summaryrefslogtreecommitdiff
path: root/deps/v8/src/crankshaft/arm64/lithium-codegen-arm64.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/crankshaft/arm64/lithium-codegen-arm64.cc')
-rw-r--r--deps/v8/src/crankshaft/arm64/lithium-codegen-arm64.cc5593
1 files changed, 0 insertions, 5593 deletions
diff --git a/deps/v8/src/crankshaft/arm64/lithium-codegen-arm64.cc b/deps/v8/src/crankshaft/arm64/lithium-codegen-arm64.cc
deleted file mode 100644
index c86971c6ce..0000000000
--- a/deps/v8/src/crankshaft/arm64/lithium-codegen-arm64.cc
+++ /dev/null
@@ -1,5593 +0,0 @@
-// Copyright 2013 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/crankshaft/arm64/lithium-codegen-arm64.h"
-
-#include "src/arm64/frames-arm64.h"
-#include "src/arm64/macro-assembler-arm64-inl.h"
-#include "src/base/bits.h"
-#include "src/builtins/builtins-constructor.h"
-#include "src/code-factory.h"
-#include "src/code-stubs.h"
-#include "src/crankshaft/arm64/lithium-gap-resolver-arm64.h"
-#include "src/crankshaft/hydrogen-osr.h"
-#include "src/ic/ic.h"
-#include "src/ic/stub-cache.h"
-#include "src/objects-inl.h"
-
-namespace v8 {
-namespace internal {
-
-
-class SafepointGenerator final : public CallWrapper {
- public:
- SafepointGenerator(LCodeGen* codegen,
- LPointerMap* pointers,
- Safepoint::DeoptMode mode)
- : codegen_(codegen),
- pointers_(pointers),
- deopt_mode_(mode) { }
- virtual ~SafepointGenerator() { }
-
- virtual void BeforeCall(int call_size) const { }
-
- virtual void AfterCall() const {
- codegen_->RecordSafepoint(pointers_, deopt_mode_);
- }
-
- private:
- LCodeGen* codegen_;
- LPointerMap* pointers_;
- Safepoint::DeoptMode deopt_mode_;
-};
-
-LCodeGen::PushSafepointRegistersScope::PushSafepointRegistersScope(
- LCodeGen* codegen)
- : codegen_(codegen) {
- DCHECK(codegen_->info()->is_calling());
- DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple);
- codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters;
-
- UseScratchRegisterScope temps(codegen_->masm_);
- // Preserve the value of lr which must be saved on the stack (the call to
- // the stub will clobber it).
- Register to_be_pushed_lr =
- temps.UnsafeAcquire(StoreRegistersStateStub::to_be_pushed_lr());
- codegen_->masm_->Mov(to_be_pushed_lr, lr);
- StoreRegistersStateStub stub(codegen_->isolate());
- codegen_->masm_->CallStub(&stub);
-}
-
-LCodeGen::PushSafepointRegistersScope::~PushSafepointRegistersScope() {
- DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters);
- RestoreRegistersStateStub stub(codegen_->isolate());
- codegen_->masm_->CallStub(&stub);
- codegen_->expected_safepoint_kind_ = Safepoint::kSimple;
-}
-
-#define __ masm()->
-
-// Emit code to branch if the given condition holds.
-// The code generated here doesn't modify the flags and they must have
-// been set by some prior instructions.
-//
-// The EmitInverted function simply inverts the condition.
-class BranchOnCondition : public BranchGenerator {
- public:
- BranchOnCondition(LCodeGen* codegen, Condition cond)
- : BranchGenerator(codegen),
- cond_(cond) { }
-
- virtual void Emit(Label* label) const {
- __ B(cond_, label);
- }
-
- virtual void EmitInverted(Label* label) const {
- if (cond_ != al) {
- __ B(NegateCondition(cond_), label);
- }
- }
-
- private:
- Condition cond_;
-};
-
-
-// Emit code to compare lhs and rhs and branch if the condition holds.
-// This uses MacroAssembler's CompareAndBranch function so it will handle
-// converting the comparison to Cbz/Cbnz if the right-hand side is 0.
-//
-// EmitInverted still compares the two operands but inverts the condition.
-class CompareAndBranch : public BranchGenerator {
- public:
- CompareAndBranch(LCodeGen* codegen,
- Condition cond,
- const Register& lhs,
- const Operand& rhs)
- : BranchGenerator(codegen),
- cond_(cond),
- lhs_(lhs),
- rhs_(rhs) { }
-
- virtual void Emit(Label* label) const {
- __ CompareAndBranch(lhs_, rhs_, cond_, label);
- }
-
- virtual void EmitInverted(Label* label) const {
- __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label);
- }
-
- private:
- Condition cond_;
- const Register& lhs_;
- const Operand& rhs_;
-};
-
-
-// Test the input with the given mask and branch if the condition holds.
-// If the condition is 'eq' or 'ne' this will use MacroAssembler's
-// TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the
-// conversion to Tbz/Tbnz when possible.
-class TestAndBranch : public BranchGenerator {
- public:
- TestAndBranch(LCodeGen* codegen,
- Condition cond,
- const Register& value,
- uint64_t mask)
- : BranchGenerator(codegen),
- cond_(cond),
- value_(value),
- mask_(mask) { }
-
- virtual void Emit(Label* label) const {
- switch (cond_) {
- case eq:
- __ TestAndBranchIfAllClear(value_, mask_, label);
- break;
- case ne:
- __ TestAndBranchIfAnySet(value_, mask_, label);
- break;
- default:
- __ Tst(value_, mask_);
- __ B(cond_, label);
- }
- }
-
- virtual void EmitInverted(Label* label) const {
- // The inverse of "all clear" is "any set" and vice versa.
- switch (cond_) {
- case eq:
- __ TestAndBranchIfAnySet(value_, mask_, label);
- break;
- case ne:
- __ TestAndBranchIfAllClear(value_, mask_, label);
- break;
- default:
- __ Tst(value_, mask_);
- __ B(NegateCondition(cond_), label);
- }
- }
-
- private:
- Condition cond_;
- const Register& value_;
- uint64_t mask_;
-};
-
-
-// Test the input and branch if it is non-zero and not a NaN.
-class BranchIfNonZeroNumber : public BranchGenerator {
- public:
- BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value,
- const FPRegister& scratch)
- : BranchGenerator(codegen), value_(value), scratch_(scratch) { }
-
- virtual void Emit(Label* label) const {
- __ Fabs(scratch_, value_);
- // Compare with 0.0. Because scratch_ is positive, the result can be one of
- // nZCv (equal), nzCv (greater) or nzCV (unordered).
- __ Fcmp(scratch_, 0.0);
- __ B(gt, label);
- }
-
- virtual void EmitInverted(Label* label) const {
- __ Fabs(scratch_, value_);
- __ Fcmp(scratch_, 0.0);
- __ B(le, label);
- }
-
- private:
- const FPRegister& value_;
- const FPRegister& scratch_;
-};
-
-
-// Test the input and branch if it is a heap number.
-class BranchIfHeapNumber : public BranchGenerator {
- public:
- BranchIfHeapNumber(LCodeGen* codegen, const Register& value)
- : BranchGenerator(codegen), value_(value) { }
-
- virtual void Emit(Label* label) const {
- __ JumpIfHeapNumber(value_, label);
- }
-
- virtual void EmitInverted(Label* label) const {
- __ JumpIfNotHeapNumber(value_, label);
- }
-
- private:
- const Register& value_;
-};
-
-
-// Test the input and branch if it is the specified root value.
-class BranchIfRoot : public BranchGenerator {
- public:
- BranchIfRoot(LCodeGen* codegen, const Register& value,
- Heap::RootListIndex index)
- : BranchGenerator(codegen), value_(value), index_(index) { }
-
- virtual void Emit(Label* label) const {
- __ JumpIfRoot(value_, index_, label);
- }
-
- virtual void EmitInverted(Label* label) const {
- __ JumpIfNotRoot(value_, index_, label);
- }
-
- private:
- const Register& value_;
- const Heap::RootListIndex index_;
-};
-
-
-void LCodeGen::WriteTranslation(LEnvironment* environment,
- Translation* translation) {
- if (environment == NULL) return;
-
- // The translation includes one command per value in the environment.
- int translation_size = environment->translation_size();
-
- WriteTranslation(environment->outer(), translation);
- WriteTranslationFrame(environment, translation);
-
- int object_index = 0;
- int dematerialized_index = 0;
- for (int i = 0; i < translation_size; ++i) {
- LOperand* value = environment->values()->at(i);
- AddToTranslation(
- environment, translation, value, environment->HasTaggedValueAt(i),
- environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
- }
-}
-
-
-void LCodeGen::AddToTranslation(LEnvironment* environment,
- Translation* translation,
- LOperand* op,
- bool is_tagged,
- bool is_uint32,
- int* object_index_pointer,
- int* dematerialized_index_pointer) {
- if (op == LEnvironment::materialization_marker()) {
- int object_index = (*object_index_pointer)++;
- if (environment->ObjectIsDuplicateAt(object_index)) {
- int dupe_of = environment->ObjectDuplicateOfAt(object_index);
- translation->DuplicateObject(dupe_of);
- return;
- }
- int object_length = environment->ObjectLengthAt(object_index);
- if (environment->ObjectIsArgumentsAt(object_index)) {
- translation->BeginArgumentsObject(object_length);
- } else {
- translation->BeginCapturedObject(object_length);
- }
- int dematerialized_index = *dematerialized_index_pointer;
- int env_offset = environment->translation_size() + dematerialized_index;
- *dematerialized_index_pointer += object_length;
- for (int i = 0; i < object_length; ++i) {
- LOperand* value = environment->values()->at(env_offset + i);
- AddToTranslation(environment,
- translation,
- value,
- environment->HasTaggedValueAt(env_offset + i),
- environment->HasUint32ValueAt(env_offset + i),
- object_index_pointer,
- dematerialized_index_pointer);
- }
- return;
- }
-
- if (op->IsStackSlot()) {
- int index = op->index();
- if (is_tagged) {
- translation->StoreStackSlot(index);
- } else if (is_uint32) {
- translation->StoreUint32StackSlot(index);
- } else {
- translation->StoreInt32StackSlot(index);
- }
- } else if (op->IsDoubleStackSlot()) {
- int index = op->index();
- translation->StoreDoubleStackSlot(index);
- } else if (op->IsRegister()) {
- Register reg = ToRegister(op);
- if (is_tagged) {
- translation->StoreRegister(reg);
- } else if (is_uint32) {
- translation->StoreUint32Register(reg);
- } else {
- translation->StoreInt32Register(reg);
- }
- } else if (op->IsDoubleRegister()) {
- DoubleRegister reg = ToDoubleRegister(op);
- translation->StoreDoubleRegister(reg);
- } else if (op->IsConstantOperand()) {
- HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
- int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
- translation->StoreLiteral(src_index);
- } else {
- UNREACHABLE();
- }
-}
-
-
-void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
- Safepoint::DeoptMode mode) {
- environment->set_has_been_used();
- if (!environment->HasBeenRegistered()) {
- int frame_count = 0;
- int jsframe_count = 0;
- for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
- ++frame_count;
- if (e->frame_type() == JS_FUNCTION) {
- ++jsframe_count;
- }
- }
- Translation translation(&translations_, frame_count, jsframe_count, zone());
- WriteTranslation(environment, &translation);
- int deoptimization_index = deoptimizations_.length();
- int pc_offset = masm()->pc_offset();
- environment->Register(deoptimization_index,
- translation.index(),
- (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
- deoptimizations_.Add(environment, zone());
- }
-}
-
-
-void LCodeGen::CallCode(Handle<Code> code,
- RelocInfo::Mode mode,
- LInstruction* instr) {
- CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
-}
-
-
-void LCodeGen::CallCodeGeneric(Handle<Code> code,
- RelocInfo::Mode mode,
- LInstruction* instr,
- SafepointMode safepoint_mode) {
- DCHECK(instr != NULL);
-
- Assembler::BlockPoolsScope scope(masm_);
- __ Call(code, mode);
- RecordSafepointWithLazyDeopt(instr, safepoint_mode);
-
- if ((code->kind() == Code::BINARY_OP_IC) ||
- (code->kind() == Code::COMPARE_IC)) {
- // Signal that we don't inline smi code before these stubs in the
- // optimizing code generator.
- InlineSmiCheckInfo::EmitNotInlined(masm());
- }
-}
-
-
-void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
- DCHECK(instr->IsMarkedAsCall());
- DCHECK(ToRegister(instr->context()).is(cp));
- DCHECK(ToRegister(instr->constructor()).is(x1));
-
- __ Mov(x0, Operand(instr->arity()));
- __ Mov(x2, instr->hydrogen()->site());
-
- ElementsKind kind = instr->hydrogen()->elements_kind();
- AllocationSiteOverrideMode override_mode =
- (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
- ? DISABLE_ALLOCATION_SITES
- : DONT_OVERRIDE;
-
- if (instr->arity() == 0) {
- ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
- CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
- } else if (instr->arity() == 1) {
- Label done;
- if (IsFastPackedElementsKind(kind)) {
- Label packed_case;
-
- // We might need to create a holey array; look at the first argument.
