summaryrefslogtreecommitdiff
path: root/deps/v8/src/codegen/mips64/macro-assembler-mips64.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/codegen/mips64/macro-assembler-mips64.cc')
-rw-r--r--deps/v8/src/codegen/mips64/macro-assembler-mips64.cc5827
1 files changed, 5827 insertions, 0 deletions
diff --git a/deps/v8/src/codegen/mips64/macro-assembler-mips64.cc b/deps/v8/src/codegen/mips64/macro-assembler-mips64.cc
new file mode 100644
index 0000000000..65c0b592eb
--- /dev/null
+++ b/deps/v8/src/codegen/mips64/macro-assembler-mips64.cc
@@ -0,0 +1,5827 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <limits.h> // For LONG_MIN, LONG_MAX.
+
+#if V8_TARGET_ARCH_MIPS64
+
+#include "src/base/bits.h"
+#include "src/base/division-by-constant.h"
+#include "src/codegen/assembler-inl.h"
+#include "src/codegen/callable.h"
+#include "src/codegen/code-factory.h"
+#include "src/codegen/external-reference-table.h"
+#include "src/codegen/macro-assembler.h"
+#include "src/codegen/register-configuration.h"
+#include "src/debug/debug.h"
+#include "src/execution/frames-inl.h"
+#include "src/heap/heap-inl.h" // For MemoryChunk.
+#include "src/init/bootstrapper.h"
+#include "src/logging/counters.h"
+#include "src/objects/heap-number.h"
+#include "src/runtime/runtime.h"
+#include "src/snapshot/embedded/embedded-data.h"
+#include "src/snapshot/snapshot.h"
+#include "src/wasm/wasm-code-manager.h"
+
+// Satisfy cpplint check, but don't include platform-specific header. It is
+// included recursively via macro-assembler.h.
+#if 0
+#include "src/codegen/mips64/macro-assembler-mips64.h"
+#endif
+
+namespace v8 {
+namespace internal {
+
+static inline bool IsZero(const Operand& rt) {
+ if (rt.is_reg()) {
+ return rt.rm() == zero_reg;
+ } else {
+ return rt.immediate() == 0;
+ }
+}
+
+int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
+ Register exclusion1,
+ Register exclusion2,
+ Register exclusion3) const {
+ int bytes = 0;
+ RegList exclusions = 0;
+ if (exclusion1 != no_reg) {
+ exclusions |= exclusion1.bit();
+ if (exclusion2 != no_reg) {
+ exclusions |= exclusion2.bit();
+ if (exclusion3 != no_reg) {
+ exclusions |= exclusion3.bit();
+ }
+ }
+ }
+
+ RegList list = kJSCallerSaved & ~exclusions;
+ bytes += NumRegs(list) * kPointerSize;
+
+ if (fp_mode == kSaveFPRegs) {
+ bytes += NumRegs(kCallerSavedFPU) * kDoubleSize;
+ }
+
+ return bytes;
+}
+
+int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
+ Register exclusion2, Register exclusion3) {
+ int bytes = 0;
+ RegList exclusions = 0;
+ if (exclusion1 != no_reg) {
+ exclusions |= exclusion1.bit();
+ if (exclusion2 != no_reg) {
+ exclusions |= exclusion2.bit();
+ if (exclusion3 != no_reg) {
+ exclusions |= exclusion3.bit();
+ }
+ }
+ }
+
+ RegList list = kJSCallerSaved & ~exclusions;
+ MultiPush(list);
+ bytes += NumRegs(list) * kPointerSize;
+
+ if (fp_mode == kSaveFPRegs) {
+ MultiPushFPU(kCallerSavedFPU);
+ bytes += NumRegs(kCallerSavedFPU) * kDoubleSize;
+ }
+
+ return bytes;
+}
+
+int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
+ Register exclusion2, Register exclusion3) {
+ int bytes = 0;
+ if (fp_mode == kSaveFPRegs) {
+ MultiPopFPU(kCallerSavedFPU);
+ bytes += NumRegs(kCallerSavedFPU) * kDoubleSize;
+ }
+
+ RegList exclusions = 0;
+ if (exclusion1 != no_reg) {
+ exclusions |= exclusion1.bit();
+ if (exclusion2 != no_reg) {
+ exclusions |= exclusion2.bit();
+ if (exclusion3 != no_reg) {
+ exclusions |= exclusion3.bit();
+ }
+ }
+ }
+
+ RegList list = kJSCallerSaved & ~exclusions;
+ MultiPop(list);
+ bytes += NumRegs(list) * kPointerSize;
+
+ return bytes;
+}
+
+void TurboAssembler::LoadRoot(Register destination, RootIndex index) {
+ Ld(destination, MemOperand(s6, RootRegisterOffsetForRootIndex(index)));
+}
+
+void TurboAssembler::LoadRoot(Register destination, RootIndex index,
+ Condition cond, Register src1,
+ const Operand& src2) {
+ Branch(2, NegateCondition(cond), src1, src2);
+ Ld(destination, MemOperand(s6, RootRegisterOffsetForRootIndex(index)));
+}
+
+void TurboAssembler::PushCommonFrame(Register marker_reg) {
+ if (marker_reg.is_valid()) {
+ Push(ra, fp, marker_reg);
+ Daddu(fp, sp, Operand(kPointerSize));
+ } else {
+ Push(ra, fp);
+ mov(fp, sp);
+ }
+}
+
+void TurboAssembler::PushStandardFrame(Register function_reg) {
+ int offset = -StandardFrameConstants::kContextOffset;
+ if (function_reg.is_valid()) {
+ Push(ra, fp, cp, function_reg);
+ offset += kPointerSize;
+ } else {
+ Push(ra, fp, cp);
+ }
+ Daddu(fp, sp, Operand(offset));
+}
+
+int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
+ // The registers are pushed starting with the highest encoding,
+ // which means that lowest encodings are closest to the stack pointer.
+ return kSafepointRegisterStackIndexMap[reg_code];
+}
+
+// Clobbers object, dst, value, and ra, if (ra_status == kRAHasBeenSaved)
+// The register 'object' contains a heap object pointer. The heap object
+// tag is shifted away.
+void MacroAssembler::RecordWriteField(Register object, int offset,
+ Register value, Register dst,
+ RAStatus ra_status,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action,
+ SmiCheck smi_check) {
+ DCHECK(!AreAliased(value, dst, t8, object));
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of Smis.
+ Label done;
+
+ // Skip barrier if writing a smi.
+ if (smi_check == INLINE_SMI_CHECK) {
+ JumpIfSmi(value, &done);
+ }
+
+ // Although the object register is tagged, the offset is relative to the start
+ // of the object, so so offset must be a multiple of kPointerSize.
+ DCHECK(IsAligned(offset, kPointerSize));
+
+ Daddu(dst, object, Operand(offset - kHeapObjectTag));
+ if (emit_debug_code()) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Label ok;
+ And(t8, dst, Operand(kPointerSize - 1));
+ Branch(&ok, eq, t8, Operand(zero_reg));
+ stop("Unaligned cell in write barrier");
+ bind(&ok);
+ }
+
+ RecordWrite(object, dst, value, ra_status, save_fp, remembered_set_action,
+ OMIT_SMI_CHECK);
+
+ bind(&done);
+
+ // Clobber clobbered input registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ li(value, Operand(bit_cast<int64_t>(kZapValue + 4)));
+ li(dst, Operand(bit_cast<int64_t>(kZapValue + 8)));
+ }
+}
+
+void TurboAssembler::SaveRegisters(RegList registers) {
+ DCHECK_GT(NumRegs(registers), 0);
+ RegList regs = 0;
+ for (int i = 0; i < Register::kNumRegisters; ++i) {
+ if ((registers >> i) & 1u) {
+ regs |= Register::from_code(i).bit();
+ }
+ }
+ MultiPush(regs);
+}
+
+void TurboAssembler::RestoreRegisters(RegList registers) {
+ DCHECK_GT(NumRegs(registers), 0);
+ RegList regs = 0;
+ for (int i = 0; i < Register::kNumRegisters; ++i) {
+ if ((registers >> i) & 1u) {
+ regs |= Register::from_code(i).bit();
+ }
+ }
+ MultiPop(regs);
+}
+
+void TurboAssembler::CallEphemeronKeyBarrier(Register object, Register address,
+ SaveFPRegsMode fp_mode) {
+ EphemeronKeyBarrierDescriptor descriptor;
+ RegList registers = descriptor.allocatable_registers();
+
+ SaveRegisters(registers);
+
+ Register object_parameter(
+ descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kObject));
+ Register slot_parameter(descriptor.GetRegisterParameter(
+ EphemeronKeyBarrierDescriptor::kSlotAddress));
+ Register fp_mode_parameter(
+ descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kFPMode));
+
+ Push(object);
+ Push(address);
+
+ Pop(slot_parameter);
+ Pop(object_parameter);
+
+ Move(fp_mode_parameter, Smi::FromEnum(fp_mode));
+ Call(isolate()->builtins()->builtin_handle(Builtins::kEphemeronKeyBarrier),
+ RelocInfo::CODE_TARGET);
+ RestoreRegisters(registers);
+}
+
+void TurboAssembler::CallRecordWriteStub(
+ Register object, Register address,
+ RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) {
+ CallRecordWriteStub(
+ object, address, remembered_set_action, fp_mode,
+ isolate()->builtins()->builtin_handle(Builtins::kRecordWrite),
+ kNullAddress);
+}
+
+void TurboAssembler::CallRecordWriteStub(
+ Register object, Register address,
+ RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
+ Address wasm_target) {
+ CallRecordWriteStub(object, address, remembered_set_action, fp_mode,
+ Handle<Code>::null(), wasm_target);
+}
+
+void TurboAssembler::CallRecordWriteStub(
+ Register object, Register address,
+ RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
+ Handle<Code> code_target, Address wasm_target) {
+ DCHECK_NE(code_target.is_null(), wasm_target == kNullAddress);
+ // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode,
+ // i.e. always emit remember set and save FP registers in RecordWriteStub. If
+ // large performance regression is observed, we should use these values to
+ // avoid unnecessary work.
+
+ RecordWriteDescriptor descriptor;
+ RegList registers = descriptor.allocatable_registers();
+
+ SaveRegisters(registers);
+ Register object_parameter(
+ descriptor.GetRegisterParameter(RecordWriteDescriptor::kObject));
+ Register slot_parameter(
+ descriptor.GetRegisterParameter(RecordWriteDescriptor::kSlot));
+ Register remembered_set_parameter(
+ descriptor.GetRegisterParameter(RecordWriteDescriptor::kRememberedSet));
+ Register fp_mode_parameter(
+ descriptor.GetRegisterParameter(RecordWriteDescriptor::kFPMode));
+
+ Push(object);
+ Push(address);
+
+ Pop(slot_parameter);
+ Pop(object_parameter);
+
+ Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action));
+ Move(fp_mode_parameter, Smi::FromEnum(fp_mode));
+ if (code_target.is_null()) {
+ Call(wasm_target, RelocInfo::WASM_STUB_CALL);
+ } else {
+ Call(code_target, RelocInfo::CODE_TARGET);
+ }
+
+ RestoreRegisters(registers);
+}
+
+// Clobbers object, address, value, and ra, if (ra_status == kRAHasBeenSaved)
+// The register 'object' contains a heap object pointer. The heap object
+// tag is shifted away.
+void MacroAssembler::RecordWrite(Register object, Register address,
+ Register value, RAStatus ra_status,
+ SaveFPRegsMode fp_mode,
+ RememberedSetAction remembered_set_action,
+ SmiCheck smi_check) {
+ DCHECK(!AreAliased(object, address, value, t8));
+ DCHECK(!AreAliased(object, address, value, t9));
+
+ if (emit_debug_code()) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ Ld(scratch, MemOperand(address));
+ Assert(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite, scratch,
+ Operand(value));
+ }
+
+ if (remembered_set_action == OMIT_REMEMBERED_SET &&
+ !FLAG_incremental_marking) {
+ return;
+ }
+
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of smis and stores into the young generation.
+ Label done;
+
+ if (smi_check == INLINE_SMI_CHECK) {
+ DCHECK_EQ(0, kSmiTag);
+ JumpIfSmi(value, &done);
+ }
+
+ CheckPageFlag(value,
+ value, // Used as scratch.
+ MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
+ CheckPageFlag(object,
+ value, // Used as scratch.
+ MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done);
+
+ // Record the actual write.
+ if (ra_status == kRAHasNotBeenSaved) {
+ push(ra);
+ }
+ CallRecordWriteStub(object, address, remembered_set_action, fp_mode);
+ if (ra_status == kRAHasNotBeenSaved) {
+ pop(ra);
+ }
+
+ bind(&done);
+
+ // Clobber clobbered registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ li(address, Operand(bit_cast<int64_t>(kZapValue + 12)));
+ li(value, Operand(bit_cast<int64_t>(kZapValue + 16)));
+ }
+}
+
+// ---------------------------------------------------------------------------
+// Instruction macros.
+
+void TurboAssembler::Addu(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ addu(rd, rs, rt.rm());
+ } else {
+ if (is_int16(rt.immediate()) && !MustUseReg(rt.rmode())) {
+ addiu(rd, rs, static_cast<int32_t>(rt.immediate()));
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ addu(rd, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Daddu(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ daddu(rd, rs, rt.rm());
+ } else {
+ if (is_int16(rt.immediate()) && !MustUseReg(rt.rmode())) {
+ daddiu(rd, rs, static_cast<int32_t>(rt.immediate()));
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ daddu(rd, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Subu(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ subu(rd, rs, rt.rm());
+ } else {
+ DCHECK(is_int32(rt.immediate()));
+ if (is_int16(-rt.immediate()) && !MustUseReg(rt.rmode())) {
+ addiu(rd, rs,
+ static_cast<int32_t>(
+ -rt.immediate())); // No subiu instr, use addiu(x, y, -imm).
+ } else {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ if (-rt.immediate() >> 16 == 0 && !MustUseReg(rt.rmode())) {
+ // Use load -imm and addu when loading -imm generates one instruction.
+ li(scratch, -rt.immediate());
+ addu(rd, rs, scratch);
+ } else {
+ // li handles the relocation.
+ li(scratch, rt);
+ subu(rd, rs, scratch);
+ }
+ }
+ }
+}
+
+void TurboAssembler::Dsubu(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ dsubu(rd, rs, rt.rm());
+ } else if (is_int16(-rt.immediate()) && !MustUseReg(rt.rmode())) {
+ daddiu(rd, rs,
+ static_cast<int32_t>(
+ -rt.immediate())); // No dsubiu instr, use daddiu(x, y, -imm).
+ } else {
+ DCHECK(rs != at);
+ int li_count = InstrCountForLi64Bit(rt.immediate());
+ int li_neg_count = InstrCountForLi64Bit(-rt.immediate());
+ if (li_neg_count < li_count && !MustUseReg(rt.rmode())) {
+ // Use load -imm and daddu when loading -imm generates one instruction.
+ DCHECK(rt.immediate() != std::numeric_limits<int32_t>::min());
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(-rt.immediate()));
+ Daddu(rd, rs, scratch);
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, rt);
+ dsubu(rd, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Mul(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ mul(rd, rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ mul(rd, rs, scratch);
+ }
+}
+
+void TurboAssembler::Mulh(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ if (kArchVariant != kMips64r6) {
+ mult(rs, rt.rm());
+ mfhi(rd);
+ } else {
+ muh(rd, rs, rt.rm());
+ }
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ if (kArchVariant != kMips64r6) {
+ mult(rs, scratch);
+ mfhi(rd);
+ } else {
+ muh(rd, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Mulhu(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ if (kArchVariant != kMips64r6) {
+ multu(rs, rt.rm());
+ mfhi(rd);
+ } else {
+ muhu(rd, rs, rt.rm());
+ }
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ if (kArchVariant != kMips64r6) {
+ multu(rs, scratch);
+ mfhi(rd);
+ } else {
+ muhu(rd, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Dmul(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ if (kArchVariant == kMips64r6) {
+ dmul(rd, rs, rt.rm());
+ } else {
+ dmult(rs, rt.rm());
+ mflo(rd);
+ }
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ if (kArchVariant == kMips64r6) {
+ dmul(rd, rs, scratch);
+ } else {
+ dmult(rs, scratch);
+ mflo(rd);
+ }
+ }
+}
+
+void TurboAssembler::Dmulh(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ if (kArchVariant == kMips64r6) {
+ dmuh(rd, rs, rt.rm());
+ } else {
+ dmult(rs, rt.rm());
+ mfhi(rd);
+ }
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ if (kArchVariant == kMips64r6) {
+ dmuh(rd, rs, scratch);
+ } else {
+ dmult(rs, scratch);
+ mfhi(rd);
+ }
+ }
+}
+
+void TurboAssembler::Mult(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ mult(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ mult(rs, scratch);
+ }
+}
+
+void TurboAssembler::Dmult(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ dmult(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ dmult(rs, scratch);
+ }
+}
+
+void TurboAssembler::Multu(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ multu(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ multu(rs, scratch);
+ }
+}
+
+void TurboAssembler::Dmultu(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ dmultu(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ dmultu(rs, scratch);
+ }
+}
+
+void TurboAssembler::Div(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ div(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ div(rs, scratch);
+ }
+}
+
+void TurboAssembler::Div(Register res, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ if (kArchVariant != kMips64r6) {
+ div(rs, rt.rm());
+ mflo(res);
+ } else {
+ div(res, rs, rt.rm());
+ }
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ if (kArchVariant != kMips64r6) {
+ div(rs, scratch);
+ mflo(res);
+ } else {
+ div(res, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Mod(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ if (kArchVariant != kMips64r6) {
+ div(rs, rt.rm());
+ mfhi(rd);
+ } else {
+ mod(rd, rs, rt.rm());
+ }
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ if (kArchVariant != kMips64r6) {
+ div(rs, scratch);
+ mfhi(rd);
+ } else {
+ mod(rd, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Modu(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ if (kArchVariant != kMips64r6) {
+ divu(rs, rt.rm());
+ mfhi(rd);
+ } else {
+ modu(rd, rs, rt.rm());
+ }
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ if (kArchVariant != kMips64r6) {
+ divu(rs, scratch);
+ mfhi(rd);
+ } else {
+ modu(rd, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Ddiv(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ ddiv(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ ddiv(rs, scratch);
+ }
+}
+
+void TurboAssembler::Ddiv(Register rd, Register rs, const Operand& rt) {
+ if (kArchVariant != kMips64r6) {
+ if (rt.is_reg()) {
+ ddiv(rs, rt.rm());
+ mflo(rd);
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ ddiv(rs, scratch);
+ mflo(rd);
+ }
+ } else {
+ if (rt.is_reg()) {
+ ddiv(rd, rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ ddiv(rd, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Divu(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ divu(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ divu(rs, scratch);
+ }
+}
+
+void TurboAssembler::Divu(Register res, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ if (kArchVariant != kMips64r6) {
+ divu(rs, rt.rm());
+ mflo(res);
+ } else {
+ divu(res, rs, rt.rm());
+ }
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ if (kArchVariant != kMips64r6) {
+ divu(rs, scratch);
+ mflo(res);
+ } else {
+ divu(res, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Ddivu(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ ddivu(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ ddivu(rs, scratch);
+ }
+}
+
+void TurboAssembler::Ddivu(Register res, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ if (kArchVariant != kMips64r6) {
+ ddivu(rs, rt.rm());
+ mflo(res);
+ } else {
+ ddivu(res, rs, rt.rm());
+ }
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ if (kArchVariant != kMips64r6) {
+ ddivu(rs, scratch);
+ mflo(res);
+ } else {
+ ddivu(res, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Dmod(Register rd, Register rs, const Operand& rt) {
+ if (kArchVariant != kMips64r6) {
+ if (rt.is_reg()) {
+ ddiv(rs, rt.rm());
+ mfhi(rd);
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ ddiv(rs, scratch);
+ mfhi(rd);
+ }
+ } else {
+ if (rt.is_reg()) {
+ dmod(rd, rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ dmod(rd, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Dmodu(Register rd, Register rs, const Operand& rt) {
+ if (kArchVariant != kMips64r6) {
+ if (rt.is_reg()) {
+ ddivu(rs, rt.rm());
+ mfhi(rd);
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ ddivu(rs, scratch);
+ mfhi(rd);
+ }
+ } else {
+ if (rt.is_reg()) {
+ dmodu(rd, rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ dmodu(rd, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::And(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ and_(rd, rs, rt.rm());
+ } else {
+ if (is_uint16(rt.immediate()) && !MustUseReg(rt.rmode())) {
+ andi(rd, rs, static_cast<int32_t>(rt.immediate()));
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ and_(rd, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Or(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ or_(rd, rs, rt.rm());
+ } else {
+ if (is_uint16(rt.immediate()) && !MustUseReg(rt.rmode())) {
+ ori(rd, rs, static_cast<int32_t>(rt.immediate()));
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ or_(rd, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Xor(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ xor_(rd, rs, rt.rm());
+ } else {
+ if (is_uint16(rt.immediate()) && !MustUseReg(rt.rmode())) {
+ xori(rd, rs, static_cast<int32_t>(rt.immediate()));
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ xor_(rd, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Nor(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ nor(rd, rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ nor(rd, rs, scratch);
+ }
+}
+
+void TurboAssembler::Neg(Register rs, const Operand& rt) {
+ dsubu(rs, zero_reg, rt.rm());
+}
+
+void TurboAssembler::Slt(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ slt(rd, rs, rt.rm());
+ } else {
+ if (is_int16(rt.immediate()) && !MustUseReg(rt.rmode())) {
+ slti(rd, rs, static_cast<int32_t>(rt.immediate()));
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ slt(rd, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Sltu(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ sltu(rd, rs, rt.rm());
+ } else {
+ const uint64_t int16_min = std::numeric_limits<int16_t>::min();
+ if (is_uint15(rt.immediate()) && !MustUseReg(rt.rmode())) {
+ // Imm range is: [0, 32767].
+ sltiu(rd, rs, static_cast<int32_t>(rt.immediate()));
+ } else if (is_uint15(rt.immediate() - int16_min) &&
+ !MustUseReg(rt.rmode())) {
+ // Imm range is: [max_unsigned-32767,max_unsigned].
