
+
+bool Object::IsNull() {
+ return this == Heap::null_value();
+}
+
+
+bool Object::IsTrue() {
+ return this == Heap::true_value();
+}
+
+
+bool Object::IsFalse() {
+ return this == Heap::false_value();
+}
+
+
+double Object::Number() {
+ ASSERT(IsNumber());
+ return IsSmi()
+ ? static_cast<double>(reinterpret_cast<Smi*>(this)->value())
+ : reinterpret_cast<HeapNumber*>(this)->value();
+}
+
+
+
+Object* Object::ToSmi() {
+ if (IsSmi()) return this;
+ if (IsHeapNumber()) {
+ double value = HeapNumber::cast(this)->value();
+ int int_value = FastD2I(value);
+ if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
+ return Smi::FromInt(int_value);
+ }
+ }
+ return Failure::Exception();
+}
+
+
+bool Object::HasSpecificClassOf(String* name) {
+ return this->IsJSObject() && (JSObject::cast(this)->class_name() == name);
+}
+
+
+Object* Object::GetElement(uint32_t index) {
+ return GetElementWithReceiver(this, index);
+}
+
+
+Object* Object::GetProperty(String* key) {
+ PropertyAttributes attributes;
+ return GetPropertyWithReceiver(this, key, &attributes);
+}
+
+
+Object* Object::GetProperty(String* key, PropertyAttributes* attributes) {
+ return GetPropertyWithReceiver(this, key, attributes);
+}
+
+
+#define FIELD_ADDR(p, offset) \
+ (reinterpret_cast<byte*>(p) + offset - kHeapObjectTag)
+
+#define READ_FIELD(p, offset) \
+ (*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)))
+
+#define WRITE_FIELD(p, offset, value) \
+ (*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)) = value)
+
+
+#define WRITE_BARRIER(object, offset) \
+ Heap::RecordWrite(object->address(), offset);
+
+// CONDITIONAL_WRITE_BARRIER must be issued after the actual
+// write due to the assert validating the written value.
+#define CONDITIONAL_WRITE_BARRIER(object, offset, mode) \
+ if (mode == UPDATE_WRITE_BARRIER) { \
+ Heap::RecordWrite(object->address(), offset); \
+ } else { \
+ ASSERT(mode == SKIP_WRITE_BARRIER); \
+ ASSERT(Heap::InNewSpace(object) || \
+ !Heap::InNewSpace(READ_FIELD(object, offset))); \
+ }
+
+#define READ_DOUBLE_FIELD(p, offset) \
+ (*reinterpret_cast<double*>(FIELD_ADDR(p, offset)))
+
+#define WRITE_DOUBLE_FIELD(p, offset, value) \
+ (*reinterpret_cast<double*>(FIELD_ADDR(p, offset)) = value)
+
+#define READ_INT_FIELD(p, offset) \
+ (*reinterpret_cast<int*>(FIELD_ADDR(p, offset)))
+
+#define WRITE_INT_FIELD(p, offset, value) \
+ (*reinterpret_cast<int*>(FIELD_ADDR(p, offset)) = value)
+
+#define READ_UINT32_FIELD(p, offset) \
+ (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)))
+
+#define WRITE_UINT32_FIELD(p, offset, value) \
+ (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)) = value)
+
+#define READ_SHORT_FIELD(p, offset) \
+ (*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)))
+
+#define WRITE_SHORT_FIELD(p, offset, value) \
+ (*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)) = value)
+
+#define READ_BYTE_FIELD(p, offset) \
+ (*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)))
+
+#define WRITE_BYTE_FIELD(p, offset, value) \
+ (*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)) = value)
+
+
+Object** HeapObject::RawField(HeapObject* obj, int byte_offset) {
+ return &READ_FIELD(obj, byte_offset);
+}
+
+
+int Smi::value() {
+ return reinterpret_cast<int>(this) >> kSmiTagSize;
+}
+
+
+Smi* Smi::FromInt(int value) {
+ ASSERT(Smi::IsValid(value));
+ return reinterpret_cast<Smi*>((value << kSmiTagSize) | kSmiTag);
+}
+
+
+Failure::Type Failure::type() const {
+ return static_cast<Type>(value() & kFailureTypeTagMask);
+}
+
+
+bool Failure::IsInternalError() const {
+ return type() == INTERNAL_ERROR;
+}
+
+
+bool Failure::IsOutOfMemoryException() const {
+ return type() == OUT_OF_MEMORY_EXCEPTION;
+}
+
+
+int Failure::requested() const {
+ const int kShiftBits =
+ kFailureTypeTagSize + kSpaceTagSize - kObjectAlignmentBits;
+ STATIC_ASSERT(kShiftBits >= 0);
+ ASSERT(type() == RETRY_AFTER_GC);
+ return value() >> kShiftBits;
+}
+
+
+AllocationSpace Failure::allocation_space() const {
+ ASSERT_EQ(RETRY_AFTER_GC, type());
+ return static_cast<AllocationSpace>((value() >> kFailureTypeTagSize)
+ & kSpaceTagMask);
+}
+
+
+Failure* Failure::InternalError() {
+ return Construct(INTERNAL_ERROR);
+}
+
+
+Failure* Failure::Exception() {
+ return Construct(EXCEPTION);
+}
+
+Failure* Failure::OutOfMemoryException() {
+ return Construct(OUT_OF_MEMORY_EXCEPTION);
+}
+
+
+int Failure::value() const {
+ return reinterpret_cast<int>(this) >> kFailureTagSize;
+}
+
+
+Failure* Failure::RetryAfterGC(int requested_bytes) {
+ int requested = requested_bytes >> kObjectAlignmentBits;
+ int value = (requested << kSpaceTagSize) | NEW_SPACE;
+ ASSERT(value >> kSpaceTagSize == requested);
+ ASSERT(Smi::IsValid(value));
+ ASSERT(value == ((value << kFailureTypeTagSize) >> kFailureTypeTagSize));
+ ASSERT(Smi::IsValid(value << kFailureTypeTagSize));
+ return Construct(RETRY_AFTER_GC, value);
+}
+
+
+Failure* Failure::Construct(Type type, int value) {
+ int info = (value << kFailureTypeTagSize) | type;
+ ASSERT(Smi::IsValid(info)); // Same validation check as in Smi
+ return reinterpret_cast<Failure*>((info << kFailureTagSize) | kFailureTag);
+}
+
+
+bool Smi::IsValid(int value) {
+#ifdef DEBUG
+ bool in_range = (value >= kMinValue) && (value <= kMaxValue);
+#endif
+ // To be representable as an tagged small integer, the two
+ // most-significant bits of 'value' must be either 00 or 11 due to
+ // sign-extension. To check this we add 01 to the two
+ // most-significant bits, and check if the most-significant bit is 0
+ //
+ // CAUTION: The original code below:
+ // bool result = ((value + 0x40000000) & 0x80000000) == 0;
+ // may lead to incorrect results according to the C language spec, and
+ // in fact doesn't work correctly with gcc4.1.1 in some cases: The
+ // compiler may produce undefined results in case of signed integer
+ // overflow. The computation must be done w/ unsigned ints.
+ bool result =
+ ((static_cast<unsigned int>(value) + 0x40000000U) & 0x80000000U) == 0;
+ ASSERT(result == in_range);
+ return result;
+}
+
+
+MapWord MapWord::FromMap(Map* map) {
+ return MapWord(reinterpret_cast<uintptr_t>(map));
+}
+
+
+Map* MapWord::ToMap() {
+ return reinterpret_cast<Map*>(value_);
+}
+
+
+bool MapWord::IsForwardingAddress() {
+ return HAS_SMI_TAG(reinterpret_cast<Object*>(value_));
+}
+
+
+MapWord MapWord::FromForwardingAddress(HeapObject* object) {
+ Address raw = reinterpret_cast<Address>(object) - kHeapObjectTag;
+ return MapWord(reinterpret_cast<uintptr_t>(raw));
+}
+
+
+HeapObject* MapWord::ToForwardingAddress() {
+ ASSERT(IsForwardingAddress());
+ return HeapObject::FromAddress(reinterpret_cast<Address>(value_));
+}
+
+
+bool MapWord::IsMarked() {
+ return (value_ & kMarkingMask) == 0;
+}
+
+
+void MapWord::SetMark() {
+ value_ &= ~kMarkingMask;
+}
+
+
+void MapWord::ClearMark() {
+ value_ |= kMarkingMask;
+}
+
+
+bool MapWord::IsOverflowed() {
+ return (value_ & kOverflowMask) != 0;
+}
+
+
+void MapWord::SetOverflow() {
+ value_ |= kOverflowMask;
+}
+
+
+void MapWord::ClearOverflow() {
+ value_ &= ~kOverflowMask;
+}
+
+
+MapWord MapWord::EncodeAddress(Address map_address, int offset) {
+ // Offset is the distance in live bytes from the first live object in the
+ // same page. The offset between two objects in the same page should not
+ // exceed the object area size of a page.