- __ Peek(x10, 0);
- __ Cbz(x10, &packed_case);
-
- ElementsKind holey_kind = GetHoleyElementsKind(kind);
- ArraySingleArgumentConstructorStub stub(isolate(),
- holey_kind,
- override_mode);
- CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
- __ B(&done);
- __ Bind(&packed_case);
- }
-
- ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
- CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
- __ Bind(&done);
- } else {
- ArrayNArgumentsConstructorStub stub(isolate());
- CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
- }
- RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
-
- DCHECK(ToRegister(instr->result()).is(x0));
-}
-
-
-void LCodeGen::CallRuntime(const Runtime::Function* function,
- int num_arguments,
- LInstruction* instr,
- SaveFPRegsMode save_doubles) {
- DCHECK(instr != NULL);
-
- __ CallRuntime(function, num_arguments, save_doubles);
-
- RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
-}
-
-
-void LCodeGen::LoadContextFromDeferred(LOperand* context) {
- if (context->IsRegister()) {
- __ Mov(cp, ToRegister(context));
- } else if (context->IsStackSlot()) {
- __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer));
- } else if (context->IsConstantOperand()) {
- HConstant* constant =
- chunk_->LookupConstant(LConstantOperand::cast(context));
- __ LoadHeapObject(cp,
- Handle<HeapObject>::cast(constant->handle(isolate())));
- } else {
- UNREACHABLE();
- }
-}
-
-
-void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
- int argc,
- LInstruction* instr,
- LOperand* context) {
- if (context != nullptr) LoadContextFromDeferred(context);
- __ CallRuntimeSaveDoubles(id);
- RecordSafepointWithRegisters(
- instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
-}
-
-
-void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
- SafepointMode safepoint_mode) {
- if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
- RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
- } else {
- DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
- RecordSafepointWithRegisters(
- instr->pointer_map(), 0, Safepoint::kLazyDeopt);
- }
-}
-
-
-void LCodeGen::RecordSafepoint(LPointerMap* pointers,
- Safepoint::Kind kind,
- int arguments,
- Safepoint::DeoptMode deopt_mode) {
- DCHECK(expected_safepoint_kind_ == kind);
-
- const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
- Safepoint safepoint = safepoints_.DefineSafepoint(
- masm(), kind, arguments, deopt_mode);
-
- for (int i = 0; i < operands->length(); i++) {
- LOperand* pointer = operands->at(i);
- if (pointer->IsStackSlot()) {
- safepoint.DefinePointerSlot(pointer->index(), zone());
- } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
- safepoint.DefinePointerRegister(ToRegister(pointer), zone());
- }
- }
-}
-
-void LCodeGen::RecordSafepoint(LPointerMap* pointers,
- Safepoint::DeoptMode deopt_mode) {
- RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
-}
-
-
-void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
- LPointerMap empty_pointers(zone());
- RecordSafepoint(&empty_pointers, deopt_mode);
-}
-
-
-void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
- int arguments,
- Safepoint::DeoptMode deopt_mode) {
- RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
-}
-
-
-bool LCodeGen::GenerateCode() {
- LPhase phase("Z_Code generation", chunk());
- DCHECK(is_unused());
- status_ = GENERATING;
-
- // Open a frame scope to indicate that there is a frame on the stack. The
- // NONE indicates that the scope shouldn't actually generate code to set up
- // the frame (that is done in GeneratePrologue).
- FrameScope frame_scope(masm_, StackFrame::NONE);
-
- return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
- GenerateJumpTable() && GenerateSafepointTable();
-}
-
-
-void LCodeGen::SaveCallerDoubles() {
- DCHECK(info()->saves_caller_doubles());
- DCHECK(NeedsEagerFrame());
- Comment(";;; Save clobbered callee double registers");
- BitVector* doubles = chunk()->allocated_double_registers();
- BitVector::Iterator iterator(doubles);
- int count = 0;
- while (!iterator.Done()) {
- // TODO(all): Is this supposed to save just the callee-saved doubles? It
- // looks like it's saving all of them.
- FPRegister value = FPRegister::from_code(iterator.Current());
- __ Poke(value, count * kDoubleSize);
- iterator.Advance();
- count++;
- }
-}
-
-
-void LCodeGen::RestoreCallerDoubles() {
- DCHECK(info()->saves_caller_doubles());
- DCHECK(NeedsEagerFrame());
- Comment(";;; Restore clobbered callee double registers");
- BitVector* doubles = chunk()->allocated_double_registers();
- BitVector::Iterator iterator(doubles);
- int count = 0;
- while (!iterator.Done()) {
- // TODO(all): Is this supposed to restore just the callee-saved doubles? It
- // looks like it's restoring all of them.
- FPRegister value = FPRegister::from_code(iterator.Current());
- __ Peek(value, count * kDoubleSize);
- iterator.Advance();
- count++;
- }
-}
-
-
-bool LCodeGen::GeneratePrologue() {
- DCHECK(is_generating());
-
- if (info()->IsOptimizing()) {
- ProfileEntryHookStub::MaybeCallEntryHook(masm_);
- }
-
- DCHECK(__ StackPointer().Is(jssp));
- info()->set_prologue_offset(masm_->pc_offset());
- if (NeedsEagerFrame()) {
- if (info()->IsStub()) {
- __ StubPrologue(
- StackFrame::STUB,
- GetStackSlotCount() + TypedFrameConstants::kFixedSlotCount);
- } else {
- __ Prologue(info()->GeneratePreagedPrologue());
- // Reserve space for the stack slots needed by the code.
- int slots = GetStackSlotCount();
- if (slots > 0) {
- __ Claim(slots, kPointerSize);
- }
- }
- frame_is_built_ = true;
- }
-
- if (info()->saves_caller_doubles()) {
- SaveCallerDoubles();
- }
- return !is_aborted();
-}
-
-
-void LCodeGen::DoPrologue(LPrologue* instr) {
- Comment(";;; Prologue begin");
-
- // Allocate a local context if needed.
- if (info()->scope()->NeedsContext()) {
- Comment(";;; Allocate local context");
- bool need_write_barrier = true;
- // Argument to NewContext is the function, which is in x1.
- int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
- Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
- if (info()->scope()->is_script_scope()) {
- __ Mov(x10, Operand(info()->scope()->scope_info()));
- __ Push(x1, x10);
- __ CallRuntime(Runtime::kNewScriptContext);
- deopt_mode = Safepoint::kLazyDeopt;
- } else {
- if (slots <= ConstructorBuiltins::MaximumFunctionContextSlots()) {
- Callable callable = CodeFactory::FastNewFunctionContext(
- isolate(), info()->scope()->scope_type());
- __ Mov(FastNewFunctionContextDescriptor::SlotsRegister(), slots);
- __ Call(callable.code(), RelocInfo::CODE_TARGET);
- // Result of the FastNewFunctionContext builtin is always in new space.
- need_write_barrier = false;
- } else {
- __ Push(x1);
- __ Push(Smi::FromInt(info()->scope()->scope_type()));
- __ CallRuntime(Runtime::kNewFunctionContext);
- }
- }
- RecordSafepoint(deopt_mode);
- // Context is returned in x0. It replaces the context passed to us. It's
- // saved in the stack and kept live in cp.
- __ Mov(cp, x0);
- __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
- // Copy any necessary parameters into the context.
- int num_parameters = info()->scope()->num_parameters();
- int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0;
- for (int i = first_parameter; i < num_parameters; i++) {
- Variable* var = (i == -1) ? info()->scope()->receiver()
- : info()->scope()->parameter(i);
- if (var->IsContextSlot()) {
- Register value = x0;
- Register scratch = x3;
-
- int parameter_offset = StandardFrameConstants::kCallerSPOffset +
- (num_parameters - 1 - i) * kPointerSize;
- // Load parameter from stack.
- __ Ldr(value, MemOperand(fp, parameter_offset));
- // Store it in the context.
- MemOperand target = ContextMemOperand(cp, var->index());
- __ Str(value, target);
- // Update the write barrier. This clobbers value and scratch.
- if (need_write_barrier) {
- __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()),
- value, scratch, GetLinkRegisterState(),
- kSaveFPRegs);
- } else if (FLAG_debug_code) {
- Label done;
- __ JumpIfInNewSpace(cp, &done);
- __ Abort(kExpectedNewSpaceObject);
- __ bind(&done);
- }
- }
- }
- Comment(";;; End allocate local context");
- }
-
- Comment(";;; Prologue end");
-}
-
-
-void LCodeGen::GenerateOsrPrologue() {
- // Generate the OSR entry prologue at the first unknown OSR value, or if there
- // are none, at the OSR entrypoint instruction.
- if (osr_pc_offset_ >= 0) return;
-
- osr_pc_offset_ = masm()->pc_offset();
-
- // Adjust the frame size, subsuming the unoptimized frame into the
- // optimized frame.
- int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
- DCHECK(slots >= 0);
- __ Claim(slots);
-}
-
-
-void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
- if (instr->IsCall()) {
- EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
- }
- if (!instr->IsLazyBailout() && !instr->IsGap()) {
- safepoints_.BumpLastLazySafepointIndex();
- }
-}
-
-
-bool LCodeGen::GenerateDeferredCode() {
- DCHECK(is_generating());
- if (deferred_.length() > 0) {
- for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) {
- LDeferredCode* code = deferred_[i];
-
- HValue* value =
- instructions_->at(code->instruction_index())->hydrogen_value();
- RecordAndWritePosition(value->position());
-
- Comment(";;; <@%d,#%d> "
- "-------------------- Deferred %s --------------------",
- code->instruction_index(),
- code->instr()->hydrogen_value()->id(),
- code->instr()->Mnemonic());
-
- __ Bind(code->entry());
-
- if (NeedsDeferredFrame()) {
- Comment(";;; Build frame");
- DCHECK(!frame_is_built_);
- DCHECK(info()->IsStub());
- frame_is_built_ = true;
- __ Push(lr, fp);
- __ Mov(fp, StackFrame::TypeToMarker(StackFrame::STUB));
- __ Push(fp);
- __ Add(fp, __ StackPointer(),
- TypedFrameConstants::kFixedFrameSizeFromFp);
- Comment(";;; Deferred code");
- }
-
- code->Generate();
-
- if (NeedsDeferredFrame()) {
- Comment(";;; Destroy frame");
- DCHECK(frame_is_built_);
- __ Pop(xzr, fp, lr);
- frame_is_built_ = false;
- }
-
- __ B(code->exit());
- }
- }
-
- // Force constant pool emission at the end of the deferred code to make
- // sure that no constant pools are emitted after deferred code because
- // deferred code generation is the last step which generates code. The two
- // following steps will only output data used by crakshaft.
- masm()->CheckConstPool(true, false);
-
- return !is_aborted();
-}
-
-
-bool LCodeGen::GenerateJumpTable() {
- Label needs_frame, call_deopt_entry;
-
- if (jump_table_.length() > 0) {
- Comment(";;; -------------------- Jump table --------------------");
- Address base = jump_table_[0]->address;
-
- UseScratchRegisterScope temps(masm());
- Register entry_offset = temps.AcquireX();
-
- int length = jump_table_.length();
- for (int i = 0; i < length; i++) {
- Deoptimizer::JumpTableEntry* table_entry = jump_table_[i];
- __ Bind(&table_entry->label);
-
- Address entry = table_entry->address;
- DeoptComment(table_entry->deopt_info);
-
- // Second-level deopt table entries are contiguous and small, so instead
- // of loading the full, absolute address of each one, load the base
- // address and add an immediate offset.
- __ Mov(entry_offset, entry - base);
-
- if (table_entry->needs_frame) {
- DCHECK(!info()->saves_caller_doubles());
- Comment(";;; call deopt with frame");
- // Save lr before Bl, fp will be adjusted in the needs_frame code.
- __ Push(lr, fp);
- // Reuse the existing needs_frame code.
- __ Bl(&needs_frame);
- } else {
- // There is nothing special to do, so just continue to the second-level
- // table.
- __ Bl(&call_deopt_entry);
- }
-
- masm()->CheckConstPool(false, false);
- }
-
- if (needs_frame.is_linked()) {
- // This variant of deopt can only be used with stubs. Since we don't
- // have a function pointer to install in the stack frame that we're
- // building, install a special marker there instead.
- DCHECK(info()->IsStub());
-
- Comment(";;; needs_frame common code");
- UseScratchRegisterScope temps(masm());
- Register stub_marker = temps.AcquireX();
- __ Bind(&needs_frame);
- __ Mov(stub_marker, StackFrame::TypeToMarker(StackFrame::STUB));
- __ Push(cp, stub_marker);
- __ Add(fp, __ StackPointer(), 2 * kPointerSize);
- }
-
- // Generate common code for calling the second-level deopt table.
- __ Bind(&call_deopt_entry);
-
- if (info()->saves_caller_doubles()) {
- DCHECK(info()->IsStub());
- RestoreCallerDoubles();
- }
-
- Register deopt_entry = temps.AcquireX();
- __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base),
- RelocInfo::RUNTIME_ENTRY));
- __ Add(deopt_entry, deopt_entry, entry_offset);
- __ Br(deopt_entry);
- }
-
- // Force constant pool emission at the end of the deopt jump table to make
- // sure that no constant pools are emitted after.
- masm()->CheckConstPool(true, false);
-
- // The deoptimization jump table is the last part of the instruction
- // sequence. Mark the generated code as done unless we bailed out.
- if (!is_aborted()) status_ = DONE;
- return !is_aborted();
-}
-
-
-bool LCodeGen::GenerateSafepointTable() {
- DCHECK(is_done());
- // We do not know how much data will be emitted for the safepoint table, so
- // force emission of the veneer pool.
- masm()->CheckVeneerPool(true, true);
- safepoints_.Emit(masm(), GetTotalFrameSlotCount());
- return !is_aborted();
-}
-
-
-void LCodeGen::FinishCode(Handle<Code> code) {
- DCHECK(is_done());
- code->set_stack_slots(GetTotalFrameSlotCount());
- code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
- PopulateDeoptimizationData(code);
-}
-
-void LCodeGen::DeoptimizeBranch(
- LInstruction* instr, DeoptimizeReason deopt_reason, BranchType branch_type,
- Register reg, int bit, Deoptimizer::BailoutType* override_bailout_type) {
- LEnvironment* environment = instr->environment();
- RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
- Deoptimizer::BailoutType bailout_type =
- info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
-
- if (override_bailout_type != NULL) {
- bailout_type = *override_bailout_type;
- }
-
- DCHECK(environment->HasBeenRegistered());
- int id = environment->deoptimization_index();
- Address entry =
- Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
-
- if (entry == NULL) {
- Abort(kBailoutWasNotPrepared);
- }
-
- if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
- Label not_zero;
- ExternalReference count = ExternalReference::stress_deopt_count(isolate());
-
- __ Push(x0, x1, x2);
- __ Mrs(x2, NZCV);
- __ Mov(x0, count);
- __ Ldr(w1, MemOperand(x0));
- __ Subs(x1, x1, 1);
- __ B(gt, &not_zero);
- __ Mov(w1, FLAG_deopt_every_n_times);
- __ Str(w1, MemOperand(x0));
- __ Pop(x2, x1, x0);
- DCHECK(frame_is_built_);
- __ Call(entry, RelocInfo::RUNTIME_ENTRY);
- __ Unreachable();
-
- __ Bind(&not_zero);
- __ Str(w1, MemOperand(x0));
- __ Msr(NZCV, x2);
- __ Pop(x2, x1, x0);
- }
-
- if (info()->ShouldTrapOnDeopt()) {
- Label dont_trap;
- __ B(&dont_trap, InvertBranchType(branch_type), reg, bit);
- __ Debug("trap_on_deopt", __LINE__, BREAK);
- __ Bind(&dont_trap);
- }
-
- Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
-
- DCHECK(info()->IsStub() || frame_is_built_);
- // Go through jump table if we need to build frame, or restore caller doubles.