+ sltiu(rd, rs, static_cast<uint16_t>(rt.immediate()));
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ sltu(rd, rs, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Sle(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ slt(rd, rt.rm(), rs);
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ slt(rd, scratch, rs);
+ }
+ xori(rd, rd, 1);
+}
+
+void TurboAssembler::Sleu(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ sltu(rd, rt.rm(), rs);
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ sltu(rd, scratch, rs);
+ }
+ xori(rd, rd, 1);
+}
+
+void TurboAssembler::Sge(Register rd, Register rs, const Operand& rt) {
+ Slt(rd, rs, rt);
+ xori(rd, rd, 1);
+}
+
+void TurboAssembler::Sgeu(Register rd, Register rs, const Operand& rt) {
+ Sltu(rd, rs, rt);
+ xori(rd, rd, 1);
+}
+
+void TurboAssembler::Sgt(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ slt(rd, rt.rm(), rs);
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ slt(rd, scratch, rs);
+ }
+}
+
+void TurboAssembler::Sgtu(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ sltu(rd, rt.rm(), rs);
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ DCHECK(rs != scratch);
+ li(scratch, rt);
+ sltu(rd, scratch, rs);
+ }
+}
+
+void TurboAssembler::Ror(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ rotrv(rd, rs, rt.rm());
+ } else {
+ int64_t ror_value = rt.immediate() % 32;
+ if (ror_value < 0) {
+ ror_value += 32;
+ }
+ rotr(rd, rs, ror_value);
+ }
+}
+
+void TurboAssembler::Dror(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ drotrv(rd, rs, rt.rm());
+ } else {
+ int64_t dror_value = rt.immediate() % 64;
+ if (dror_value < 0) dror_value += 64;
+ if (dror_value <= 31) {
+ drotr(rd, rs, dror_value);
+ } else {
+ drotr32(rd, rs, dror_value - 32);
+ }
+ }
+}
+
+void MacroAssembler::Pref(int32_t hint, const MemOperand& rs) {
+ pref(hint, rs);
+}
+
+void TurboAssembler::Lsa(Register rd, Register rt, Register rs, uint8_t sa,
+ Register scratch) {
+ DCHECK(sa >= 1 && sa <= 31);
+ if (kArchVariant == kMips64r6 && sa <= 4) {
+ lsa(rd, rt, rs, sa - 1);
+ } else {
+ Register tmp = rd == rt ? scratch : rd;
+ DCHECK(tmp != rt);
+ sll(tmp, rs, sa);
+ Addu(rd, rt, tmp);
+ }
+}
+
+void TurboAssembler::Dlsa(Register rd, Register rt, Register rs, uint8_t sa,
+ Register scratch) {
+ DCHECK(sa >= 1 && sa <= 31);
+ if (kArchVariant == kMips64r6 && sa <= 4) {
+ dlsa(rd, rt, rs, sa - 1);
+ } else {
+ Register tmp = rd == rt ? scratch : rd;
+ DCHECK(tmp != rt);
+ dsll(tmp, rs, sa);
+ Daddu(rd, rt, tmp);
+ }
+}
+
+void TurboAssembler::Bovc(Register rs, Register rt, Label* L) {
+ if (is_trampoline_emitted()) {
+ Label skip;
+ bnvc(rs, rt, &skip);
+ BranchLong(L, PROTECT);
+ bind(&skip);
+ } else {
+ bovc(rs, rt, L);
+ }
+}
+
+void TurboAssembler::Bnvc(Register rs, Register rt, Label* L) {
+ if (is_trampoline_emitted()) {
+ Label skip;
+ bovc(rs, rt, &skip);
+ BranchLong(L, PROTECT);
+ bind(&skip);
+ } else {
+ bnvc(rs, rt, L);
+ }
+}
+
+// ------------Pseudo-instructions-------------
+
+// Change endianness
+void TurboAssembler::ByteSwapSigned(Register dest, Register src,
+ int operand_size) {
+ DCHECK(operand_size == 2 || operand_size == 4 || operand_size == 8);
+ DCHECK(kArchVariant == kMips64r6 || kArchVariant == kMips64r2);
+ if (operand_size == 2) {
+ wsbh(dest, src);
+ seh(dest, dest);
+ } else if (operand_size == 4) {
+ wsbh(dest, src);
+ rotr(dest, dest, 16);
+ } else {
+ dsbh(dest, src);
+ dshd(dest, dest);
+ }
+}
+
+void TurboAssembler::ByteSwapUnsigned(Register dest, Register src,
+ int operand_size) {
+ DCHECK(operand_size == 2 || operand_size == 4);
+ if (operand_size == 2) {
+ wsbh(dest, src);
+ andi(dest, dest, 0xFFFF);
+ } else {
+ wsbh(dest, src);
+ rotr(dest, dest, 16);
+ dinsu_(dest, zero_reg, 32, 32);
+ }
+}
+
+void TurboAssembler::Ulw(Register rd, const MemOperand& rs) {
+ DCHECK(rd != at);
+ DCHECK(rs.rm() != at);
+ if (kArchVariant == kMips64r6) {
+ Lw(rd, rs);
+ } else {
+ DCHECK_EQ(kArchVariant, kMips64r2);
+ DCHECK(kMipsLwrOffset <= 3 && kMipsLwlOffset <= 3);
+ MemOperand source = rs;
+ // Adjust offset for two accesses and check if offset + 3 fits into int16_t.
+ AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 3);
+ if (rd != source.rm()) {
+ lwr(rd, MemOperand(source.rm(), source.offset() + kMipsLwrOffset));
+ lwl(rd, MemOperand(source.rm(), source.offset() + kMipsLwlOffset));
+ } else {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ lwr(scratch, MemOperand(rs.rm(), rs.offset() + kMipsLwrOffset));
+ lwl(scratch, MemOperand(rs.rm(), rs.offset() + kMipsLwlOffset));
+ mov(rd, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Ulwu(Register rd, const MemOperand& rs) {
+ if (kArchVariant == kMips64r6) {
+ Lwu(rd, rs);
+ } else {
+ DCHECK_EQ(kArchVariant, kMips64r2);
+ Ulw(rd, rs);
+ Dext(rd, rd, 0, 32);
+ }
+}
+
+void TurboAssembler::Usw(Register rd, const MemOperand& rs) {
+ DCHECK(rd != at);
+ DCHECK(rs.rm() != at);
+ DCHECK(rd != rs.rm());
+ if (kArchVariant == kMips64r6) {
+ Sw(rd, rs);
+ } else {
+ DCHECK_EQ(kArchVariant, kMips64r2);
+ DCHECK(kMipsSwrOffset <= 3 && kMipsSwlOffset <= 3);
+ MemOperand source = rs;
+ // Adjust offset for two accesses and check if offset + 3 fits into int16_t.
+ AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 3);
+ swr(rd, MemOperand(source.rm(), source.offset() + kMipsSwrOffset));
+ swl(rd, MemOperand(source.rm(), source.offset() + kMipsSwlOffset));
+ }
+}
+
+void TurboAssembler::Ulh(Register rd, const MemOperand& rs) {
+ DCHECK(rd != at);
+ DCHECK(rs.rm() != at);
+ if (kArchVariant == kMips64r6) {
+ Lh(rd, rs);
+ } else {
+ DCHECK_EQ(kArchVariant, kMips64r2);
+ MemOperand source = rs;
+ // Adjust offset for two accesses and check if offset + 1 fits into int16_t.
+ AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 1);
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ if (source.rm() == scratch) {
+#if defined(V8_TARGET_LITTLE_ENDIAN)
+ Lb(rd, MemOperand(source.rm(), source.offset() + 1));
+ Lbu(scratch, source);
+#elif defined(V8_TARGET_BIG_ENDIAN)
+ Lb(rd, source);
+ Lbu(scratch, MemOperand(source.rm(), source.offset() + 1));
+#endif
+ } else {
+#if defined(V8_TARGET_LITTLE_ENDIAN)
+ Lbu(scratch, source);
+ Lb(rd, MemOperand(source.rm(), source.offset() + 1));
+#elif defined(V8_TARGET_BIG_ENDIAN)
+ Lbu(scratch, MemOperand(source.rm(), source.offset() + 1));
+ Lb(rd, source);
+#endif
+ }
+ dsll(rd, rd, 8);
+ or_(rd, rd, scratch);
+ }
+}
+
+void TurboAssembler::Ulhu(Register rd, const MemOperand& rs) {
+ DCHECK(rd != at);
+ DCHECK(rs.rm() != at);
+ if (kArchVariant == kMips64r6) {
+ Lhu(rd, rs);
+ } else {
+ DCHECK_EQ(kArchVariant, kMips64r2);
+ MemOperand source = rs;
+ // Adjust offset for two accesses and check if offset + 1 fits into int16_t.
+ AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 1);
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ if (source.rm() == scratch) {
+#if defined(V8_TARGET_LITTLE_ENDIAN)
+ Lbu(rd, MemOperand(source.rm(), source.offset() + 1));
+ Lbu(scratch, source);
+#elif defined(V8_TARGET_BIG_ENDIAN)
+ Lbu(rd, source);
+ Lbu(scratch, MemOperand(source.rm(), source.offset() + 1));
+#endif
+ } else {
+#if defined(V8_TARGET_LITTLE_ENDIAN)
+ Lbu(scratch, source);
+ Lbu(rd, MemOperand(source.rm(), source.offset() + 1));
+#elif defined(V8_TARGET_BIG_ENDIAN)
+ Lbu(scratch, MemOperand(source.rm(), source.offset() + 1));
+ Lbu(rd, source);
+#endif
+ }
+ dsll(rd, rd, 8);
+ or_(rd, rd, scratch);
+ }
+}
+
+void TurboAssembler::Ush(Register rd, const MemOperand& rs, Register scratch) {
+ DCHECK(rd != at);
+ DCHECK(rs.rm() != at);
+ DCHECK(rs.rm() != scratch);
+ DCHECK(scratch != at);
+ if (kArchVariant == kMips64r6) {
+ Sh(rd, rs);
+ } else {
+ DCHECK_EQ(kArchVariant, kMips64r2);
+ MemOperand source = rs;
+ // Adjust offset for two accesses and check if offset + 1 fits into int16_t.
+ AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 1);
+
+ if (scratch != rd) {
+ mov(scratch, rd);
+ }
+
+#if defined(V8_TARGET_LITTLE_ENDIAN)
+ Sb(scratch, source);
+ srl(scratch, scratch, 8);
+ Sb(scratch, MemOperand(source.rm(), source.offset() + 1));
+#elif defined(V8_TARGET_BIG_ENDIAN)
+ Sb(scratch, MemOperand(source.rm(), source.offset() + 1));
+ srl(scratch, scratch, 8);
+ Sb(scratch, source);
+#endif
+ }
+}
+
+void TurboAssembler::Uld(Register rd, const MemOperand& rs) {
+ DCHECK(rd != at);
+ DCHECK(rs.rm() != at);
+ if (kArchVariant == kMips64r6) {
+ Ld(rd, rs);
+ } else {
+ DCHECK_EQ(kArchVariant, kMips64r2);
+ DCHECK(kMipsLdrOffset <= 7 && kMipsLdlOffset <= 7);
+ MemOperand source = rs;
+ // Adjust offset for two accesses and check if offset + 7 fits into int16_t.
+ AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 7);
+ if (rd != source.rm()) {
+ ldr(rd, MemOperand(source.rm(), source.offset() + kMipsLdrOffset));
+ ldl(rd, MemOperand(source.rm(), source.offset() + kMipsLdlOffset));
+ } else {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ ldr(scratch, MemOperand(rs.rm(), rs.offset() + kMipsLdrOffset));
+ ldl(scratch, MemOperand(rs.rm(), rs.offset() + kMipsLdlOffset));
+ mov(rd, scratch);
+ }
+ }
+}
+
+// Load consequent 32-bit word pair in 64-bit reg. and put first word in low
+// bits,
+// second word in high bits.
+void MacroAssembler::LoadWordPair(Register rd, const MemOperand& rs,
+ Register scratch) {
+ Lwu(rd, rs);
+ Lw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
+ dsll32(scratch, scratch, 0);
+ Daddu(rd, rd, scratch);
+}
+
+void TurboAssembler::Usd(Register rd, const MemOperand& rs) {
+ DCHECK(rd != at);
+ DCHECK(rs.rm() != at);
+ if (kArchVariant == kMips64r6) {
+ Sd(rd, rs);
+ } else {
+ DCHECK_EQ(kArchVariant, kMips64r2);
+ DCHECK(kMipsSdrOffset <= 7 && kMipsSdlOffset <= 7);
+ MemOperand source = rs;
+ // Adjust offset for two accesses and check if offset + 7 fits into int16_t.
+ AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 7);
+ sdr(rd, MemOperand(source.rm(), source.offset() + kMipsSdrOffset));
+ sdl(rd, MemOperand(source.rm(), source.offset() + kMipsSdlOffset));
+ }
+}
+
+// Do 64-bit store as two consequent 32-bit stores to unaligned address.
+void MacroAssembler::StoreWordPair(Register rd, const MemOperand& rs,
+ Register scratch) {
+ Sw(rd, rs);
+ dsrl32(scratch, rd, 0);
+ Sw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
+}
+
+void TurboAssembler::Ulwc1(FPURegister fd, const MemOperand& rs,
+ Register scratch) {
+ if (kArchVariant == kMips64r6) {
+ Lwc1(fd, rs);
+ } else {
+ DCHECK_EQ(kArchVariant, kMips64r2);
+ Ulw(scratch, rs);
+ mtc1(scratch, fd);
+ }
+}
+
+void TurboAssembler::Uswc1(FPURegister fd, const MemOperand& rs,
+ Register scratch) {
+ if (kArchVariant == kMips64r6) {
+ Swc1(fd, rs);
+ } else {
+ DCHECK_EQ(kArchVariant, kMips64r2);
+ mfc1(scratch, fd);
+ Usw(scratch, rs);
+ }
+}
+
+void TurboAssembler::Uldc1(FPURegister fd, const MemOperand& rs,
+ Register scratch) {
+ DCHECK(scratch != at);
+ if (kArchVariant == kMips64r6) {
+ Ldc1(fd, rs);
+ } else {
+ DCHECK_EQ(kArchVariant, kMips64r2);
+ Uld(scratch, rs);
+ dmtc1(scratch, fd);
+ }
+}
+
+void TurboAssembler::Usdc1(FPURegister fd, const MemOperand& rs,
+ Register scratch) {
+ DCHECK(scratch != at);
+ if (kArchVariant == kMips64r6) {
+ Sdc1(fd, rs);
+ } else {
+ DCHECK_EQ(kArchVariant, kMips64r2);
+ dmfc1(scratch, fd);
+ Usd(scratch, rs);
+ }
+}
+
+void TurboAssembler::Lb(Register rd, const MemOperand& rs) {
+ MemOperand source = rs;
+ AdjustBaseAndOffset(source);
+ lb(rd, source);
+}
+
+void TurboAssembler::Lbu(Register rd, const MemOperand& rs) {
+ MemOperand source = rs;
+ AdjustBaseAndOffset(source);
+ lbu(rd, source);
+}
+
+void TurboAssembler::Sb(Register rd, const MemOperand& rs) {
+ MemOperand source = rs;
+ AdjustBaseAndOffset(source);
+ sb(rd, source);
+}
+
+void TurboAssembler::Lh(Register rd, const MemOperand& rs) {
+ MemOperand source = rs;
+ AdjustBaseAndOffset(source);
+ lh(rd, source);
+}
+
+void TurboAssembler::Lhu(Register rd, const MemOperand& rs) {
+ MemOperand source = rs;
+ AdjustBaseAndOffset(source);
+ lhu(rd, source);
+}
+
+void TurboAssembler::Sh(Register rd, const MemOperand& rs) {
+ MemOperand source = rs;
+ AdjustBaseAndOffset(source);
+ sh(rd, source);
+}
+
+void TurboAssembler::Lw(Register rd, const MemOperand& rs) {
+ MemOperand source = rs;
+ AdjustBaseAndOffset(source);
+ lw(rd, source);
+}
+
+void TurboAssembler::Lwu(Register rd, const MemOperand& rs) {
+ MemOperand source = rs;
+ AdjustBaseAndOffset(source);
+ lwu(rd, source);
+}
+
+void TurboAssembler::Sw(Register rd, const MemOperand& rs) {
+ MemOperand source = rs;
+ AdjustBaseAndOffset(source);
+ sw(rd, source);
+}
+
+void TurboAssembler::Ld(Register rd, const MemOperand& rs) {
+ MemOperand source = rs;
+ AdjustBaseAndOffset(source);
+ ld(rd, source);
+}
+
+void TurboAssembler::Sd(Register rd, const MemOperand& rs) {
+ MemOperand source = rs;
+ AdjustBaseAndOffset(source);
+ sd(rd, source);
+}
+
+void TurboAssembler::Lwc1(FPURegister fd, const MemOperand& src) {
+ MemOperand tmp = src;
+ AdjustBaseAndOffset(tmp);
+ lwc1(fd, tmp);
+}
+
+void TurboAssembler::Swc1(FPURegister fs, const MemOperand& src) {
+ MemOperand tmp = src;
+ AdjustBaseAndOffset(tmp);
+ swc1(fs, tmp);
+}
+
+void TurboAssembler::Ldc1(FPURegister fd, const MemOperand& src) {
+ MemOperand tmp = src;
+ AdjustBaseAndOffset(tmp);
+ ldc1(fd, tmp);
+}
+
+void TurboAssembler::Sdc1(FPURegister fs, const MemOperand& src) {
+ MemOperand tmp = src;
+ AdjustBaseAndOffset(tmp);
+ sdc1(fs, tmp);
+}
+
+void TurboAssembler::Ll(Register rd, const MemOperand& rs) {
+ bool is_one_instruction = (kArchVariant == kMips64r6) ? is_int9(rs.offset())
+ : is_int16(rs.offset());
+ if (is_one_instruction) {
+ ll(rd, rs);
+ } else {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, rs.offset());
+ daddu(scratch, scratch, rs.rm());
+ ll(rd, MemOperand(scratch, 0));
+ }
+}
+
+void TurboAssembler::Lld(Register rd, const MemOperand& rs) {
+ bool is_one_instruction = (kArchVariant == kMips64r6) ? is_int9(rs.offset())
+ : is_int16(rs.offset());
+ if (is_one_instruction) {
+ lld(rd, rs);
+ } else {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, rs.offset());
+ daddu(scratch, scratch, rs.rm());
+ lld(rd, MemOperand(scratch, 0));
+ }
+}
+
+void TurboAssembler::Sc(Register rd, const MemOperand& rs) {
+ bool is_one_instruction = (kArchVariant == kMips64r6) ? is_int9(rs.offset())
+ : is_int16(rs.offset());
+ if (is_one_instruction) {
+ sc(rd, rs);
+ } else {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, rs.offset());
+ daddu(scratch, scratch, rs.rm());
+ sc(rd, MemOperand(scratch, 0));
+ }
+}
+
+void TurboAssembler::Scd(Register rd, const MemOperand& rs) {
+ bool is_one_instruction = (kArchVariant == kMips64r6) ? is_int9(rs.offset())
+ : is_int16(rs.offset());
+ if (is_one_instruction) {
+ scd(rd, rs);
+ } else {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, rs.offset());
+ daddu(scratch, scratch, rs.rm());
+ scd(rd, MemOperand(scratch, 0));
+ }
+}
+
+void TurboAssembler::li(Register dst, Handle<HeapObject> value, LiFlags mode) {
+ if (FLAG_embedded_builtins) {
+ if (root_array_available_ && options().isolate_independent_code) {
+ IndirectLoadConstant(dst, value);
+ return;
+ }
+ }
+ li(dst, Operand(value), mode);
+}
+
+void TurboAssembler::li(Register dst, ExternalReference value, LiFlags mode) {
+ if (FLAG_embedded_builtins) {
+ if (root_array_available_ && options().isolate_independent_code) {
+ IndirectLoadExternalReference(dst, value);
+ return;
+ }
+ }
+ li(dst, Operand(value), mode);
+}
+
+void TurboAssembler::li(Register dst, const StringConstantBase* string,
+ LiFlags mode) {
+ li(dst, Operand::EmbeddedStringConstant(string), mode);
+}
+
+static inline int InstrCountForLiLower32Bit(int64_t value) {
+ if (!is_int16(static_cast<int32_t>(value)) && (value & kUpper16MaskOf64) &&
+ (value & kImm16Mask)) {
+ return 2;
+ } else {
+ return 1;
+ }
+}
+
+void TurboAssembler::LiLower32BitHelper(Register rd, Operand j) {
+ if (is_int16(static_cast<int32_t>(j.immediate()))) {
+ daddiu(rd, zero_reg, (j.immediate() & kImm16Mask));
+ } else if (!(j.immediate() & kUpper16MaskOf64)) {
+ ori(rd, zero_reg, j.immediate() & kImm16Mask);
+ } else {
+ lui(rd, j.immediate() >> kLuiShift & kImm16Mask);
+ if (j.immediate() & kImm16Mask) {
+ ori(rd, rd, j.immediate() & kImm16Mask);
+ }
+ }
+}
+
+static inline int InstrCountForLoadReplicatedConst32(int64_t value) {
+ uint32_t x = static_cast<uint32_t>(value);
+ uint32_t y = static_cast<uint32_t>(value >> 32);
+
+ if (x == y) {
+ return (is_uint16(x) || is_int16(x) || (x & kImm16Mask) == 0) ? 2 : 3;
+ }
+
+ return INT_MAX;
+}
+
+int TurboAssembler::InstrCountForLi64Bit(int64_t value) {
+ if (is_int32(value)) {
+ return InstrCountForLiLower32Bit(value);
+ } else {
+ int bit31 = value >> 31 & 0x1;
+ if ((value & kUpper16MaskOf64) == 0 && is_int16(value >> 32) &&
+ kArchVariant == kMips64r6) {
+ return 2;
+ } else if ((value & (kHigher16MaskOf64 | kUpper16MaskOf64)) == 0 &&
+ kArchVariant == kMips64r6) {
+ return 2;
+ } else if ((value & kImm16Mask) == 0 && is_int16((value >> 32) + bit31) &&
+ kArchVariant == kMips64r6) {
+ return 2;
+ } else if ((value & kImm16Mask) == 0 &&
+ ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF) &&
+ kArchVariant == kMips64r6) {
+ return 2;
+ } else if (is_int16(static_cast<int32_t>(value)) &&
+ is_int16((value >> 32) + bit31) && kArchVariant == kMips64r6) {
+ return 2;
+ } else if (is_int16(static_cast<int32_t>(value)) &&
+ ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF) &&
+ kArchVariant == kMips64r6) {
+ return 2;
+ } else if (base::bits::IsPowerOfTwo(value + 1) ||
+ value == std::numeric_limits<int64_t>::max()) {
+ return 2;
+ } else {
+ int shift_cnt = base::bits::CountTrailingZeros64(value);
+ int rep32_count = InstrCountForLoadReplicatedConst32(value);
+ int64_t tmp = value >> shift_cnt;
+ if (is_uint16(tmp)) {
+ return 2;
+ } else if (is_int16(tmp)) {
+ return 2;
+ } else if (rep32_count < 3) {
+ return 2;
+ } else if (is_int32(tmp)) {
+ return 3;
+ } else {
+ shift_cnt = 16 + base::bits::CountTrailingZeros64(value >> 16);
+ tmp = value >> shift_cnt;
+ if (is_uint16(tmp)) {
+ return 3;
+ } else if (is_int16(tmp)) {
+ return 3;
+ } else if (rep32_count < 4) {
+ return 3;
+ } else if (kArchVariant == kMips64r6) {
+ int64_t imm = value;
+ int count = InstrCountForLiLower32Bit(imm);
+ imm = (imm >> 32) + bit31;
+ if (imm & kImm16Mask) {
+ count++;
+ }
+ imm = (imm >> 16) + (imm >> 15 & 0x1);
+ if (imm & kImm16Mask) {
+ count++;
+ }
+ return count;
+ } else {
+ if (is_int48(value)) {
+ int64_t k = value >> 16;
+ int count = InstrCountForLiLower32Bit(k) + 1;
+ if (value & kImm16Mask) {
+ count++;
+ }
+ return count;
+ } else {
+ int64_t k = value >> 32;
+ int count = InstrCountForLiLower32Bit(k);
+ if ((value >> 16) & kImm16Mask) {
+ count += 3;
+ if (value & kImm16Mask) {
+ count++;
+ }
+ } else {
+ count++;
+ if (value & kImm16Mask) {
+ count++;
+ }
+ }
+ return count;
+ }
+ }
+ }
+ }
+ }
+ UNREACHABLE();
+ return INT_MAX;
+}
+
+// All changes to if...else conditions here must be added to
+// InstrCountForLi64Bit as well.