+ ASSERT(0 <= offset && offset < Page::kObjectAreaSize);
+
+ int compact_offset = offset >> kObjectAlignmentBits;
+ ASSERT(compact_offset < (1 << kForwardingOffsetBits));
+
+ Page* map_page = Page::FromAddress(map_address);
+ ASSERT_MAP_PAGE_INDEX(map_page->mc_page_index);
+
+ int map_page_offset =
+ map_page->Offset(map_address) >> kObjectAlignmentBits;
+
+ uintptr_t encoding =
+ (compact_offset << kForwardingOffsetShift) |
+ (map_page_offset << kMapPageOffsetShift) |
+ (map_page->mc_page_index << kMapPageIndexShift);
+ return MapWord(encoding);
+}
+
+
+Address MapWord::DecodeMapAddress(MapSpace* map_space) {
+ int map_page_index = (value_ & kMapPageIndexMask) >> kMapPageIndexShift;
+ ASSERT_MAP_PAGE_INDEX(map_page_index);
+
+ int map_page_offset =
+ ((value_ & kMapPageOffsetMask) >> kMapPageOffsetShift)
+ << kObjectAlignmentBits;
+
+ return (map_space->PageAddress(map_page_index) + map_page_offset);
+}
+
+
+int MapWord::DecodeOffset() {
+ // The offset field is represented in the kForwardingOffsetBits
+ // most-significant bits.
+ int offset = (value_ >> kForwardingOffsetShift) << kObjectAlignmentBits;
+ ASSERT(0 <= offset && offset < Page::kObjectAreaSize);
+ return offset;
+}
+
+
+MapWord MapWord::FromEncodedAddress(Address address) {
+ return MapWord(reinterpret_cast<uintptr_t>(address));
+}
+
+
+Address MapWord::ToEncodedAddress() {
+ return reinterpret_cast<Address>(value_);
+}
+
+
+#ifdef DEBUG
+void HeapObject::VerifyObjectField(int offset) {
+ VerifyPointer(READ_FIELD(this, offset));
+}
+#endif
+
+
+Map* HeapObject::map() {
+ return map_word().ToMap();
+}
+
+
+void HeapObject::set_map(Map* value) {
+ set_map_word(MapWord::FromMap(value));
+}
+
+
+MapWord HeapObject::map_word() {
+ return MapWord(reinterpret_cast<uintptr_t>(READ_FIELD(this, kMapOffset)));
+}
+
+
+void HeapObject::set_map_word(MapWord map_word) {
+ // WRITE_FIELD does not update the remembered set, but there is no need
+ // here.
+ WRITE_FIELD(this, kMapOffset, reinterpret_cast<Object*>(map_word.value_));
+}
+
+
+HeapObject* HeapObject::FromAddress(Address address) {
+ ASSERT_TAG_ALIGNED(address);
+ return reinterpret_cast<HeapObject*>(address + kHeapObjectTag);
+}
+
+
+Address HeapObject::address() {
+ return reinterpret_cast<Address>(this) - kHeapObjectTag;
+}
+
+
+int HeapObject::Size() {
+ return SizeFromMap(map());
+}
+
+
+void HeapObject::IteratePointers(ObjectVisitor* v, int start, int end) {
+ v->VisitPointers(reinterpret_cast<Object**>(FIELD_ADDR(this, start)),
+ reinterpret_cast<Object**>(FIELD_ADDR(this, end)));
+}
+
+
+void HeapObject::IteratePointer(ObjectVisitor* v, int offset) {
+ v->VisitPointer(reinterpret_cast<Object**>(FIELD_ADDR(this, offset)));
+}
+
+
+bool HeapObject::IsMarked() {
+ return map_word().IsMarked();
+}
+
+
+void HeapObject::SetMark() {
+ ASSERT(!IsMarked());
+ MapWord first_word = map_word();
+ first_word.SetMark();
+ set_map_word(first_word);
+}
+
+
+void HeapObject::ClearMark() {
+ ASSERT(IsMarked());
+ MapWord first_word = map_word();
+ first_word.ClearMark();
+ set_map_word(first_word);
+}
+
+
+bool HeapObject::IsOverflowed() {
+ return map_word().IsOverflowed();
+}
+
+
+void HeapObject::SetOverflow() {
+ MapWord first_word = map_word();
+ first_word.SetOverflow();
+ set_map_word(first_word);
+}
+
+
+void HeapObject::ClearOverflow() {
+ ASSERT(IsOverflowed());
+ MapWord first_word = map_word();
+ first_word.ClearOverflow();
+ set_map_word(first_word);
+}
+
+
+double HeapNumber::value() {
+ return READ_DOUBLE_FIELD(this, kValueOffset);
+}
+
+
+void HeapNumber::set_value(double value) {
+ WRITE_DOUBLE_FIELD(this, kValueOffset, value);
+}
+
+
+ACCESSORS(JSObject, properties, FixedArray, kPropertiesOffset)
+ACCESSORS(JSObject, elements, FixedArray, kElementsOffset)
+
+
+void JSObject::initialize_properties() {
+ ASSERT(!Heap::InNewSpace(Heap::empty_fixed_array()));
+ WRITE_FIELD(this, kPropertiesOffset, Heap::empty_fixed_array());
+}
+
+
+void JSObject::initialize_elements() {
+ ASSERT(!Heap::InNewSpace(Heap::empty_fixed_array()));
+ WRITE_FIELD(this, kElementsOffset, Heap::empty_fixed_array());
+}
+
+
+ACCESSORS(Oddball, to_string, String, kToStringOffset)
+ACCESSORS(Oddball, to_number, Object, kToNumberOffset)
+
+
+int JSObject::GetHeaderSize() {
+ switch (map()->instance_type()) {
+ case JS_GLOBAL_PROXY_TYPE:
+ return JSGlobalProxy::kSize;
+ case JS_GLOBAL_OBJECT_TYPE:
+ return JSGlobalObject::kSize;
+ case JS_BUILTINS_OBJECT_TYPE:
+ return JSBuiltinsObject::kSize;
+ case JS_FUNCTION_TYPE:
+ return JSFunction::kSize;
+ case JS_VALUE_TYPE:
+ return JSValue::kSize;
+ case JS_ARRAY_TYPE:
+ return JSValue::kSize;
+ case JS_REGEXP_TYPE:
+ return JSValue::kSize;
+ case JS_OBJECT_TYPE:
+ case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
+ return JSObject::kHeaderSize;
+ default:
+ UNREACHABLE();
+ return 0;
+ }
+}
+
+
+int JSObject::GetInternalFieldCount() {
+ ASSERT(1 << kPointerSizeLog2 == kPointerSize);
+ // Make sure to adjust for the number of in-object properties. These
+ // properties do contribute to the size, but are not internal fields.
+ return ((Size() - GetHeaderSize()) >> kPointerSizeLog2) -
+ map()->inobject_properties();
+}
+
+
+Object* JSObject::GetInternalField(int index) {
+ ASSERT(index < GetInternalFieldCount() && index >= 0);
+ // Internal objects do follow immediately after the header, whereas in-object
+ // properties are at the end of the object. Therefore there is no need
+ // to adjust the index here.
+ return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index));
+}
+
+
+void JSObject::SetInternalField(int index, Object* value) {
+ ASSERT(index < GetInternalFieldCount() && index >= 0);
+ // Internal objects do follow immediately after the header, whereas in-object
+ // properties are at the end of the object. Therefore there is no need
+ // to adjust the index here.
+ int offset = GetHeaderSize() + (kPointerSize * index);
+ WRITE_FIELD(this, offset, value);
+ WRITE_BARRIER(this, offset);
+}
+
+
+// Access fast-case object properties at index. The use of these routines
+// is needed to correctly distinguish between properties stored in-object and
+// properties stored in the properties array.
+Object* JSObject::FastPropertyAt(int index) {
+ // Adjust for the number of properties stored in the object.
+ index -= map()->inobject_properties();
+ if (index < 0) {
+ int offset = map()->instance_size() + (index * kPointerSize);
+ return READ_FIELD(this, offset);
+ } else {
+ ASSERT(index < properties()->length());
+ return properties()->get(index);
+ }
+}
+
+
+Object* JSObject::FastPropertyAtPut(int index, Object* value) {
+ // Adjust for the number of properties stored in the object.
+ index -= map()->inobject_properties();
+ if (index < 0) {
+ int offset = map()->instance_size() + (index * kPointerSize);
+ WRITE_FIELD(this, offset, value);
+ WRITE_BARRIER(this, offset);
+ } else {
+ ASSERT(index < properties()->length());
+ properties()->set(index, value);
+ }
+ return value;
+}
+
+
+Object* JSObject::InObjectPropertyAt(int index) {
+ // Adjust for the number of properties stored in the object.