- if (branch_type == always &&
- frame_is_built_ && !info()->saves_caller_doubles()) {
- DeoptComment(deopt_info);
- __ Call(entry, RelocInfo::RUNTIME_ENTRY);
- } else {
- Deoptimizer::JumpTableEntry* table_entry =
- new (zone()) Deoptimizer::JumpTableEntry(
- entry, deopt_info, bailout_type, !frame_is_built_);
- // We often have several deopts to the same entry, reuse the last
- // jump entry if this is the case.
- if (FLAG_trace_deopt || isolate()->is_profiling() ||
- jump_table_.is_empty() ||
- !table_entry->IsEquivalentTo(*jump_table_.last())) {
- jump_table_.Add(table_entry, zone());
- }
- __ B(&jump_table_.last()->label, branch_type, reg, bit);
- }
-}
-
-void LCodeGen::Deoptimize(LInstruction* instr, DeoptimizeReason deopt_reason,
- Deoptimizer::BailoutType* override_bailout_type) {
- DeoptimizeBranch(instr, deopt_reason, always, NoReg, -1,
- override_bailout_type);
-}
-
-void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
- DeoptimizeReason deopt_reason) {
- DeoptimizeBranch(instr, deopt_reason, static_cast<BranchType>(cond));
-}
-
-void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr,
- DeoptimizeReason deopt_reason) {
- DeoptimizeBranch(instr, deopt_reason, reg_zero, rt);
-}
-
-void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr,
- DeoptimizeReason deopt_reason) {
- DeoptimizeBranch(instr, deopt_reason, reg_not_zero, rt);
-}
-
-void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr,
- DeoptimizeReason deopt_reason) {
- int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit;
- DeoptimizeIfBitSet(rt, sign_bit, instr, deopt_reason);
-}
-
-void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr,
- DeoptimizeReason deopt_reason) {
- DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
-}
-
-void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr,
- DeoptimizeReason deopt_reason) {
- DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
-}
-
-void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index,
- LInstruction* instr,
- DeoptimizeReason deopt_reason) {
- __ CompareRoot(rt, index);
- DeoptimizeIf(eq, instr, deopt_reason);
-}
-
-void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index,
- LInstruction* instr,
- DeoptimizeReason deopt_reason) {
- __ CompareRoot(rt, index);
- DeoptimizeIf(ne, instr, deopt_reason);
-}
-
-void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr,
- DeoptimizeReason deopt_reason) {
- __ TestForMinusZero(input);
- DeoptimizeIf(vs, instr, deopt_reason);
-}
-
-
-void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) {
- __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex);
- DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
-}
-
-void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr,
- DeoptimizeReason deopt_reason) {
- DeoptimizeBranch(instr, deopt_reason, reg_bit_set, rt, bit);
-}
-
-void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr,
- DeoptimizeReason deopt_reason) {
- DeoptimizeBranch(instr, deopt_reason, reg_bit_clear, rt, bit);
-}
-
-
-void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
- if (info()->ShouldEnsureSpaceForLazyDeopt()) {
- // Ensure that we have enough space after the previous lazy-bailout
- // instruction for patching the code here.
- intptr_t current_pc = masm()->pc_offset();
-
- if (current_pc < (last_lazy_deopt_pc_ + space_needed)) {
- ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
- DCHECK((padding_size % kInstructionSize) == 0);
- InstructionAccurateScope instruction_accurate(
- masm(), padding_size / kInstructionSize);
-
- while (padding_size > 0) {
- __ nop();
- padding_size -= kInstructionSize;
- }
- }
- }
- last_lazy_deopt_pc_ = masm()->pc_offset();
-}
-
-
-Register LCodeGen::ToRegister(LOperand* op) const {
- // TODO(all): support zero register results, as ToRegister32.
- DCHECK((op != NULL) && op->IsRegister());
- return Register::from_code(op->index());
-}
-
-
-Register LCodeGen::ToRegister32(LOperand* op) const {
- DCHECK(op != NULL);
- if (op->IsConstantOperand()) {
- // If this is a constant operand, the result must be the zero register.
- DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0);
- return wzr;
- } else {
- return ToRegister(op).W();
- }
-}
-
-
-Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
- HConstant* constant = chunk_->LookupConstant(op);
- return Smi::FromInt(constant->Integer32Value());
-}
-
-
-DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
- DCHECK((op != NULL) && op->IsDoubleRegister());
- return DoubleRegister::from_code(op->index());
-}
-
-
-Operand LCodeGen::ToOperand(LOperand* op) {
- DCHECK(op != NULL);
- if (op->IsConstantOperand()) {
- LConstantOperand* const_op = LConstantOperand::cast(op);
- HConstant* constant = chunk()->LookupConstant(const_op);
- Representation r = chunk_->LookupLiteralRepresentation(const_op);
- if (r.IsSmi()) {
- DCHECK(constant->HasSmiValue());
- return Operand(Smi::FromInt(constant->Integer32Value()));
- } else if (r.IsInteger32()) {
- DCHECK(constant->HasInteger32Value());
- return Operand(constant->Integer32Value());
- } else if (r.IsDouble()) {
- Abort(kToOperandUnsupportedDoubleImmediate);
- }
- DCHECK(r.IsTagged());
- return Operand(constant->handle(isolate()));
- } else if (op->IsRegister()) {
- return Operand(ToRegister(op));
- } else if (op->IsDoubleRegister()) {
- Abort(kToOperandIsDoubleRegisterUnimplemented);
- return Operand(0);
- }
- // Stack slots not implemented, use ToMemOperand instead.
- UNREACHABLE();
- return Operand(0);
-}
-
-
-Operand LCodeGen::ToOperand32(LOperand* op) {
- DCHECK(op != NULL);
- if (op->IsRegister()) {
- return Operand(ToRegister32(op));
- } else if (op->IsConstantOperand()) {
- LConstantOperand* const_op = LConstantOperand::cast(op);
- HConstant* constant = chunk()->LookupConstant(const_op);
- Representation r = chunk_->LookupLiteralRepresentation(const_op);
- if (r.IsInteger32()) {
- return Operand(constant->Integer32Value());
- } else {
- // Other constants not implemented.
- Abort(kToOperand32UnsupportedImmediate);
- }
- }
- // Other cases are not implemented.
- UNREACHABLE();
- return Operand(0);
-}
-
-
-static int64_t ArgumentsOffsetWithoutFrame(int index) {
- DCHECK(index < 0);
- return -(index + 1) * kPointerSize;
-}
-
-
-MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const {
- DCHECK(op != NULL);
- DCHECK(!op->IsRegister());
- DCHECK(!op->IsDoubleRegister());
- DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
- if (NeedsEagerFrame()) {
- int fp_offset = FrameSlotToFPOffset(op->index());
- // Loads and stores have a bigger reach in positive offset than negative.
- // We try to access using jssp (positive offset) first, then fall back to
- // fp (negative offset) if that fails.
- //
- // We can reference a stack slot from jssp only if we know how much we've
- // put on the stack. We don't know this in the following cases:
- // - stack_mode != kCanUseStackPointer: this is the case when deferred
- // code has saved the registers.
- // - saves_caller_doubles(): some double registers have been pushed, jssp
- // references the end of the double registers and not the end of the stack
- // slots.
- // In both of the cases above, we _could_ add the tracking information
- // required so that we can use jssp here, but in practice it isn't worth it.
- if ((stack_mode == kCanUseStackPointer) &&
- !info()->saves_caller_doubles()) {
- int jssp_offset_to_fp =
- (pushed_arguments_ + GetTotalFrameSlotCount()) * kPointerSize -
- StandardFrameConstants::kFixedFrameSizeAboveFp;
- int jssp_offset = fp_offset + jssp_offset_to_fp;
- if (masm()->IsImmLSScaled(jssp_offset, LSDoubleWord)) {
- return MemOperand(masm()->StackPointer(), jssp_offset);
- }
- }
- return MemOperand(fp, fp_offset);
- } else {
- // Retrieve parameter without eager stack-frame relative to the
- // stack-pointer.
- return MemOperand(masm()->StackPointer(),
- ArgumentsOffsetWithoutFrame(op->index()));
- }
-}
-
-
-Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
- HConstant* constant = chunk_->LookupConstant(op);
- DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
- return constant->handle(isolate());
-}
-
-
-template <class LI>
-Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) {
- if (shift_info->shift() == NO_SHIFT) {
- return ToOperand32(right);
- } else {
- return Operand(
- ToRegister32(right),
- shift_info->shift(),
- JSShiftAmountFromLConstant(shift_info->shift_amount()));
- }
-}
-
-
-bool LCodeGen::IsSmi(LConstantOperand* op) const {
- return chunk_->LookupLiteralRepresentation(op).IsSmi();
-}
-
-
-bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
- return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
-}
-
-
-int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
- HConstant* constant = chunk_->LookupConstant(op);
- return constant->Integer32Value();
-}
-
-
-double LCodeGen::ToDouble(LConstantOperand* op) const {
- HConstant* constant = chunk_->LookupConstant(op);
- DCHECK(constant->HasDoubleValue());
- return constant->DoubleValue();
-}
-
-
-Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
- Condition cond = nv;
- switch (op) {
- case Token::EQ:
- case Token::EQ_STRICT:
- cond = eq;
- break;
- case Token::NE:
- case Token::NE_STRICT:
- cond = ne;
- break;
- case Token::LT:
- cond = is_unsigned ? lo : lt;
- break;
- case Token::GT:
- cond = is_unsigned ? hi : gt;
- break;
- case Token::LTE:
- cond = is_unsigned ? ls : le;
- break;
- case Token::GTE:
- cond = is_unsigned ? hs : ge;
- break;
- case Token::IN:
- case Token::INSTANCEOF:
- default:
- UNREACHABLE();
- }
- return cond;
-}
-
-
-template<class InstrType>
-void LCodeGen::EmitBranchGeneric(InstrType instr,
- const BranchGenerator& branch) {
- int left_block = instr->TrueDestination(chunk_);
- int right_block = instr->FalseDestination(chunk_);
-
- int next_block = GetNextEmittedBlock();
-
- if (right_block == left_block) {
- EmitGoto(left_block);
- } else if (left_block == next_block) {
- branch.EmitInverted(chunk_->GetAssemblyLabel(right_block));
- } else {
- branch.Emit(chunk_->GetAssemblyLabel(left_block));
- if (right_block != next_block) {
- __ B(chunk_->GetAssemblyLabel(right_block));
- }
- }
-}
-
-
-template<class InstrType>
-void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
- DCHECK((condition != al) && (condition != nv));
- BranchOnCondition branch(this, condition);
- EmitBranchGeneric(instr, branch);
-}
-
-
-template<class InstrType>
-void LCodeGen::EmitCompareAndBranch(InstrType instr,
- Condition condition,
- const Register& lhs,
- const Operand& rhs) {
- DCHECK((condition != al) && (condition != nv));
- CompareAndBranch branch(this, condition, lhs, rhs);
- EmitBranchGeneric(instr, branch);
-}
-
-
-template<class InstrType>
-void LCodeGen::EmitTestAndBranch(InstrType instr,
- Condition condition,
- const Register& value,
- uint64_t mask) {
- DCHECK((condition != al) && (condition != nv));
- TestAndBranch branch(this, condition, value, mask);
- EmitBranchGeneric(instr, branch);
-}
-
-
-template<class InstrType>
-void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr,
- const FPRegister& value,
- const FPRegister& scratch) {
- BranchIfNonZeroNumber branch(this, value, scratch);
- EmitBranchGeneric(instr, branch);
-}
-
-
-template<class InstrType>
-void LCodeGen::EmitBranchIfHeapNumber(InstrType instr,
- const Register& value) {
- BranchIfHeapNumber branch(this, value);
- EmitBranchGeneric(instr, branch);
-}
-
-
-template<class InstrType>
-void LCodeGen::EmitBranchIfRoot(InstrType instr,
- const Register& value,
- Heap::RootListIndex index) {
- BranchIfRoot branch(this, value, index);
- EmitBranchGeneric(instr, branch);
-}
-
-
-void LCodeGen::DoGap(LGap* gap) {
- for (int i = LGap::FIRST_INNER_POSITION;
- i <= LGap::LAST_INNER_POSITION;
- i++) {
- LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
- LParallelMove* move = gap->GetParallelMove(inner_pos);
- if (move != NULL) {
- resolver_.Resolve(move);
- }
- }
-}
-
-
-void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
- Register arguments = ToRegister(instr->arguments());
- Register result = ToRegister(instr->result());
-
- // The pointer to the arguments array come from DoArgumentsElements.
- // It does not point directly to the arguments and there is an offest of
- // two words that we must take into account when accessing an argument.
- // Subtracting the index from length accounts for one, so we add one more.