+void TurboAssembler::li_optimized(Register rd, Operand j, LiFlags mode) {
+ DCHECK(!j.is_reg());
+ DCHECK(!MustUseReg(j.rmode()));
+ DCHECK(mode == OPTIMIZE_SIZE);
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ // Normal load of an immediate value which does not need Relocation Info.
+ if (is_int32(j.immediate())) {
+ LiLower32BitHelper(rd, j);
+ } else {
+ int bit31 = j.immediate() >> 31 & 0x1;
+ if ((j.immediate() & kUpper16MaskOf64) == 0 &&
+ is_int16(j.immediate() >> 32) && kArchVariant == kMips64r6) {
+ // 64-bit value which consists of an unsigned 16-bit value in its
+ // least significant 32-bits, and a signed 16-bit value in its
+ // most significant 32-bits.
+ ori(rd, zero_reg, j.immediate() & kImm16Mask);
+ dahi(rd, j.immediate() >> 32 & kImm16Mask);
+ } else if ((j.immediate() & (kHigher16MaskOf64 | kUpper16MaskOf64)) == 0 &&
+ kArchVariant == kMips64r6) {
+ // 64-bit value which consists of an unsigned 16-bit value in its
+ // least significant 48-bits, and a signed 16-bit value in its
+ // most significant 16-bits.
+ ori(rd, zero_reg, j.immediate() & kImm16Mask);
+ dati(rd, j.immediate() >> 48 & kImm16Mask);
+ } else if ((j.immediate() & kImm16Mask) == 0 &&
+ is_int16((j.immediate() >> 32) + bit31) &&
+ kArchVariant == kMips64r6) {
+ // 16 LSBs (Least Significant Bits) all set to zero.
+ // 48 MSBs (Most Significant Bits) hold a signed 32-bit value.
+ lui(rd, j.immediate() >> kLuiShift & kImm16Mask);
+ dahi(rd, ((j.immediate() >> 32) + bit31) & kImm16Mask);
+ } else if ((j.immediate() & kImm16Mask) == 0 &&
+ ((j.immediate() >> 31) & 0x1FFFF) ==
+ ((0x20000 - bit31) & 0x1FFFF) &&
+ kArchVariant == kMips64r6) {
+ // 16 LSBs all set to zero.
+ // 48 MSBs hold a signed value which can't be represented by signed
+ // 32-bit number, and the middle 16 bits are all zero, or all one.
+ lui(rd, j.immediate() >> kLuiShift & kImm16Mask);
+ dati(rd, ((j.immediate() >> 48) + bit31) & kImm16Mask);
+ } else if (is_int16(static_cast<int32_t>(j.immediate())) &&
+ is_int16((j.immediate() >> 32) + bit31) &&
+ kArchVariant == kMips64r6) {
+ // 32 LSBs contain a signed 16-bit number.
+ // 32 MSBs contain a signed 16-bit number.
+ daddiu(rd, zero_reg, j.immediate() & kImm16Mask);
+ dahi(rd, ((j.immediate() >> 32) + bit31) & kImm16Mask);
+ } else if (is_int16(static_cast<int32_t>(j.immediate())) &&
+ ((j.immediate() >> 31) & 0x1FFFF) ==
+ ((0x20000 - bit31) & 0x1FFFF) &&
+ kArchVariant == kMips64r6) {
+ // 48 LSBs contain an unsigned 16-bit number.
+ // 16 MSBs contain a signed 16-bit number.
+ daddiu(rd, zero_reg, j.immediate() & kImm16Mask);
+ dati(rd, ((j.immediate() >> 48) + bit31) & kImm16Mask);
+ } else if (base::bits::IsPowerOfTwo(j.immediate() + 1) ||
+ j.immediate() == std::numeric_limits<int64_t>::max()) {
+ // 64-bit values which have their "n" LSBs set to one, and their
+ // "64-n" MSBs set to zero. "n" must meet the restrictions 0 < n < 64.
+ int shift_cnt = 64 - base::bits::CountTrailingZeros64(j.immediate() + 1);
+ daddiu(rd, zero_reg, -1);
+ if (shift_cnt < 32) {
+ dsrl(rd, rd, shift_cnt);
+ } else {
+ dsrl32(rd, rd, shift_cnt & 31);
+ }
+ } else {
+ int shift_cnt = base::bits::CountTrailingZeros64(j.immediate());
+ int rep32_count = InstrCountForLoadReplicatedConst32(j.immediate());
+ int64_t tmp = j.immediate() >> shift_cnt;
+ if (is_uint16(tmp)) {
+ // Value can be computed by loading a 16-bit unsigned value, and
+ // then shifting left.
+ ori(rd, zero_reg, tmp & kImm16Mask);
+ if (shift_cnt < 32) {
+ dsll(rd, rd, shift_cnt);
+ } else {
+ dsll32(rd, rd, shift_cnt & 31);
+ }
+ } else if (is_int16(tmp)) {
+ // Value can be computed by loading a 16-bit signed value, and
+ // then shifting left.
+ daddiu(rd, zero_reg, static_cast<int32_t>(tmp));
+ if (shift_cnt < 32) {
+ dsll(rd, rd, shift_cnt);
+ } else {
+ dsll32(rd, rd, shift_cnt & 31);
+ }
+ } else if (rep32_count < 3) {
+ // Value being loaded has 32 LSBs equal to the 32 MSBs, and the
+ // value loaded into the 32 LSBs can be loaded with a single
+ // MIPS instruction.
+ LiLower32BitHelper(rd, j);
+ Dins(rd, rd, 32, 32);
+ } else if (is_int32(tmp)) {
+ // Loads with 3 instructions.
+ // Value can be computed by loading a 32-bit signed value, and
+ // then shifting left.
+ lui(rd, tmp >> kLuiShift & kImm16Mask);
+ ori(rd, rd, tmp & kImm16Mask);
+ if (shift_cnt < 32) {
+ dsll(rd, rd, shift_cnt);
+ } else {
+ dsll32(rd, rd, shift_cnt & 31);
+ }
+ } else {
+ shift_cnt = 16 + base::bits::CountTrailingZeros64(j.immediate() >> 16);
+ tmp = j.immediate() >> shift_cnt;
+ if (is_uint16(tmp)) {
+ // Value can be computed by loading a 16-bit unsigned value,
+ // shifting left, and "or"ing in another 16-bit unsigned value.
+ ori(rd, zero_reg, tmp & kImm16Mask);
+ if (shift_cnt < 32) {
+ dsll(rd, rd, shift_cnt);
+ } else {
+ dsll32(rd, rd, shift_cnt & 31);
+ }
+ ori(rd, rd, j.immediate() & kImm16Mask);
+ } else if (is_int16(tmp)) {
+ // Value can be computed by loading a 16-bit signed value,
+ // shifting left, and "or"ing in a 16-bit unsigned value.
+ daddiu(rd, zero_reg, static_cast<int32_t>(tmp));
+ if (shift_cnt < 32) {
+ dsll(rd, rd, shift_cnt);
+ } else {
+ dsll32(rd, rd, shift_cnt & 31);
+ }
+ ori(rd, rd, j.immediate() & kImm16Mask);
+ } else if (rep32_count < 4) {
+ // Value being loaded has 32 LSBs equal to the 32 MSBs, and the
+ // value in the 32 LSBs requires 2 MIPS instructions to load.
+ LiLower32BitHelper(rd, j);
+ Dins(rd, rd, 32, 32);
+ } else if (kArchVariant == kMips64r6) {
+ // Loads with 3-4 instructions.
+ // Catch-all case to get any other 64-bit values which aren't
+ // handled by special cases above.
+ int64_t imm = j.immediate();
+ LiLower32BitHelper(rd, j);
+ imm = (imm >> 32) + bit31;
+ if (imm & kImm16Mask) {
+ dahi(rd, imm & kImm16Mask);
+ }
+ imm = (imm >> 16) + (imm >> 15 & 0x1);
+ if (imm & kImm16Mask) {
+ dati(rd, imm & kImm16Mask);
+ }
+ } else {
+ if (is_int48(j.immediate())) {
+ Operand k = Operand(j.immediate() >> 16);
+ LiLower32BitHelper(rd, k);
+ dsll(rd, rd, 16);
+ if (j.immediate() & kImm16Mask) {
+ ori(rd, rd, j.immediate() & kImm16Mask);
+ }
+ } else {
+ Operand k = Operand(j.immediate() >> 32);
+ LiLower32BitHelper(rd, k);
+ if ((j.immediate() >> 16) & kImm16Mask) {
+ dsll(rd, rd, 16);
+ ori(rd, rd, (j.immediate() >> 16) & kImm16Mask);
+ dsll(rd, rd, 16);
+ if (j.immediate() & kImm16Mask) {
+ ori(rd, rd, j.immediate() & kImm16Mask);
+ }
+ } else {
+ dsll32(rd, rd, 0);
+ if (j.immediate() & kImm16Mask) {
+ ori(rd, rd, j.immediate() & kImm16Mask);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+void TurboAssembler::li(Register rd, Operand j, LiFlags mode) {
+ DCHECK(!j.is_reg());
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ if (!MustUseReg(j.rmode()) && mode == OPTIMIZE_SIZE) {
+ int li_count = InstrCountForLi64Bit(j.immediate());
+ int li_neg_count = InstrCountForLi64Bit(-j.immediate());
+ int li_not_count = InstrCountForLi64Bit(~j.immediate());
+ // Loading -MIN_INT64 could cause problems, but loading MIN_INT64 takes only
+ // two instructions so no need to check for this.
+ if (li_neg_count <= li_not_count && li_neg_count < li_count - 1) {
+ DCHECK(j.immediate() != std::numeric_limits<int64_t>::min());
+ li_optimized(rd, Operand(-j.immediate()), mode);
+ Dsubu(rd, zero_reg, rd);
+ } else if (li_neg_count > li_not_count && li_not_count < li_count - 1) {
+ DCHECK(j.immediate() != std::numeric_limits<int64_t>::min());
+ li_optimized(rd, Operand(~j.immediate()), mode);
+ nor(rd, rd, rd);
+ } else {
+ li_optimized(rd, j, mode);
+ }
+ } else if (MustUseReg(j.rmode())) {
+ int64_t immediate;
+ if (j.IsHeapObjectRequest()) {
+ RequestHeapObject(j.heap_object_request());
+ immediate = 0;
+ } else {
+ immediate = j.immediate();
+ }
+
+ RecordRelocInfo(j.rmode(), immediate);
+ lui(rd, (immediate >> 32) & kImm16Mask);
+ ori(rd, rd, (immediate >> 16) & kImm16Mask);
+ dsll(rd, rd, 16);
+ ori(rd, rd, immediate & kImm16Mask);
+ } else if (mode == ADDRESS_LOAD) {
+ // We always need the same number of instructions as we may need to patch
+ // this code to load another value which may need all 4 instructions.
+ lui(rd, (j.immediate() >> 32) & kImm16Mask);
+ ori(rd, rd, (j.immediate() >> 16) & kImm16Mask);
+ dsll(rd, rd, 16);
+ ori(rd, rd, j.immediate() & kImm16Mask);
+ } else { // mode == CONSTANT_SIZE - always emit the same instruction
+ // sequence.
+ if (kArchVariant == kMips64r6) {
+ int64_t imm = j.immediate();
+ lui(rd, imm >> kLuiShift & kImm16Mask);
+ ori(rd, rd, (imm & kImm16Mask));
+ imm = (imm >> 32) + ((imm >> 31) & 0x1);
+ dahi(rd, imm & kImm16Mask & kImm16Mask);
+ imm = (imm >> 16) + ((imm >> 15) & 0x1);
+ dati(rd, imm & kImm16Mask & kImm16Mask);
+ } else {
+ lui(rd, (j.immediate() >> 48) & kImm16Mask);
+ ori(rd, rd, (j.immediate() >> 32) & kImm16Mask);
+ dsll(rd, rd, 16);
+ ori(rd, rd, (j.immediate() >> 16) & kImm16Mask);
+ dsll(rd, rd, 16);
+ ori(rd, rd, j.immediate() & kImm16Mask);
+ }
+ }
+}
+
+void TurboAssembler::MultiPush(RegList regs) {
+ int16_t num_to_push = base::bits::CountPopulation(regs);
+ int16_t stack_offset = num_to_push * kPointerSize;
+
+ Dsubu(sp, sp, Operand(stack_offset));
+ for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+ if ((regs & (1 << i)) != 0) {
+ stack_offset -= kPointerSize;
+ Sd(ToRegister(i), MemOperand(sp, stack_offset));
+ }
+ }
+}
+
+void TurboAssembler::MultiPop(RegList regs) {
+ int16_t stack_offset = 0;
+
+ for (int16_t i = 0; i < kNumRegisters; i++) {
+ if ((regs & (1 << i)) != 0) {
+ Ld(ToRegister(i), MemOperand(sp, stack_offset));
+ stack_offset += kPointerSize;
+ }
+ }
+ daddiu(sp, sp, stack_offset);
+}
+
+void TurboAssembler::MultiPushFPU(RegList regs) {
+ int16_t num_to_push = base::bits::CountPopulation(regs);
+ int16_t stack_offset = num_to_push * kDoubleSize;
+
+ Dsubu(sp, sp, Operand(stack_offset));
+ for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+ if ((regs & (1 << i)) != 0) {
+ stack_offset -= kDoubleSize;
+ Sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
+ }
+ }
+}
+
+void TurboAssembler::MultiPopFPU(RegList regs) {
+ int16_t stack_offset = 0;
+
+ for (int16_t i = 0; i < kNumRegisters; i++) {
+ if ((regs & (1 << i)) != 0) {
+ Ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
+ stack_offset += kDoubleSize;
+ }
+ }
+ daddiu(sp, sp, stack_offset);
+}
+
+void TurboAssembler::Ext(Register rt, Register rs, uint16_t pos,
+ uint16_t size) {
+ DCHECK_LT(pos, 32);
+ DCHECK_LT(pos + size, 33);
+ ext_(rt, rs, pos, size);
+}
+
+void TurboAssembler::Dext(Register rt, Register rs, uint16_t pos,
+ uint16_t size) {
+ DCHECK(pos < 64 && 0 < size && size <= 64 && 0 < pos + size &&
+ pos + size <= 64);
+ if (size > 32) {
+ dextm_(rt, rs, pos, size);
+ } else if (pos >= 32) {
+ dextu_(rt, rs, pos, size);
+ } else {
+ dext_(rt, rs, pos, size);
+ }
+}
+
+void TurboAssembler::Ins(Register rt, Register rs, uint16_t pos,
+ uint16_t size) {
+ DCHECK_LT(pos, 32);
+ DCHECK_LE(pos + size, 32);
+ DCHECK_NE(size, 0);
+ ins_(rt, rs, pos, size);
+}
+
+void TurboAssembler::Dins(Register rt, Register rs, uint16_t pos,
+ uint16_t size) {
+ DCHECK(pos < 64 && 0 < size && size <= 64 && 0 < pos + size &&
+ pos + size <= 64);
+ if (pos + size <= 32) {
+ dins_(rt, rs, pos, size);
+ } else if (pos < 32) {
+ dinsm_(rt, rs, pos, size);
+ } else {
+ dinsu_(rt, rs, pos, size);
+ }
+}
+
+void TurboAssembler::ExtractBits(Register dest, Register source, Register pos,
+ int size, bool sign_extend) {
+ dsrav(dest, source, pos);
+ Dext(dest, dest, 0, size);
+ if (sign_extend) {
+ switch (size) {
+ case 8:
+ seb(dest, dest);
+ break;
+ case 16:
+ seh(dest, dest);
+ break;
+ case 32:
+ // sign-extend word
+ sll(dest, dest, 0);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+}
+
+void TurboAssembler::InsertBits(Register dest, Register source, Register pos,
+ int size) {
+ Dror(dest, dest, pos);
+ Dins(dest, source, 0, size);
+ {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ Dsubu(scratch, zero_reg, pos);
+ Dror(dest, dest, scratch);
+ }
+}
+
+void TurboAssembler::Neg_s(FPURegister fd, FPURegister fs) {
+ if (kArchVariant == kMips64r6) {
+ // r6 neg_s changes the sign for NaN-like operands as well.
+ neg_s(fd, fs);
+ } else {
+ DCHECK_EQ(kArchVariant, kMips64r2);
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Label is_nan, done;
+ Register scratch1 = t8;
+ Register scratch2 = t9;
+ CompareIsNanF32(fs, fs);
+ BranchTrueShortF(&is_nan);
+ Branch(USE_DELAY_SLOT, &done);
+ // For NaN input, neg_s will return the same NaN value,
+ // while the sign has to be changed separately.
+ neg_s(fd, fs); // In delay slot.
+ bind(&is_nan);
+ mfc1(scratch1, fs);
+ li(scratch2, kBinary32SignMask);
+ Xor(scratch1, scratch1, scratch2);
+ mtc1(scratch1, fd);
+ bind(&done);
+ }
+}
+
+void TurboAssembler::Neg_d(FPURegister fd, FPURegister fs) {
+ if (kArchVariant == kMips64r6) {
+ // r6 neg_d changes the sign for NaN-like operands as well.
+ neg_d(fd, fs);
+ } else {
+ DCHECK_EQ(kArchVariant, kMips64r2);
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Label is_nan, done;
+ Register scratch1 = t8;
+ Register scratch2 = t9;
+ CompareIsNanF64(fs, fs);
+ BranchTrueShortF(&is_nan);
+ Branch(USE_DELAY_SLOT, &done);
+ // For NaN input, neg_d will return the same NaN value,
+ // while the sign has to be changed separately.
+ neg_d(fd, fs); // In delay slot.
+ bind(&is_nan);
+ dmfc1(scratch1, fs);
+ li(scratch2, Double::kSignMask);
+ Xor(scratch1, scratch1, scratch2);
+ dmtc1(scratch1, fd);
+ bind(&done);
+ }
+}
+
+void TurboAssembler::Cvt_d_uw(FPURegister fd, FPURegister fs) {
+ // Move the data from fs to t8.
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ mfc1(t8, fs);
+ Cvt_d_uw(fd, t8);
+}
+
+void TurboAssembler::Cvt_d_uw(FPURegister fd, Register rs) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+
+ // Convert rs to a FP value in fd.
+ DCHECK(rs != t9);
+ DCHECK(rs != at);
+
+ // Zero extend int32 in rs.
+ Dext(t9, rs, 0, 32);
+ dmtc1(t9, fd);
+ cvt_d_l(fd, fd);
+}
+
+void TurboAssembler::Cvt_d_ul(FPURegister fd, FPURegister fs) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ // Move the data from fs to t8.
+ dmfc1(t8, fs);
+ Cvt_d_ul(fd, t8);
+}
+
+void TurboAssembler::Cvt_d_ul(FPURegister fd, Register rs) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ // Convert rs to a FP value in fd.
+
+ DCHECK(rs != t9);
+ DCHECK(rs != at);
+
+ Label msb_clear, conversion_done;
+
+ Branch(&msb_clear, ge, rs, Operand(zero_reg));
+
+ // Rs >= 2^63
+ andi(t9, rs, 1);
+ dsrl(rs, rs, 1);
+ or_(t9, t9, rs);
+ dmtc1(t9, fd);
+ cvt_d_l(fd, fd);
+ Branch(USE_DELAY_SLOT, &conversion_done);
+ add_d(fd, fd, fd); // In delay slot.
+
+ bind(&msb_clear);
+ // Rs < 2^63, we can do simple conversion.
+ dmtc1(rs, fd);
+ cvt_d_l(fd, fd);
+
+ bind(&conversion_done);
+}
+
+void TurboAssembler::Cvt_s_uw(FPURegister fd, FPURegister fs) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ // Move the data from fs to t8.
+ mfc1(t8, fs);
+ Cvt_s_uw(fd, t8);
+}
+
+void TurboAssembler::Cvt_s_uw(FPURegister fd, Register rs) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ // Convert rs to a FP value in fd.
+ DCHECK(rs != t9);
+ DCHECK(rs != at);
+
+ // Zero extend int32 in rs.
+ Dext(t9, rs, 0, 32);
+ dmtc1(t9, fd);
+ cvt_s_l(fd, fd);
+}
+
+void TurboAssembler::Cvt_s_ul(FPURegister fd, FPURegister fs) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ // Move the data from fs to t8.
+ dmfc1(t8, fs);
+ Cvt_s_ul(fd, t8);
+}
+
+void TurboAssembler::Cvt_s_ul(FPURegister fd, Register rs) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ // Convert rs to a FP value in fd.
+
+ DCHECK(rs != t9);
+ DCHECK(rs != at);
+
+ Label positive, conversion_done;
+
+ Branch(&positive, ge, rs, Operand(zero_reg));
+
+ // Rs >= 2^31.
+ andi(t9, rs, 1);
+ dsrl(rs, rs, 1);
+ or_(t9, t9, rs);
+ dmtc1(t9, fd);
+ cvt_s_l(fd, fd);
+ Branch(USE_DELAY_SLOT, &conversion_done);
+ add_s(fd, fd, fd); // In delay slot.
+
+ bind(&positive);
+ // Rs < 2^31, we can do simple conversion.
+ dmtc1(rs, fd);
+ cvt_s_l(fd, fd);
+
+ bind(&conversion_done);
+}
+
+void MacroAssembler::Round_l_d(FPURegister fd, FPURegister fs) {
+ round_l_d(fd, fs);
+}
+
+void MacroAssembler::Floor_l_d(FPURegister fd, FPURegister fs) {
+ floor_l_d(fd, fs);
+}
+
+void MacroAssembler::Ceil_l_d(FPURegister fd, FPURegister fs) {
+ ceil_l_d(fd, fs);
+}
+
+void MacroAssembler::Trunc_l_d(FPURegister fd, FPURegister fs) {
+ trunc_l_d(fd, fs);
+}
+
+void MacroAssembler::Trunc_l_ud(FPURegister fd, FPURegister fs,
+ FPURegister scratch) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ // Load to GPR.
+ dmfc1(t8, fs);
+ // Reset sign bit.