+ index -= map()->inobject_properties();
+ ASSERT(index < 0);
+ int offset = map()->instance_size() + (index * kPointerSize);
+ return READ_FIELD(this, offset);
+}
+
+
+Object* JSObject::InObjectPropertyAtPut(int index,
+ Object* value,
+ WriteBarrierMode mode) {
+ // Adjust for the number of properties stored in the object.
+ index -= map()->inobject_properties();
+ ASSERT(index < 0);
+ int offset = map()->instance_size() + (index * kPointerSize);
+ WRITE_FIELD(this, offset, value);
+ CONDITIONAL_WRITE_BARRIER(this, offset, mode);
+ return value;
+}
+
+
+
+void JSObject::InitializeBody(int object_size) {
+ Object* value = Heap::undefined_value();
+ for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
+ WRITE_FIELD(this, offset, value);
+ }
+}
+
+
+void Struct::InitializeBody(int object_size) {
+ Object* value = Heap::undefined_value();
+ for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
+ WRITE_FIELD(this, offset, value);
+ }
+}
+
+
+bool JSObject::HasFastProperties() {
+ return !properties()->IsDictionary();
+}
+
+
+bool Array::IndexFromObject(Object* object, uint32_t* index) {
+ if (object->IsSmi()) {
+ int value = Smi::cast(object)->value();
+ if (value < 0) return false;
+ *index = value;
+ return true;
+ }
+ if (object->IsHeapNumber()) {
+ double value = HeapNumber::cast(object)->value();
+ uint32_t uint_value = static_cast<uint32_t>(value);
+ if (value == static_cast<double>(uint_value)) {
+ *index = uint_value;
+ return true;
+ }
+ }
+ return false;
+}
+
+
+bool Object::IsStringObjectWithCharacterAt(uint32_t index) {
+ if (!this->IsJSValue()) return false;
+
+ JSValue* js_value = JSValue::cast(this);
+ if (!js_value->value()->IsString()) return false;
+
+ String* str = String::cast(js_value->value());
+ if (index >= (uint32_t)str->length()) return false;
+
+ return true;
+}
+
+
+Object* FixedArray::get(int index) {
+ ASSERT(index >= 0 && index < this->length());
+ return READ_FIELD(this, kHeaderSize + index * kPointerSize);
+}
+
+
+void FixedArray::set(int index, Smi* value) {
+ ASSERT(reinterpret_cast<Object*>(value)->IsSmi());
+ int offset = kHeaderSize + index * kPointerSize;
+ WRITE_FIELD(this, offset, value);
+}
+
+
+void FixedArray::set(int index, Object* value) {
+ ASSERT(index >= 0 && index < this->length());
+ int offset = kHeaderSize + index * kPointerSize;
+ WRITE_FIELD(this, offset, value);
+ WRITE_BARRIER(this, offset);
+}
+
+
+WriteBarrierMode HeapObject::GetWriteBarrierMode() {
+ if (Heap::InNewSpace(this)) return SKIP_WRITE_BARRIER;
+ return UPDATE_WRITE_BARRIER;
+}
+
+
+void FixedArray::set(int index,
+ Object* value,
+ WriteBarrierMode mode) {
+ ASSERT(index >= 0 && index < this->length());
+ int offset = kHeaderSize + index * kPointerSize;
+ WRITE_FIELD(this, offset, value);
+ CONDITIONAL_WRITE_BARRIER(this, offset, mode);
+}
+
+
+void FixedArray::fast_set(FixedArray* array, int index, Object* value) {
+ ASSERT(index >= 0 && index < array->length());
+ WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value);
+}
+
+
+void FixedArray::set_undefined(int index) {
+ ASSERT(index >= 0 && index < this->length());
+ ASSERT(!Heap::InNewSpace(Heap::undefined_value()));
+ WRITE_FIELD(this, kHeaderSize + index * kPointerSize,
+ Heap::undefined_value());
+}
+
+
+void FixedArray::set_null(int index) {
+ ASSERT(index >= 0 && index < this->length());
+ ASSERT(!Heap::InNewSpace(Heap::null_value()));
+ WRITE_FIELD(this, kHeaderSize + index * kPointerSize, Heap::null_value());
+}
+
+
+void FixedArray::set_the_hole(int index) {
+ ASSERT(index >= 0 && index < this->length());
+ ASSERT(!Heap::InNewSpace(Heap::the_hole_value()));
+ WRITE_FIELD(this, kHeaderSize + index * kPointerSize, Heap::the_hole_value());
+}
+
+
+bool DescriptorArray::IsEmpty() {
+ ASSERT(this == Heap::empty_descriptor_array() ||
+ this->length() > 2);
+ return this == Heap::empty_descriptor_array();
+}
+
+
+void DescriptorArray::fast_swap(FixedArray* array, int first, int second) {
+ Object* tmp = array->get(first);
+ fast_set(array, first, array->get(second));
+ fast_set(array, second, tmp);
+}
+
+
+int DescriptorArray::Search(String* name) {
+ SLOW_ASSERT(IsSortedNoDuplicates());
+
+ // Check for empty descriptor array.
+ int nof = number_of_descriptors();
+ if (nof == 0) return kNotFound;
+
+ // Fast case: do linear search for small arrays.
+ const int kMaxElementsForLinearSearch = 8;
+ if (StringShape(name).IsSymbol() && nof < kMaxElementsForLinearSearch) {
+ return LinearSearch(name, nof);
+ }
+
+ // Slow case: perform binary search.
+ return BinarySearch(name, 0, nof - 1);
+}
+
+
+
+String* DescriptorArray::GetKey(int descriptor_number) {
+ ASSERT(descriptor_number < number_of_descriptors());
+ return String::cast(get(ToKeyIndex(descriptor_number)));
+}
+
+
+Object* DescriptorArray::GetValue(int descriptor_number) {
+ ASSERT(descriptor_number < number_of_descriptors());
+ return GetContentArray()->get(ToValueIndex(descriptor_number));
+}
+
+
+Smi* DescriptorArray::GetDetails(int descriptor_number) {
+ ASSERT(descriptor_number < number_of_descriptors());
+ return Smi::cast(GetContentArray()->get(ToDetailsIndex(descriptor_number)));
+}
+
+
+void DescriptorArray::Get(int descriptor_number, Descriptor* desc) {
+ desc->Init(GetKey(descriptor_number),
+ GetValue(descriptor_number),
+ GetDetails(descriptor_number));
+}
+
+
+void DescriptorArray::Set(int descriptor_number, Descriptor* desc) {
+ // Range check.
+ ASSERT(descriptor_number < number_of_descriptors());
+
+ // Make sure non of the elements in desc are in new space.