-
- if (instr->length()->IsConstantOperand() &&
- instr->index()->IsConstantOperand()) {
- int index = ToInteger32(LConstantOperand::cast(instr->index()));
- int length = ToInteger32(LConstantOperand::cast(instr->length()));
- int offset = ((length - index) + 1) * kPointerSize;
- __ Ldr(result, MemOperand(arguments, offset));
- } else if (instr->index()->IsConstantOperand()) {
- Register length = ToRegister32(instr->length());
- int index = ToInteger32(LConstantOperand::cast(instr->index()));
- int loc = index - 1;
- if (loc != 0) {
- __ Sub(result.W(), length, loc);
- __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
- } else {
- __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2));
- }
- } else {
- Register length = ToRegister32(instr->length());
- Operand index = ToOperand32(instr->index());
- __ Sub(result.W(), length, index);
- __ Add(result.W(), result.W(), 1);
- __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
- }
-}
-
-
-void LCodeGen::DoAddE(LAddE* instr) {
- Register result = ToRegister(instr->result());
- Register left = ToRegister(instr->left());
- Operand right = Operand(x0); // Dummy initialization.
- if (instr->hydrogen()->external_add_type() == AddOfExternalAndTagged) {
- right = Operand(ToRegister(instr->right()));
- } else if (instr->right()->IsConstantOperand()) {
- right = ToInteger32(LConstantOperand::cast(instr->right()));
- } else {
- right = Operand(ToRegister32(instr->right()), SXTW);
- }
-
- DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
- __ Add(result, left, right);
-}
-
-
-void LCodeGen::DoAddI(LAddI* instr) {
- bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
- Register result = ToRegister32(instr->result());
- Register left = ToRegister32(instr->left());
- Operand right = ToShiftedRightOperand32(instr->right(), instr);
-
- if (can_overflow) {
- __ Adds(result, left, right);
- DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
- } else {
- __ Add(result, left, right);
- }
-}
-
-
-void LCodeGen::DoAddS(LAddS* instr) {
- bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
- Register result = ToRegister(instr->result());
- Register left = ToRegister(instr->left());
- Operand right = ToOperand(instr->right());
- if (can_overflow) {
- __ Adds(result, left, right);
- DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
- } else {
- __ Add(result, left, right);
- }
-}
-
-
-void LCodeGen::DoAllocate(LAllocate* instr) {
- class DeferredAllocate: public LDeferredCode {
- public:
- DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
- : LDeferredCode(codegen), instr_(instr) { }
- virtual void Generate() { codegen()->DoDeferredAllocate(instr_); }
- virtual LInstruction* instr() { return instr_; }
- private:
- LAllocate* instr_;
- };
-
- DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
-
- Register result = ToRegister(instr->result());
- Register temp1 = ToRegister(instr->temp1());
- Register temp2 = ToRegister(instr->temp2());
-
- // Allocate memory for the object.
- AllocationFlags flags = NO_ALLOCATION_FLAGS;
- if (instr->hydrogen()->MustAllocateDoubleAligned()) {
- flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
- }
-
- if (instr->hydrogen()->IsOldSpaceAllocation()) {
- DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
- flags = static_cast<AllocationFlags>(flags | PRETENURE);
- }
-
- if (instr->hydrogen()->IsAllocationFoldingDominator()) {
- flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
- }
- DCHECK(!instr->hydrogen()->IsAllocationFolded());
-
- if (instr->size()->IsConstantOperand()) {
- int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
- CHECK(size <= kMaxRegularHeapObjectSize);
- __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
- } else {
- Register size = ToRegister32(instr->size());
- __ Sxtw(size.X(), size);
- __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags);
- }
-
- __ Bind(deferred->exit());
-
- if (instr->hydrogen()->MustPrefillWithFiller()) {
- Register start = temp1;
- Register end = temp2;
- Register filler = ToRegister(instr->temp3());
-
- __ Sub(start, result, kHeapObjectTag);
-
- if (instr->size()->IsConstantOperand()) {
- int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
- __ Add(end, start, size);
- } else {
- __ Add(end, start, ToRegister(instr->size()));
- }
- __ LoadRoot(filler, Heap::kOnePointerFillerMapRootIndex);
- __ InitializeFieldsWithFiller(start, end, filler);
- } else {
- DCHECK(instr->temp3() == NULL);
- }
-}
-
-
-void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
- // TODO(3095996): Get rid of this. For now, we need to make the
- // result register contain a valid pointer because it is already
- // contained in the register pointer map.
- __ Mov(ToRegister(instr->result()), Smi::kZero);
-
- PushSafepointRegistersScope scope(this);
- LoadContextFromDeferred(instr->context());
- // We're in a SafepointRegistersScope so we can use any scratch registers.
- Register size = x0;
- if (instr->size()->IsConstantOperand()) {
- __ Mov(size, ToSmi(LConstantOperand::cast(instr->size())));
- } else {
- __ SmiTag(size, ToRegister32(instr->size()).X());
- }
- int flags = AllocateDoubleAlignFlag::encode(
- instr->hydrogen()->MustAllocateDoubleAligned());
- if (instr->hydrogen()->IsOldSpaceAllocation()) {
- DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
- flags = AllocateTargetSpace::update(flags, OLD_SPACE);
- } else {
- flags = AllocateTargetSpace::update(flags, NEW_SPACE);
- }
- __ Mov(x10, Smi::FromInt(flags));
- __ Push(size, x10);
-
- CallRuntimeFromDeferred(Runtime::kAllocateInTargetSpace, 2, instr, nullptr);
- __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result()));
-
- if (instr->hydrogen()->IsAllocationFoldingDominator()) {
- AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
- if (instr->hydrogen()->IsOldSpaceAllocation()) {
- DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
- allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
- }
- // If the allocation folding dominator allocate triggered a GC, allocation
- // happend in the runtime. We have to reset the top pointer to virtually
- // undo the allocation.
- ExternalReference allocation_top =
- AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
- Register top_address = x10;
- __ Sub(x0, x0, Operand(kHeapObjectTag));
- __ Mov(top_address, Operand(allocation_top));
- __ Str(x0, MemOperand(top_address));
- __ Add(x0, x0, Operand(kHeapObjectTag));
- }
-}
-
-void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
- DCHECK(instr->hydrogen()->IsAllocationFolded());
- DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
- Register result = ToRegister(instr->result());
- Register scratch1 = ToRegister(instr->temp1());
- Register scratch2 = ToRegister(instr->temp2());
-
- AllocationFlags flags = ALLOCATION_FOLDED;
- if (instr->hydrogen()->MustAllocateDoubleAligned()) {
- flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
- }
- if (instr->hydrogen()->IsOldSpaceAllocation()) {
- DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
- flags = static_cast<AllocationFlags>(flags | PRETENURE);
- }
- if (instr->size()->IsConstantOperand()) {
- int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
- CHECK(size <= kMaxRegularHeapObjectSize);
- __ FastAllocate(size, result, scratch1, scratch2, flags);
- } else {
- Register size = ToRegister(instr->size());
- __ FastAllocate(size, result, scratch1, scratch2, flags);
- }
-}
-
-
-void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
- Register receiver = ToRegister(instr->receiver());
- Register function = ToRegister(instr->function());
- Register length = ToRegister32(instr->length());
-
- Register elements = ToRegister(instr->elements());
- Register scratch = x5;
- DCHECK(receiver.Is(x0)); // Used for parameter count.
- DCHECK(function.Is(x1)); // Required by InvokeFunction.
- DCHECK(ToRegister(instr->result()).Is(x0));
- DCHECK(instr->IsMarkedAsCall());
-
- // Copy the arguments to this function possibly from the
- // adaptor frame below it.
- const uint32_t kArgumentsLimit = 1 * KB;
- __ Cmp(length, kArgumentsLimit);
- DeoptimizeIf(hi, instr, DeoptimizeReason::kTooManyArguments);
-
- // Push the receiver and use the register to keep the original
- // number of arguments.
- __ Push(receiver);
- Register argc = receiver;
- receiver = NoReg;
- __ Sxtw(argc, length);
- // The arguments are at a one pointer size offset from elements.
- __ Add(elements, elements, 1 * kPointerSize);
-
- // Loop through the arguments pushing them onto the execution
- // stack.
- Label invoke, loop;
- // length is a small non-negative integer, due to the test above.
- __ Cbz(length, &invoke);
- __ Bind(&loop);
- __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2));
- __ Push(scratch);
- __ Subs(length, length, 1);
- __ B(ne, &loop);
-
- __ Bind(&invoke);
-
- InvokeFlag flag = CALL_FUNCTION;
- if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
- DCHECK(!info()->saves_caller_doubles());
- // TODO(ishell): drop current frame before pushing arguments to the stack.
- flag = JUMP_FUNCTION;
- ParameterCount actual(x0);
- // It is safe to use x3, x4 and x5 as scratch registers here given that
- // 1) we are not going to return to caller function anyway,
- // 2) x3 (new.target) will be initialized below.
- PrepareForTailCall(actual, x3, x4, x5);
- }
-
- DCHECK(instr->HasPointerMap());
- LPointerMap* pointers = instr->pointer_map();
- SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
- // The number of arguments is stored in argc (receiver) which is x0, as
- // expected by InvokeFunction.
- ParameterCount actual(argc);
- __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
-}
-
-
-void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
- Register result = ToRegister(instr->result());
-
- if (instr->hydrogen()->from_inlined()) {
- // When we are inside an inlined function, the arguments are the last things
- // that have been pushed on the stack. Therefore the arguments array can be
- // accessed directly from jssp.
- // However in the normal case, it is accessed via fp but there are two words
- // on the stack between fp and the arguments (the saved lr and fp) and the
- // LAccessArgumentsAt implementation take that into account.
- // In the inlined case we need to subtract the size of 2 words to jssp to
- // get a pointer which will work well with LAccessArgumentsAt.
- DCHECK(masm()->StackPointer().Is(jssp));
- __ Sub(result, jssp, 2 * kPointerSize);
- } else if (instr->hydrogen()->arguments_adaptor()) {
- DCHECK(instr->temp() != NULL);
- Register previous_fp = ToRegister(instr->temp());
-
- __ Ldr(previous_fp,
- MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
- __ Ldr(result, MemOperand(previous_fp,
- CommonFrameConstants::kContextOrFrameTypeOffset));
- __ Cmp(result, StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR));
- __ Csel(result, fp, previous_fp, ne);
- } else {
- __ Mov(result, fp);
- }
-}
-
-
-void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
- Register elements = ToRegister(instr->elements());
- Register result = ToRegister32(instr->result());
- Label done;
-
- // If no arguments adaptor frame the number of arguments is fixed.
- __ Cmp(fp, elements);
- __ Mov(result, scope()->num_parameters());
- __ B(eq, &done);
-
- // Arguments adaptor frame present. Get argument length from there.
- __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
- __ Ldr(result,
- UntagSmiMemOperand(result.X(),
- ArgumentsAdaptorFrameConstants::kLengthOffset));
-
- // Argument length is in result register.
- __ Bind(&done);
-}
-
-
-void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
- DoubleRegister left = ToDoubleRegister(instr->left());
- DoubleRegister right = ToDoubleRegister(instr->right());
- DoubleRegister result = ToDoubleRegister(instr->result());
-
- switch (instr->op()) {
- case Token::ADD: __ Fadd(result, left, right); break;
- case Token::SUB: __ Fsub(result, left, right); break;
- case Token::MUL: __ Fmul(result, left, right); break;
- case Token::DIV: __ Fdiv(result, left, right); break;
- case Token::MOD: {
- // The ECMA-262 remainder operator is the remainder from a truncating
- // (round-towards-zero) division. Note that this differs from IEEE-754.
- //
- // TODO(jbramley): See if it's possible to do this inline, rather than by
- // calling a helper function. With frintz (to produce the intermediate
- // quotient) and fmsub (to calculate the remainder without loss of
- // precision), it should be possible. However, we would need support for
- // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't
- // support that yet.
- DCHECK(left.Is(d0));
- DCHECK(right.Is(d1));
- __ CallCFunction(
- ExternalReference::mod_two_doubles_operation(isolate()),
- 0, 2);
- DCHECK(result.Is(d0));
- break;
- }
- default:
- UNREACHABLE();
- break;
- }
-}
-
-
-void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
- DCHECK(ToRegister(instr->context()).is(cp));
- DCHECK(ToRegister(instr->left()).is(x1));
- DCHECK(ToRegister(instr->right()).is(x0));
- DCHECK(ToRegister(instr->result()).is(x0));
-
- Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
- CallCode(code, RelocInfo::CODE_TARGET, instr);
-}
-
-
-void LCodeGen::DoBitI(LBitI* instr) {
- Register result = ToRegister32(instr->result());
- Register left = ToRegister32(instr->left());
- Operand right = ToShiftedRightOperand32(instr->right(), instr);
-
- switch (instr->op()) {
- case Token::BIT_AND: __ And(result, left, right); break;
- case Token::BIT_OR: __ Orr(result, left, right); break;
- case Token::BIT_XOR: __ Eor(result, left, right); break;
- default:
- UNREACHABLE();
- break;
- }
-}
-
-
-void LCodeGen::DoBitS(LBitS* instr) {
- Register result = ToRegister(instr->result());
- Register left = ToRegister(instr->left());
- Operand right = ToOperand(instr->right());
-
- switch (instr->op()) {
- case Token::BIT_AND: __ And(result, left, right); break;
- case Token::BIT_OR: __ Orr(result, left, right); break;
- case Token::BIT_XOR: __ Eor(result, left, right); break;
- default:
- UNREACHABLE();
- break;
- }
-}
-
-
-void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) {
- Condition cond = instr->hydrogen()->allow_equality() ? hi : hs;
- DCHECK(instr->hydrogen()->index()->representation().IsInteger32());
- DCHECK(instr->hydrogen()->length()->representation().IsInteger32());
- if (instr->index()->IsConstantOperand()) {
- Operand index = ToOperand32(instr->index());
- Register length = ToRegister32(instr->length());
- __ Cmp(length, index);
- cond = CommuteCondition(cond);
- } else {
- Register index = ToRegister32(instr->index());
- Operand length = ToOperand32(instr->length());
- __ Cmp(index, length);
- }
- if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
- __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed);
- } else {
- DeoptimizeIf(cond, instr, DeoptimizeReason::kOutOfBounds);
- }
-}
-
-
-void LCodeGen::DoBranch(LBranch* instr) {
- Representation r = instr->hydrogen()->value()->representation();
- Label* true_label = instr->TrueLabel(chunk_);
- Label* false_label = instr->FalseLabel(chunk_);
-
- if (r.IsInteger32()) {
- DCHECK(!info()->IsStub());
- EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0);
- } else if (r.IsSmi()) {
- DCHECK(!info()->IsStub());
- STATIC_ASSERT(kSmiTag == 0);
- EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0);
- } else if (r.IsDouble()) {
- DoubleRegister value = ToDoubleRegister(instr->value());
- // Test the double value. Zero and NaN are false.