+ {
+ UseScratchRegisterScope temps(this);
+ Register scratch1 = temps.Acquire();
+ li(scratch1, 0x7FFFFFFFFFFFFFFF);
+ and_(t8, t8, scratch1);
+ }
+ dmtc1(t8, fs);
+ trunc_l_d(fd, fs);
+}
+
+void TurboAssembler::Trunc_uw_d(FPURegister fd, FPURegister fs,
+ FPURegister scratch) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Trunc_uw_d(t8, fs, scratch);
+ mtc1(t8, fd);
+}
+
+void TurboAssembler::Trunc_uw_s(FPURegister fd, FPURegister fs,
+ FPURegister scratch) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Trunc_uw_s(t8, fs, scratch);
+ mtc1(t8, fd);
+}
+
+void TurboAssembler::Trunc_ul_d(FPURegister fd, FPURegister fs,
+ FPURegister scratch, Register result) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Trunc_ul_d(t8, fs, scratch, result);
+ dmtc1(t8, fd);
+}
+
+void TurboAssembler::Trunc_ul_s(FPURegister fd, FPURegister fs,
+ FPURegister scratch, Register result) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Trunc_ul_s(t8, fs, scratch, result);
+ dmtc1(t8, fd);
+}
+
+void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) {
+ trunc_w_d(fd, fs);
+}
+
+void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) {
+ round_w_d(fd, fs);
+}
+
+void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) {
+ floor_w_d(fd, fs);
+}
+
+void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) {
+ ceil_w_d(fd, fs);
+}
+
+void TurboAssembler::Trunc_uw_d(Register rd, FPURegister fs,
+ FPURegister scratch) {
+ DCHECK(fs != scratch);
+ DCHECK(rd != at);
+
+ {
+ // Load 2^31 into scratch as its float representation.
+ UseScratchRegisterScope temps(this);
+ Register scratch1 = temps.Acquire();
+ li(scratch1, 0x41E00000);
+ mtc1(zero_reg, scratch);
+ mthc1(scratch1, scratch);
+ }
+ // Test if scratch > fd.
+ // If fd < 2^31 we can convert it normally.
+ Label simple_convert;
+ CompareF64(OLT, fs, scratch);
+ BranchTrueShortF(&simple_convert);
+
+ // First we subtract 2^31 from fd, then trunc it to rs
+ // and add 2^31 to rs.
+ sub_d(scratch, fs, scratch);
+ trunc_w_d(scratch, scratch);
+ mfc1(rd, scratch);
+ Or(rd, rd, 1 << 31);
+
+ Label done;
+ Branch(&done);
+ // Simple conversion.
+ bind(&simple_convert);
+ trunc_w_d(scratch, fs);
+ mfc1(rd, scratch);
+
+ bind(&done);
+}
+
+void TurboAssembler::Trunc_uw_s(Register rd, FPURegister fs,
+ FPURegister scratch) {
+ DCHECK(fs != scratch);
+ DCHECK(rd != at);
+
+ {
+ // Load 2^31 into scratch as its float representation.
+ UseScratchRegisterScope temps(this);
+ Register scratch1 = temps.Acquire();
+ li(scratch1, 0x4F000000);
+ mtc1(scratch1, scratch);
+ }
+ // Test if scratch > fs.
+ // If fs < 2^31 we can convert it normally.
+ Label simple_convert;
+ CompareF32(OLT, fs, scratch);
+ BranchTrueShortF(&simple_convert);
+
+ // First we subtract 2^31 from fs, then trunc it to rd
+ // and add 2^31 to rd.
+ sub_s(scratch, fs, scratch);
+ trunc_w_s(scratch, scratch);
+ mfc1(rd, scratch);
+ Or(rd, rd, 1 << 31);
+
+ Label done;
+ Branch(&done);
+ // Simple conversion.
+ bind(&simple_convert);
+ trunc_w_s(scratch, fs);
+ mfc1(rd, scratch);
+
+ bind(&done);
+}
+
+void TurboAssembler::Trunc_ul_d(Register rd, FPURegister fs,
+ FPURegister scratch, Register result) {
+ DCHECK(fs != scratch);
+ DCHECK(result.is_valid() ? !AreAliased(rd, result, at) : !AreAliased(rd, at));
+
+ Label simple_convert, done, fail;
+ if (result.is_valid()) {
+ mov(result, zero_reg);
+ Move(scratch, -1.0);
+ // If fd =< -1 or unordered, then the conversion fails.
+ CompareF64(OLE, fs, scratch);
+ BranchTrueShortF(&fail);
+ CompareIsNanF64(fs, scratch);
+ BranchTrueShortF(&fail);
+ }
+
+ // Load 2^63 into scratch as its double representation.
+ li(at, 0x43E0000000000000);
+ dmtc1(at, scratch);
+
+ // Test if scratch > fs.
+ // If fs < 2^63 we can convert it normally.
+ CompareF64(OLT, fs, scratch);
+ BranchTrueShortF(&simple_convert);
+
+ // First we subtract 2^63 from fs, then trunc it to rd
+ // and add 2^63 to rd.
+ sub_d(scratch, fs, scratch);
+ trunc_l_d(scratch, scratch);
+ dmfc1(rd, scratch);
+ Or(rd, rd, Operand(1UL << 63));
+ Branch(&done);
+
+ // Simple conversion.
+ bind(&simple_convert);
+ trunc_l_d(scratch, fs);
+ dmfc1(rd, scratch);
+
+ bind(&done);
+ if (result.is_valid()) {
+ // Conversion is failed if the result is negative.
+ {
+ UseScratchRegisterScope temps(this);
+ Register scratch1 = temps.Acquire();
+ addiu(scratch1, zero_reg, -1);
+ dsrl(scratch1, scratch1, 1); // Load 2^62.
+ dmfc1(result, scratch);
+ xor_(result, result, scratch1);
+ }
+ Slt(result, zero_reg, result);
+ }
+
+ bind(&fail);
+}
+
+void TurboAssembler::Trunc_ul_s(Register rd, FPURegister fs,
+ FPURegister scratch, Register result) {
+ DCHECK(fs != scratch);
+ DCHECK(result.is_valid() ? !AreAliased(rd, result, at) : !AreAliased(rd, at));
+
+ Label simple_convert, done, fail;
+ if (result.is_valid()) {
+ mov(result, zero_reg);
+ Move(scratch, -1.0f);
+ // If fd =< -1 or unordered, then the conversion fails.
+ CompareF32(OLE, fs, scratch);
+ BranchTrueShortF(&fail);
+ CompareIsNanF32(fs, scratch);
+ BranchTrueShortF(&fail);
+ }
+
+ {
+ // Load 2^63 into scratch as its float representation.
+ UseScratchRegisterScope temps(this);
+ Register scratch1 = temps.Acquire();
+ li(scratch1, 0x5F000000);
+ mtc1(scratch1, scratch);
+ }
+
+ // Test if scratch > fs.
+ // If fs < 2^63 we can convert it normally.
+ CompareF32(OLT, fs, scratch);
+ BranchTrueShortF(&simple_convert);
+
+ // First we subtract 2^63 from fs, then trunc it to rd
+ // and add 2^63 to rd.
+ sub_s(scratch, fs, scratch);
+ trunc_l_s(scratch, scratch);
+ dmfc1(rd, scratch);
+ Or(rd, rd, Operand(1UL << 63));
+ Branch(&done);
+
+ // Simple conversion.
+ bind(&simple_convert);
+ trunc_l_s(scratch, fs);
+ dmfc1(rd, scratch);
+
+ bind(&done);
+ if (result.is_valid()) {
+ // Conversion is failed if the result is negative or unordered.
+ {
+ UseScratchRegisterScope temps(this);
+ Register scratch1 = temps.Acquire();
+ addiu(scratch1, zero_reg, -1);
+ dsrl(scratch1, scratch1, 1); // Load 2^62.
+ dmfc1(result, scratch);
+ xor_(result, result, scratch1);
+ }
+ Slt(result, zero_reg, result);
+ }
+
+ bind(&fail);
+}
+
+template <typename RoundFunc>
+void TurboAssembler::RoundDouble(FPURegister dst, FPURegister src,
+ FPURoundingMode mode, RoundFunc round) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = t8;
+ if (kArchVariant == kMips64r6) {
+ cfc1(scratch, FCSR);
+ li(at, Operand(mode));
+ ctc1(at, FCSR);
+ rint_d(dst, src);
+ ctc1(scratch, FCSR);
+ } else {
+ Label done;
+ mfhc1(scratch, src);
+ Ext(at, scratch, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
+ Branch(USE_DELAY_SLOT, &done, hs, at,
+ Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits));
+ mov_d(dst, src);
+ round(this, dst, src);
+ dmfc1(at, dst);
+ Branch(USE_DELAY_SLOT, &done, ne, at, Operand(zero_reg));
+ cvt_d_l(dst, dst);
+ srl(at, scratch, 31);
+ sll(at, at, 31);
+ mthc1(at, dst);
+ bind(&done);
+ }
+}
+
+void TurboAssembler::Floor_d_d(FPURegister dst, FPURegister src) {
+ RoundDouble(dst, src, mode_floor,
+ [](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
+ tasm->floor_l_d(dst, src);
+ });
+}
+
+void TurboAssembler::Ceil_d_d(FPURegister dst, FPURegister src) {
+ RoundDouble(dst, src, mode_ceil,
+ [](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
+ tasm->ceil_l_d(dst, src);
+ });
+}
+
+void TurboAssembler::Trunc_d_d(FPURegister dst, FPURegister src) {
+ RoundDouble(dst, src, mode_trunc,
+ [](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
+ tasm->trunc_l_d(dst, src);
+ });
+}
+
+void TurboAssembler::Round_d_d(FPURegister dst, FPURegister src) {
+ RoundDouble(dst, src, mode_round,
+ [](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
+ tasm->round_l_d(dst, src);
+ });
+}
+
+template <typename RoundFunc>
+void TurboAssembler::RoundFloat(FPURegister dst, FPURegister src,
+ FPURoundingMode mode, RoundFunc round) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = t8;
+ if (kArchVariant == kMips64r6) {
+ cfc1(scratch, FCSR);
+ li(at, Operand(mode));
+ ctc1(at, FCSR);
+ rint_s(dst, src);
+ ctc1(scratch, FCSR);
+ } else {
+ int32_t kFloat32ExponentBias = 127;
+ int32_t kFloat32MantissaBits = 23;
+ int32_t kFloat32ExponentBits = 8;
+ Label done;
+ mfc1(scratch, src);
+ Ext(at, scratch, kFloat32MantissaBits, kFloat32ExponentBits);
+ Branch(USE_DELAY_SLOT, &done, hs, at,
+ Operand(kFloat32ExponentBias + kFloat32MantissaBits));
+ mov_s(dst, src);
+ round(this, dst, src);
+ mfc1(at, dst);
+ Branch(USE_DELAY_SLOT, &done, ne, at, Operand(zero_reg));
+ cvt_s_w(dst, dst);
+ srl(at, scratch, 31);
+ sll(at, at, 31);
+ mtc1(at, dst);
+ bind(&done);
+ }
+}
+
+void TurboAssembler::Floor_s_s(FPURegister dst, FPURegister src) {
+ RoundFloat(dst, src, mode_floor,
+ [](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
+ tasm->floor_w_s(dst, src);
+ });
+}
+
+void TurboAssembler::Ceil_s_s(FPURegister dst, FPURegister src) {
+ RoundFloat(dst, src, mode_ceil,
+ [](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
+ tasm->ceil_w_s(dst, src);
+ });
+}
+
+void TurboAssembler::Trunc_s_s(FPURegister dst, FPURegister src) {
+ RoundFloat(dst, src, mode_trunc,
+ [](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
+ tasm->trunc_w_s(dst, src);
+ });
+}
+
+void TurboAssembler::Round_s_s(FPURegister dst, FPURegister src) {
+ RoundFloat(dst, src, mode_round,
+ [](TurboAssembler* tasm, FPURegister dst, FPURegister src) {
+ tasm->round_w_s(dst, src);
+ });
+}
+
+void MacroAssembler::Madd_s(FPURegister fd, FPURegister fr, FPURegister fs,
+ FPURegister ft, FPURegister scratch) {
+ DCHECK(fr != scratch && fs != scratch && ft != scratch);
+ mul_s(scratch, fs, ft);
+ add_s(fd, fr, scratch);
+}
+
+void MacroAssembler::Madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
+ FPURegister ft, FPURegister scratch) {
+ DCHECK(fr != scratch && fs != scratch && ft != scratch);
+ mul_d(scratch, fs, ft);
+ add_d(fd, fr, scratch);
+}
+
+void MacroAssembler::Msub_s(FPURegister fd, FPURegister fr, FPURegister fs,
+ FPURegister ft, FPURegister scratch) {
+ DCHECK(fr != scratch && fs != scratch && ft != scratch);
+ mul_s(scratch, fs, ft);
+ sub_s(fd, scratch, fr);
+}
+
+void MacroAssembler::Msub_d(FPURegister fd, FPURegister fr, FPURegister fs,
+ FPURegister ft, FPURegister scratch) {
+ DCHECK(fr != scratch && fs != scratch && ft != scratch);
+ mul_d(scratch, fs, ft);
+ sub_d(fd, scratch, fr);
+}
+
+void TurboAssembler::CompareF(SecondaryField sizeField, FPUCondition cc,
+ FPURegister cmp1, FPURegister cmp2) {
+ if (kArchVariant == kMips64r6) {
+ sizeField = sizeField == D ? L : W;
+ DCHECK(cmp1 != kDoubleCompareReg && cmp2 != kDoubleCompareReg);
+ cmp(cc, sizeField, kDoubleCompareReg, cmp1, cmp2);
+ } else {
+ c(cc, sizeField, cmp1, cmp2);
+ }
+}
+
+void TurboAssembler::CompareIsNanF(SecondaryField sizeField, FPURegister cmp1,
+ FPURegister cmp2) {
+ CompareF(sizeField, UN, cmp1, cmp2);
+}
+
+void TurboAssembler::BranchTrueShortF(Label* target, BranchDelaySlot bd) {
+ if (kArchVariant == kMips64r6) {
+ bc1nez(target, kDoubleCompareReg);
+ } else {
+ bc1t(target);
+ }
+ if (bd == PROTECT) {
+ nop();
+ }
+}
+
+void TurboAssembler::BranchFalseShortF(Label* target, BranchDelaySlot bd) {
+ if (kArchVariant == kMips64r6) {
+ bc1eqz(target, kDoubleCompareReg);
+ } else {
+ bc1f(target);
+ }
+ if (bd == PROTECT) {
+ nop();
+ }
+}
+
+void TurboAssembler::BranchTrueF(Label* target, BranchDelaySlot bd) {
+ bool long_branch =
+ target->is_bound() ? !is_near(target) : is_trampoline_emitted();
+ if (long_branch) {
+ Label skip;
+ BranchFalseShortF(&skip);
+ BranchLong(target, bd);
+ bind(&skip);
+ } else {
+ BranchTrueShortF(target, bd);
+ }
+}
+
+void TurboAssembler::BranchFalseF(Label* target, BranchDelaySlot bd) {
+ bool long_branch =
+ target->is_bound() ? !is_near(target) : is_trampoline_emitted();
+ if (long_branch) {
+ Label skip;
+ BranchTrueShortF(&skip);
+ BranchLong(target, bd);
+ bind(&skip);
+ } else {
+ BranchFalseShortF(target, bd);
+ }
+}
+
+void TurboAssembler::BranchMSA(Label* target, MSABranchDF df,
+ MSABranchCondition cond, MSARegister wt,
+ BranchDelaySlot bd) {
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+
+ if (target) {
+ bool long_branch =
+ target->is_bound() ? !is_near(target) : is_trampoline_emitted();
+ if (long_branch) {
+ Label skip;
+ MSABranchCondition neg_cond = NegateMSABranchCondition(cond);
+ BranchShortMSA(df, &skip, neg_cond, wt, bd);
+ BranchLong(target, bd);
+ bind(&skip);
+ } else {
+ BranchShortMSA(df, target, cond, wt, bd);
+ }
+ }
+ }
+}
+
+void TurboAssembler::BranchShortMSA(MSABranchDF df, Label* target,
+ MSABranchCondition cond, MSARegister wt,
+ BranchDelaySlot bd) {
+ if (kArchVariant == kMips64r6) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ if (target) {
+ switch (cond) {
+ case all_not_zero:
+ switch (df) {
+ case MSA_BRANCH_D:
+ bnz_d(wt, target);
+ break;
+ case MSA_BRANCH_W:
+ bnz_w(wt, target);
+ break;
+ case MSA_BRANCH_H:
+ bnz_h(wt, target);
+ break;
+ case MSA_BRANCH_B:
+ default:
+ bnz_b(wt, target);
+ }
+ break;
+ case one_elem_not_zero:
+ bnz_v(wt, target);
+ break;
+ case one_elem_zero:
+ switch (df) {
+ case MSA_BRANCH_D:
+ bz_d(wt, target);
+ break;
+ case MSA_BRANCH_W:
+ bz_w(wt, target);
+ break;
+ case MSA_BRANCH_H:
+ bz_h(wt, target);
+ break;
+ case MSA_BRANCH_B:
+ default:
+ bz_b(wt, target);
+ }
+ break;
+ case all_zero:
+ bz_v(wt, target);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+ }
+ if (bd == PROTECT) {
+ nop();
+ }
+}
+
+void TurboAssembler::FmoveLow(FPURegister dst, Register src_low) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(src_low != scratch);
+ mfhc1(scratch, dst);
+ mtc1(src_low, dst);
+ mthc1(scratch, dst);
+}
+
+void TurboAssembler::Move(FPURegister dst, uint32_t src) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(static_cast<int32_t>(src)));
+ mtc1(scratch, dst);
+}
+
+void TurboAssembler::Move(FPURegister dst, uint64_t src) {
+ // Handle special values first.
+ if (src == bit_cast<uint64_t>(0.0) && has_double_zero_reg_set_) {
+ mov_d(dst, kDoubleRegZero);
+ } else if (src == bit_cast<uint64_t>(-0.0) && has_double_zero_reg_set_) {
+ Neg_d(dst, kDoubleRegZero);
+ } else {
+ uint32_t lo = src & 0xFFFFFFFF;
+ uint32_t hi = src >> 32;
+ // Move the low part of the double into the lower of the corresponding FPU
+ // register of FPU register pair.
+ if (lo != 0) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(lo));
+ mtc1(scratch, dst);
+ } else {
+ mtc1(zero_reg, dst);
+ }
+ // Move the high part of the double into the higher of the corresponding FPU
+ // register of FPU register pair.
+ if (hi != 0) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(hi));
+ mthc1(scratch, dst);
+ } else {
+ mthc1(zero_reg, dst);
+ }
+ if (dst == kDoubleRegZero) has_double_zero_reg_set_ = true;
+ }
+}
+
+void TurboAssembler::Movz(Register rd, Register rs, Register rt) {
+ if (kArchVariant == kMips64r6) {
+ Label done;
+ Branch(&done, ne, rt, Operand(zero_reg));
+ mov(rd, rs);
+ bind(&done);
+ } else {
+ movz(rd, rs, rt);
+ }
+}
+
+void TurboAssembler::Movn(Register rd, Register rs, Register rt) {
+ if (kArchVariant == kMips64r6) {
+ Label done;
+ Branch(&done, eq, rt, Operand(zero_reg));
+ mov(rd, rs);
+ bind(&done);
+ } else {
+ movn(rd, rs, rt);
+ }
+}
+
+void TurboAssembler::LoadZeroOnCondition(Register rd, Register rs,
+ const Operand& rt, Condition cond) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ switch (cond) {
+ case cc_always:
+ mov(rd, zero_reg);
+ break;
+ case eq:
+ if (rs == zero_reg) {
+ if (rt.is_reg()) {
+ LoadZeroIfConditionZero(rd, rt.rm());
+ } else {
+ if (rt.immediate() == 0) {
+ mov(rd, zero_reg);
+ } else {
+ nop();
+ }
+ }
+ } else if (IsZero(rt)) {
+ LoadZeroIfConditionZero(rd, rs);
+ } else {
+ Dsubu(t9, rs, rt);
+ LoadZeroIfConditionZero(rd, t9);
+ }
+ break;
+ case ne:
+ if (rs == zero_reg) {
+ if (rt.is_reg()) {
+ LoadZeroIfConditionNotZero(rd, rt.rm());
+ } else {
+ if (rt.immediate() != 0) {
+ mov(rd, zero_reg);
+ } else {
+ nop();
+ }
+ }
+ } else if (IsZero(rt)) {
+ LoadZeroIfConditionNotZero(rd, rs);
+ } else {
+ Dsubu(t9, rs, rt);
+ LoadZeroIfConditionNotZero(rd, t9);
+ }
+ break;
+
+ // Signed comparison.
+ case greater:
+ Sgt(t9, rs, rt);
+ LoadZeroIfConditionNotZero(rd, t9);
+ break;
+ case greater_equal:
+ Sge(t9, rs, rt);
+ LoadZeroIfConditionNotZero(rd, t9);
+ // rs >= rt
+ break;
+ case less:
+ Slt(t9, rs, rt);
+ LoadZeroIfConditionNotZero(rd, t9);
+ // rs < rt
+ break;
+ case less_equal:
+ Sle(t9, rs, rt);
+ LoadZeroIfConditionNotZero(rd, t9);
+ // rs <= rt
+ break;
+
+ // Unsigned comparison.
+ case Ugreater:
+ Sgtu(t9, rs, rt);
+ LoadZeroIfConditionNotZero(rd, t9);
+ // rs > rt
+ break;
+
+ case Ugreater_equal:
+ Sgeu(t9, rs, rt);
+ LoadZeroIfConditionNotZero(rd, t9);
+ // rs >= rt
+ break;
+ case Uless:
+ Sltu(t9, rs, rt);
+ LoadZeroIfConditionNotZero(rd, t9);
+ // rs < rt
+ break;
+ case Uless_equal:
+ Sleu(t9, rs, rt);
+ LoadZeroIfConditionNotZero(rd, t9);
+ // rs <= rt
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+void TurboAssembler::LoadZeroIfConditionNotZero(Register dest,
+ Register condition) {
+ if (kArchVariant == kMips64r6) {
+ seleqz(dest, dest, condition);
+ } else {
+ Movn(dest, zero_reg, condition);
+ }
+}
+
+void TurboAssembler::LoadZeroIfConditionZero(Register dest,
+ Register condition) {
+ if (kArchVariant == kMips64r6) {
+ selnez(dest, dest, condition);
+ } else {
+ Movz(dest, zero_reg, condition);
+ }
+}
+
+void TurboAssembler::LoadZeroIfFPUCondition(Register dest) {
+ if (kArchVariant == kMips64r6) {
+ dmfc1(kScratchReg, kDoubleCompareReg);
+ LoadZeroIfConditionNotZero(dest, kScratchReg);
+ } else {
+ Movt(dest, zero_reg);
+ }
+}
+
+void TurboAssembler::LoadZeroIfNotFPUCondition(Register dest) {
+ if (kArchVariant == kMips64r6) {
+ dmfc1(kScratchReg, kDoubleCompareReg);
+ LoadZeroIfConditionZero(dest, kScratchReg);
+ } else {
+ Movf(dest, zero_reg);
+ }
+}
+
+void TurboAssembler::Movt(Register rd, Register rs, uint16_t cc) {
+ movt(rd, rs, cc);
+}
+
+void TurboAssembler::Movf(Register rd, Register rs, uint16_t cc) {
+ movf(rd, rs, cc);
+}
+
+void TurboAssembler::Clz(Register rd, Register rs) { clz(rd, rs); }
+
+void TurboAssembler::Ctz(Register rd, Register rs) {
+ if (kArchVariant == kMips64r6) {
+ // We don't have an instruction to count the number of trailing zeroes.