+ ASSERT(!Heap::InNewSpace(desc->GetKey()));
+ ASSERT(!Heap::InNewSpace(desc->GetValue()));
+
+ fast_set(this, ToKeyIndex(descriptor_number), desc->GetKey());
+ FixedArray* content_array = GetContentArray();
+ fast_set(content_array, ToValueIndex(descriptor_number), desc->GetValue());
+ fast_set(content_array, ToDetailsIndex(descriptor_number),
+ desc->GetDetails().AsSmi());
+}
+
+
+void DescriptorArray::Swap(int first, int second) {
+ fast_swap(this, ToKeyIndex(first), ToKeyIndex(second));
+ FixedArray* content_array = GetContentArray();
+ fast_swap(content_array, ToValueIndex(first), ToValueIndex(second));
+ fast_swap(content_array, ToDetailsIndex(first), ToDetailsIndex(second));
+}
+
+
+bool Dictionary::requires_slow_elements() {
+ Object* max_index_object = get(kMaxNumberKeyIndex);
+ if (!max_index_object->IsSmi()) return false;
+ return 0 !=
+ (Smi::cast(max_index_object)->value() & kRequiresSlowElementsMask);
+}
+
+
+uint32_t Dictionary::max_number_key() {
+ ASSERT(!requires_slow_elements());
+ Object* max_index_object = get(kMaxNumberKeyIndex);
+ if (!max_index_object->IsSmi()) return 0;
+ uint32_t value = static_cast<uint32_t>(Smi::cast(max_index_object)->value());
+ return value >> kRequiresSlowElementsTagSize;
+}
+
+
+void Dictionary::set_requires_slow_elements() {
+ set(kMaxNumberKeyIndex,
+ Smi::FromInt(kRequiresSlowElementsMask),
+ SKIP_WRITE_BARRIER);
+}
+
+
+// ------------------------------------
+// Cast operations
+
+
+CAST_ACCESSOR(FixedArray)
+CAST_ACCESSOR(DescriptorArray)
+CAST_ACCESSOR(Dictionary)
+CAST_ACCESSOR(SymbolTable)
+CAST_ACCESSOR(CompilationCacheTable)
+CAST_ACCESSOR(MapCache)
+CAST_ACCESSOR(LookupCache)
+CAST_ACCESSOR(String)
+CAST_ACCESSOR(SeqString)
+CAST_ACCESSOR(SeqAsciiString)
+CAST_ACCESSOR(SeqTwoByteString)
+CAST_ACCESSOR(ConsString)
+CAST_ACCESSOR(SlicedString)
+CAST_ACCESSOR(ExternalString)
+CAST_ACCESSOR(ExternalAsciiString)
+CAST_ACCESSOR(ExternalTwoByteString)
+CAST_ACCESSOR(JSObject)
+CAST_ACCESSOR(Smi)
+CAST_ACCESSOR(Failure)
+CAST_ACCESSOR(HeapObject)
+CAST_ACCESSOR(HeapNumber)
+CAST_ACCESSOR(Oddball)
+CAST_ACCESSOR(SharedFunctionInfo)
+CAST_ACCESSOR(Map)
+CAST_ACCESSOR(JSFunction)
+CAST_ACCESSOR(GlobalObject)
+CAST_ACCESSOR(JSGlobalProxy)
+CAST_ACCESSOR(JSGlobalObject)
+CAST_ACCESSOR(JSBuiltinsObject)
+CAST_ACCESSOR(Code)
+CAST_ACCESSOR(JSArray)
+CAST_ACCESSOR(JSRegExp)
+CAST_ACCESSOR(Proxy)
+CAST_ACCESSOR(ByteArray)
+CAST_ACCESSOR(Struct)
+
+
+#define MAKE_STRUCT_CAST(NAME, Name, name) CAST_ACCESSOR(Name)
+ STRUCT_LIST(MAKE_STRUCT_CAST)
+#undef MAKE_STRUCT_CAST
+
+template <int prefix_size, int elem_size>
+HashTable<prefix_size, elem_size>* HashTable<prefix_size, elem_size>::cast(
+ Object* obj) {
+ ASSERT(obj->IsHashTable());
+ return reinterpret_cast<HashTable*>(obj);
+}
+
+
+INT_ACCESSORS(Array, length, kLengthOffset)
+
+
+bool String::Equals(String* other) {
+ if (other == this) return true;
+ if (StringShape(this).IsSymbol() && StringShape(other).IsSymbol()) {
+ return false;
+ }
+ return SlowEquals(other);
+}
+
+
+int String::length() {
+ uint32_t len = READ_INT_FIELD(this, kLengthOffset);
+
+ ASSERT(kShortStringTag + kLongLengthShift == kShortLengthShift);
+ ASSERT(kMediumStringTag + kLongLengthShift == kMediumLengthShift);
+ ASSERT(kLongStringTag == 0);
+
+ return len >> (StringShape(this).size_tag() + kLongLengthShift);
+}
+
+
+void String::set_length(int value) {
+ ASSERT(kShortStringTag + kLongLengthShift == kShortLengthShift);
+ ASSERT(kMediumStringTag + kLongLengthShift == kMediumLengthShift);
+ ASSERT(kLongStringTag == 0);
+
+ WRITE_INT_FIELD(this,
+ kLengthOffset,
+ value << (StringShape(this).size_tag() + kLongLengthShift));
+}
+
+
+uint32_t String::length_field() {
+ return READ_UINT32_FIELD(this, kLengthOffset);
+}
+
+
+void String::set_length_field(uint32_t value) {
+ WRITE_UINT32_FIELD(this, kLengthOffset, value);
+}
+
+
+Object* String::TryFlattenIfNotFlat() {
+ // We don't need to flatten strings that are already flat. Since this code
+ // is inlined, it can be helpful in the flat case to not call out to Flatten.
+ if (!IsFlat()) {
+ return TryFlatten();
+ }
+ return this;
+}
+
+
+uint16_t String::Get(int index) {
+ ASSERT(index >= 0 && index < length());
+ switch (StringShape(this).full_representation_tag()) {
+ case kSeqStringTag | kAsciiStringTag:
+ return SeqAsciiString::cast(this)->SeqAsciiStringGet(index);
+ case kSeqStringTag | kTwoByteStringTag:
+ return SeqTwoByteString::cast(this)->SeqTwoByteStringGet(index);
+ case kConsStringTag | kAsciiStringTag:
+ case kConsStringTag | kTwoByteStringTag:
+ return ConsString::cast(this)->ConsStringGet(index);
+ case kSlicedStringTag | kAsciiStringTag:
+ case kSlicedStringTag | kTwoByteStringTag:
+ return SlicedString::cast(this)->SlicedStringGet(index);
+ case kExternalStringTag | kAsciiStringTag:
+ return ExternalAsciiString::cast(this)->ExternalAsciiStringGet(index);
+ case kExternalStringTag | kTwoByteStringTag:
+ return ExternalTwoByteString::cast(this)->ExternalTwoByteStringGet(index);
+ default:
+ break;
+ }
+
+ UNREACHABLE();
+ return 0;
+}
+
+
+void String::Set(int index, uint16_t value) {
+ ASSERT(index >= 0 && index < length());
+ ASSERT(StringShape(this).IsSequential());
+
+ return StringShape(this).IsAsciiRepresentation()
+ ? SeqAsciiString::cast(this)->SeqAsciiStringSet(index, value)
+ : SeqTwoByteString::cast(this)->SeqTwoByteStringSet(index, value);
+}
+
+
+bool String::IsFlat() {
+ switch (StringShape(this).representation_tag()) {
+ case kConsStringTag: {
+ String* second = ConsString::cast(this)->second();
+ // Only flattened strings have second part empty.
+ return second->length() == 0;
+ }
+ case kSlicedStringTag: {
+ StringRepresentationTag tag =
+ StringShape(SlicedString::cast(this)->buffer()).representation_tag();
+ return tag == kSeqStringTag || tag == kExternalStringTag;
+ }
+ default:
+ return true;
+ }
+}
+
+
+uint16_t SeqAsciiString::SeqAsciiStringGet(int index) {
+ ASSERT(index >= 0 && index < length());
+ return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
+}
+
+
+void SeqAsciiString::SeqAsciiStringSet(int index, uint16_t value) {
+ ASSERT(index >= 0 && index < length() && value <= kMaxAsciiCharCode);
+ WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize,
+ static_cast<byte>(value));
+}
+
+
+Address SeqAsciiString::GetCharsAddress() {
+ return FIELD_ADDR(this, kHeaderSize);
+}
+
+
+char* SeqAsciiString::GetChars() {
+ return reinterpret_cast<char*>(GetCharsAddress());
+}
+
+
+Address SeqTwoByteString::GetCharsAddress() {
+ return FIELD_ADDR(this, kHeaderSize);
+}
+
+
+uc16* SeqTwoByteString::GetChars() {
+ return reinterpret_cast<uc16*>(FIELD_ADDR(this, kHeaderSize));
+}
+
+
+uint16_t SeqTwoByteString::SeqTwoByteStringGet(int index) {
+ ASSERT(index >= 0 && index < length());
+ return READ_SHORT_FIELD(this, kHeaderSize + index * kShortSize);
+}
+
+
+void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) {
+ ASSERT(index >= 0 && index < length());
+ WRITE_SHORT_FIELD(this, kHeaderSize + index * kShortSize, value);
+}
+
+
+int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) {
+ uint32_t length = READ_INT_FIELD(this, kLengthOffset);
+
+ ASSERT(kShortStringTag + kLongLengthShift == kShortLengthShift);
+ ASSERT(kMediumStringTag + kLongLengthShift == kMediumLengthShift);
+ ASSERT(kLongStringTag == 0);
+
+ // Use the map (and not 'this') to compute the size tag, since
+ // TwoByteStringSize is called during GC when maps are encoded.
+ length >>= StringShape(instance_type).size_tag() + kLongLengthShift;
+
+ return SizeFor(length);
+}
+
+
+int SeqAsciiString::SeqAsciiStringSize(InstanceType instance_type) {
+ uint32_t length = READ_INT_FIELD(this, kLengthOffset);
+
+ ASSERT(kShortStringTag + kLongLengthShift == kShortLengthShift);
+ ASSERT(kMediumStringTag + kLongLengthShift == kMediumLengthShift);
+ ASSERT(kLongStringTag == 0);
+
+ // Use the map (and not 'this') to compute the size tag, since
+ // AsciiStringSize is called during GC when maps are encoded.