- EmitBranchIfNonZeroNumber(instr, value, double_scratch());
- } else {
- DCHECK(r.IsTagged());
- Register value = ToRegister(instr->value());
- HType type = instr->hydrogen()->value()->type();
-
- if (type.IsBoolean()) {
- DCHECK(!info()->IsStub());
- __ CompareRoot(value, Heap::kTrueValueRootIndex);
- EmitBranch(instr, eq);
- } else if (type.IsSmi()) {
- DCHECK(!info()->IsStub());
- EmitCompareAndBranch(instr, ne, value, Smi::kZero);
- } else if (type.IsJSArray()) {
- DCHECK(!info()->IsStub());
- EmitGoto(instr->TrueDestination(chunk()));
- } else if (type.IsHeapNumber()) {
- DCHECK(!info()->IsStub());
- __ Ldr(double_scratch(), FieldMemOperand(value,
- HeapNumber::kValueOffset));
- // Test the double value. Zero and NaN are false.
- EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch());
- } else if (type.IsString()) {
- DCHECK(!info()->IsStub());
- Register temp = ToRegister(instr->temp1());
- __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset));
- EmitCompareAndBranch(instr, ne, temp, 0);
- } else {
- ToBooleanHints expected = instr->hydrogen()->expected_input_types();
- // Avoid deopts in the case where we've never executed this path before.
- if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny;
-
- if (expected & ToBooleanHint::kUndefined) {
- // undefined -> false.
- __ JumpIfRoot(
- value, Heap::kUndefinedValueRootIndex, false_label);
- }
-
- if (expected & ToBooleanHint::kBoolean) {
- // Boolean -> its value.
- __ JumpIfRoot(
- value, Heap::kTrueValueRootIndex, true_label);
- __ JumpIfRoot(
- value, Heap::kFalseValueRootIndex, false_label);
- }
-
- if (expected & ToBooleanHint::kNull) {
- // 'null' -> false.
- __ JumpIfRoot(
- value, Heap::kNullValueRootIndex, false_label);
- }
-
- if (expected & ToBooleanHint::kSmallInteger) {
- // Smis: 0 -> false, all other -> true.
- DCHECK(Smi::kZero == 0);
- __ Cbz(value, false_label);
- __ JumpIfSmi(value, true_label);
- } else if (expected & ToBooleanHint::kNeedsMap) {
- // If we need a map later and have a smi, deopt.
- DeoptimizeIfSmi(value, instr, DeoptimizeReason::kSmi);
- }
-
- Register map = NoReg;
- Register scratch = NoReg;
-
- if (expected & ToBooleanHint::kNeedsMap) {
- DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
- map = ToRegister(instr->temp1());
- scratch = ToRegister(instr->temp2());
-
- __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
-
- if (expected & ToBooleanHint::kCanBeUndetectable) {
- // Undetectable -> false.
- __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
- __ TestAndBranchIfAnySet(
- scratch, 1 << Map::kIsUndetectable, false_label);
- }
- }
-
- if (expected & ToBooleanHint::kReceiver) {
- // spec object -> true.
- __ CompareInstanceType(map, scratch, FIRST_JS_RECEIVER_TYPE);
- __ B(ge, true_label);
- }
-
- if (expected & ToBooleanHint::kString) {
- // String value -> false iff empty.
- Label not_string;
- __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE);
- __ B(ge, &not_string);
- __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset));
- __ Cbz(scratch, false_label);
- __ B(true_label);
- __ Bind(&not_string);
- }
-
- if (expected & ToBooleanHint::kSymbol) {
- // Symbol value -> true.
- __ CompareInstanceType(map, scratch, SYMBOL_TYPE);
- __ B(eq, true_label);
- }
-
- if (expected & ToBooleanHint::kHeapNumber) {
- Label not_heap_number;
- __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, &not_heap_number);
-
- __ Ldr(double_scratch(),
- FieldMemOperand(value, HeapNumber::kValueOffset));
- __ Fcmp(double_scratch(), 0.0);
- // If we got a NaN (overflow bit is set), jump to the false branch.
- __ B(vs, false_label);
- __ B(eq, false_label);
- __ B(true_label);
- __ Bind(&not_heap_number);
- }
-
- if (expected != ToBooleanHint::kAny) {
- // We've seen something for the first time -> deopt.
- // This can only happen if we are not generic already.
- Deoptimize(instr, DeoptimizeReason::kUnexpectedObject);
- }
- }
- }
-}
-
-void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
- int formal_parameter_count, int arity,
- bool is_tail_call, LInstruction* instr) {
- bool dont_adapt_arguments =
- formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
- bool can_invoke_directly =
- dont_adapt_arguments || formal_parameter_count == arity;
-
- // The function interface relies on the following register assignments.
- Register function_reg = x1;
- Register arity_reg = x0;
-
- LPointerMap* pointers = instr->pointer_map();
-
- if (FLAG_debug_code) {
- Label is_not_smi;
- // Try to confirm that function_reg (x1) is a tagged pointer.
- __ JumpIfNotSmi(function_reg, &is_not_smi);
- __ Abort(kExpectedFunctionObject);
- __ Bind(&is_not_smi);
- }
-
- if (can_invoke_directly) {
- // Change context.
- __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
-
- // Always initialize new target and number of actual arguments.
- __ LoadRoot(x3, Heap::kUndefinedValueRootIndex);
- __ Mov(arity_reg, arity);
-
- bool is_self_call = function.is_identical_to(info()->closure());
-
- // Invoke function.
- if (is_self_call) {
- Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
- if (is_tail_call) {
- __ Jump(self, RelocInfo::CODE_TARGET);
- } else {
- __ Call(self, RelocInfo::CODE_TARGET);
- }
- } else {
- __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
- if (is_tail_call) {
- __ Jump(x10);
- } else {
- __ Call(x10);
- }
- }
-
- if (!is_tail_call) {
- // Set up deoptimization.
- RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
- }
- } else {
- SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
- ParameterCount actual(arity);
- ParameterCount expected(formal_parameter_count);
- InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
- __ InvokeFunction(function_reg, expected, actual, flag, generator);
- }
-}
-
-void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
- DCHECK(instr->IsMarkedAsCall());
- DCHECK(ToRegister(instr->result()).Is(x0));
-
- if (instr->hydrogen()->IsTailCall()) {
- if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
-
- if (instr->target()->IsConstantOperand()) {
- LConstantOperand* target = LConstantOperand::cast(instr->target());
- Handle<Code> code = Handle<Code>::cast(ToHandle(target));
- // TODO(all): on ARM we use a call descriptor to specify a storage mode
- // but on ARM64 we only have one storage mode so it isn't necessary. Check
- // this understanding is correct.
- __ Jump(code, RelocInfo::CODE_TARGET);
- } else {
- DCHECK(instr->target()->IsRegister());
- Register target = ToRegister(instr->target());
- __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
- __ Br(target);
- }
- } else {
- LPointerMap* pointers = instr->pointer_map();
- SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
-
- if (instr->target()->IsConstantOperand()) {
- LConstantOperand* target = LConstantOperand::cast(instr->target());
- Handle<Code> code = Handle<Code>::cast(ToHandle(target));
- generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
- // TODO(all): on ARM we use a call descriptor to specify a storage mode
- // but on ARM64 we only have one storage mode so it isn't necessary. Check
- // this understanding is correct.
- __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None());
- } else {
- DCHECK(instr->target()->IsRegister());
- Register target = ToRegister(instr->target());
- generator.BeforeCall(__ CallSize(target));
- __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
- __ Call(target);
- }
- generator.AfterCall();
- }
-
- HCallWithDescriptor* hinstr = instr->hydrogen();
- RecordPushedArgumentsDelta(hinstr->argument_delta());
-
- // HCallWithDescriptor instruction is translated to zero or more
- // LPushArguments (they handle parameters passed on the stack) followed by
- // a LCallWithDescriptor. Each LPushArguments instruction generated records
- // the number of arguments pushed thus we need to offset them here.
- // The |argument_delta()| used above "knows" only about JS parameters while
- // we are dealing here with particular calling convention details.
- RecordPushedArgumentsDelta(-hinstr->descriptor().GetStackParameterCount());
-}
-
-
-void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
- CallRuntime(instr->function(), instr->arity(), instr);
- RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
-}
-
-
-void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
- GenerateOsrPrologue();
-}
-
-
-void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
- Register temp = ToRegister(instr->temp());
- Label deopt, done;
- // If the map is not deprecated the migration attempt does not make sense.
- __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
- __ Ldr(temp, FieldMemOperand(temp, Map::kBitField3Offset));
- __ Tst(temp, Operand(Map::Deprecated::kMask));
- __ B(eq, &deopt);
-
- {
- PushSafepointRegistersScope scope(this);
- __ Push(object);
- __ Mov(cp, 0);
- __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
- RecordSafepointWithRegisters(
- instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
- __ StoreToSafepointRegisterSlot(x0, temp);
- }
- __ Tst(temp, Operand(kSmiTagMask));
- __ B(ne, &done);
-
- __ bind(&deopt);
- Deoptimize(instr, DeoptimizeReason::kInstanceMigrationFailed);
-
- __ bind(&done);
-}
-
-
-void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
- class DeferredCheckMaps: public LDeferredCode {
- public:
- DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
- : LDeferredCode(codegen), instr_(instr), object_(object) {
- SetExit(check_maps());
- }
- virtual void Generate() {
- codegen()->DoDeferredInstanceMigration(instr_, object_);
- }
- Label* check_maps() { return &check_maps_; }
- virtual LInstruction* instr() { return instr_; }
- private:
- LCheckMaps* instr_;
- Label check_maps_;
- Register object_;
- };
-
- if (instr->hydrogen()->IsStabilityCheck()) {
- const UniqueSet<Map>* maps = instr->hydrogen()->maps();
- for (int i = 0; i < maps->size(); ++i) {
- AddStabilityDependency(maps->at(i).handle());
- }
- return;
- }
-
- Register object = ToRegister(instr->value());
- Register map_reg = ToRegister(instr->temp());
-
- __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
-
- DeferredCheckMaps* deferred = NULL;
- if (instr->hydrogen()->HasMigrationTarget()) {
- deferred = new(zone()) DeferredCheckMaps(this, instr, object);
- __ Bind(deferred->check_maps());
- }
-
- const UniqueSet<Map>* maps = instr->hydrogen()->maps();
- Label success;
- for (int i = 0; i < maps->size() - 1; i++) {
- Handle<Map> map = maps->at(i).handle();
- __ CompareMap(map_reg, map);
- __ B(eq, &success);
- }
- Handle<Map> map = maps->at(maps->size() - 1).handle();
- __ CompareMap(map_reg, map);
-
- // We didn't match a map.
- if (instr->hydrogen()->HasMigrationTarget()) {
- __ B(ne, deferred->entry());
- } else {
- DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap);
- }
-
- __ Bind(&success);
-}
-
-
-void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
- if (!instr->hydrogen()->value()->type().IsHeapObject()) {
- DeoptimizeIfSmi(ToRegister(instr->value()), instr, DeoptimizeReason::kSmi);
- }
-}
-
-
-void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
- Register value = ToRegister(instr->value());
- DCHECK(!instr->result() || ToRegister(instr->result()).Is(value));
- DeoptimizeIfNotSmi(value, instr, DeoptimizeReason::kNotASmi);
-}
-
-
-void LCodeGen::DoCheckArrayBufferNotNeutered(
- LCheckArrayBufferNotNeutered* instr) {
- UseScratchRegisterScope temps(masm());
- Register view = ToRegister(instr->view());
- Register scratch = temps.AcquireX();
-
- __ Ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
- __ Ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
- __ Tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
- DeoptimizeIf(ne, instr, DeoptimizeReason::kOutOfBounds);
-}
-
-
-void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
- Register input = ToRegister(instr->value());
- Register scratch = ToRegister(instr->temp());
-
- __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
- __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
-
- if (instr->hydrogen()->is_interval_check()) {
- InstanceType first, last;
- instr->hydrogen()->GetCheckInterval(&first, &last);
-
- __ Cmp(scratch, first);
- if (first == last) {
- // If there is only one type in the interval check for equality.
- DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType);
- } else if (last == LAST_TYPE) {
- // We don't need to compare with the higher bound of the interval.
- DeoptimizeIf(lo, instr, DeoptimizeReason::kWrongInstanceType);
- } else {
- // If we are below the lower bound, set the C flag and clear the Z flag
- // to force a deopt.
- __ Ccmp(scratch, last, CFlag, hs);
- DeoptimizeIf(hi, instr, DeoptimizeReason::kWrongInstanceType);
- }
- } else {
- uint8_t mask;
- uint8_t tag;
- instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
-
- if (base::bits::IsPowerOfTwo32(mask)) {
- DCHECK((tag == 0) || (tag == mask));
- if (tag == 0) {
- DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr,
- DeoptimizeReason::kWrongInstanceType);
- } else {
- DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr,
- DeoptimizeReason::kWrongInstanceType);
- }
- } else {
- if (tag == 0) {
- __ Tst(scratch, mask);
- } else {
- __ And(scratch, scratch, mask);
- __ Cmp(scratch, tag);
- }
- DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType);
- }
- }
-}
-
-
-void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
- DoubleRegister input = ToDoubleRegister(instr->unclamped());
- Register result = ToRegister32(instr->result());
- __ ClampDoubleToUint8(result, input, double_scratch());
-}
-
-
-void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
- Register input = ToRegister32(instr->unclamped());
- Register result = ToRegister32(instr->result());
- __ ClampInt32ToUint8(result, input);
-}
-
-
-void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
- Register input = ToRegister(instr->unclamped());
- Register result = ToRegister32(instr->result());
- Label done;
-
- // Both smi and heap number cases are handled.