+ // Start by flipping the bits end-for-end so we can count the number of
+ // leading zeroes instead.
+ rotr(rd, rs, 16);
+ wsbh(rd, rd);
+ bitswap(rd, rd);
+ Clz(rd, rd);
+ } else {
+ // Convert trailing zeroes to trailing ones, and bits to their left
+ // to zeroes.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ Daddu(scratch, rs, -1);
+ Xor(rd, scratch, rs);
+ And(rd, rd, scratch);
+ // Count number of leading zeroes.
+ Clz(rd, rd);
+ // Subtract number of leading zeroes from 32 to get number of trailing
+ // ones. Remember that the trailing ones were formerly trailing zeroes.
+ li(scratch, 32);
+ Subu(rd, scratch, rd);
+ }
+}
+
+void TurboAssembler::Dctz(Register rd, Register rs) {
+ if (kArchVariant == kMips64r6) {
+ // We don't have an instruction to count the number of trailing zeroes.
+ // Start by flipping the bits end-for-end so we can count the number of
+ // leading zeroes instead.
+ dsbh(rd, rs);
+ dshd(rd, rd);
+ dbitswap(rd, rd);
+ dclz(rd, rd);
+ } else {
+ // Convert trailing zeroes to trailing ones, and bits to their left
+ // to zeroes.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ Daddu(scratch, rs, -1);
+ Xor(rd, scratch, rs);
+ And(rd, rd, scratch);
+ // Count number of leading zeroes.
+ dclz(rd, rd);
+ // Subtract number of leading zeroes from 64 to get number of trailing
+ // ones. Remember that the trailing ones were formerly trailing zeroes.
+ li(scratch, 64);
+ Dsubu(rd, scratch, rd);
+ }
+}
+
+void TurboAssembler::Popcnt(Register rd, Register rs) {
+ // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
+ //
+ // A generalization of the best bit counting method to integers of
+ // bit-widths up to 128 (parameterized by type T) is this:
+ //
+ // v = v - ((v >> 1) & (T)~(T)0/3); // temp
+ // v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); // temp
+ // v = (v + (v >> 4)) & (T)~(T)0/255*15; // temp
+ // c = (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * BITS_PER_BYTE; //count
+ //
+ // For comparison, for 32-bit quantities, this algorithm can be executed
+ // using 20 MIPS instructions (the calls to LoadConst32() generate two
+ // machine instructions each for the values being used in this algorithm).
+ // A(n unrolled) loop-based algorithm requires 25 instructions.
+ //
+ // For a 64-bit operand this can be performed in 24 instructions compared
+ // to a(n unrolled) loop based algorithm which requires 38 instructions.
+ //
+ // There are algorithms which are faster in the cases where very few
+ // bits are set but the algorithm here attempts to minimize the total
+ // number of instructions executed even when a large number of bits
+ // are set.
+ uint32_t B0 = 0x55555555; // (T)~(T)0/3
+ uint32_t B1 = 0x33333333; // (T)~(T)0/15*3
+ uint32_t B2 = 0x0F0F0F0F; // (T)~(T)0/255*15
+ uint32_t value = 0x01010101; // (T)~(T)0/255
+ uint32_t shift = 24; // (sizeof(T) - 1) * BITS_PER_BYTE
+
+ UseScratchRegisterScope temps(this);
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = temps.Acquire();
+ Register scratch2 = t8;
+ srl(scratch, rs, 1);
+ li(scratch2, B0);
+ And(scratch, scratch, scratch2);
+ Subu(scratch, rs, scratch);
+ li(scratch2, B1);
+ And(rd, scratch, scratch2);
+ srl(scratch, scratch, 2);
+ And(scratch, scratch, scratch2);
+ Addu(scratch, rd, scratch);
+ srl(rd, scratch, 4);
+ Addu(rd, rd, scratch);
+ li(scratch2, B2);
+ And(rd, rd, scratch2);
+ li(scratch, value);
+ Mul(rd, rd, scratch);
+ srl(rd, rd, shift);
+}
+
+void TurboAssembler::Dpopcnt(Register rd, Register rs) {
+ uint64_t B0 = 0x5555555555555555l; // (T)~(T)0/3
+ uint64_t B1 = 0x3333333333333333l; // (T)~(T)0/15*3
+ uint64_t B2 = 0x0F0F0F0F0F0F0F0Fl; // (T)~(T)0/255*15
+ uint64_t value = 0x0101010101010101l; // (T)~(T)0/255
+ uint64_t shift = 24; // (sizeof(T) - 1) * BITS_PER_BYTE
+
+ UseScratchRegisterScope temps(this);
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = temps.Acquire();
+ Register scratch2 = t8;
+ dsrl(scratch, rs, 1);
+ li(scratch2, B0);
+ And(scratch, scratch, scratch2);
+ Dsubu(scratch, rs, scratch);
+ li(scratch2, B1);
+ And(rd, scratch, scratch2);
+ dsrl(scratch, scratch, 2);
+ And(scratch, scratch, scratch2);
+ Daddu(scratch, rd, scratch);
+ dsrl(rd, scratch, 4);
+ Daddu(rd, rd, scratch);
+ li(scratch2, B2);
+ And(rd, rd, scratch2);
+ li(scratch, value);
+ Dmul(rd, rd, scratch);
+ dsrl32(rd, rd, shift);
+}
+
+void MacroAssembler::EmitFPUTruncate(
+ FPURoundingMode rounding_mode, Register result, DoubleRegister double_input,
+ Register scratch, DoubleRegister double_scratch, Register except_flag,
+ CheckForInexactConversion check_inexact) {
+ DCHECK(result != scratch);
+ DCHECK(double_input != double_scratch);
+ DCHECK(except_flag != scratch);
+
+ Label done;
+
+ // Clear the except flag (0 = no exception)
+ mov(except_flag, zero_reg);
+
+ // Test for values that can be exactly represented as a signed 32-bit integer.
+ cvt_w_d(double_scratch, double_input);
+ mfc1(result, double_scratch);
+ cvt_d_w(double_scratch, double_scratch);
+ CompareF64(EQ, double_input, double_scratch);
+ BranchTrueShortF(&done);
+
+ int32_t except_mask = kFCSRFlagMask; // Assume interested in all exceptions.
+
+ if (check_inexact == kDontCheckForInexactConversion) {
+ // Ignore inexact exceptions.
+ except_mask &= ~kFCSRInexactFlagMask;
+ }
+
+ // Save FCSR.
+ cfc1(scratch, FCSR);
+ // Disable FPU exceptions.
+ ctc1(zero_reg, FCSR);
+
+ // Do operation based on rounding mode.
+ switch (rounding_mode) {
+ case kRoundToNearest:
+ Round_w_d(double_scratch, double_input);
+ break;
+ case kRoundToZero:
+ Trunc_w_d(double_scratch, double_input);
+ break;
+ case kRoundToPlusInf:
+ Ceil_w_d(double_scratch, double_input);
+ break;
+ case kRoundToMinusInf:
+ Floor_w_d(double_scratch, double_input);
+ break;
+ } // End of switch-statement.
+
+ // Retrieve FCSR.
+ cfc1(except_flag, FCSR);
+ // Restore FCSR.
+ ctc1(scratch, FCSR);
+ // Move the converted value into the result register.
+ mfc1(result, double_scratch);
+
+ // Check for fpu exceptions.
+ And(except_flag, except_flag, Operand(except_mask));
+
+ bind(&done);
+}
+
+void TurboAssembler::TryInlineTruncateDoubleToI(Register result,
+ DoubleRegister double_input,
+ Label* done) {
+ DoubleRegister single_scratch = kScratchDoubleReg.low();
+ UseScratchRegisterScope temps(this);
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = temps.Acquire();
+ Register scratch2 = t9;
+
+ // Clear cumulative exception flags and save the FCSR.
+ cfc1(scratch2, FCSR);
+ ctc1(zero_reg, FCSR);
+ // Try a conversion to a signed integer.
+ trunc_w_d(single_scratch, double_input);
+ mfc1(result, single_scratch);
+ // Retrieve and restore the FCSR.
+ cfc1(scratch, FCSR);
+ ctc1(scratch2, FCSR);
+ // Check for overflow and NaNs.
+ And(scratch, scratch,
+ kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask);
+ // If we had no exceptions we are done.
+ Branch(done, eq, scratch, Operand(zero_reg));
+}
+
+void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone,
+ Register result,
+ DoubleRegister double_input,
+ StubCallMode stub_mode) {
+ Label done;
+
+ TryInlineTruncateDoubleToI(result, double_input, &done);
+
+ // If we fell through then inline version didn't succeed - call stub instead.
+ push(ra);
+ Dsubu(sp, sp, Operand(kDoubleSize)); // Put input on stack.
+ Sdc1(double_input, MemOperand(sp, 0));
+
+ if (stub_mode == StubCallMode::kCallWasmRuntimeStub) {
+ Call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL);
+ } else {
+ Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET);
+ }
+ Ld(result, MemOperand(sp, 0));
+
+ Daddu(sp, sp, Operand(kDoubleSize));
+ pop(ra);
+
+ bind(&done);
+}
+
+// Emulated condtional branches do not emit a nop in the branch delay slot.
+//
+// BRANCH_ARGS_CHECK checks that conditional jump arguments are correct.
+#define BRANCH_ARGS_CHECK(cond, rs, rt) \
+ DCHECK((cond == cc_always && rs == zero_reg && rt.rm() == zero_reg) || \
+ (cond != cc_always && (rs != zero_reg || rt.rm() != zero_reg)))
+
+void TurboAssembler::Branch(int32_t offset, BranchDelaySlot bdslot) {
+ DCHECK_EQ(kArchVariant, kMips64r6 ? is_int26(offset) : is_int16(offset));
+ BranchShort(offset, bdslot);
+}
+
+void TurboAssembler::Branch(int32_t offset, Condition cond, Register rs,
+ const Operand& rt, BranchDelaySlot bdslot) {
+ bool is_near = BranchShortCheck(offset, nullptr, cond, rs, rt, bdslot);
+ DCHECK(is_near);
+ USE(is_near);
+}
+
+void TurboAssembler::Branch(Label* L, BranchDelaySlot bdslot) {
+ if (L->is_bound()) {
+ if (is_near_branch(L)) {
+ BranchShort(L, bdslot);
+ } else {
+ BranchLong(L, bdslot);
+ }
+ } else {
+ if (is_trampoline_emitted()) {
+ BranchLong(L, bdslot);
+ } else {
+ BranchShort(L, bdslot);
+ }
+ }
+}
+
+void TurboAssembler::Branch(Label* L, Condition cond, Register rs,
+ const Operand& rt, BranchDelaySlot bdslot) {
+ if (L->is_bound()) {
+ if (!BranchShortCheck(0, L, cond, rs, rt, bdslot)) {
+ if (cond != cc_always) {
+ Label skip;
+ Condition neg_cond = NegateCondition(cond);
+ BranchShort(&skip, neg_cond, rs, rt);
+ BranchLong(L, bdslot);
+ bind(&skip);
+ } else {
+ BranchLong(L, bdslot);
+ }
+ }
+ } else {
+ if (is_trampoline_emitted()) {
+ if (cond != cc_always) {
+ Label skip;
+ Condition neg_cond = NegateCondition(cond);
+ BranchShort(&skip, neg_cond, rs, rt);
+ BranchLong(L, bdslot);
+ bind(&skip);
+ } else {
+ BranchLong(L, bdslot);
+ }
+ } else {
+ BranchShort(L, cond, rs, rt, bdslot);
+ }
+ }
+}
+
+void TurboAssembler::Branch(Label* L, Condition cond, Register rs,
+ RootIndex index, BranchDelaySlot bdslot) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ LoadRoot(scratch, index);
+ Branch(L, cond, rs, Operand(scratch), bdslot);
+}
+
+void TurboAssembler::BranchShortHelper(int16_t offset, Label* L,
+ BranchDelaySlot bdslot) {
+ DCHECK(L == nullptr || offset == 0);
+ offset = GetOffset(offset, L, OffsetSize::kOffset16);
+ b(offset);
+
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT) nop();
+}
+
+void TurboAssembler::BranchShortHelperR6(int32_t offset, Label* L) {
+ DCHECK(L == nullptr || offset == 0);
+ offset = GetOffset(offset, L, OffsetSize::kOffset26);
+ bc(offset);
+}
+
+void TurboAssembler::BranchShort(int32_t offset, BranchDelaySlot bdslot) {
+ if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
+ DCHECK(is_int26(offset));
+ BranchShortHelperR6(offset, nullptr);
+ } else {
+ DCHECK(is_int16(offset));
+ BranchShortHelper(offset, nullptr, bdslot);
+ }
+}
+
+void TurboAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) {
+ if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
+ BranchShortHelperR6(0, L);
+ } else {
+ BranchShortHelper(0, L, bdslot);
+ }
+}
+
+int32_t TurboAssembler::GetOffset(int32_t offset, Label* L, OffsetSize bits) {
+ if (L) {
+ offset = branch_offset_helper(L, bits) >> 2;
+ } else {
+ DCHECK(is_intn(offset, bits));
+ }
+ return offset;
+}
+
+Register TurboAssembler::GetRtAsRegisterHelper(const Operand& rt,
+ Register scratch) {
+ Register r2 = no_reg;
+ if (rt.is_reg()) {
+ r2 = rt.rm();
+ } else {
+ r2 = scratch;
+ li(r2, rt);
+ }
+
+ return r2;
+}
+
+bool TurboAssembler::CalculateOffset(Label* L, int32_t& offset,
+ OffsetSize bits) {
+ if (!is_near(L, bits)) return false;
+ offset = GetOffset(offset, L, bits);
+ return true;
+}
+
+bool TurboAssembler::CalculateOffset(Label* L, int32_t& offset, OffsetSize bits,
+ Register& scratch, const Operand& rt) {
+ if (!is_near(L, bits)) return false;
+ scratch = GetRtAsRegisterHelper(rt, scratch);
+ offset = GetOffset(offset, L, bits);
+ return true;
+}
+
+bool TurboAssembler::BranchShortHelperR6(int32_t offset, Label* L,
+ Condition cond, Register rs,
+ const Operand& rt) {
+ DCHECK(L == nullptr || offset == 0);
+ UseScratchRegisterScope temps(this);
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+
+ // Be careful to always use shifted_branch_offset only just before the
+ // branch instruction, as the location will be remember for patching the
+ // target.
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ switch (cond) {
+ case cc_always:
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false;
+ bc(offset);
+ break;
+ case eq:
+ if (rt.is_reg() && rs.code() == rt.rm().code()) {
+ // Pre R6 beq is used here to make the code patchable. Otherwise bc
+ // should be used which has no condition field so is not patchable.
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ beq(rs, scratch, offset);
+ nop();
+ } else if (IsZero(rt)) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset21)) return false;
+ beqzc(rs, offset);
+ } else {
+ // We don't want any other register but scratch clobbered.
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ beqc(rs, scratch, offset);
+ }
+ break;
+ case ne:
+ if (rt.is_reg() && rs.code() == rt.rm().code()) {
+ // Pre R6 bne is used here to make the code patchable. Otherwise we
+ // should not generate any instruction.
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ bne(rs, scratch, offset);
+ nop();
+ } else if (IsZero(rt)) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset21)) return false;
+ bnezc(rs, offset);
+ } else {
+ // We don't want any other register but scratch clobbered.
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ bnec(rs, scratch, offset);
+ }
+ break;
+
+ // Signed comparison.
+ case greater:
+ // rs > rt
+ if (rt.is_reg() && rs.code() == rt.rm().code()) {
+ break; // No code needs to be emitted.
+ } else if (rs == zero_reg) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ bltzc(scratch, offset);
+ } else if (IsZero(rt)) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false;
+ bgtzc(rs, offset);
+ } else {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ DCHECK(rs != scratch);
+ bltc(scratch, rs, offset);
+ }
+ break;
+ case greater_equal:
+ // rs >= rt
+ if (rt.is_reg() && rs.code() == rt.rm().code()) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false;
+ bc(offset);
+ } else if (rs == zero_reg) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ blezc(scratch, offset);
+ } else if (IsZero(rt)) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false;
+ bgezc(rs, offset);
+ } else {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ DCHECK(rs != scratch);
+ bgec(rs, scratch, offset);
+ }
+ break;
+ case less:
+ // rs < rt
+ if (rt.is_reg() && rs.code() == rt.rm().code()) {
+ break; // No code needs to be emitted.
+ } else if (rs == zero_reg) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ bgtzc(scratch, offset);
+ } else if (IsZero(rt)) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false;
+ bltzc(rs, offset);
+ } else {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ DCHECK(rs != scratch);
+ bltc(rs, scratch, offset);
+ }
+ break;
+ case less_equal:
+ // rs <= rt
+ if (rt.is_reg() && rs.code() == rt.rm().code()) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false;
+ bc(offset);
+ } else if (rs == zero_reg) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ bgezc(scratch, offset);
+ } else if (IsZero(rt)) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false;
+ blezc(rs, offset);
+ } else {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ DCHECK(rs != scratch);
+ bgec(scratch, rs, offset);
+ }
+ break;
+
+ // Unsigned comparison.
+ case Ugreater:
+ // rs > rt
+ if (rt.is_reg() && rs.code() == rt.rm().code()) {
+ break; // No code needs to be emitted.
+ } else if (rs == zero_reg) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset21, scratch, rt))
+ return false;
+ bnezc(scratch, offset);
+ } else if (IsZero(rt)) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset21)) return false;
+ bnezc(rs, offset);
+ } else {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ DCHECK(rs != scratch);
+ bltuc(scratch, rs, offset);
+ }
+ break;
+ case Ugreater_equal:
+ // rs >= rt
+ if (rt.is_reg() && rs.code() == rt.rm().code()) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false;
+ bc(offset);
+ } else if (rs == zero_reg) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset21, scratch, rt))
+ return false;
+ beqzc(scratch, offset);
+ } else if (IsZero(rt)) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false;
+ bc(offset);
+ } else {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ DCHECK(rs != scratch);
+ bgeuc(rs, scratch, offset);
+ }
+ break;
+ case Uless:
+ // rs < rt
+ if (rt.is_reg() && rs.code() == rt.rm().code()) {
+ break; // No code needs to be emitted.
+ } else if (rs == zero_reg) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset21, scratch, rt))
+ return false;
+ bnezc(scratch, offset);
+ } else if (IsZero(rt)) {
+ break; // No code needs to be emitted.
+ } else {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ DCHECK(rs != scratch);
+ bltuc(rs, scratch, offset);
+ }
+ break;
+ case Uless_equal:
+ // rs <= rt
+ if (rt.is_reg() && rs.code() == rt.rm().code()) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false;
+ bc(offset);
+ } else if (rs == zero_reg) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset26, scratch, rt))
+ return false;
+ bc(offset);
+ } else if (IsZero(rt)) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset21)) return false;
+ beqzc(rs, offset);
+ } else {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ DCHECK(rs != scratch);
+ bgeuc(scratch, rs, offset);
+ }
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+ CheckTrampolinePoolQuick(1);
+ return true;
+}
+
+bool TurboAssembler::BranchShortHelper(int16_t offset, Label* L, Condition cond,
+ Register rs, const Operand& rt,
+ BranchDelaySlot bdslot) {
+ DCHECK(L == nullptr || offset == 0);
+ if (!is_near(L, OffsetSize::kOffset16)) return false;
+
+ UseScratchRegisterScope temps(this);
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+ int32_t offset32;
+
+ // Be careful to always use shifted_branch_offset only just before the
+ // branch instruction, as the location will be remember for patching the
+ // target.
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ switch (cond) {
+ case cc_always:
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ b(offset32);
+ break;
+ case eq:
+ if (IsZero(rt)) {
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ beq(rs, zero_reg, offset32);
+ } else {
+ // We don't want any other register but scratch clobbered.
+ scratch = GetRtAsRegisterHelper(rt, scratch);
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ beq(rs, scratch, offset32);
+ }
+ break;
+ case ne:
+ if (IsZero(rt)) {
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ bne(rs, zero_reg, offset32);
+ } else {
+ // We don't want any other register but scratch clobbered.
+ scratch = GetRtAsRegisterHelper(rt, scratch);
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ bne(rs, scratch, offset32);
+ }
+ break;
+
+ // Signed comparison.
+ case greater:
+ if (IsZero(rt)) {
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ bgtz(rs, offset32);
+ } else {
+ Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ bne(scratch, zero_reg, offset32);
+ }
+ break;
+ case greater_equal:
+ if (IsZero(rt)) {
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ bgez(rs, offset32);
+ } else {
+ Slt(scratch, rs, rt);
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ beq(scratch, zero_reg, offset32);
+ }
+ break;
+ case less:
+ if (IsZero(rt)) {
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ bltz(rs, offset32);
+ } else {
+ Slt(scratch, rs, rt);
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ bne(scratch, zero_reg, offset32);
+ }
+ break;
+ case less_equal:
+ if (IsZero(rt)) {
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ blez(rs, offset32);
+ } else {
+ Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ beq(scratch, zero_reg, offset32);
+ }
+ break;
+
+ // Unsigned comparison.
+ case Ugreater:
+ if (IsZero(rt)) {
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ bne(rs, zero_reg, offset32);
+ } else {
+ Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ bne(scratch, zero_reg, offset32);
+ }
+ break;
+ case Ugreater_equal:
+ if (IsZero(rt)) {
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ b(offset32);
+ } else {
+ Sltu(scratch, rs, rt);
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ beq(scratch, zero_reg, offset32);
+ }
+ break;
+ case Uless:
+ if (IsZero(rt)) {
+ return true; // No code needs to be emitted.