+ length >>= StringShape(instance_type).size_tag() + kLongLengthShift;
+
+ return SizeFor(length);
+}
+
+
+String* ConsString::first() {
+ ASSERT(String::cast(READ_FIELD(this, kSecondOffset))->length() != 0 ||
+ StringShape(
+ String::cast(
+ READ_FIELD(this, kFirstOffset))).IsAsciiRepresentation()
+ == StringShape(this).IsAsciiRepresentation());
+ return String::cast(READ_FIELD(this, kFirstOffset));
+}
+
+
+Object* ConsString::unchecked_first() {
+ return READ_FIELD(this, kFirstOffset);
+}
+
+
+void ConsString::set_first(String* value, WriteBarrierMode mode) {
+ WRITE_FIELD(this, kFirstOffset, value);
+ CONDITIONAL_WRITE_BARRIER(this, kFirstOffset, mode);
+}
+
+
+String* ConsString::second() {
+ return String::cast(READ_FIELD(this, kSecondOffset));
+}
+
+
+Object* ConsString::unchecked_second() {
+ return READ_FIELD(this, kSecondOffset);
+}
+
+
+void ConsString::set_second(String* value, WriteBarrierMode mode) {
+ WRITE_FIELD(this, kSecondOffset, value);
+ CONDITIONAL_WRITE_BARRIER(this, kSecondOffset, mode);
+}
+
+
+String* SlicedString::buffer() {
+ ASSERT(
+ StringShape(
+ String::cast(READ_FIELD(this, kBufferOffset))).IsAsciiRepresentation()
+ == StringShape(this).IsAsciiRepresentation());
+ return String::cast(READ_FIELD(this, kBufferOffset));
+}
+
+
+void SlicedString::set_buffer(String* buffer) {
+ WRITE_FIELD(this, kBufferOffset, buffer);
+ WRITE_BARRIER(this, kBufferOffset);
+}
+
+
+int SlicedString::start() {
+ return READ_INT_FIELD(this, kStartOffset);
+}
+
+
+void SlicedString::set_start(int start) {
+ WRITE_INT_FIELD(this, kStartOffset, start);
+}
+
+
+ExternalAsciiString::Resource* ExternalAsciiString::resource() {
+ return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
+}
+
+
+void ExternalAsciiString::set_resource(
+ ExternalAsciiString::Resource* resource) {
+ *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)) = resource;
+}
+
+
+Map* ExternalAsciiString::StringMap(int length) {
+ Map* map;
+ // Number of characters: determines the map.
+ if (length <= String::kMaxShortStringSize) {
+ map = Heap::short_external_ascii_string_map();
+ } else if (length <= String::kMaxMediumStringSize) {
+ map = Heap::medium_external_ascii_string_map();
+ } else {
+ map = Heap::long_external_ascii_string_map();
+ }
+ return map;
+}
+
+
+Map* ExternalAsciiString::SymbolMap(int length) {
+ Map* map;
+ // Number of characters: determines the map.
+ if (length <= String::kMaxShortStringSize) {
+ map = Heap::short_external_ascii_symbol_map();
+ } else if (length <= String::kMaxMediumStringSize) {
+ map = Heap::medium_external_ascii_symbol_map();
+ } else {
+ map = Heap::long_external_ascii_symbol_map();
+ }
+ return map;
+}
+
+
+ExternalTwoByteString::Resource* ExternalTwoByteString::resource() {
+ return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
+}
+
+
+void ExternalTwoByteString::set_resource(
+ ExternalTwoByteString::Resource* resource) {
+ *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)) = resource;
+}
+
+
+Map* ExternalTwoByteString::StringMap(int length) {
+ Map* map;
+ // Number of characters: determines the map.
+ if (length <= String::kMaxShortStringSize) {
+ map = Heap::short_external_string_map();
+ } else if (length <= String::kMaxMediumStringSize) {
+ map = Heap::medium_external_string_map();
+ } else {
+ map = Heap::long_external_string_map();
+ }
+ return map;
+}
+
+
+Map* ExternalTwoByteString::SymbolMap(int length) {
+ Map* map;
+ // Number of characters: determines the map.
+ if (length <= String::kMaxShortStringSize) {
+ map = Heap::short_external_symbol_map();
+ } else if (length <= String::kMaxMediumStringSize) {
+ map = Heap::medium_external_symbol_map();
+ } else {
+ map = Heap::long_external_symbol_map();
+ }
+ return map;
+}
+
+
+byte ByteArray::get(int index) {
+ ASSERT(index >= 0 && index < this->length());
+ return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
+}
+
+
+void ByteArray::set(int index, byte value) {
+ ASSERT(index >= 0 && index < this->length());
+ WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value);
+}
+
+
+int ByteArray::get_int(int index) {
+ ASSERT(index >= 0 && (index * kIntSize) < this->length());
+ return READ_INT_FIELD(this, kHeaderSize + index * kIntSize);
+}
+
+
+ByteArray* ByteArray::FromDataStartAddress(Address address) {
+ ASSERT_TAG_ALIGNED(address);
+ return reinterpret_cast<ByteArray*>(address - kHeaderSize + kHeapObjectTag);
+}
+
+
+Address ByteArray::GetDataStartAddress() {
+ return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize;
+}
+
+
+int Map::instance_size() {
+ return READ_BYTE_FIELD(this, kInstanceSizeOffset) << kPointerSizeLog2;
+}
+
+
+int Map::inobject_properties() {
+ return READ_BYTE_FIELD(this, kInObjectPropertiesOffset);
+}
+
+
+int HeapObject::SizeFromMap(Map* map) {
+ InstanceType instance_type = map->instance_type();
+ // Only inline the two most frequent cases.
+ if (instance_type == JS_OBJECT_TYPE) return map->instance_size();
+ if (instance_type == FIXED_ARRAY_TYPE) {
+ return reinterpret_cast<FixedArray*>(this)->FixedArraySize();
+ }
+ // Otherwise do the general size computation.
+ return SlowSizeFromMap(map);
+}
+
+
+void Map::set_instance_size(int value) {
+ ASSERT((value & ~(kPointerSize - 1)) == value);
+ value >>= kPointerSizeLog2;
+ ASSERT(0 <= value && value < 256);
+ WRITE_BYTE_FIELD(this, kInstanceSizeOffset, static_cast<byte>(value));
+}
+
+
+void Map::set_inobject_properties(int value) {
+ ASSERT(0 <= value && value < 256);
+ WRITE_BYTE_FIELD(this, kInObjectPropertiesOffset, static_cast<byte>(value));
+}
+
+
+InstanceType Map::instance_type() {
+ return static_cast<InstanceType>(READ_BYTE_FIELD(this, kInstanceTypeOffset));
+}
+
+
+void Map::set_instance_type(InstanceType value) {
+ ASSERT(0 <= value && value < 256);
+ WRITE_BYTE_FIELD(this, kInstanceTypeOffset, value);
+}
+
+
+int Map::unused_property_fields() {
+ return READ_BYTE_FIELD(this, kUnusedPropertyFieldsOffset);
+}
+
+
+void Map::set_unused_property_fields(int value) {
+ WRITE_BYTE_FIELD(this, kUnusedPropertyFieldsOffset, Min(value, 255));
+}
+
+
+byte Map::bit_field() {
+ return READ_BYTE_FIELD(this, kBitFieldOffset);
+}
+
+
+void Map::set_bit_field(byte value) {
+ WRITE_BYTE_FIELD(this, kBitFieldOffset, value);
+}
+
+
+void Map::set_non_instance_prototype(bool value) {
+ if (value) {
+ set_bit_field(bit_field() | (1 << kHasNonInstancePrototype));
+ } else {
+ set_bit_field(bit_field() & ~(1 << kHasNonInstancePrototype));
+ }
+}
+
+
+bool Map::has_non_instance_prototype() {
+ return ((1 << kHasNonInstancePrototype) & bit_field()) != 0;
+}
+
+
+void Map::set_is_access_check_needed(bool access_check_needed) {
+ if (access_check_needed) {
+ set_bit_field(bit_field() | (1 << kIsAccessCheckNeeded));
+ } else {
+ set_bit_field(bit_field() & ~(1 << kIsAccessCheckNeeded));
+ }
+}
+
+
+bool Map::is_access_check_needed() {
+ return ((1 << kIsAccessCheckNeeded) & bit_field()) != 0;
+}
+
+
+Code::Flags Code::flags() {
+ return static_cast<Flags>(READ_INT_FIELD(this, kFlagsOffset));
+}
+
+
+void Code::set_flags(Code::Flags flags) {
+ STATIC_ASSERT(Code::NUMBER_OF_KINDS <= (kFlagsKindMask >> kFlagsKindShift)+1);
+ // Make sure that all call stubs have an arguments count.
+ ASSERT(ExtractKindFromFlags(flags) != CALL_IC ||
+ ExtractArgumentsCountFromFlags(flags) >= 0);
+ WRITE_INT_FIELD(this, kFlagsOffset, flags);
+}
+
+
+Code::Kind Code::kind() {
+ return ExtractKindFromFlags(flags());
+}
+
+
+InlineCacheState Code::ic_state() {
+ InlineCacheState result = ExtractICStateFromFlags(flags());
+ // Only allow uninitialized or debugger states for non-IC code
+ // objects. This is used in the debugger to determine whether or not
+ // a call to code object has been replaced with a debug break call.