- Label is_not_smi;
- __ JumpIfNotSmi(input, &is_not_smi);
- __ SmiUntag(result.X(), input);
- __ ClampInt32ToUint8(result);
- __ B(&done);
-
- __ Bind(&is_not_smi);
-
- // Check for heap number.
- Label is_heap_number;
- __ JumpIfHeapNumber(input, &is_heap_number);
-
- // Check for undefined. Undefined is coverted to zero for clamping conversion.
- DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
- DeoptimizeReason::kNotAHeapNumberUndefined);
- __ Mov(result, 0);
- __ B(&done);
-
- // Heap number case.
- __ Bind(&is_heap_number);
- DoubleRegister dbl_scratch = double_scratch();
- DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1());
- __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
- __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2);
-
- __ Bind(&done);
-}
-
-void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
- Handle<String> class_name = instr->hydrogen()->class_name();
- Label* true_label = instr->TrueLabel(chunk_);
- Label* false_label = instr->FalseLabel(chunk_);
- Register input = ToRegister(instr->value());
- Register scratch1 = ToRegister(instr->temp1());
- Register scratch2 = ToRegister(instr->temp2());
-
- __ JumpIfSmi(input, false_label);
-
- Register map = scratch2;
- __ CompareObjectType(input, map, scratch1, FIRST_FUNCTION_TYPE);
- STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
- if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
- __ B(hs, true_label);
- } else {
- __ B(hs, false_label);
- }
-
- // Check if the constructor in the map is a function.
- {
- UseScratchRegisterScope temps(masm());
- Register instance_type = temps.AcquireX();
- __ GetMapConstructor(scratch1, map, scratch2, instance_type);
- __ Cmp(instance_type, JS_FUNCTION_TYPE);
- }
- // Objects with a non-function constructor have class 'Object'.
- if (String::Equals(class_name, isolate()->factory()->Object_string())) {
- __ B(ne, true_label);
- } else {
- __ B(ne, false_label);
- }
-
- // The constructor function is in scratch1. Get its instance class name.
- __ Ldr(scratch1,
- FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
- __ Ldr(scratch1, FieldMemOperand(
- scratch1, SharedFunctionInfo::kInstanceClassNameOffset));
-
- // The class name we are testing against is internalized since it's a literal.
- // The name in the constructor is internalized because of the way the context
- // is booted. This routine isn't expected to work for random API-created
- // classes and it doesn't have to because you can't access it with natives
- // syntax. Since both sides are internalized it is sufficient to use an
- // identity comparison.
- EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name));
-}
-
-void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) {
- DCHECK(instr->hydrogen()->representation().IsDouble());
- FPRegister object = ToDoubleRegister(instr->object());
- Register temp = ToRegister(instr->temp());
-
- // If we don't have a NaN, we don't have the hole, so branch now to avoid the
- // (relatively expensive) hole-NaN check.
- __ Fcmp(object, object);
- __ B(vc, instr->FalseLabel(chunk_));
-
- // We have a NaN, but is it the hole?
- __ Fmov(temp, object);
- EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64);
-}
-
-
-void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) {
- DCHECK(instr->hydrogen()->representation().IsTagged());
- Register object = ToRegister(instr->object());
-
- EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex);
-}
-
-
-void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
- Register value = ToRegister(instr->value());
- Register map = ToRegister(instr->temp());
-
- __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
- EmitCompareAndBranch(instr, eq, map, Operand(instr->map()));
-}
-
-
-void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
- LOperand* left = instr->left();
- LOperand* right = instr->right();
- bool is_unsigned =
- instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
- instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
- Condition cond = TokenToCondition(instr->op(), is_unsigned);
-
- if (left->IsConstantOperand() && right->IsConstantOperand()) {
- // We can statically evaluate the comparison.
- double left_val = ToDouble(LConstantOperand::cast(left));
- double right_val = ToDouble(LConstantOperand::cast(right));
- int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
- ? instr->TrueDestination(chunk_)
- : instr->FalseDestination(chunk_);
- EmitGoto(next_block);
- } else {
- if (instr->is_double()) {
- __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right));
-
- // If a NaN is involved, i.e. the result is unordered (V set),
- // jump to false block label.
- __ B(vs, instr->FalseLabel(chunk_));
- EmitBranch(instr, cond);
- } else {
- if (instr->hydrogen_value()->representation().IsInteger32()) {
- if (right->IsConstantOperand()) {
- EmitCompareAndBranch(instr, cond, ToRegister32(left),
- ToOperand32(right));
- } else {
- // Commute the operands and the condition.
- EmitCompareAndBranch(instr, CommuteCondition(cond),
- ToRegister32(right), ToOperand32(left));
- }
- } else {
- DCHECK(instr->hydrogen_value()->representation().IsSmi());
- if (right->IsConstantOperand()) {
- int32_t value = ToInteger32(LConstantOperand::cast(right));
- EmitCompareAndBranch(instr,
- cond,
- ToRegister(left),
- Operand(Smi::FromInt(value)));
- } else if (left->IsConstantOperand()) {
- // Commute the operands and the condition.
- int32_t value = ToInteger32(LConstantOperand::cast(left));
- EmitCompareAndBranch(instr,
- CommuteCondition(cond),
- ToRegister(right),
- Operand(Smi::FromInt(value)));
- } else {
- EmitCompareAndBranch(instr,
- cond,
- ToRegister(left),
- ToRegister(right));
- }
- }
- }
- }
-}
-
-
-void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
- Register left = ToRegister(instr->left());
- Register right = ToRegister(instr->right());
- EmitCompareAndBranch(instr, eq, left, right);
-}
-
-
-void LCodeGen::DoCmpT(LCmpT* instr) {
- DCHECK(ToRegister(instr->context()).is(cp));
- Token::Value op = instr->op();
- Condition cond = TokenToCondition(op, false);
-
- DCHECK(ToRegister(instr->left()).Is(x1));
- DCHECK(ToRegister(instr->right()).Is(x0));
- Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
- CallCode(ic, RelocInfo::CODE_TARGET, instr);
- // Signal that we don't inline smi code before this stub.
- InlineSmiCheckInfo::EmitNotInlined(masm());
-
- // Return true or false depending on CompareIC result.
- // This instruction is marked as call. We can clobber any register.
- DCHECK(instr->IsMarkedAsCall());
- __ LoadTrueFalseRoots(x1, x2);
- __ Cmp(x0, 0);
- __ Csel(ToRegister(instr->result()), x1, x2, cond);
-}
-
-
-void LCodeGen::DoConstantD(LConstantD* instr) {
- DCHECK(instr->result()->IsDoubleRegister());
- DoubleRegister result = ToDoubleRegister(instr->result());
- if (instr->value() == 0) {
- if (copysign(1.0, instr->value()) == 1.0) {
- __ Fmov(result, fp_zero);
- } else {
- __ Fneg(result, fp_zero);
- }
- } else {
- __ Fmov(result, instr->value());
- }
-}
-
-
-void LCodeGen::DoConstantE(LConstantE* instr) {
- __ Mov(ToRegister(instr->result()), Operand(instr->value()));
-}
-
-
-void LCodeGen::DoConstantI(LConstantI* instr) {
- DCHECK(is_int32(instr->value()));
- // Cast the value here to ensure that the value isn't sign extended by the
- // implicit Operand constructor.
- __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value()));
-}
-
-
-void LCodeGen::DoConstantS(LConstantS* instr) {
- __ Mov(ToRegister(instr->result()), Operand(instr->value()));
-}
-
-
-void LCodeGen::DoConstantT(LConstantT* instr) {
- Handle<Object> object = instr->value(isolate());
- AllowDeferredHandleDereference smi_check;
- __ LoadObject(ToRegister(instr->result()), object);
-}
-
-
-void LCodeGen::DoContext(LContext* instr) {
- // If there is a non-return use, the context must be moved to a register.
- Register result = ToRegister(instr->result());
- if (info()->IsOptimizing()) {
- __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
- } else {
- // If there is no frame, the context must be in cp.
- DCHECK(result.is(cp));
- }
-}
-
-
-void LCodeGen::DoCheckValue(LCheckValue* instr) {
- Register reg = ToRegister(instr->value());
- Handle<HeapObject> object = instr->hydrogen()->object().handle();
- AllowDeferredHandleDereference smi_check;
- if (isolate()->heap()->InNewSpace(*object)) {
- UseScratchRegisterScope temps(masm());
- Register temp = temps.AcquireX();
- Handle<Cell> cell = isolate()->factory()->NewCell(object);
- __ Mov(temp, Operand(cell));
- __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset));
- __ Cmp(reg, temp);
- } else {
- __ Cmp(reg, Operand(object));
- }
- DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch);
-}
-
-
-void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
- last_lazy_deopt_pc_ = masm()->pc_offset();
- DCHECK(instr->HasEnvironment());
- LEnvironment* env = instr->environment();
- RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
- safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
-}
-
-
-void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
- Deoptimizer::BailoutType type = instr->hydrogen()->type();
- // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
- // needed return address), even though the implementation of LAZY and EAGER is
- // now identical. When LAZY is eventually completely folded into EAGER, remove
- // the special case below.
- if (info()->IsStub() && (type == Deoptimizer::EAGER)) {
- type = Deoptimizer::LAZY;
- }
-
- Deoptimize(instr, instr->hydrogen()->reason(), &type);
-}
-
-
-void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
- Register dividend = ToRegister32(instr->dividend());
- int32_t divisor = instr->divisor();
- Register result = ToRegister32(instr->result());
- DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
- DCHECK(!result.is(dividend));
-
- // Check for (0 / -x) that will produce negative zero.
- HDiv* hdiv = instr->hydrogen();
- if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
- DeoptimizeIfZero(dividend, instr, DeoptimizeReason::kDivisionByZero);
- }
- // Check for (kMinInt / -1).
- if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
- // Test dividend for kMinInt by subtracting one (cmp) and checking for
- // overflow.
- __ Cmp(dividend, 1);
- DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
- }
- // Deoptimize if remainder will not be 0.
- if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
- divisor != 1 && divisor != -1) {
- int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
- __ Tst(dividend, mask);
- DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision);
- }
-
- if (divisor == -1) { // Nice shortcut, not needed for correctness.
- __ Neg(result, dividend);
- return;
- }
- int32_t shift = WhichPowerOf2Abs(divisor);
- if (shift == 0) {
- __ Mov(result, dividend);
- } else if (shift == 1) {
- __ Add(result, dividend, Operand(dividend, LSR, 31));
- } else {
- __ Mov(result, Operand(dividend, ASR, 31));
- __ Add(result, dividend, Operand(result, LSR, 32 - shift));
- }
- if (shift > 0) __ Mov(result, Operand(result, ASR, shift));
- if (divisor < 0) __ Neg(result, result);
-}
-
-
-void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
- Register dividend = ToRegister32(instr->dividend());
- int32_t divisor = instr->divisor();
- Register result = ToRegister32(instr->result());
- DCHECK(!AreAliased(dividend, result));
-
- if (divisor == 0) {
- Deoptimize(instr, DeoptimizeReason::kDivisionByZero);
- return;
- }
-
- // Check for (0 / -x) that will produce negative zero.
- HDiv* hdiv = instr->hydrogen();
- if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
- DeoptimizeIfZero(dividend, instr, DeoptimizeReason::kMinusZero);
- }
-
- __ TruncatingDiv(result, dividend, Abs(divisor));
- if (divisor < 0) __ Neg(result, result);
-
- if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
- Register temp = ToRegister32(instr->temp());
- DCHECK(!AreAliased(dividend, result, temp));
- __ Sxtw(dividend.X(), dividend);
- __ Mov(temp, divisor);
- __ Smsubl(temp.X(), result, temp, dividend.X());
- DeoptimizeIfNotZero(temp, instr, DeoptimizeReason::kLostPrecision);
- }
-}
-
-
-// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
-void LCodeGen::DoDivI(LDivI* instr) {
- HBinaryOperation* hdiv = instr->hydrogen();
- Register dividend = ToRegister32(instr->dividend());
- Register divisor = ToRegister32(instr->divisor());
- Register result = ToRegister32(instr->result());
-
- // Issue the division first, and then check for any deopt cases whilst the
- // result is computed.
- __ Sdiv(result, dividend, divisor);
-
- if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
- DCHECK(!instr->temp());
- return;
- }
-
- // Check for x / 0.
- if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
- DeoptimizeIfZero(divisor, instr, DeoptimizeReason::kDivisionByZero);
- }
-
- // Check for (0 / -x) as that will produce negative zero.
- if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ Cmp(divisor, 0);
-
- // If the divisor < 0 (mi), compare the dividend, and deopt if it is
- // zero, ie. zero dividend with negative divisor deopts.
- // If the divisor >= 0 (pl, the opposite of mi) set the flags to
- // condition ne, so we don't deopt, ie. positive divisor doesn't deopt.
- __ Ccmp(dividend, 0, NoFlag, mi);
- DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
- }
-
- // Check for (kMinInt / -1).
- if (hdiv->CheckFlag(HValue::kCanOverflow)) {
- // Test dividend for kMinInt by subtracting one (cmp) and checking for
- // overflow.
- __ Cmp(dividend, 1);
- // If overflow is set, ie. dividend = kMinInt, compare the divisor with
- // -1. If overflow is clear, set the flags for condition ne, as the
- // dividend isn't -1, and thus we shouldn't deopt.
- __ Ccmp(divisor, -1, NoFlag, vs);
- DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
- }
-
- // Compute remainder and deopt if it's not zero.