+ } else {
+ Sltu(scratch, rs, rt);
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ bne(scratch, zero_reg, offset32);
+ }
+ break;
+ case Uless_equal:
+ if (IsZero(rt)) {
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ beq(rs, zero_reg, offset32);
+ } else {
+ Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
+ offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
+ beq(scratch, zero_reg, offset32);
+ }
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT) nop();
+
+ return true;
+}
+
+bool TurboAssembler::BranchShortCheck(int32_t offset, Label* L, Condition cond,
+ Register rs, const Operand& rt,
+ BranchDelaySlot bdslot) {
+ BRANCH_ARGS_CHECK(cond, rs, rt);
+
+ if (!L) {
+ if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
+ DCHECK(is_int26(offset));
+ return BranchShortHelperR6(offset, nullptr, cond, rs, rt);
+ } else {
+ DCHECK(is_int16(offset));
+ return BranchShortHelper(offset, nullptr, cond, rs, rt, bdslot);
+ }
+ } else {
+ DCHECK_EQ(offset, 0);
+ if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
+ return BranchShortHelperR6(0, L, cond, rs, rt);
+ } else {
+ return BranchShortHelper(0, L, cond, rs, rt, bdslot);
+ }
+ }
+ return false;
+}
+
+void TurboAssembler::BranchShort(int32_t offset, Condition cond, Register rs,
+ const Operand& rt, BranchDelaySlot bdslot) {
+ BranchShortCheck(offset, nullptr, cond, rs, rt, bdslot);
+}
+
+void TurboAssembler::BranchShort(Label* L, Condition cond, Register rs,
+ const Operand& rt, BranchDelaySlot bdslot) {
+ BranchShortCheck(0, L, cond, rs, rt, bdslot);
+}
+
+void TurboAssembler::BranchAndLink(int32_t offset, BranchDelaySlot bdslot) {
+ BranchAndLinkShort(offset, bdslot);
+}
+
+void TurboAssembler::BranchAndLink(int32_t offset, Condition cond, Register rs,
+ const Operand& rt, BranchDelaySlot bdslot) {
+ bool is_near = BranchAndLinkShortCheck(offset, nullptr, cond, rs, rt, bdslot);
+ DCHECK(is_near);
+ USE(is_near);
+}
+
+void TurboAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) {
+ if (L->is_bound()) {
+ if (is_near_branch(L)) {
+ BranchAndLinkShort(L, bdslot);
+ } else {
+ BranchAndLinkLong(L, bdslot);
+ }
+ } else {
+ if (is_trampoline_emitted()) {
+ BranchAndLinkLong(L, bdslot);
+ } else {
+ BranchAndLinkShort(L, bdslot);
+ }
+ }
+}
+
+void TurboAssembler::BranchAndLink(Label* L, Condition cond, Register rs,
+ const Operand& rt, BranchDelaySlot bdslot) {
+ if (L->is_bound()) {
+ if (!BranchAndLinkShortCheck(0, L, cond, rs, rt, bdslot)) {
+ Label skip;
+ Condition neg_cond = NegateCondition(cond);
+ BranchShort(&skip, neg_cond, rs, rt);
+ BranchAndLinkLong(L, bdslot);
+ bind(&skip);
+ }
+ } else {
+ if (is_trampoline_emitted()) {
+ Label skip;
+ Condition neg_cond = NegateCondition(cond);
+ BranchShort(&skip, neg_cond, rs, rt);
+ BranchAndLinkLong(L, bdslot);
+ bind(&skip);
+ } else {
+ BranchAndLinkShortCheck(0, L, cond, rs, rt, bdslot);
+ }
+ }
+}
+
+void TurboAssembler::BranchAndLinkShortHelper(int16_t offset, Label* L,
+ BranchDelaySlot bdslot) {
+ DCHECK(L == nullptr || offset == 0);
+ offset = GetOffset(offset, L, OffsetSize::kOffset16);
+ bal(offset);
+
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT) nop();
+}
+
+void TurboAssembler::BranchAndLinkShortHelperR6(int32_t offset, Label* L) {
+ DCHECK(L == nullptr || offset == 0);
+ offset = GetOffset(offset, L, OffsetSize::kOffset26);
+ balc(offset);
+}
+
+void TurboAssembler::BranchAndLinkShort(int32_t offset,
+ BranchDelaySlot bdslot) {
+ if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
+ DCHECK(is_int26(offset));
+ BranchAndLinkShortHelperR6(offset, nullptr);
+ } else {
+ DCHECK(is_int16(offset));
+ BranchAndLinkShortHelper(offset, nullptr, bdslot);
+ }
+}
+
+void TurboAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) {
+ if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
+ BranchAndLinkShortHelperR6(0, L);
+ } else {
+ BranchAndLinkShortHelper(0, L, bdslot);
+ }
+}
+
+bool TurboAssembler::BranchAndLinkShortHelperR6(int32_t offset, Label* L,
+ Condition cond, Register rs,
+ const Operand& rt) {
+ DCHECK(L == nullptr || offset == 0);
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+ OffsetSize bits = OffsetSize::kOffset16;
+
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ DCHECK((cond == cc_always && is_int26(offset)) || is_int16(offset));
+ switch (cond) {
+ case cc_always:
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false;
+ balc(offset);
+ break;
+ case eq:
+ if (!is_near(L, bits)) return false;
+ Subu(scratch, rs, rt);
+ offset = GetOffset(offset, L, bits);
+ beqzalc(scratch, offset);
+ break;
+ case ne:
+ if (!is_near(L, bits)) return false;
+ Subu(scratch, rs, rt);
+ offset = GetOffset(offset, L, bits);
+ bnezalc(scratch, offset);
+ break;
+
+ // Signed comparison.
+ case greater:
+ // rs > rt
+ if (rs.code() == rt.rm().code()) {
+ break; // No code needs to be emitted.
+ } else if (rs == zero_reg) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ bltzalc(scratch, offset);
+ } else if (IsZero(rt)) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false;
+ bgtzalc(rs, offset);
+ } else {
+ if (!is_near(L, bits)) return false;
+ Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
+ offset = GetOffset(offset, L, bits);
+ bnezalc(scratch, offset);
+ }
+ break;
+ case greater_equal:
+ // rs >= rt
+ if (rs.code() == rt.rm().code()) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false;
+ balc(offset);
+ } else if (rs == zero_reg) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ blezalc(scratch, offset);
+ } else if (IsZero(rt)) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false;
+ bgezalc(rs, offset);
+ } else {
+ if (!is_near(L, bits)) return false;
+ Slt(scratch, rs, rt);
+ offset = GetOffset(offset, L, bits);
+ beqzalc(scratch, offset);
+ }
+ break;
+ case less:
+ // rs < rt
+ if (rs.code() == rt.rm().code()) {
+ break; // No code needs to be emitted.
+ } else if (rs == zero_reg) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ bgtzalc(scratch, offset);
+ } else if (IsZero(rt)) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false;
+ bltzalc(rs, offset);
+ } else {
+ if (!is_near(L, bits)) return false;
+ Slt(scratch, rs, rt);
+ offset = GetOffset(offset, L, bits);
+ bnezalc(scratch, offset);
+ }
+ break;
+ case less_equal:
+ // rs <= r2
+ if (rs.code() == rt.rm().code()) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset26)) return false;
+ balc(offset);
+ } else if (rs == zero_reg) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16, scratch, rt))
+ return false;
+ bgezalc(scratch, offset);
+ } else if (IsZero(rt)) {
+ if (!CalculateOffset(L, offset, OffsetSize::kOffset16)) return false;
+ blezalc(rs, offset);
+ } else {
+ if (!is_near(L, bits)) return false;
+ Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
+ offset = GetOffset(offset, L, bits);
+ beqzalc(scratch, offset);
+ }
+ break;
+
+ // Unsigned comparison.
+ case Ugreater:
+ // rs > r2
+ if (!is_near(L, bits)) return false;
+ Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
+ offset = GetOffset(offset, L, bits);
+ bnezalc(scratch, offset);
+ break;
+ case Ugreater_equal:
+ // rs >= r2
+ if (!is_near(L, bits)) return false;
+ Sltu(scratch, rs, rt);
+ offset = GetOffset(offset, L, bits);
+ beqzalc(scratch, offset);
+ break;
+ case Uless:
+ // rs < r2
+ if (!is_near(L, bits)) return false;
+ Sltu(scratch, rs, rt);
+ offset = GetOffset(offset, L, bits);
+ bnezalc(scratch, offset);
+ break;
+ case Uless_equal:
+ // rs <= r2
+ if (!is_near(L, bits)) return false;
+ Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
+ offset = GetOffset(offset, L, bits);
+ beqzalc(scratch, offset);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ return true;
+}
+
+// Pre r6 we need to use a bgezal or bltzal, but they can't be used directly
+// with the slt instructions. We could use sub or add instead but we would miss
+// overflow cases, so we keep slt and add an intermediate third instruction.
+bool TurboAssembler::BranchAndLinkShortHelper(int16_t offset, Label* L,
+ Condition cond, Register rs,
+ const Operand& rt,
+ BranchDelaySlot bdslot) {
+ DCHECK(L == nullptr || offset == 0);
+ if (!is_near(L, OffsetSize::kOffset16)) return false;
+
+ Register scratch = t8;
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+
+ switch (cond) {
+ case cc_always:
+ offset = GetOffset(offset, L, OffsetSize::kOffset16);
+ bal(offset);
+ break;
+ case eq:
+ bne(rs, GetRtAsRegisterHelper(rt, scratch), 2);
+ nop();
+ offset = GetOffset(offset, L, OffsetSize::kOffset16);
+ bal(offset);
+ break;
+ case ne:
+ beq(rs, GetRtAsRegisterHelper(rt, scratch), 2);
+ nop();
+ offset = GetOffset(offset, L, OffsetSize::kOffset16);
+ bal(offset);
+ break;
+
+ // Signed comparison.
+ case greater:
+ Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
+ addiu(scratch, scratch, -1);
+ offset = GetOffset(offset, L, OffsetSize::kOffset16);
+ bgezal(scratch, offset);
+ break;
+ case greater_equal:
+ Slt(scratch, rs, rt);
+ addiu(scratch, scratch, -1);
+ offset = GetOffset(offset, L, OffsetSize::kOffset16);
+ bltzal(scratch, offset);
+ break;
+ case less:
+ Slt(scratch, rs, rt);
+ addiu(scratch, scratch, -1);
+ offset = GetOffset(offset, L, OffsetSize::kOffset16);
+ bgezal(scratch, offset);
+ break;
+ case less_equal:
+ Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
+ addiu(scratch, scratch, -1);
+ offset = GetOffset(offset, L, OffsetSize::kOffset16);
+ bltzal(scratch, offset);
+ break;
+
+ // Unsigned comparison.
+ case Ugreater:
+ Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
+ addiu(scratch, scratch, -1);
+ offset = GetOffset(offset, L, OffsetSize::kOffset16);
+ bgezal(scratch, offset);
+ break;
+ case Ugreater_equal:
+ Sltu(scratch, rs, rt);
+ addiu(scratch, scratch, -1);
+ offset = GetOffset(offset, L, OffsetSize::kOffset16);
+ bltzal(scratch, offset);
+ break;
+ case Uless:
+ Sltu(scratch, rs, rt);
+ addiu(scratch, scratch, -1);
+ offset = GetOffset(offset, L, OffsetSize::kOffset16);
+ bgezal(scratch, offset);
+ break;
+ case Uless_equal:
+ Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
+ addiu(scratch, scratch, -1);
+ offset = GetOffset(offset, L, OffsetSize::kOffset16);
+ bltzal(scratch, offset);
+ break;
+
+ default:
+ UNREACHABLE();
+ }
+
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT) nop();
+
+ return true;
+}
+
+bool TurboAssembler::BranchAndLinkShortCheck(int32_t offset, Label* L,
+ Condition cond, Register rs,
+ const Operand& rt,
+ BranchDelaySlot bdslot) {
+ BRANCH_ARGS_CHECK(cond, rs, rt);
+
+ if (!L) {
+ if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
+ DCHECK(is_int26(offset));
+ return BranchAndLinkShortHelperR6(offset, nullptr, cond, rs, rt);
+ } else {
+ DCHECK(is_int16(offset));
+ return BranchAndLinkShortHelper(offset, nullptr, cond, rs, rt, bdslot);
+ }
+ } else {
+ DCHECK_EQ(offset, 0);
+ if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
+ return BranchAndLinkShortHelperR6(0, L, cond, rs, rt);
+ } else {
+ return BranchAndLinkShortHelper(0, L, cond, rs, rt, bdslot);
+ }
+ }
+ return false;
+}
+
+void TurboAssembler::LoadFromConstantsTable(Register destination,
+ int constant_index) {
+ DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable));
+ LoadRoot(destination, RootIndex::kBuiltinsConstantsTable);
+ Ld(destination,
+ FieldMemOperand(destination,
+ FixedArray::kHeaderSize + constant_index * kPointerSize));
+}
+
+void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) {
+ Ld(destination, MemOperand(kRootRegister, offset));
+}
+
+void TurboAssembler::LoadRootRegisterOffset(Register destination,
+ intptr_t offset) {
+ if (offset == 0) {
+ Move(destination, kRootRegister);
+ } else {
+ Daddu(destination, kRootRegister, Operand(offset));
+ }
+}
+
+void TurboAssembler::Jump(Register target, Condition cond, Register rs,
+ const Operand& rt, BranchDelaySlot bd) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ if (kArchVariant == kMips64r6 && bd == PROTECT) {
+ if (cond == cc_always) {
+ jic(target, 0);
+ } else {
+ BRANCH_ARGS_CHECK(cond, rs, rt);
+ Branch(2, NegateCondition(cond), rs, rt);
+ jic(target, 0);
+ }
+ } else {
+ if (cond == cc_always) {
+ jr(target);
+ } else {
+ BRANCH_ARGS_CHECK(cond, rs, rt);
+ Branch(2, NegateCondition(cond), rs, rt);
+ jr(target);
+ }
+ // Emit a nop in the branch delay slot if required.
+ if (bd == PROTECT) nop();
+ }
+}
+
+void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
+ Condition cond, Register rs, const Operand& rt,
+ BranchDelaySlot bd) {
+ Label skip;
+ if (cond != cc_always) {
+ Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt);
+ }
+ // The first instruction of 'li' may be placed in the delay slot.
+ // This is not an issue, t9 is expected to be clobbered anyway.
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ li(t9, Operand(target, rmode));
+ Jump(t9, al, zero_reg, Operand(zero_reg), bd);
+ bind(&skip);
+ }
+}
+
+void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond,
+ Register rs, const Operand& rt, BranchDelaySlot bd) {
+ DCHECK(!RelocInfo::IsCodeTarget(rmode));
+ Jump(static_cast<intptr_t>(target), rmode, cond, rs, rt, bd);
+}
+
+void TurboAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
+ Condition cond, Register rs, const Operand& rt,
+ BranchDelaySlot bd) {
+ DCHECK(RelocInfo::IsCodeTarget(rmode));
+ if (FLAG_embedded_builtins) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ if (root_array_available_ && options().isolate_independent_code) {
+ IndirectLoadConstant(t9, code);
+ Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
+ Jump(t9, cond, rs, rt, bd);
+ return;
+ } else if (options().inline_offheap_trampolines) {
+ int builtin_index = Builtins::kNoBuiltinId;
+ if (isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) &&
+ Builtins::IsIsolateIndependent(builtin_index)) {
+ // Inline the trampoline.
+ RecordCommentForOffHeapTrampoline(builtin_index);
+ CHECK_NE(builtin_index, Builtins::kNoBuiltinId);
+ EmbeddedData d = EmbeddedData::FromBlob();
+ Address entry = d.InstructionStartOfBuiltin(builtin_index);
+ li(t9, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
+ Jump(t9, cond, rs, rt, bd);
+ return;
+ }
+ }
+ }
+ Jump(static_cast<intptr_t>(code.address()), rmode, cond, rs, rt, bd);
+}
+
+// Note: To call gcc-compiled C code on mips, you must call through t9.
+void TurboAssembler::Call(Register target, Condition cond, Register rs,
+ const Operand& rt, BranchDelaySlot bd) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ if (kArchVariant == kMips64r6 && bd == PROTECT) {
+ if (cond == cc_always) {
+ jialc(target, 0);
+ } else {
+ BRANCH_ARGS_CHECK(cond, rs, rt);
+ Branch(2, NegateCondition(cond), rs, rt);
+ jialc(target, 0);
+ }
+ } else {
+ if (cond == cc_always) {
+ jalr(target);
+ } else {
+ BRANCH_ARGS_CHECK(cond, rs, rt);
+ Branch(2, NegateCondition(cond), rs, rt);
+ jalr(target);
+ }
+ // Emit a nop in the branch delay slot if required.
+ if (bd == PROTECT) nop();
+ }
+}
+
+void MacroAssembler::JumpIfIsInRange(Register value, unsigned lower_limit,
+ unsigned higher_limit,
+ Label* on_in_range) {
+ if (lower_limit != 0) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ Dsubu(scratch, value, Operand(lower_limit));
+ Branch(on_in_range, ls, scratch, Operand(higher_limit - lower_limit));
+ } else {
+ Branch(on_in_range, ls, value, Operand(higher_limit - lower_limit));
+ }
+}
+
+void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond,
+ Register rs, const Operand& rt, BranchDelaySlot bd) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ li(t9, Operand(static_cast<int64_t>(target), rmode), ADDRESS_LOAD);
+ Call(t9, cond, rs, rt, bd);
+}
+
+void TurboAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
+ Condition cond, Register rs, const Operand& rt,
+ BranchDelaySlot bd) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ if (FLAG_embedded_builtins) {
+ if (root_array_available_ && options().isolate_independent_code) {
+ IndirectLoadConstant(t9, code);
+ Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
+ Call(t9, cond, rs, rt, bd);
+ return;
+ } else if (options().inline_offheap_trampolines) {
+ int builtin_index = Builtins::kNoBuiltinId;
+ if (isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) &&
+ Builtins::IsIsolateIndependent(builtin_index)) {
+ // Inline the trampoline.
+ RecordCommentForOffHeapTrampoline(builtin_index);
+ CHECK_NE(builtin_index, Builtins::kNoBuiltinId);
+ EmbeddedData d = EmbeddedData::FromBlob();
+ Address entry = d.InstructionStartOfBuiltin(builtin_index);
+ li(t9, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
+ Call(t9, cond, rs, rt, bd);
+ return;
+ }
+ }
+ }
+ DCHECK(RelocInfo::IsCodeTarget(rmode));
+ Call(code.address(), rmode, cond, rs, rt, bd);
+}
+
+void TurboAssembler::CallBuiltinPointer(Register builtin_pointer) {
+ STATIC_ASSERT(kSystemPointerSize == 8);
+ STATIC_ASSERT(kSmiShiftSize == 31);
+ STATIC_ASSERT(kSmiTagSize == 1);
+ STATIC_ASSERT(kSmiTag == 0);
+
+ // The builtin_pointer register contains the builtin index as a Smi.
+ SmiUntag(builtin_pointer, builtin_pointer);
+ Dlsa(builtin_pointer, kRootRegister, builtin_pointer, kSystemPointerSizeLog2);
+ Ld(builtin_pointer,
+ MemOperand(builtin_pointer, IsolateData::builtin_entry_table_offset()));
+ Call(builtin_pointer);
+}
+
+void TurboAssembler::StoreReturnAddressAndCall(Register target) {
+ // This generates the final instruction sequence for calls to C functions
+ // once an exit frame has been constructed.
+ //
+ // Note that this assumes the caller code (i.e. the Code object currently
+ // being generated) is immovable or that the callee function cannot trigger
+ // GC, since the callee function will return to it.
+
+ // Compute the return address in lr to return to after the jump below. The pc
+ // is already at '+ 8' from the current instruction; but return is after three
+ // instructions, so add another 4 to pc to get the return address.
+
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(this);
+ static constexpr int kNumInstructionsToJump = 4;
+ Label find_ra;
+ // Adjust the value in ra to point to the correct return location, 2nd
+ // instruction past the real call into C code (the jalr(t9)), and push it.
+ // This is the return address of the exit frame.
+ if (kArchVariant >= kMips64r6) {
+ addiupc(ra, kNumInstructionsToJump + 1);
+ } else {
+ // This no-op-and-link sequence saves PC + 8 in ra register on pre-r6 MIPS
+ nal(); // nal has branch delay slot.
+ Daddu(ra, ra, kNumInstructionsToJump * kInstrSize);
+ }
+ bind(&find_ra);
+
+ // This spot was reserved in EnterExitFrame.
+ Sd(ra, MemOperand(sp));
+ // Stack space reservation moved to the branch delay slot below.
+ // Stack is still aligned.
+
+ // Call the C routine.
+ mov(t9, target); // Function pointer to t9 to conform to ABI for PIC.
+ jalr(t9);
+ // Set up sp in the delay slot.
+ daddiu(sp, sp, -kCArgsSlotsSize);
+ // Make sure the stored 'ra' points to this position.
+ DCHECK_EQ(kNumInstructionsToJump, InstructionsGeneratedSince(&find_ra));
+}
+
+void TurboAssembler::Ret(Condition cond, Register rs, const Operand& rt,
+ BranchDelaySlot bd) {
+ Jump(ra, cond, rs, rt, bd);
+}
+
+void TurboAssembler::BranchLong(Label* L, BranchDelaySlot bdslot) {
+ if (kArchVariant == kMips64r6 && bdslot == PROTECT &&
+ (!L->is_bound() || is_near_r6(L))) {
+ BranchShortHelperR6(0, L);
+ } else {
+ // Generate position independent long branch.
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ int64_t imm64;
+ imm64 = branch_long_offset(L);
+ DCHECK(is_int32(imm64));
+ or_(t8, ra, zero_reg);
+ nal(); // Read PC into ra register.
+ lui(t9, (imm64 & kHiMaskOf32) >> kLuiShift); // Branch delay slot.
+ ori(t9, t9, (imm64 & kImm16Mask));
+ daddu(t9, ra, t9);
+ if (bdslot == USE_DELAY_SLOT) {
+ or_(ra, t8, zero_reg);
+ }
+ jr(t9);
+ // Emit a or_ in the branch delay slot if it's protected.
+ if (bdslot == PROTECT) or_(ra, t8, zero_reg);
+ }
+}
+
+void TurboAssembler::BranchAndLinkLong(Label* L, BranchDelaySlot bdslot) {
+ if (kArchVariant == kMips64r6 && bdslot == PROTECT &&
+ (!L->is_bound() || is_near_r6(L))) {
+ BranchAndLinkShortHelperR6(0, L);
+ } else {
+ // Generate position independent long branch and link.
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ int64_t imm64;
+ imm64 = branch_long_offset(L);
+ DCHECK(is_int32(imm64));
+ lui(t8, (imm64 & kHiMaskOf32) >> kLuiShift);
+ nal(); // Read PC into ra register.
+ ori(t8, t8, (imm64 & kImm16Mask)); // Branch delay slot.
+ daddu(t8, ra, t8);
+ jalr(t8);
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT) nop();
+ }
+}
+
+void TurboAssembler::DropAndRet(int drop) {
+ DCHECK(is_int16(drop * kPointerSize));
+ Ret(USE_DELAY_SLOT);
+ daddiu(sp, sp, drop * kPointerSize);
+}
+
+void TurboAssembler::DropAndRet(int drop, Condition cond, Register r1,
+ const Operand& r2) {
+ // Both Drop and Ret need to be conditional.