+ ASSERT(is_inline_cache_stub() ||
+ result == UNINITIALIZED ||
+ result == DEBUG_BREAK ||
+ result == DEBUG_PREPARE_STEP_IN);
+ return result;
+}
+
+
+PropertyType Code::type() {
+ ASSERT(ic_state() == MONOMORPHIC);
+ return ExtractTypeFromFlags(flags());
+}
+
+
+int Code::arguments_count() {
+ ASSERT(is_call_stub() || kind() == STUB);
+ return ExtractArgumentsCountFromFlags(flags());
+}
+
+
+CodeStub::Major Code::major_key() {
+ ASSERT(kind() == STUB);
+ return static_cast<CodeStub::Major>(READ_BYTE_FIELD(this,
+ kStubMajorKeyOffset));
+}
+
+
+void Code::set_major_key(CodeStub::Major major) {
+ ASSERT(kind() == STUB);
+ ASSERT(0 <= major && major < 256);
+ WRITE_BYTE_FIELD(this, kStubMajorKeyOffset, major);
+}
+
+
+bool Code::is_inline_cache_stub() {
+ Kind kind = this->kind();
+ return kind >= FIRST_IC_KIND && kind <= LAST_IC_KIND;
+}
+
+
+Code::Flags Code::ComputeFlags(Kind kind,
+ InlineCacheState ic_state,
+ PropertyType type,
+ int argc) {
+ // Compute the bit mask.
+ int bits = kind << kFlagsKindShift;
+ bits |= ic_state << kFlagsICStateShift;
+ bits |= type << kFlagsTypeShift;
+ bits |= argc << kFlagsArgumentsCountShift;
+ // Cast to flags and validate result before returning it.
+ Flags result = static_cast<Flags>(bits);
+ ASSERT(ExtractKindFromFlags(result) == kind);
+ ASSERT(ExtractICStateFromFlags(result) == ic_state);
+ ASSERT(ExtractTypeFromFlags(result) == type);
+ ASSERT(ExtractArgumentsCountFromFlags(result) == argc);
+ return result;
+}
+
+
+Code::Flags Code::ComputeMonomorphicFlags(Kind kind,
+ PropertyType type,
+ int argc) {
+ return ComputeFlags(kind, MONOMORPHIC, type, argc);
+}
+
+
+Code::Kind Code::ExtractKindFromFlags(Flags flags) {
+ int bits = (flags & kFlagsKindMask) >> kFlagsKindShift;
+ return static_cast<Kind>(bits);
+}
+
+
+InlineCacheState Code::ExtractICStateFromFlags(Flags flags) {
+ int bits = (flags & kFlagsICStateMask) >> kFlagsICStateShift;
+ return static_cast<InlineCacheState>(bits);
+}
+
+
+PropertyType Code::ExtractTypeFromFlags(Flags flags) {
+ int bits = (flags & kFlagsTypeMask) >> kFlagsTypeShift;
+ return static_cast<PropertyType>(bits);
+}
+
+
+int Code::ExtractArgumentsCountFromFlags(Flags flags) {
+ return (flags & kFlagsArgumentsCountMask) >> kFlagsArgumentsCountShift;
+}
+
+
+Code::Flags Code::RemoveTypeFromFlags(Flags flags) {
+ int bits = flags & ~kFlagsTypeMask;
+ return static_cast<Flags>(bits);
+}
+
+
+Code* Code::GetCodeFromTargetAddress(Address address) {
+ HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize);
+ // GetCodeFromTargetAddress might be called when marking objects during mark
+ // sweep. reinterpret_cast is therefore used instead of the more appropriate
+ // Code::cast. Code::cast does not work when the object's map is
+ // marked.
+ Code* result = reinterpret_cast<Code*>(code);
+ return result;
+}
+
+
+Object* Map::prototype() {
+ return READ_FIELD(this, kPrototypeOffset);
+}
+
+
+void Map::set_prototype(Object* value, WriteBarrierMode mode) {
+ ASSERT(value->IsNull() || value->IsJSObject());
+ WRITE_FIELD(this, kPrototypeOffset, value);
+ CONDITIONAL_WRITE_BARRIER(this, kPrototypeOffset, mode);
+}
+
+
+ACCESSORS(Map, instance_descriptors, DescriptorArray,
+ kInstanceDescriptorsOffset)
+ACCESSORS(Map, code_cache, FixedArray, kCodeCacheOffset)
+ACCESSORS(Map, constructor, Object, kConstructorOffset)
+
+ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset)
+ACCESSORS(JSFunction, literals, FixedArray, kLiteralsOffset)
+
+ACCESSORS(GlobalObject, builtins, JSBuiltinsObject, kBuiltinsOffset)
+ACCESSORS(GlobalObject, global_context, Context, kGlobalContextOffset)
+ACCESSORS(GlobalObject, global_receiver, JSObject, kGlobalReceiverOffset)
+
+ACCESSORS(JSGlobalProxy, context, Object, kContextOffset)
+
+ACCESSORS(AccessorInfo, getter, Object, kGetterOffset)
+ACCESSORS(AccessorInfo, setter, Object, kSetterOffset)
+ACCESSORS(AccessorInfo, data, Object, kDataOffset)
+ACCESSORS(AccessorInfo, name, Object, kNameOffset)
+ACCESSORS(AccessorInfo, flag, Smi, kFlagOffset)
+
+ACCESSORS(AccessCheckInfo, named_callback, Object, kNamedCallbackOffset)
+ACCESSORS(AccessCheckInfo, indexed_callback, Object, kIndexedCallbackOffset)
+ACCESSORS(AccessCheckInfo, data, Object, kDataOffset)
+
+ACCESSORS(InterceptorInfo, getter, Object, kGetterOffset)
+ACCESSORS(InterceptorInfo, setter, Object, kSetterOffset)
+ACCESSORS(InterceptorInfo, query, Object, kQueryOffset)
+ACCESSORS(InterceptorInfo, deleter, Object, kDeleterOffset)
+ACCESSORS(InterceptorInfo, enumerator, Object, kEnumeratorOffset)
+ACCESSORS(InterceptorInfo, data, Object, kDataOffset)
+
+ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset)
+ACCESSORS(CallHandlerInfo, data, Object, kDataOffset)
+
+ACCESSORS(TemplateInfo, tag, Object, kTagOffset)
+ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset)
+
+ACCESSORS(FunctionTemplateInfo, serial_number, Object, kSerialNumberOffset)
+ACCESSORS(FunctionTemplateInfo, call_code, Object, kCallCodeOffset)
+ACCESSORS(FunctionTemplateInfo, property_accessors, Object,
+ kPropertyAccessorsOffset)
+ACCESSORS(FunctionTemplateInfo, prototype_template, Object,
+ kPrototypeTemplateOffset)
+ACCESSORS(FunctionTemplateInfo, parent_template, Object, kParentTemplateOffset)
+ACCESSORS(FunctionTemplateInfo, named_property_handler, Object,
+ kNamedPropertyHandlerOffset)
+ACCESSORS(FunctionTemplateInfo, indexed_property_handler, Object,
+ kIndexedPropertyHandlerOffset)
+ACCESSORS(FunctionTemplateInfo, instance_template, Object,
+ kInstanceTemplateOffset)
+ACCESSORS(FunctionTemplateInfo, class_name, Object, kClassNameOffset)
+ACCESSORS(FunctionTemplateInfo, signature, Object, kSignatureOffset)
+ACCESSORS(FunctionTemplateInfo, instance_call_handler, Object,
+ kInstanceCallHandlerOffset)
+ACCESSORS(FunctionTemplateInfo, access_check_info, Object,
+ kAccessCheckInfoOffset)
+ACCESSORS(FunctionTemplateInfo, flag, Smi, kFlagOffset)
+
+ACCESSORS(ObjectTemplateInfo, constructor, Object, kConstructorOffset)
+ACCESSORS(ObjectTemplateInfo, internal_field_count, Object,
+ kInternalFieldCountOffset)
+
+ACCESSORS(SignatureInfo, receiver, Object, kReceiverOffset)
+ACCESSORS(SignatureInfo, args, Object, kArgsOffset)
+
+ACCESSORS(TypeSwitchInfo, types, Object, kTypesOffset)
+
+ACCESSORS(Script, source, Object, kSourceOffset)
+ACCESSORS(Script, name, Object, kNameOffset)
+ACCESSORS(Script, id, Object, kIdOffset)
+ACCESSORS(Script, line_offset, Smi, kLineOffsetOffset)
+ACCESSORS(Script, column_offset, Smi, kColumnOffsetOffset)
+ACCESSORS(Script, wrapper, Proxy, kWrapperOffset)
+ACCESSORS(Script, type, Smi, kTypeOffset)
+ACCESSORS(Script, line_ends, Object, kLineEndsOffset)
+
+ACCESSORS(DebugInfo, shared, SharedFunctionInfo, kSharedFunctionInfoIndex)
+ACCESSORS(DebugInfo, original_code, Code, kOriginalCodeIndex)
+ACCESSORS(DebugInfo, code, Code, kPatchedCodeIndex)
+ACCESSORS(DebugInfo, break_points, FixedArray, kBreakPointsStateIndex)
+
+ACCESSORS(BreakPointInfo, code_position, Smi, kCodePositionIndex)
+ACCESSORS(BreakPointInfo, source_position, Smi, kSourcePositionIndex)
+ACCESSORS(BreakPointInfo, statement_position, Smi, kStatementPositionIndex)
+ACCESSORS(BreakPointInfo, break_point_objects, Object, kBreakPointObjectsIndex)
+
+ACCESSORS(SharedFunctionInfo, name, Object, kNameOffset)
+ACCESSORS(SharedFunctionInfo, instance_class_name, Object,
+ kInstanceClassNameOffset)
+ACCESSORS(SharedFunctionInfo, function_data, Object,
+ kExternalReferenceDataOffset)
+ACCESSORS(SharedFunctionInfo, lazy_load_data, Object, kLazyLoadDataOffset)