- Register remainder = ToRegister32(instr->temp());
- __ Msub(remainder, result, divisor, dividend);
- DeoptimizeIfNotZero(remainder, instr, DeoptimizeReason::kLostPrecision);
-}
-
-
-void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) {
- DoubleRegister input = ToDoubleRegister(instr->value());
- Register result = ToRegister32(instr->result());
-
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIfMinusZero(input, instr, DeoptimizeReason::kMinusZero);
- }
-
- __ TryRepresentDoubleAsInt32(result, input, double_scratch());
- DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
-
- if (instr->tag_result()) {
- __ SmiTag(result.X());
- }
-}
-
-
-void LCodeGen::DoDrop(LDrop* instr) {
- __ Drop(instr->count());
-
- RecordPushedArgumentsDelta(instr->hydrogen_value()->argument_delta());
-}
-
-
-void LCodeGen::DoDummy(LDummy* instr) {
- // Nothing to see here, move on!
-}
-
-
-void LCodeGen::DoDummyUse(LDummyUse* instr) {
- // Nothing to see here, move on!
-}
-
-
-void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
- Register map = ToRegister(instr->map());
- Register result = ToRegister(instr->result());
- Label load_cache, done;
-
- __ EnumLengthUntagged(result, map);
- __ Cbnz(result, &load_cache);
-
- __ Mov(result, Operand(isolate()->factory()->empty_fixed_array()));
- __ B(&done);
-
- __ Bind(&load_cache);
- __ LoadInstanceDescriptors(map, result);
- __ Ldr(result,
- FieldMemOperand(result, DescriptorArray::kEnumCacheBridgeOffset));
- __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
- DeoptimizeIfZero(result, instr, DeoptimizeReason::kNoCache);
-
- __ Bind(&done);
-}
-
-
-void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
- Register object = ToRegister(instr->object());
-
- DCHECK(instr->IsMarkedAsCall());
- DCHECK(object.Is(x0));
-
- Label use_cache, call_runtime;
- __ CheckEnumCache(object, x5, x1, x2, x3, x4, &call_runtime);
-
- __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
- __ B(&use_cache);
-
- // Get the set of properties to enumerate.
- __ Bind(&call_runtime);
- __ Push(object);
- CallRuntime(Runtime::kForInEnumerate, instr);
- __ Bind(&use_cache);
-}
-
-void LCodeGen::EmitGoto(int block) {
- // Do not emit jump if we are emitting a goto to the next block.
- if (!IsNextEmittedBlock(block)) {
- __ B(chunk_->GetAssemblyLabel(LookupDestination(block)));
- }
-}
-
-void LCodeGen::DoGoto(LGoto* instr) {
- EmitGoto(instr->block_id());
-}
-
-// HHasInstanceTypeAndBranch instruction is built with an interval of type
-// to test but is only used in very restricted ways. The only possible kinds
-// of intervals are:
-// - [ FIRST_TYPE, instr->to() ]
-// - [ instr->form(), LAST_TYPE ]
-// - instr->from() == instr->to()
-//
-// These kinds of intervals can be check with only one compare instruction
-// providing the correct value and test condition are used.
-//
-// TestType() will return the value to use in the compare instruction and
-// BranchCondition() will return the condition to use depending on the kind
-// of interval actually specified in the instruction.
-static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
- InstanceType from = instr->from();
- InstanceType to = instr->to();
- if (from == FIRST_TYPE) return to;
- DCHECK((from == to) || (to == LAST_TYPE));
- return from;
-}
-
-
-// See comment above TestType function for what this function does.
-static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
- InstanceType from = instr->from();
- InstanceType to = instr->to();
- if (from == to) return eq;
- if (to == LAST_TYPE) return hs;
- if (from == FIRST_TYPE) return ls;
- UNREACHABLE();
- return eq;
-}
-
-
-void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
- Register input = ToRegister(instr->value());
- Register scratch = ToRegister(instr->temp());
-
- if (!instr->hydrogen()->value()->type().IsHeapObject()) {
- __ JumpIfSmi(input, instr->FalseLabel(chunk_));
- }
- __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
- EmitBranch(instr, BranchCondition(instr->hydrogen()));
-}
-
-
-void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
- Register result = ToRegister(instr->result());
- Register base = ToRegister(instr->base_object());
- if (instr->offset()->IsConstantOperand()) {
- __ Add(result, base, ToOperand32(instr->offset()));
- } else {
- __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW));
- }
-}
-
-
-void LCodeGen::DoHasInPrototypeChainAndBranch(
- LHasInPrototypeChainAndBranch* instr) {
- Register const object = ToRegister(instr->object());
- Register const object_map = ToRegister(instr->scratch1());
- Register const object_instance_type = ToRegister(instr->scratch2());
- Register const object_prototype = object_map;
- Register const prototype = ToRegister(instr->prototype());
-
- // The {object} must be a spec object. It's sufficient to know that {object}
- // is not a smi, since all other non-spec objects have {null} prototypes and
- // will be ruled out below.
- if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
- __ JumpIfSmi(object, instr->FalseLabel(chunk_));
- }
-
- // Loop through the {object}s prototype chain looking for the {prototype}.
- __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
- Label loop;
- __ Bind(&loop);
-
- // Deoptimize if the object needs to be access checked.
- __ Ldrb(object_instance_type,
- FieldMemOperand(object_map, Map::kBitFieldOffset));
- __ Tst(object_instance_type, Operand(1 << Map::kIsAccessCheckNeeded));
- DeoptimizeIf(ne, instr, DeoptimizeReason::kAccessCheck);
- // Deoptimize for proxies.
- __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
- DeoptimizeIf(eq, instr, DeoptimizeReason::kProxy);
-
- __ Ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
- __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
- __ B(eq, instr->FalseLabel(chunk_));
- __ Cmp(object_prototype, prototype);
- __ B(eq, instr->TrueLabel(chunk_));
- __ Ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset));
- __ B(&loop);
-}
-
-
-void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
- DoGap(instr);
-}
-
-
-void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
- Register value = ToRegister32(instr->value());
- DoubleRegister result = ToDoubleRegister(instr->result());
- __ Scvtf(result, value);
-}
-
-void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
- Register scratch1, Register scratch2,
- Register scratch3) {
-#if DEBUG
- if (actual.is_reg()) {
- DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
- } else {
- DCHECK(!AreAliased(scratch1, scratch2, scratch3));
- }
-#endif
- if (FLAG_code_comments) {
- if (actual.is_reg()) {
- Comment(";;; PrepareForTailCall, actual: %s {",
- RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
- actual.reg().code()));
- } else {
- Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
- }
- }
-
- // Check if next frame is an arguments adaptor frame.
- Register caller_args_count_reg = scratch1;
- Label no_arguments_adaptor, formal_parameter_count_loaded;
- __ Ldr(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
- __ Ldr(scratch3,
- MemOperand(scratch2, StandardFrameConstants::kContextOffset));
- __ Cmp(scratch3,
- Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
- __ B(ne, &no_arguments_adaptor);
-
- // Drop current frame and load arguments count from arguments adaptor frame.
- __ mov(fp, scratch2);
- __ Ldr(caller_args_count_reg,
- MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ SmiUntag(caller_args_count_reg);
- __ B(&formal_parameter_count_loaded);
-
- __ bind(&no_arguments_adaptor);
- // Load caller's formal parameter count
- __ Mov(caller_args_count_reg,
- Immediate(info()->literal()->parameter_count()));
-
- __ bind(&formal_parameter_count_loaded);
- __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3);
-
- Comment(";;; }");
-}
-
-void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
- HInvokeFunction* hinstr = instr->hydrogen();
- DCHECK(ToRegister(instr->context()).is(cp));
- // The function is required to be in x1.
- DCHECK(ToRegister(instr->function()).is(x1));
- DCHECK(instr->HasPointerMap());
-
- bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
-
- if (is_tail_call) {
- DCHECK(!info()->saves_caller_doubles());
- ParameterCount actual(instr->arity());
- // It is safe to use x3, x4 and x5 as scratch registers here given that
- // 1) we are not going to return to caller function anyway,
- // 2) x3 (new.target) will be initialized below.
- PrepareForTailCall(actual, x3, x4, x5);
- }
-
- Handle<JSFunction> known_function = hinstr->known_function();
- if (known_function.is_null()) {
- LPointerMap* pointers = instr->pointer_map();
- SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
- ParameterCount actual(instr->arity());
- InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
- __ InvokeFunction(x1, no_reg, actual, flag, generator);
- } else {
- CallKnownFunction(known_function, hinstr->formal_parameter_count(),
- instr->arity(), is_tail_call, instr);
- }
- RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
-}
-
-
-Condition LCodeGen::EmitIsString(Register input,
- Register temp1,
- Label* is_not_string,
- SmiCheck check_needed = INLINE_SMI_CHECK) {
- if (check_needed == INLINE_SMI_CHECK) {
- __ JumpIfSmi(input, is_not_string);
- }
- __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
-
- return lt;
-}
-
-
-void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
- Register val = ToRegister(instr->value());
- Register scratch = ToRegister(instr->temp());
-
- SmiCheck check_needed =
- instr->hydrogen()->value()->type().IsHeapObject()
- ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
- Condition true_cond =
- EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed);
-
- EmitBranch(instr, true_cond);
-}
-
-
-void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
- Register value = ToRegister(instr->value());
- STATIC_ASSERT(kSmiTag == 0);
- EmitTestAndBranch(instr, eq, value, kSmiTagMask);
-}
-
-
-void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
- Register input = ToRegister(instr->value());
- Register temp = ToRegister(instr->temp());
-
- if (!instr->hydrogen()->value()->type().IsHeapObject()) {
- __ JumpIfSmi(input, instr->FalseLabel(chunk_));
- }
- __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
- __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
-
- EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable);
-}
-
-
-static const char* LabelType(LLabel* label) {
- if (label->is_loop_header()) return " (loop header)";
- if (label->is_osr_entry()) return " (OSR entry)";
- return "";
-}
-
-
-void LCodeGen::DoLabel(LLabel* label) {
- Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
- current_instruction_,
- label->hydrogen_value()->id(),
- label->block_id(),
- LabelType(label));
-
- // Inherit pushed_arguments_ from the predecessor's argument count.
- if (label->block()->HasPredecessor()) {
- pushed_arguments_ = label->block()->predecessors()->at(0)->argument_count();
-#ifdef DEBUG
- for (auto p : *label->block()->predecessors()) {
- DCHECK_EQ(p->argument_count(), pushed_arguments_);
- }
-#endif
- }
-
- __ Bind(label->label());
- current_block_ = label->block_id();
- DoGap(label);
-}
-
-
-void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
- Register context = ToRegister(instr->context());
- Register result = ToRegister(instr->result());
- __ Ldr(result, ContextMemOperand(context, instr->slot_index()));
- if (instr->hydrogen()->RequiresHoleCheck()) {
- if (instr->hydrogen()->DeoptimizesOnHole()) {
- DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
- DeoptimizeReason::kHole);
- } else {
- Label not_the_hole;
- __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, &not_the_hole);
- __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
- __ Bind(&not_the_hole);
- }
- }
-}
-
-
-void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
- Register function = ToRegister(instr->function());
- Register result = ToRegister(instr->result());
- Register temp = ToRegister(instr->temp());
-
- // Get the prototype or initial map from the function.
- __ Ldr(result, FieldMemOperand(function,
- JSFunction::kPrototypeOrInitialMapOffset));
-
- // Check that the function has a prototype or an initial map.
- DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
- DeoptimizeReason::kHole);
-
- // If the function does not have an initial map, we're done.
- Label done;
- __ CompareObjectType(result, temp, temp, MAP_TYPE);
- __ B(ne, &done);
-
- // Get the prototype from the initial map.
- __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
-
- // All done.
- __ Bind(&done);
-}
-
-
-MemOperand LCodeGen::PrepareKeyedExternalArrayOperand(
- Register key,
- Register base,
- Register scratch,
- bool key_is_smi,
- bool key_is_constant,
- int constant_key,
- ElementsKind elements_kind,
- int base_offset) {
- int element_size_shift = ElementsKindToShiftSize(elements_kind);
-
- if (key_is_constant) {
- int key_offset = constant_key << element_size_shift;
- return MemOperand(base, key_offset + base_offset);
- }
-
- if (key_is_smi) {
- __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift));
- return MemOperand(scratch, base_offset);
- }
-
- if (base_offset == 0) {
- return MemOperand(base, key, SXTW, element_size_shift);
- }
-
- DCHECK(!AreAliased(scratch, key));
- __ Add(scratch, base, base_offset);
- return MemOperand(scratch, key, SXTW, element_size_shift);
-}
-
-
-void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) {
- Register ext_ptr = ToRegister(instr->elements());
- Register scratch;
- ElementsKind elements_kind = instr->elements_kind();
-
- bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
- bool key_is_constant = instr->key()->IsConstantOperand();
- Register key = no_reg;
- int constant_key = 0;
- if (key_is_constant) {
- DCHECK(instr->temp() == NULL);
- constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
- if (constant_key & 0xf0000000) {
- Abort(kArrayIndexConstantValueTooBig);
- }
- } else {
- scratch = ToRegister(instr->temp());
- key = ToRegister(instr->key());
- }
-
- MemOperand mem_op =
- PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
- key_is_constant, constant_key,
- elements_kind,
- instr->base_offset());
-
- if (elements_kind == FLOAT32_ELEMENTS) {
- DoubleRegister result = ToDoubleRegister(instr->result());
- __ Ldr(result.S(), mem_op);
- __ Fcvt(result, result.S());
- } else if (elements_kind == FLOAT64_ELEMENTS) {
- DoubleRegister result = ToDoubleRegister(instr->result());
- __ Ldr(result, mem_op);
- } else {
- Register result = ToRegister(instr->result());
-
- switch (elements_kind) {
- case INT8_ELEMENTS:
- __ Ldrsb(result, mem_op);
- break;
- case UINT8_ELEMENTS:
- case UINT8_CLAMPED_ELEMENTS:
- __ Ldrb(result, mem_op);
- break;
- case INT16_ELEMENTS:
- __ Ldrsh(result, mem_op);
- break;
- case UINT16_ELEMENTS:
- __ Ldrh(result, mem_op);
- break;
- case INT32_ELEMENTS:
- __ Ldrsw(result, mem_op);
- break;
- case UINT32_ELEMENTS:
- __ Ldr(result.W(), mem_op);
- if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
- // Deopt if value > 0x80000000.