+ Label skip;
+ if (cond != cc_always) {
+ Branch(&skip, NegateCondition(cond), r1, r2);
+ }
+
+ Drop(drop);
+ Ret();
+
+ if (cond != cc_always) {
+ bind(&skip);
+ }
+}
+
+void TurboAssembler::Drop(int count, Condition cond, Register reg,
+ const Operand& op) {
+ if (count <= 0) {
+ return;
+ }
+
+ Label skip;
+
+ if (cond != al) {
+ Branch(&skip, NegateCondition(cond), reg, op);
+ }
+
+ Daddu(sp, sp, Operand(count * kPointerSize));
+
+ if (cond != al) {
+ bind(&skip);
+ }
+}
+
+void MacroAssembler::Swap(Register reg1, Register reg2, Register scratch) {
+ if (scratch == no_reg) {
+ Xor(reg1, reg1, Operand(reg2));
+ Xor(reg2, reg2, Operand(reg1));
+ Xor(reg1, reg1, Operand(reg2));
+ } else {
+ mov(scratch, reg1);
+ mov(reg1, reg2);
+ mov(reg2, scratch);
+ }
+}
+
+void TurboAssembler::Call(Label* target) { BranchAndLink(target); }
+
+void TurboAssembler::Push(Smi smi) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(smi));
+ push(scratch);
+}
+
+void TurboAssembler::Push(Handle<HeapObject> handle) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(handle));
+ push(scratch);
+}
+
+void MacroAssembler::MaybeDropFrames() {
+ // Check whether we need to drop frames to restart a function on the stack.
+ li(a1, ExternalReference::debug_restart_fp_address(isolate()));
+ Ld(a1, MemOperand(a1));
+ Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET,
+ ne, a1, Operand(zero_reg));
+}
+
+// ---------------------------------------------------------------------------
+// Exception handling.
+
+void MacroAssembler::PushStackHandler() {
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
+
+ Push(Smi::zero()); // Padding.
+
+ // Link the current handler as the next handler.
+ li(t2,
+ ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()));
+ Ld(t1, MemOperand(t2));
+ push(t1);
+
+ // Set this new handler as the current one.
+ Sd(sp, MemOperand(t2));
+}
+
+void MacroAssembler::PopStackHandler() {
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+ pop(a1);
+ Daddu(sp, sp,
+ Operand(
+ static_cast<int64_t>(StackHandlerConstants::kSize - kPointerSize)));
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch,
+ ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()));
+ Sd(a1, MemOperand(scratch));
+}
+
+void TurboAssembler::FPUCanonicalizeNaN(const DoubleRegister dst,
+ const DoubleRegister src) {
+ sub_d(dst, src, kDoubleRegZero);
+}
+
+void TurboAssembler::MovFromFloatResult(const DoubleRegister dst) {
+ if (IsMipsSoftFloatABI) {
+ if (kArchEndian == kLittle) {
+ Move(dst, v0, v1);
+ } else {
+ Move(dst, v1, v0);
+ }
+ } else {
+ Move(dst, f0); // Reg f0 is o32 ABI FP return value.
+ }
+}
+
+void TurboAssembler::MovFromFloatParameter(const DoubleRegister dst) {
+ if (IsMipsSoftFloatABI) {
+ if (kArchEndian == kLittle) {
+ Move(dst, a0, a1);
+ } else {
+ Move(dst, a1, a0);
+ }
+ } else {
+ Move(dst, f12); // Reg f12 is n64 ABI FP first argument value.
+ }
+}
+
+void TurboAssembler::MovToFloatParameter(DoubleRegister src) {
+ if (!IsMipsSoftFloatABI) {
+ Move(f12, src);
+ } else {
+ if (kArchEndian == kLittle) {
+ Move(a0, a1, src);
+ } else {
+ Move(a1, a0, src);
+ }
+ }
+}
+
+void TurboAssembler::MovToFloatResult(DoubleRegister src) {
+ if (!IsMipsSoftFloatABI) {
+ Move(f0, src);
+ } else {
+ if (kArchEndian == kLittle) {
+ Move(v0, v1, src);
+ } else {
+ Move(v1, v0, src);
+ }
+ }
+}
+
+void TurboAssembler::MovToFloatParameters(DoubleRegister src1,
+ DoubleRegister src2) {
+ if (!IsMipsSoftFloatABI) {
+ const DoubleRegister fparg2 = f13;
+ if (src2 == f12) {
+ DCHECK(src1 != fparg2);
+ Move(fparg2, src2);
+ Move(f12, src1);
+ } else {
+ Move(f12, src1);
+ Move(fparg2, src2);
+ }
+ } else {
+ if (kArchEndian == kLittle) {
+ Move(a0, a1, src1);
+ Move(a2, a3, src2);
+ } else {
+ Move(a1, a0, src1);
+ Move(a3, a2, src2);
+ }
+ }
+}
+
+// -----------------------------------------------------------------------------
+// JavaScript invokes.
+
+void TurboAssembler::PrepareForTailCall(const ParameterCount& callee_args_count,
+ Register caller_args_count_reg,
+ Register scratch0, Register scratch1) {
+#if DEBUG
+ if (callee_args_count.is_reg()) {
+ DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0,
+ scratch1));
+ } else {
+ DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1));
+ }
+#endif
+
+ // Calculate the end of destination area where we will put the arguments
+ // after we drop current frame. We add kPointerSize to count the receiver
+ // argument which is not included into formal parameters count.
+ Register dst_reg = scratch0;
+ Dlsa(dst_reg, fp, caller_args_count_reg, kPointerSizeLog2);
+ Daddu(dst_reg, dst_reg,
+ Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize));
+
+ Register src_reg = caller_args_count_reg;
+ // Calculate the end of source area. +kPointerSize is for the receiver.
+ if (callee_args_count.is_reg()) {
+ Dlsa(src_reg, sp, callee_args_count.reg(), kPointerSizeLog2);
+ Daddu(src_reg, src_reg, Operand(kPointerSize));
+ } else {
+ Daddu(src_reg, sp,
+ Operand((callee_args_count.immediate() + 1) * kPointerSize));
+ }
+
+ if (FLAG_debug_code) {
+ Check(lo, AbortReason::kStackAccessBelowStackPointer, src_reg,
+ Operand(dst_reg));
+ }
+
+ // Restore caller's frame pointer and return address now as they will be
+ // overwritten by the copying loop.
+ Ld(ra, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
+ Ld(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+
+ // Now copy callee arguments to the caller frame going backwards to avoid
+ // callee arguments corruption (source and destination areas could overlap).
+
+ // Both src_reg and dst_reg are pointing to the word after the one to copy,
+ // so they must be pre-decremented in the loop.
+ Register tmp_reg = scratch1;
+ Label loop, entry;
+ Branch(&entry);
+ bind(&loop);
+ Dsubu(src_reg, src_reg, Operand(kPointerSize));
+ Dsubu(dst_reg, dst_reg, Operand(kPointerSize));
+ Ld(tmp_reg, MemOperand(src_reg));
+ Sd(tmp_reg, MemOperand(dst_reg));
+ bind(&entry);
+ Branch(&loop, ne, sp, Operand(src_reg));
+
+ // Leave current frame.
+ mov(sp, dst_reg);
+}
+
+void MacroAssembler::InvokePrologue(const ParameterCount& expected,
+ const ParameterCount& actual, Label* done,
+ bool* definitely_mismatches,
+ InvokeFlag flag) {
+ bool definitely_matches = false;
+ *definitely_mismatches = false;
+ Label regular_invoke;
+
+ // Check whether the expected and actual arguments count match. If not,
+ // setup registers according to contract with ArgumentsAdaptorTrampoline:
+ // a0: actual arguments count
+ // a1: function (passed through to callee)
+ // a2: expected arguments count
+
+ // The code below is made a lot easier because the calling code already sets
+ // up actual and expected registers according to the contract if values are
+ // passed in registers.
+ DCHECK(actual.is_immediate() || actual.reg() == a0);
+ DCHECK(expected.is_immediate() || expected.reg() == a2);
+
+ if (expected.is_immediate()) {
+ DCHECK(actual.is_immediate());
+ li(a0, Operand(actual.immediate()));
+ if (expected.immediate() == actual.immediate()) {
+ definitely_matches = true;
+ } else {
+ const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+ if (expected.immediate() == sentinel) {
+ // Don't worry about adapting arguments for builtins that
+ // don't want that done. Skip adaption code by making it look
+ // like we have a match between expected and actual number of
+ // arguments.
+ definitely_matches = true;
+ } else {
+ *definitely_mismatches = true;
+ li(a2, Operand(expected.immediate()));
+ }
+ }
+ } else if (actual.is_immediate()) {
+ li(a0, Operand(actual.immediate()));
+ Branch(&regular_invoke, eq, expected.reg(), Operand(a0));
+ } else {
+ Branch(&regular_invoke, eq, expected.reg(), Operand(actual.reg()));
+ }
+
+ if (!definitely_matches) {
+ Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline);
+ if (flag == CALL_FUNCTION) {
+ Call(adaptor);
+ if (!*definitely_mismatches) {
+ Branch(done);
+ }
+ } else {
+ Jump(adaptor, RelocInfo::CODE_TARGET);
+ }
+ bind(&regular_invoke);
+ }
+}
+
+void MacroAssembler::CheckDebugHook(Register fun, Register new_target,
+ const ParameterCount& expected,
+ const ParameterCount& actual) {
+ Label skip_hook;
+
+ li(t0, ExternalReference::debug_hook_on_function_call_address(isolate()));
+ Lb(t0, MemOperand(t0));
+ Branch(&skip_hook, eq, t0, Operand(zero_reg));
+
+ {
+ // Load receiver to pass it later to DebugOnFunctionCall hook.
+ if (actual.is_reg()) {
+ mov(t0, actual.reg());
+ } else {
+ li(t0, actual.immediate());
+ }
+ Dlsa(t0, sp, t0, kPointerSizeLog2);
+ Ld(t0, MemOperand(t0));
+ FrameScope frame(this,
+ has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
+ if (expected.is_reg()) {
+ SmiTag(expected.reg());
+ Push(expected.reg());
+ }
+ if (actual.is_reg()) {
+ SmiTag(actual.reg());
+ Push(actual.reg());
+ }
+ if (new_target.is_valid()) {
+ Push(new_target);
+ }
+ Push(fun);
+ Push(fun);
+ Push(t0);
+ CallRuntime(Runtime::kDebugOnFunctionCall);
+ Pop(fun);
+ if (new_target.is_valid()) {
+ Pop(new_target);
+ }
+ if (actual.is_reg()) {
+ Pop(actual.reg());
+ SmiUntag(actual.reg());
+ }
+ if (expected.is_reg()) {
+ Pop(expected.reg());
+ SmiUntag(expected.reg());
+ }
+ }
+ bind(&skip_hook);
+}
+
+void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag) {
+ // You can't call a function without a valid frame.
+ DCHECK(flag == JUMP_FUNCTION || has_frame());
+ DCHECK(function == a1);
+ DCHECK_IMPLIES(new_target.is_valid(), new_target == a3);
+
+ // On function call, call into the debugger if necessary.
+ CheckDebugHook(function, new_target, expected, actual);
+
+ // Clear the new.target register if not given.
+ if (!new_target.is_valid()) {
+ LoadRoot(a3, RootIndex::kUndefinedValue);
+ }
+
+ Label done;
+ bool definitely_mismatches = false;
+ InvokePrologue(expected, actual, &done, &definitely_mismatches, flag);
+ if (!definitely_mismatches) {
+ // We call indirectly through the code field in the function to
+ // allow recompilation to take effect without changing any of the
+ // call sites.
+ Register code = kJavaScriptCallCodeStartRegister;
+ Ld(code, FieldMemOperand(function, JSFunction::kCodeOffset));
+ if (flag == CALL_FUNCTION) {
+ Daddu(code, code, Operand(Code::kHeaderSize - kHeapObjectTag));
+ Call(code);
+ } else {
+ DCHECK(flag == JUMP_FUNCTION);
+ Daddu(code, code, Operand(Code::kHeaderSize - kHeapObjectTag));
+ Jump(code);
+ }
+ // Continue here if InvokePrologue does handle the invocation due to
+ // mismatched parameter counts.
+ bind(&done);
+ }
+}
+
+void MacroAssembler::InvokeFunction(Register function, Register new_target,
+ const ParameterCount& actual,
+ InvokeFlag flag) {
+ // You can't call a function without a valid frame.
+ DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+ // Contract with called JS functions requires that function is passed in a1.
+ DCHECK(function == a1);
+ Register expected_reg = a2;
+ Register temp_reg = t0;
+ Ld(temp_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
+ Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
+ // The argument count is stored as uint16_t
+ Lhu(expected_reg,
+ FieldMemOperand(temp_reg,
+ SharedFunctionInfo::kFormalParameterCountOffset));
+ ParameterCount expected(expected_reg);
+ InvokeFunctionCode(a1, new_target, expected, actual, flag);
+}
+
+void MacroAssembler::InvokeFunction(Register function,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag) {
+ // You can't call a function without a valid frame.
+ DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+ // Contract with called JS functions requires that function is passed in a1.
+ DCHECK(function == a1);
+
+ // Get the function and setup the context.
+ Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
+
+ InvokeFunctionCode(a1, no_reg, expected, actual, flag);
+}
+
+// ---------------------------------------------------------------------------
+// Support functions.
+
+void MacroAssembler::GetObjectType(Register object, Register map,
+ Register type_reg) {
+ Ld(map, FieldMemOperand(object, HeapObject::kMapOffset));
+ Lhu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
+}
+
+// -----------------------------------------------------------------------------
+// Runtime calls.
+
+void TurboAssembler::DaddOverflow(Register dst, Register left,
+ const Operand& right, Register overflow) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register right_reg = no_reg;
+ Register scratch = t8;
+ if (!right.is_reg()) {
+ li(at, Operand(right));
+ right_reg = at;
+ } else {
+ right_reg = right.rm();
+ }
+
+ DCHECK(left != scratch && right_reg != scratch && dst != scratch &&
+ overflow != scratch);
+ DCHECK(overflow != left && overflow != right_reg);
+
+ if (dst == left || dst == right_reg) {
+ daddu(scratch, left, right_reg);
+ xor_(overflow, scratch, left);
+ xor_(at, scratch, right_reg);
+ and_(overflow, overflow, at);
+ mov(dst, scratch);
+ } else {
+ daddu(dst, left, right_reg);
+ xor_(overflow, dst, left);
+ xor_(at, dst, right_reg);
+ and_(overflow, overflow, at);
+ }
+}
+
+void TurboAssembler::DsubOverflow(Register dst, Register left,
+ const Operand& right, Register overflow) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register right_reg = no_reg;
+ Register scratch = t8;
+ if (!right.is_reg()) {
+ li(at, Operand(right));
+ right_reg = at;
+ } else {
+ right_reg = right.rm();
+ }
+
+ DCHECK(left != scratch && right_reg != scratch && dst != scratch &&
+ overflow != scratch);
+ DCHECK(overflow != left && overflow != right_reg);
+
+ if (dst == left || dst == right_reg) {
+ dsubu(scratch, left, right_reg);
+ xor_(overflow, left, scratch);
+ xor_(at, left, right_reg);
+ and_(overflow, overflow, at);
+ mov(dst, scratch);
+ } else {
+ dsubu(dst, left, right_reg);
+ xor_(overflow, left, dst);
+ xor_(at, left, right_reg);
+ and_(overflow, overflow, at);
+ }
+}
+
+void TurboAssembler::MulOverflow(Register dst, Register left,
+ const Operand& right, Register overflow) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register right_reg = no_reg;
+ Register scratch = t8;
+ if (!right.is_reg()) {
+ li(at, Operand(right));
+ right_reg = at;
+ } else {
+ right_reg = right.rm();
+ }
+
+ DCHECK(left != scratch && right_reg != scratch && dst != scratch &&
+ overflow != scratch);
+ DCHECK(overflow != left && overflow != right_reg);
+
+ if (dst == left || dst == right_reg) {
+ Mul(scratch, left, right_reg);
+ Mulh(overflow, left, right_reg);
+ mov(dst, scratch);
+ } else {
+ Mul(dst, left, right_reg);
+ Mulh(overflow, left, right_reg);
+ }
+
+ dsra32(scratch, dst, 0);
+ xor_(overflow, overflow, scratch);
+}
+
+void TurboAssembler::CallRuntimeWithCEntry(Runtime::FunctionId fid,
+ Register centry) {
+ const Runtime::Function* f = Runtime::FunctionForId(fid);
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ PrepareCEntryArgs(f->nargs);
+ PrepareCEntryFunction(ExternalReference::Create(f));
+ DCHECK(!AreAliased(centry, a0, a1));
+ Daddu(centry, centry, Operand(Code::kHeaderSize - kHeapObjectTag));
+ Call(centry);
+}
+
+void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments,
+ SaveFPRegsMode save_doubles) {
+ // All parameters are on the stack. v0 has the return value after call.
+
+ // If the expected number of arguments of the runtime function is
+ // constant, we check that the actual number of arguments match the
+ // expectation.
+ CHECK(f->nargs < 0 || f->nargs == num_arguments);
+
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ PrepareCEntryArgs(num_arguments);
+ PrepareCEntryFunction(ExternalReference::Create(f));
+ Handle<Code> code =
+ CodeFactory::CEntry(isolate(), f->result_size, save_doubles);
+ Call(code, RelocInfo::CODE_TARGET);
+}
+
+void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
+ const Runtime::Function* function = Runtime::FunctionForId(fid);
+ DCHECK_EQ(1, function->result_size);
+ if (function->nargs >= 0) {
+ PrepareCEntryArgs(function->nargs);
+ }
+ JumpToExternalReference(ExternalReference::Create(fid));
+}
+
+void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
+ BranchDelaySlot bd,
+ bool builtin_exit_frame) {
+ PrepareCEntryFunction(builtin);
+ Handle<Code> code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs,
+ kArgvOnStack, builtin_exit_frame);
+ Jump(code, RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg), bd);
+}
+
+void MacroAssembler::JumpToInstructionStream(Address entry) {
+ li(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
+ Jump(kOffHeapTrampolineRegister);
+}
+
+void MacroAssembler::LoadWeakValue(Register out, Register in,
+ Label* target_if_cleared) {
+ Branch(target_if_cleared, eq, in, Operand(kClearedWeakHeapObjectLower32));
+
+ And(out, in, Operand(~kWeakHeapObjectMask));
+}
+
+void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2) {
+ DCHECK_GT(value, 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ // This operation has to be exactly 32-bit wide in case the external
+ // reference table redirects the counter to a uint32_t dummy_stats_counter_
+ // field.
+ li(scratch2, ExternalReference::Create(counter));
+ Lw(scratch1, MemOperand(scratch2));
+ Addu(scratch1, scratch1, Operand(value));
+ Sw(scratch1, MemOperand(scratch2));
+ }
+}
+
+void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2) {
+ DCHECK_GT(value, 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ // This operation has to be exactly 32-bit wide in case the external
+ // reference table redirects the counter to a uint32_t dummy_stats_counter_
+ // field.
+ li(scratch2, ExternalReference::Create(counter));
+ Lw(scratch1, MemOperand(scratch2));
+ Subu(scratch1, scratch1, Operand(value));
+ Sw(scratch1, MemOperand(scratch2));
+ }
+}
+
+// -----------------------------------------------------------------------------
+// Debugging.
+
+void TurboAssembler::Assert(Condition cc, AbortReason reason, Register rs,
+ Operand rt) {
+ if (emit_debug_code()) Check(cc, reason, rs, rt);
+}
+
+void TurboAssembler::Check(Condition cc, AbortReason reason, Register rs,
+ Operand rt) {
+ Label L;
+ Branch(&L, cc, rs, rt);
+ Abort(reason);
+ // Will not return here.
+ bind(&L);
+}
+
+void TurboAssembler::Abort(AbortReason reason) {
+ Label abort_start;
+ bind(&abort_start);
+ const char* msg = GetAbortReason(reason);
+#ifdef DEBUG
+ RecordComment("Abort message: ");
+ RecordComment(msg);
+#endif
+
+ // Avoid emitting call to builtin if requested.
+ if (trap_on_abort()) {
+ stop(msg);
+ return;
+ }
+
+ if (should_abort_hard()) {
+ // We don't care if we constructed a frame. Just pretend we did.
+ FrameScope assume_frame(this, StackFrame::NONE);
+ PrepareCallCFunction(0, a0);
+ li(a0, Operand(static_cast<int>(reason)));
+ CallCFunction(ExternalReference::abort_with_reason(), 1);
+ return;
+ }
+
+ Move(a0, Smi::FromInt(static_cast<int>(reason)));
+
+ // Disable stub call restrictions to always allow calls to abort.
+ if (!has_frame()) {
+ // We don't actually want to generate a pile of code for this, so just
+ // claim there is a stack frame, without generating one.
+ FrameScope scope(this, StackFrame::NONE);
+ Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
+ } else {
+ Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
+ }
+ // Will not return here.
+ if (is_trampoline_pool_blocked()) {
+ // If the calling code cares about the exact number of
+ // instructions generated, we insert padding here to keep the size
+ // of the Abort macro constant.
+ // Currently in debug mode with debug_code enabled the number of
+ // generated instructions is 10, so we use this as a maximum value.
+ static const int kExpectedAbortInstructions = 10;
+ int abort_instructions = InstructionsGeneratedSince(&abort_start);
+ DCHECK_LE(abort_instructions, kExpectedAbortInstructions);
+ while (abort_instructions++ < kExpectedAbortInstructions) {
+ nop();
+ }
+ }
+}
+
+void MacroAssembler::LoadNativeContextSlot(int index, Register dst) {
+ Ld(dst, NativeContextMemOperand());
+ Ld(dst, ContextMemOperand(dst, index));
+}
+
+void TurboAssembler::StubPrologue(StackFrame::Type type) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(StackFrame::TypeToMarker(type)));
+ PushCommonFrame(scratch);
+}
+
+void TurboAssembler::Prologue() { PushStandardFrame(a1); }
+
+void TurboAssembler::EnterFrame(StackFrame::Type type) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ int stack_offset = -3 * kPointerSize;
+ const int fp_offset = 1 * kPointerSize;
+ daddiu(sp, sp, stack_offset);
+ stack_offset = -stack_offset - kPointerSize;
+ Sd(ra, MemOperand(sp, stack_offset));
+ stack_offset -= kPointerSize;
+ Sd(fp, MemOperand(sp, stack_offset));
+ stack_offset -= kPointerSize;
+ li(t9, Operand(StackFrame::TypeToMarker(type)));
+ Sd(t9, MemOperand(sp, stack_offset));
+ // Adjust FP to point to saved FP.
+ DCHECK_EQ(stack_offset, 0);
+ Daddu(fp, sp, Operand(fp_offset));
+}
+
+void TurboAssembler::LeaveFrame(StackFrame::Type type) {
+ daddiu(sp, fp, 2 * kPointerSize);
+ Ld(ra, MemOperand(fp, 1 * kPointerSize));
+ Ld(fp, MemOperand(fp, 0 * kPointerSize));
+}
+
+void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space,
+ StackFrame::Type frame_type) {
+ DCHECK(frame_type == StackFrame::EXIT ||
+ frame_type == StackFrame::BUILTIN_EXIT);
+
+ // Set up the frame structure on the stack.
+ STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement);
+ STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset);
+ STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset);
+
+ // This is how the stack will look:
+ // fp + 2 (==kCallerSPDisplacement) - old stack's end
+ // [fp + 1 (==kCallerPCOffset)] - saved old ra
+ // [fp + 0 (==kCallerFPOffset)] - saved old fp
+ // [fp - 1 StackFrame::EXIT Smi
+ // [fp - 2 (==kSPOffset)] - sp of the called function
+ // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the
+ // new stack (will contain saved ra)
+
+ // Save registers and reserve room for saved entry sp.
+ daddiu(sp, sp, -2 * kPointerSize - ExitFrameConstants::kFixedFrameSizeFromFp);
+ Sd(ra, MemOperand(sp, 3 * kPointerSize));
+ Sd(fp, MemOperand(sp, 2 * kPointerSize));
+ {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(StackFrame::TypeToMarker(frame_type)));
+ Sd(scratch, MemOperand(sp, 1 * kPointerSize));
+ }
+ // Set up new frame pointer.
+ daddiu(fp, sp, ExitFrameConstants::kFixedFrameSizeFromFp);
+
+ if (emit_debug_code()) {
+ Sd(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset));
+ }
+
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ // Save the frame pointer and the context in top.
+ li(t8, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
+ isolate()));
+ Sd(fp, MemOperand(t8));
+ li(t8,
+ ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
+ Sd(cp, MemOperand(t8));
+ }
+
+ const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
+ if (save_doubles) {
+ // The stack is already aligned to 0 modulo 8 for stores with sdc1.
+ int kNumOfSavedRegisters = FPURegister::kNumRegisters / 2;
+ int space = kNumOfSavedRegisters * kDoubleSize;
+ Dsubu(sp, sp, Operand(space));
+ // Remember: we only need to save every 2nd double FPU value.
+ for (int i = 0; i < kNumOfSavedRegisters; i++) {
+ FPURegister reg = FPURegister::from_code(2 * i);
+ Sdc1(reg, MemOperand(sp, i * kDoubleSize));
+ }
+ }
+
+ // Reserve place for the return address, stack space and an optional slot
+ // (used by DirectCEntry to hold the return value if a struct is
+ // returned) and align the frame preparing for calling the runtime function.
+ DCHECK_GE(stack_space, 0);
+ Dsubu(sp, sp, Operand((stack_space + 2) * kPointerSize));
+ if (frame_alignment > 0) {
+ DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
+ And(sp, sp, Operand(-frame_alignment)); // Align stack.
+ }
+
+ // Set the exit frame sp value to point just before the return address
+ // location.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ daddiu(scratch, sp, kPointerSize);
+ Sd(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
+}
+
+void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count,
+ bool do_return,
+ bool argument_count_is_length) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ // Optionally restore all double registers.
+ if (save_doubles) {
+ // Remember: we only need to restore every 2nd double FPU value.
+ int kNumOfSavedRegisters = FPURegister::kNumRegisters / 2;
+ Dsubu(t8, fp,
+ Operand(ExitFrameConstants::kFixedFrameSizeFromFp +
+ kNumOfSavedRegisters * kDoubleSize));
+ for (int i = 0; i < kNumOfSavedRegisters; i++) {
+ FPURegister reg = FPURegister::from_code(2 * i);
+ Ldc1(reg, MemOperand(t8, i * kDoubleSize));
+ }
+ }
+
+ // Clear top frame.
+ li(t8,
+ ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate()));
+ Sd(zero_reg, MemOperand(t8));
+
+ // Restore current context from top and clear it in debug mode.
+ li(t8,
+ ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
+ Ld(cp, MemOperand(t8));
+
+#ifdef DEBUG
+ li(t8,
+ ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
+ Sd(a3, MemOperand(t8));
+#endif
+
+ // Pop the arguments, restore registers, and return.
+ mov(sp, fp); // Respect ABI stack constraint.
+ Ld(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset));
+ Ld(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset));
+
+ if (argument_count.is_valid()) {
+ if (argument_count_is_length) {
+ daddu(sp, sp, argument_count);
+ } else {
+ Dlsa(sp, sp, argument_count, kPointerSizeLog2, t8);
+ }
+ }
+
+ if (do_return) {
+ Ret(USE_DELAY_SLOT);
+ // If returning, the instruction in the delay slot will be the addiu below.
+ }
+ daddiu(sp, sp, 2 * kPointerSize);
+}
+
+int TurboAssembler::ActivationFrameAlignment() {
+#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
+ // Running on the real platform. Use the alignment as mandated by the local
+ // environment.
+ // Note: This will break if we ever start generating snapshots on one Mips
+ // platform for another Mips platform with a different alignment.
+ return base::OS::ActivationFrameAlignment();
+#else // V8_HOST_ARCH_MIPS
+ // If we are using the simulator then we should always align to the expected
+ // alignment. As the simulator is used to generate snapshots we do not know
+ // if the target platform will need alignment, so this is controlled from a
+ // flag.
+ return FLAG_sim_stack_alignment;
+#endif // V8_HOST_ARCH_MIPS
+}
+
+void MacroAssembler::AssertStackIsAligned() {
+ if (emit_debug_code()) {
+ const int frame_alignment = ActivationFrameAlignment();
+ const int frame_alignment_mask = frame_alignment - 1;
+
+ if (frame_alignment > kPointerSize) {
+ Label alignment_as_expected;
+ DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
+ {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ andi(scratch, sp, frame_alignment_mask);
+ Branch(&alignment_as_expected, eq, scratch, Operand(zero_reg));
+ }
+ // Don't use Check here, as it will call Runtime_Abort re-entering here.
+ stop("Unexpected stack alignment");
+ bind(&alignment_as_expected);
+ }
+ }
+}
+
+void TurboAssembler::SmiUntag(Register dst, const MemOperand& src) {
+ if (SmiValuesAre32Bits()) {
+ Lw(dst, MemOperand(src.rm(), SmiWordOffset(src.offset())));
+ } else {
+ DCHECK(SmiValuesAre31Bits());
+ Lw(dst, src);
+ SmiUntag(dst);
+ }
+}
+
+void TurboAssembler::JumpIfSmi(Register value, Label* smi_label,
+ Register scratch, BranchDelaySlot bd) {
+ DCHECK_EQ(0, kSmiTag);
+ andi(scratch, value, kSmiTagMask);
+ Branch(bd, smi_label, eq, scratch, Operand(zero_reg));
+}
+
+void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label,
+ Register scratch, BranchDelaySlot bd) {
+ DCHECK_EQ(0, kSmiTag);
+ andi(scratch, value, kSmiTagMask);
+ Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg));
+}
+
+void MacroAssembler::AssertNotSmi(Register object) {
+ if (emit_debug_code()) {
+ STATIC_ASSERT(kSmiTag == 0);
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ andi(scratch, object, kSmiTagMask);
+ Check(ne, AbortReason::kOperandIsASmi, scratch, Operand(zero_reg));
+ }
+}
+
+void MacroAssembler::AssertSmi(Register object) {
+ if (emit_debug_code()) {
+ STATIC_ASSERT(kSmiTag == 0);
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ andi(scratch, object, kSmiTagMask);
+ Check(eq, AbortReason::kOperandIsASmi, scratch, Operand(zero_reg));
+ }
+}
+
+void MacroAssembler::AssertConstructor(Register object) {
+ if (emit_debug_code()) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ STATIC_ASSERT(kSmiTag == 0);
+ SmiTst(object, t8);
+ Check(ne, AbortReason::kOperandIsASmiAndNotAConstructor, t8,
+ Operand(zero_reg));
+
+ ld(t8, FieldMemOperand(object, HeapObject::kMapOffset));
+ Lbu(t8, FieldMemOperand(t8, Map::kBitFieldOffset));
+ And(t8, t8, Operand(Map::IsConstructorBit::kMask));
+ Check(ne, AbortReason::kOperandIsNotAConstructor, t8, Operand(zero_reg));
+ }
+}
+
+void MacroAssembler::AssertFunction(Register object) {
+ if (emit_debug_code()) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ STATIC_ASSERT(kSmiTag == 0);
+ SmiTst(object, t8);
+ Check(ne, AbortReason::kOperandIsASmiAndNotAFunction, t8,
+ Operand(zero_reg));
+ GetObjectType(object, t8, t8);
+ Check(eq, AbortReason::kOperandIsNotAFunction, t8,
+ Operand(JS_FUNCTION_TYPE));
+ }
+}
+
+void MacroAssembler::AssertBoundFunction(Register object) {
+ if (emit_debug_code()) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ STATIC_ASSERT(kSmiTag == 0);
+ SmiTst(object, t8);
+ Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction, t8,
+ Operand(zero_reg));
+ GetObjectType(object, t8, t8);
+ Check(eq, AbortReason::kOperandIsNotABoundFunction, t8,
+ Operand(JS_BOUND_FUNCTION_TYPE));
+ }
+}
+
+void MacroAssembler::AssertGeneratorObject(Register object) {
+ if (!emit_debug_code()) return;
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ STATIC_ASSERT(kSmiTag == 0);
+ SmiTst(object, t8);
+ Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject, t8,
+ Operand(zero_reg));
+
+ GetObjectType(object, t8, t8);
+
+ Label done;
+
+ // Check if JSGeneratorObject
+ Branch(&done, eq, t8, Operand(JS_GENERATOR_OBJECT_TYPE));
+
+ // Check if JSAsyncFunctionObject (See MacroAssembler::CompareInstanceType)
+ Branch(&done, eq, t8, Operand(JS_ASYNC_FUNCTION_OBJECT_TYPE));
+
+ // Check if JSAsyncGeneratorObject
+ Branch(&done, eq, t8, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE));
+
+ Abort(AbortReason::kOperandIsNotAGeneratorObject);
+
+ bind(&done);
+}
+
+void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
+ Register scratch) {
+ if (emit_debug_code()) {
+ Label done_checking;
+ AssertNotSmi(object);
+ LoadRoot(scratch, RootIndex::kUndefinedValue);
+ Branch(&done_checking, eq, object, Operand(scratch));
+ GetObjectType(object, scratch, scratch);
+ Assert(eq, AbortReason::kExpectedUndefinedOrCell, scratch,
+ Operand(ALLOCATION_SITE_TYPE));
+ bind(&done_checking);
+ }
+}
+
+void TurboAssembler::Float32Max(FPURegister dst, FPURegister src1,
+ FPURegister src2, Label* out_of_line) {
+ if (src1 == src2) {
+ Move_s(dst, src1);
+ return;
+ }
+
+ // Check if one of operands is NaN.
+ CompareIsNanF32(src1, src2);
+ BranchTrueF(out_of_line);
+
+ if (kArchVariant >= kMips64r6) {
+ max_s(dst, src1, src2);
+ } else {
+ Label return_left, return_right, done;
+
+ CompareF32(OLT, src1, src2);
+ BranchTrueShortF(&return_right);
+ CompareF32(OLT, src2, src1);
+ BranchTrueShortF(&return_left);
+
+ // Operands are equal, but check for +/-0.
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ mfc1(t8, src1);
+ dsll32(t8, t8, 0);
+ Branch(&return_left, eq, t8, Operand(zero_reg));
+ Branch(&return_right);
+ }
+
+ bind(&return_right);
+ if (src2 != dst) {
+ Move_s(dst, src2);
+ }
+ Branch(&done);
+
+ bind(&return_left);
+ if (src1 != dst) {
+ Move_s(dst, src1);
+ }
+
+ bind(&done);
+ }
+}
+
+void TurboAssembler::Float32MaxOutOfLine(FPURegister dst, FPURegister src1,
+ FPURegister src2) {
+ add_s(dst, src1, src2);
+}
+
+void TurboAssembler::Float32Min(FPURegister dst, FPURegister src1,
+ FPURegister src2, Label* out_of_line) {
+ if (src1 == src2) {
+ Move_s(dst, src1);
+ return;
+ }
+
+ // Check if one of operands is NaN.
+ CompareIsNanF32(src1, src2);
+ BranchTrueF(out_of_line);
+
+ if (kArchVariant >= kMips64r6) {
+ min_s(dst, src1, src2);
+ } else {
+ Label return_left, return_right, done;
+
+ CompareF32(OLT, src1, src2);
+ BranchTrueShortF(&return_left);
+ CompareF32(OLT, src2, src1);
+ BranchTrueShortF(&return_right);
+
+ // Left equals right => check for -0.
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ mfc1(t8, src1);
+ dsll32(t8, t8, 0);
+ Branch(&return_right, eq, t8, Operand(zero_reg));
+ Branch(&return_left);
+ }
+
+ bind(&return_right);
+ if (src2 != dst) {
+ Move_s(dst, src2);
+ }
+ Branch(&done);
+
+ bind(&return_left);
+ if (src1 != dst) {
+ Move_s(dst, src1);
+ }
+
+ bind(&done);
+ }
+}
+
+void TurboAssembler::Float32MinOutOfLine(FPURegister dst, FPURegister src1,
+ FPURegister src2) {
+ add_s(dst, src1, src2);
+}
+
+void TurboAssembler::Float64Max(FPURegister dst, FPURegister src1,
+ FPURegister src2, Label* out_of_line) {
+ if (src1 == src2) {
+ Move_d(dst, src1);
+ return;
+ }
+
+ // Check if one of operands is NaN.
+ CompareIsNanF64(src1, src2);
+ BranchTrueF(out_of_line);
+
+ if (kArchVariant >= kMips64r6) {
+ max_d(dst, src1, src2);
+ } else {
+ Label return_left, return_right, done;
+
+ CompareF64(OLT, src1, src2);
+ BranchTrueShortF(&return_right);
+ CompareF64(OLT, src2, src1);
+ BranchTrueShortF(&return_left);
+
+ // Left equals right => check for -0.
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ dmfc1(t8, src1);
+ Branch(&return_left, eq, t8, Operand(zero_reg));
+ Branch(&return_right);
+ }
+
+ bind(&return_right);
+ if (src2 != dst) {
+ Move_d(dst, src2);
+ }
+ Branch(&done);
+
+ bind(&return_left);
+ if (src1 != dst) {
+ Move_d(dst, src1);
+ }
+
+ bind(&done);
+ }
+}
+
+void TurboAssembler::Float64MaxOutOfLine(FPURegister dst, FPURegister src1,
+ FPURegister src2) {
+ add_d(dst, src1, src2);
+}
+
+void TurboAssembler::Float64Min(FPURegister dst, FPURegister src1,
+ FPURegister src2, Label* out_of_line) {
+ if (src1 == src2) {
+ Move_d(dst, src1);
+ return;
+ }
+
+ // Check if one of operands is NaN.
+ CompareIsNanF64(src1, src2);
+ BranchTrueF(out_of_line);
+
+ if (kArchVariant >= kMips64r6) {
+ min_d(dst, src1, src2);
+ } else {
+ Label return_left, return_right, done;
+
+ CompareF64(OLT, src1, src2);
+ BranchTrueShortF(&return_left);
+ CompareF64(OLT, src2, src1);
+ BranchTrueShortF(&return_right);
+
+ // Left equals right => check for -0.
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ dmfc1(t8, src1);
+ Branch(&return_right, eq, t8, Operand(zero_reg));
+ Branch(&return_left);
+ }
+
+ bind(&return_right);
+ if (src2 != dst) {
+ Move_d(dst, src2);
+ }
+ Branch(&done);
+
+ bind(&return_left);
+ if (src1 != dst) {
+ Move_d(dst, src1);
+ }
+
+ bind(&done);
+ }
+}
+
+void TurboAssembler::Float64MinOutOfLine(FPURegister dst, FPURegister src1,
+ FPURegister src2) {
+ add_d(dst, src1, src2);
+}
+
+static const int kRegisterPassedArguments = 8;
+
+int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments,
+ int num_double_arguments) {
+ int stack_passed_words = 0;
+ num_reg_arguments += 2 * num_double_arguments;
+
+ // O32: Up to four simple arguments are passed in registers a0..a3.
+ // N64: Up to eight simple arguments are passed in registers a0..a7.
+ if (num_reg_arguments > kRegisterPassedArguments) {
+ stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
+ }
+ stack_passed_words += kCArgSlotCount;
+ return stack_passed_words;
+}
+
+void TurboAssembler::PrepareCallCFunction(int num_reg_arguments,
+ int num_double_arguments,
+ Register scratch) {
+ int frame_alignment = ActivationFrameAlignment();
+
+ // n64: Up to eight simple arguments in a0..a3, a4..a7, No argument slots.
+ // O32: Up to four simple arguments are passed in registers a0..a3.
+ // Those four arguments must have reserved argument slots on the stack for
+ // mips, even though those argument slots are not normally used.
+ // Both ABIs: Remaining arguments are pushed on the stack, above (higher
+ // address than) the (O32) argument slots. (arg slot calculation handled by
+ // CalculateStackPassedWords()).
+ int stack_passed_arguments =
+ CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
+ if (frame_alignment > kPointerSize) {
+ // Make stack end at alignment and make room for num_arguments - 4 words
+ // and the original value of sp.
+ mov(scratch, sp);
+ Dsubu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
+ DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
+ And(sp, sp, Operand(-frame_alignment));
+ Sd(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
+ } else {
+ Dsubu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
+ }
+}
+
+void TurboAssembler::PrepareCallCFunction(int num_reg_arguments,
+ Register scratch) {
+ PrepareCallCFunction(num_reg_arguments, 0, scratch);
+}
+
+void TurboAssembler::CallCFunction(ExternalReference function,
+ int num_reg_arguments,
+ int num_double_arguments) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ li(t9, function);
+ CallCFunctionHelper(t9, num_reg_arguments, num_double_arguments);
+}
+
+void TurboAssembler::CallCFunction(Register function, int num_reg_arguments,
+ int num_double_arguments) {
+ CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
+}
+
+void TurboAssembler::CallCFunction(ExternalReference function,
+ int num_arguments) {
+ CallCFunction(function, num_arguments, 0);
+}
+
+void TurboAssembler::CallCFunction(Register function, int num_arguments) {
+ CallCFunction(function, num_arguments, 0);
+}
+
+void TurboAssembler::CallCFunctionHelper(Register function,
+ int num_reg_arguments,
+ int num_double_arguments) {
+ DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters);
+ DCHECK(has_frame());
+ // Make sure that the stack is aligned before calling a C function unless
+ // running in the simulator. The simulator has its own alignment check which
+ // provides more information.
+ // The argument stots are presumed to have been set up by
+ // PrepareCallCFunction. The C function must be called via t9, for mips ABI.
+
+#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
+ if (emit_debug_code()) {
+ int frame_alignment = base::OS::ActivationFrameAlignment();
+ int frame_alignment_mask = frame_alignment - 1;
+ if (frame_alignment > kPointerSize) {
+ DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
+ Label alignment_as_expected;
+ {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ And(scratch, sp, Operand(frame_alignment_mask));
+ Branch(&alignment_as_expected, eq, scratch, Operand(zero_reg));
+ }
+ // Don't use Check here, as it will call Runtime_Abort possibly
+ // re-entering here.
+ stop("Unexpected alignment in CallCFunction");
+ bind(&alignment_as_expected);
+ }
+ }
+#endif // V8_HOST_ARCH_MIPS
+
+ // Just call directly. The function called cannot cause a GC, or
+ // allow preemption, so the return address in the link register
+ // stays correct.
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ if (function != t9) {
+ mov(t9, function);
+ function = t9;
+ }
+
+ // Save the frame pointer and PC so that the stack layout remains iterable,
+ // even without an ExitFrame which normally exists between JS and C frames.
+ if (isolate() != nullptr) {
+ // 't' registers are caller-saved so this is safe as a scratch register.
+ Register scratch1 = t1;
+ Register scratch2 = t2;
+ DCHECK(!AreAliased(scratch1, scratch2, function));
+
+ Label get_pc;
+ mov(scratch1, ra);
+ Call(&get_pc);
+
+ bind(&get_pc);
+ mov(scratch2, ra);
+ mov(ra, scratch1);
+
+ li(scratch1, ExternalReference::fast_c_call_caller_pc_address(isolate()));
+ Sd(scratch2, MemOperand(scratch1));
+ li(scratch1, ExternalReference::fast_c_call_caller_fp_address(isolate()));
+ Sd(fp, MemOperand(scratch1));
+ }
+
+ Call(function);
+
+ if (isolate() != nullptr) {
+ // We don't unset the PC; the FP is the source of truth.
+ Register scratch = t1;
+ li(scratch, ExternalReference::fast_c_call_caller_fp_address(isolate()));
+ Sd(zero_reg, MemOperand(scratch));
+ }
+ }
+
+ int stack_passed_arguments =
+ CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
+
+ if (base::OS::ActivationFrameAlignment() > kPointerSize) {
+ Ld(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
+ } else {
+ Daddu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
+ }
+}
+
+#undef BRANCH_ARGS_CHECK
+
+void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask,
+ Condition cc, Label* condition_met) {
+ And(scratch, object, Operand(~kPageAlignmentMask));
+ Ld(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
+ And(scratch, scratch, Operand(mask));
+ Branch(condition_met, cc, scratch, Operand(zero_reg));
+}
+
+Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3,
+ Register reg4, Register reg5,
+ Register reg6) {
+ RegList regs = 0;
+ if (reg1.is_valid()) regs |= reg1.bit();
+ if (reg2.is_valid()) regs |= reg2.bit();
+ if (reg3.is_valid()) regs |= reg3.bit();
+ if (reg4.is_valid()) regs |= reg4.bit();
+ if (reg5.is_valid()) regs |= reg5.bit();
+ if (reg6.is_valid()) regs |= reg6.bit();
+
+ const RegisterConfiguration* config = RegisterConfiguration::Default();
+ for (int i = 0; i < config->num_allocatable_general_registers(); ++i) {
+ int code = config->GetAllocatableGeneralCode(i);
+ Register candidate = Register::from_code(code);
+ if (regs & candidate.bit()) continue;
+ return candidate;
+ }
+ UNREACHABLE();
+}
+
+void TurboAssembler::ComputeCodeStartAddress(Register dst) {
+ // This push on ra and the pop below together ensure that we restore the
+ // register ra, which is needed while computing the code start address.
+ push(ra);
+
+ // The nal instruction puts the address of the current instruction into
+ // the return address (ra) register, which we can use later on.
+ if (kArchVariant == kMips64r6) {
+ addiupc(ra, 1);
+ } else {
+ nal();
+ nop();
+ }
+ int pc = pc_offset();
+ li(dst, Operand(pc));
+ Dsubu(dst, ra, dst);
+
+ pop(ra); // Restore ra
+}
+
+void TurboAssembler::ResetSpeculationPoisonRegister() {
+ li(kSpeculationPoisonRegister, -1);
+}
+
+void TurboAssembler::CallForDeoptimization(Address target, int deopt_id) {
+ NoRootArrayScope no_root_array(this);
+
+ // Save the deopt id in kRootRegister (we don't need the roots array from now
+ // on).
+ DCHECK_LE(deopt_id, 0xFFFF);
+ li(kRootRegister, deopt_id);
+ Call(target, RelocInfo::RUNTIME_ENTRY);
+}
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_MIPS64