+ACCESSORS(SharedFunctionInfo, script, Object, kScriptOffset)
+ACCESSORS(SharedFunctionInfo, debug_info, Object, kDebugInfoOffset)
+ACCESSORS(SharedFunctionInfo, inferred_name, String, kInferredNameOffset)
+
+BOOL_ACCESSORS(FunctionTemplateInfo, flag, hidden_prototype,
+ kHiddenPrototypeBit)
+BOOL_ACCESSORS(FunctionTemplateInfo, flag, undetectable, kUndetectableBit)
+BOOL_ACCESSORS(FunctionTemplateInfo, flag, needs_access_check,
+ kNeedsAccessCheckBit)
+BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_expression,
+ kIsExpressionBit)
+BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_toplevel,
+ kIsTopLevelBit)
+
+INT_ACCESSORS(SharedFunctionInfo, length, kLengthOffset)
+INT_ACCESSORS(SharedFunctionInfo, formal_parameter_count,
+ kFormalParameterCountOffset)
+INT_ACCESSORS(SharedFunctionInfo, expected_nof_properties,
+ kExpectedNofPropertiesOffset)
+INT_ACCESSORS(SharedFunctionInfo, start_position_and_type,
+ kStartPositionAndTypeOffset)
+INT_ACCESSORS(SharedFunctionInfo, end_position, kEndPositionOffset)
+INT_ACCESSORS(SharedFunctionInfo, function_token_position,
+ kFunctionTokenPositionOffset)
+
+
+void SharedFunctionInfo::DontAdaptArguments() {
+ ASSERT(code()->kind() == Code::BUILTIN);
+ set_formal_parameter_count(kDontAdaptArgumentsSentinel);
+}
+
+
+int SharedFunctionInfo::start_position() {
+ return start_position_and_type() >> kStartPositionShift;
+}
+
+
+void SharedFunctionInfo::set_start_position(int start_position) {
+ set_start_position_and_type((start_position << kStartPositionShift)
+ | (start_position_and_type() & ~kStartPositionMask));
+}
+
+
+Code* SharedFunctionInfo::code() {
+ return Code::cast(READ_FIELD(this, kCodeOffset));
+}
+
+
+void SharedFunctionInfo::set_code(Code* value, WriteBarrierMode mode) {
+ WRITE_FIELD(this, kCodeOffset, value);
+ CONDITIONAL_WRITE_BARRIER(this, kCodeOffset, mode);
+}
+
+
+bool SharedFunctionInfo::is_compiled() {
+ // TODO(1242782): Create a code kind for uncompiled code.
+ return code()->kind() != Code::STUB;
+}
+
+
+bool JSFunction::IsBoilerplate() {
+ return map() == Heap::boilerplate_function_map();
+}
+
+
+bool JSFunction::IsLoaded() {
+ return shared()->lazy_load_data() == Heap::undefined_value();
+}
+
+
+Code* JSFunction::code() {
+ return shared()->code();
+}
+
+
+void JSFunction::set_code(Code* value) {
+ shared()->set_code(value);
+}
+
+
+Context* JSFunction::context() {
+ return Context::cast(READ_FIELD(this, kContextOffset));
+}
+
+
+Object* JSFunction::unchecked_context() {
+ return READ_FIELD(this, kContextOffset);
+}
+
+
+void JSFunction::set_context(Object* value) {
+ ASSERT(value == Heap::undefined_value() || value->IsContext());
+ WRITE_FIELD(this, kContextOffset, value);
+ WRITE_BARRIER(this, kContextOffset);
+}
+
+ACCESSORS(JSFunction, prototype_or_initial_map, Object,
+ kPrototypeOrInitialMapOffset)
+
+
+Map* JSFunction::initial_map() {
+ return Map::cast(prototype_or_initial_map());
+}
+
+
+void JSFunction::set_initial_map(Map* value) {
+ set_prototype_or_initial_map(value);
+}
+
+
+bool JSFunction::has_initial_map() {
+ return prototype_or_initial_map()->IsMap();
+}
+
+
+bool JSFunction::has_instance_prototype() {
+ return has_initial_map() || !prototype_or_initial_map()->IsTheHole();
+}
+
+
+bool JSFunction::has_prototype() {
+ return map()->has_non_instance_prototype() || has_instance_prototype();
+}
+
+
+Object* JSFunction::instance_prototype() {
+ ASSERT(has_instance_prototype());
+ if (has_initial_map()) return initial_map()->prototype();
+ // When there is no initial map and the prototype is a JSObject, the
+ // initial map field is used for the prototype field.
+ return prototype_or_initial_map();
+}
+
+
+Object* JSFunction::prototype() {
+ ASSERT(has_prototype());
+ // If the function's prototype property has been set to a non-JSObject
+ // value, that value is stored in the constructor field of the map.
+ if (map()->has_non_instance_prototype()) return map()->constructor();
+ return instance_prototype();
+}
+
+
+bool JSFunction::is_compiled() {
+ return shared()->is_compiled();
+}
+
+
+int JSFunction::NumberOfLiterals() {
+ return literals()->length();
+}
+
+
+Object* JSBuiltinsObject::javascript_builtin(Builtins::JavaScript id) {
+ ASSERT(0 <= id && id < kJSBuiltinsCount);
+ return READ_FIELD(this, kJSBuiltinsOffset + (id * kPointerSize));
+}
+
+
+void JSBuiltinsObject::set_javascript_builtin(Builtins::JavaScript id,
+ Object* value) {
+ ASSERT(0 <= id && id < kJSBuiltinsCount);
+ WRITE_FIELD(this, kJSBuiltinsOffset + (id * kPointerSize), value);
+ WRITE_BARRIER(this, kJSBuiltinsOffset + (id * kPointerSize));
+}
+
+
+Address Proxy::proxy() {
+ return AddressFrom<Address>(READ_INT_FIELD(this, kProxyOffset));
+}
+
+
+void Proxy::set_proxy(Address value) {
+ WRITE_INT_FIELD(this, kProxyOffset, OffsetFrom(value));
+}
+
+
+void Proxy::ProxyIterateBody(ObjectVisitor* visitor) {
+ visitor->VisitExternalReference(
+ reinterpret_cast<Address *>(FIELD_ADDR(this, kProxyOffset)));
+}
+
+
+ACCESSORS(JSValue, value, Object, kValueOffset)
+
+
+JSValue* JSValue::cast(Object* obj) {
+ ASSERT(obj->IsJSValue());
+ ASSERT(HeapObject::cast(obj)->Size() == JSValue::kSize);
+ return reinterpret_cast<JSValue*>(obj);
+}
+
+
+INT_ACCESSORS(Code, instruction_size, kInstructionSizeOffset)
+INT_ACCESSORS(Code, relocation_size, kRelocationSizeOffset)
+INT_ACCESSORS(Code, sinfo_size, kSInfoSizeOffset)
+
+
+Code::ICTargetState Code::ic_flag() {
+ return static_cast<ICTargetState>(READ_BYTE_FIELD(this, kICFlagOffset));
+}
+
+
+void Code::set_ic_flag(ICTargetState value) {
+ WRITE_BYTE_FIELD(this, kICFlagOffset, value);
+}
+
+
+byte* Code::instruction_start() {
+ return FIELD_ADDR(this, kHeaderSize);
+}
+
+
+int Code::body_size() {
+ return RoundUp(instruction_size() + relocation_size(), kObjectAlignment);
+}
+
+
+byte* Code::relocation_start() {
+ return FIELD_ADDR(this, kHeaderSize + instruction_size());
+}
+
+
+byte* Code::entry() {
+ return instruction_start();
+}
+
+
+bool Code::contains(byte* pc) {
+ return (instruction_start() <= pc) &&
+ (pc < instruction_start() + instruction_size());
+}
+
+
+byte* Code::sinfo_start() {
+ return FIELD_ADDR(this, kHeaderSize + body_size());
+}
+
+
+ACCESSORS(JSArray, length, Object, kLengthOffset)
+
+
+ACCESSORS(JSRegExp, data, Object, kDataOffset)
+
+
+JSRegExp::Type JSRegExp::TypeTag() {
+ Object* data = this->data();
+ if (data->IsUndefined()) return JSRegExp::NOT_COMPILED;
+ Smi* smi = Smi::cast(FixedArray::cast(data)->get(kTagIndex));
+ return static_cast<JSRegExp::Type>(smi->value());
+}
+
+
+int JSRegExp::CaptureCount() {
+ switch (TypeTag()) {
+ case ATOM:
+ return 0;
+ case IRREGEXP:
+ return Smi::cast(DataAt(kIrregexpCaptureCountIndex))->value();
+ default:
+ UNREACHABLE();
+ return -1;
+ }
+}
+
+
+JSRegExp::Flags JSRegExp::GetFlags() {
+ ASSERT(this->data()->IsFixedArray());
+ Object* data = this->data();
+ Smi* smi = Smi::cast(FixedArray::cast(data)->get(kFlagsIndex));
+ return Flags(smi->value());
+}
+
+
+String* JSRegExp::Pattern() {
+ ASSERT(this->data()->IsFixedArray());
+ Object* data = this->data();
+ String* pattern= String::cast(FixedArray::cast(data)->get(kSourceIndex));
+ return pattern;
+}
+
+
+Object* JSRegExp::DataAt(int index) {
+ ASSERT(TypeTag() != NOT_COMPILED);
+ return FixedArray::cast(data())->get(index);
+}
+
+
+void JSRegExp::SetDataAt(int index, Object* value) {
+ ASSERT(TypeTag() != NOT_COMPILED);
+ ASSERT(index >= kDataIndex); // Only implementation data can be set this way.
+ FixedArray::cast(data())->set(index, value);
+}
+
+
+bool JSObject::HasFastElements() {
+ return !elements()->IsDictionary();
+}
+
+
+bool JSObject::HasNamedInterceptor() {
+ return map()->has_named_interceptor();
+}
+
+
+bool JSObject::HasIndexedInterceptor() {
+ return map()->has_indexed_interceptor();
+}
+
+
+Dictionary* JSObject::property_dictionary() {
+ ASSERT(!HasFastProperties());
+ return Dictionary::cast(properties());
+}
+
+
+Dictionary* JSObject::element_dictionary() {
+ ASSERT(!HasFastElements());
+ return Dictionary::cast(elements());
+}
+
+
+bool String::HasHashCode() {
+ return (length_field() & kHashComputedMask) != 0;
+}
+
+
+uint32_t String::Hash() {
+ // Fast case: has hash code already been computed?
+ uint32_t field = length_field();
+ if (field & kHashComputedMask) return field >> kHashShift;
+ // Slow case: compute hash code and set it.
+ return ComputeAndSetHash();
+}
+
+
+StringHasher::StringHasher(int length)
+ : length_(length),
+ raw_running_hash_(0),
+ array_index_(0),
+ is_array_index_(0 < length_ && length_ <= String::kMaxArrayIndexSize),
+ is_first_char_(true),
+ is_valid_(true) { }
+
+
+bool StringHasher::has_trivial_hash() {
+ return length_ > String::kMaxMediumStringSize;
+}
+
+
+void StringHasher::AddCharacter(uc32 c) {
+ // Use the Jenkins one-at-a-time hash function to update the hash
+ // for the given character.
+ raw_running_hash_ += c;
+ raw_running_hash_ += (raw_running_hash_ << 10);
+ raw_running_hash_ ^= (raw_running_hash_ >> 6);
+ // Incremental array index computation.
+ if (is_array_index_) {
+ if (c < '0' || c > '9') {
+ is_array_index_ = false;
+ } else {
+ int d = c - '0';
+ if (is_first_char_) {
+ is_first_char_ = false;
+ if (c == '0' && length_ > 1) {
+ is_array_index_ = false;
+ return;
+ }
+ }
+ if (array_index_ > 429496729U - ((d + 2) >> 3)) {
+ is_array_index_ = false;
+ } else {
+ array_index_ = array_index_ * 10 + d;
+ }
+ }
+ }
+}
+
+
+void StringHasher::AddCharacterNoIndex(uc32 c) {
+ ASSERT(!is_array_index());
+ raw_running_hash_ += c;
+ raw_running_hash_ += (raw_running_hash_ << 10);
+ raw_running_hash_ ^= (raw_running_hash_ >> 6);
+}
+
+
+uint32_t StringHasher::GetHash() {
+ // Get the calculated raw hash value and do some more bit ops to distribute
+ // the hash further. Ensure that we never return zero as the hash value.
+ uint32_t result = raw_running_hash_;
+ result += (result << 3);
+ result ^= (result >> 11);
+ result += (result << 15);
+ if (result == 0) {
+ result = 27;
+ }
+ return result;
+}
+
+
+bool String::AsArrayIndex(uint32_t* index) {
+ uint32_t field = length_field();
+ if ((field & kHashComputedMask) && !(field & kIsArrayIndexMask)) return false;
+ return SlowAsArrayIndex(index);
+}
+
+
+Object* JSObject::GetPrototype() {
+ return JSObject::cast(this)->map()->prototype();
+}
+
+
+PropertyAttributes JSObject::GetPropertyAttribute(String* key) {
+ return GetPropertyAttributeWithReceiver(this, key);
+}
+
+
+bool JSObject::HasElement(uint32_t index) {
+ return HasElementWithReceiver(this, index);
+}
+
+
+bool AccessorInfo::all_can_read() {
+ return BooleanBit::get(flag(), kAllCanReadBit);
+}
+
+
+void AccessorInfo::set_all_can_read(bool value) {
+ set_flag(BooleanBit::set(flag(), kAllCanReadBit, value));
+}
+
+
+bool AccessorInfo::all_can_write() {
+ return BooleanBit::get(flag(), kAllCanWriteBit);
+}
+
+
+void AccessorInfo::set_all_can_write(bool value) {
+ set_flag(BooleanBit::set(flag(), kAllCanWriteBit, value));
+}
+
+
+bool AccessorInfo::prohibits_overwriting() {
+ return BooleanBit::get(flag(), kProhibitsOverwritingBit);
+}
+
+
+void AccessorInfo::set_prohibits_overwriting(bool value) {
+ set_flag(BooleanBit::set(flag(), kProhibitsOverwritingBit, value));
+}
+
+
+PropertyAttributes AccessorInfo::property_attributes() {
+ return AttributesField::decode(static_cast<uint32_t>(flag()->value()));
+}
+
+
+void AccessorInfo::set_property_attributes(PropertyAttributes attributes) {
+ ASSERT(AttributesField::is_valid(attributes));
+ int rest_value = flag()->value() & ~AttributesField::mask();
+ set_flag(Smi::FromInt(rest_value | AttributesField::encode(attributes)));
+}
+
+void Dictionary::SetEntry(int entry,
+ Object* key,
+ Object* value,
+ PropertyDetails details) {
+ ASSERT(!key->IsString() || details.index() > 0);
+ int index = EntryToIndex(entry);
+ WriteBarrierMode mode = GetWriteBarrierMode();
+ set(index, key, mode);
+ set(index+1, value, mode);
+ fast_set(this, index+2, details.AsSmi());
+}
+
+
+void Map::ClearCodeCache() {
+ // No write barrier is needed since empty_fixed_array is not in new space.
+ // Please note this function is used during marking:
+ // - MarkCompactCollector::MarkUnmarkedObject
+ ASSERT(!Heap::InNewSpace(Heap::empty_fixed_array()));
+ WRITE_FIELD(this, kCodeCacheOffset, Heap::empty_fixed_array());
+}
+
+
+void JSArray::SetContent(FixedArray* storage) {
+ set_length(Smi::FromInt(storage->length()), SKIP_WRITE_BARRIER);
+ set_elements(storage);
+}
+
+
+Object* FixedArray::Copy() {
+ if (length() == 0) return this;
+ return Heap::CopyFixedArray(this);
+}
+
+
+#undef CAST_ACCESSOR
+#undef INT_ACCESSORS
+#undef SMI_ACCESSORS
+#undef ACCESSORS
+#undef FIELD_ADDR
+#undef READ_FIELD
+#undef WRITE_FIELD
+#undef WRITE_BARRIER
+#undef CONDITIONAL_WRITE_BARRIER
+#undef READ_MEMADDR_FIELD
+#undef WRITE_MEMADDR_FIELD
+#undef READ_DOUBLE_FIELD
+#undef WRITE_DOUBLE_FIELD
+#undef READ_INT_FIELD
+#undef WRITE_INT_FIELD
+#undef READ_SHORT_FIELD
+#undef WRITE_SHORT_FIELD
+#undef READ_BYTE_FIELD
+#undef WRITE_BYTE_FIELD
+
+
+} } // namespace v8::internal
+
+#endif // V8_OBJECTS_INL_H_