- __ Tst(result, 0xFFFFFFFF80000000);
- DeoptimizeIf(ne, instr, DeoptimizeReason::kNegativeValue);
- }
- break;
- case FLOAT32_ELEMENTS:
- case FLOAT64_ELEMENTS:
- case FAST_HOLEY_DOUBLE_ELEMENTS:
- case FAST_HOLEY_ELEMENTS:
- case FAST_HOLEY_SMI_ELEMENTS:
- case FAST_DOUBLE_ELEMENTS:
- case FAST_ELEMENTS:
- case FAST_SMI_ELEMENTS:
- case DICTIONARY_ELEMENTS:
- case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
- case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
- case FAST_STRING_WRAPPER_ELEMENTS:
- case SLOW_STRING_WRAPPER_ELEMENTS:
- case NO_ELEMENTS:
- UNREACHABLE();
- break;
- }
- }
-}
-
-
-MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base,
- Register elements,
- Register key,
- bool key_is_tagged,
- ElementsKind elements_kind,
- Representation representation,
- int base_offset) {
- STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
- STATIC_ASSERT(kSmiTag == 0);
- int element_size_shift = ElementsKindToShiftSize(elements_kind);
-
- // Even though the HLoad/StoreKeyed instructions force the input
- // representation for the key to be an integer, the input gets replaced during
- // bounds check elimination with the index argument to the bounds check, which
- // can be tagged, so that case must be handled here, too.
- if (key_is_tagged) {
- __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift));
- if (representation.IsInteger32()) {
- DCHECK(elements_kind == FAST_SMI_ELEMENTS);
- // Read or write only the smi payload in the case of fast smi arrays.
- return UntagSmiMemOperand(base, base_offset);
- } else {
- return MemOperand(base, base_offset);
- }
- } else {
- // Sign extend key because it could be a 32-bit negative value or contain
- // garbage in the top 32-bits. The address computation happens in 64-bit.
- DCHECK((element_size_shift >= 0) && (element_size_shift <= 4));
- if (representation.IsInteger32()) {
- DCHECK(elements_kind == FAST_SMI_ELEMENTS);
- // Read or write only the smi payload in the case of fast smi arrays.
- __ Add(base, elements, Operand(key, SXTW, element_size_shift));
- return UntagSmiMemOperand(base, base_offset);
- } else {
- __ Add(base, elements, base_offset);
- return MemOperand(base, key, SXTW, element_size_shift);
- }
- }
-}
-
-
-void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) {
- Register elements = ToRegister(instr->elements());
- DoubleRegister result = ToDoubleRegister(instr->result());
- MemOperand mem_op;
-
- if (instr->key()->IsConstantOperand()) {
- DCHECK(instr->hydrogen()->RequiresHoleCheck() ||
- (instr->temp() == NULL));
-
- int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
- if (constant_key & 0xf0000000) {
- Abort(kArrayIndexConstantValueTooBig);
- }
- int offset = instr->base_offset() + constant_key * kDoubleSize;
- mem_op = MemOperand(elements, offset);
- } else {
- Register load_base = ToRegister(instr->temp());
- Register key = ToRegister(instr->key());
- bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
- mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
- instr->hydrogen()->elements_kind(),
- instr->hydrogen()->representation(),
- instr->base_offset());
- }
-
- __ Ldr(result, mem_op);
-
- if (instr->hydrogen()->RequiresHoleCheck()) {
- Register scratch = ToRegister(instr->temp());
- __ Fmov(scratch, result);
- __ Eor(scratch, scratch, kHoleNanInt64);
- DeoptimizeIfZero(scratch, instr, DeoptimizeReason::kHole);
- }
-}
-
-
-void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) {
- Register elements = ToRegister(instr->elements());
- Register result = ToRegister(instr->result());
- MemOperand mem_op;
-
- Representation representation = instr->hydrogen()->representation();
- if (instr->key()->IsConstantOperand()) {
- DCHECK(instr->temp() == NULL);
- LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
- int offset = instr->base_offset() +
- ToInteger32(const_operand) * kPointerSize;
- if (representation.IsInteger32()) {
- DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
- STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
- STATIC_ASSERT(kSmiTag == 0);
- mem_op = UntagSmiMemOperand(elements, offset);
- } else {
- mem_op = MemOperand(elements, offset);
- }
- } else {
- Register load_base = ToRegister(instr->temp());
- Register key = ToRegister(instr->key());
- bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
-
- mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
- instr->hydrogen()->elements_kind(),
- representation, instr->base_offset());
- }
-
- __ Load(result, mem_op, representation);
-
- if (instr->hydrogen()->RequiresHoleCheck()) {
- if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
- DeoptimizeIfNotSmi(result, instr, DeoptimizeReason::kNotASmi);
- } else {
- DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
- DeoptimizeReason::kHole);
- }
- } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
- DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
- Label done;
- __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
- __ B(ne, &done);
- if (info()->IsStub()) {
- // A stub can safely convert the hole to undefined only if the array
- // protector cell contains (Smi) Isolate::kProtectorValid. Otherwise
- // it needs to bail out.
- __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
- __ Ldr(result, FieldMemOperand(result, PropertyCell::kValueOffset));
- __ Cmp(result, Operand(Smi::FromInt(Isolate::kProtectorValid)));
- DeoptimizeIf(ne, instr, DeoptimizeReason::kHole);
- }
- __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
- __ Bind(&done);
- }
-}
-
-
-void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
- HObjectAccess access = instr->hydrogen()->access();
- int offset = access.offset();
- Register object = ToRegister(instr->object());
-
- if (access.IsExternalMemory()) {
- Register result = ToRegister(instr->result());
- __ Load(result, MemOperand(object, offset), access.representation());
- return;
- }
-
- if (instr->hydrogen()->representation().IsDouble()) {
- DCHECK(access.IsInobject());
- FPRegister result = ToDoubleRegister(instr->result());
- __ Ldr(result, FieldMemOperand(object, offset));
- return;
- }
-
- Register result = ToRegister(instr->result());
- Register source;
- if (access.IsInobject()) {
- source = object;
- } else {
- // Load the properties array, using result as a scratch register.
- __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
- source = result;
- }
-
- if (access.representation().IsSmi() &&
- instr->hydrogen()->representation().IsInteger32()) {
- // Read int value directly from upper half of the smi.
- STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
- STATIC_ASSERT(kSmiTag == 0);
- __ Load(result, UntagSmiFieldMemOperand(source, offset),
- Representation::Integer32());
- } else {
- __ Load(result, FieldMemOperand(source, offset), access.representation());
- }
-}
-
-
-void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
- Register result = ToRegister(instr->result());
- __ LoadRoot(result, instr->index());
-}
-
-
-void LCodeGen::DoMathAbs(LMathAbs* instr) {
- Representation r = instr->hydrogen()->value()->representation();
- if (r.IsDouble()) {
- DoubleRegister input = ToDoubleRegister(instr->value());
- DoubleRegister result = ToDoubleRegister(instr->result());
- __ Fabs(result, input);
- } else if (r.IsSmi() || r.IsInteger32()) {
- Register input = r.IsSmi() ? ToRegister(instr->value())
- : ToRegister32(instr->value());
- Register result = r.IsSmi() ? ToRegister(instr->result())
- : ToRegister32(instr->result());
- __ Abs(result, input);
- DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
- }
-}
-
-
-void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr,
- Label* exit,
- Label* allocation_entry) {
- // Handle the tricky cases of MathAbsTagged:
- // - HeapNumber inputs.
- // - Negative inputs produce a positive result, so a new HeapNumber is
- // allocated to hold it.
- // - Positive inputs are returned as-is, since there is no need to allocate
- // a new HeapNumber for the result.
- // - The (smi) input -0x80000000, produces +0x80000000, which does not fit
- // a smi. In this case, the inline code sets the result and jumps directly
- // to the allocation_entry label.
- DCHECK(instr->context() != NULL);
- DCHECK(ToRegister(instr->context()).is(cp));
- Register input = ToRegister(instr->value());
- Register temp1 = ToRegister(instr->temp1());
- Register temp2 = ToRegister(instr->temp2());
- Register result_bits = ToRegister(instr->temp3());
- Register result = ToRegister(instr->result());
-
- Label runtime_allocation;
-
- // Deoptimize if the input is not a HeapNumber.
- DeoptimizeIfNotHeapNumber(input, instr);
-
- // If the argument is positive, we can return it as-is, without any need to
- // allocate a new HeapNumber for the result. We have to do this in integer
- // registers (rather than with fabs) because we need to be able to distinguish
- // the two zeroes.
- __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset));
- __ Mov(result, input);
- __ Tbz(result_bits, kXSignBit, exit);
-
- // Calculate abs(input) by clearing the sign bit.
- __ Bic(result_bits, result_bits, kXSignMask);
-
- // Allocate a new HeapNumber to hold the result.
- // result_bits The bit representation of the (double) result.
- __ Bind(allocation_entry);
- __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2);
- // The inline (non-deferred) code will store result_bits into result.
- __ B(exit);
-
- __ Bind(&runtime_allocation);
- if (FLAG_debug_code) {
- // Because result is in the pointer map, we need to make sure it has a valid
- // tagged value before we call the runtime. We speculatively set it to the
- // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already
- // be valid.
- Label result_ok;
- Register input = ToRegister(instr->value());
- __ JumpIfSmi(result, &result_ok);
- __ Cmp(input, result);
- __ Assert(eq, kUnexpectedValue);
- __ Bind(&result_ok);
- }
-
- { PushSafepointRegistersScope scope(this);
- CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
- instr->context());
- __ StoreToSafepointRegisterSlot(x0, result);
- }
- // The inline (non-deferred) code will store result_bits into result.
-}
-
-
-void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) {
- // Class for deferred case.
- class DeferredMathAbsTagged: public LDeferredCode {
- public:
- DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr)
- : LDeferredCode(codegen), instr_(instr) { }
- virtual void Generate() {
- codegen()->DoDeferredMathAbsTagged(instr_, exit(),
- allocation_entry());
- }
- virtual LInstruction* instr() { return instr_; }
- Label* allocation_entry() { return &allocation; }
- private:
- LMathAbsTagged* instr_;
- Label allocation;
- };
-
- // TODO(jbramley): The early-exit mechanism would skip the new frame handling
- // in GenerateDeferredCode. Tidy this up.
- DCHECK(!NeedsDeferredFrame());
-
- DeferredMathAbsTagged* deferred =
- new(zone()) DeferredMathAbsTagged(this, instr);
-
- DCHECK(instr->hydrogen()->value()->representation().IsTagged() ||
- instr->hydrogen()->value()->representation().IsSmi());
- Register input = ToRegister(instr->value());
- Register result_bits = ToRegister(instr->temp3());
- Register result = ToRegister(instr->result());
- Label done;
-
- // Handle smis inline.
- // We can treat smis as 64-bit integers, since the (low-order) tag bits will
- // never get set by the negation. This is therefore the same as the Integer32
- // case in DoMathAbs, except that it operates on 64-bit values.
- STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
-
- __ JumpIfNotSmi(input, deferred->entry());
-
- __ Abs(result, input, NULL, &done);
-
- // The result is the magnitude (abs) of the smallest value a smi can
- // represent, encoded as a double.
- __ Mov(result_bits, double_to_rawbits(0x80000000));
- __ B(deferred->allocation_entry());
-
- __ Bind(deferred->exit());
- __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset));
-
- __ Bind(&done);
-}
-
-void LCodeGen::DoMathCos(LMathCos* instr) {
- DCHECK(instr->IsMarkedAsCall());
- DCHECK(ToDoubleRegister(instr->value()).is(d0));
- __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1);
- DCHECK(ToDoubleRegister(instr->result()).Is(d0));
-}
-
-void LCodeGen::DoMathSin(LMathSin* instr) {
- DCHECK(instr->IsMarkedAsCall());
- DCHECK(ToDoubleRegister(instr->value()).is(d0));
- __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1);
- DCHECK(ToDoubleRegister(instr->result()).Is(d0));
-}
-
-void LCodeGen::DoMathExp(LMathExp* instr) {
- DCHECK(instr->IsMarkedAsCall());
- DCHECK(ToDoubleRegister(instr->value()).is(d0));
- __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1);
- DCHECK(ToDoubleRegister(instr->result()).Is(d0));
-}
-
-
-void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
- DoubleRegister input = ToDoubleRegister(instr->value());
- DoubleRegister result = ToDoubleRegister(instr->result());
-
- __ Frintm(result, input);
-}
-
-
-void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
- DoubleRegister input = ToDoubleRegister(instr->value());
- Register result = ToRegister(instr->result());
-
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIfMinusZero(input, instr, DeoptimizeReason::kMinusZero);
- }
-
- __ Fcvtms(result, input);
-
- // Check that the result fits into a 32-bit integer.
- // - The result did not overflow.
- __ Cmp(result, Operand(result, SXTW));
- // - The input was not NaN.
- __ Fccmp(input, input, NoFlag, eq);
- DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
-}
-
-
-void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
- Register dividend = ToRegister32(instr->dividend());
- Register result = ToRegister32(instr->result());
- int32_t divisor = instr->divisor();
-
- // If the divisor is 1, return the dividend.
- if (divisor == 1) {
- __ Mov(result, dividend, kDiscardForSameWReg);
- return;
- }
-
- // If the divisor is positive, things are easy: There can be no deopts and we
- // can simply do an arithmetic right shift.
- int32_t shift = WhichPowerOf2Abs(divisor);
- if (divisor > 1) {
- __ Mov(result, Operand(dividend, ASR, shift));
- return;
- }
-
- // If the divisor is negative, we have to negate and handle edge cases.
- __ Negs(result, dividend);
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
- }
-
- // Dividing by -1 is basically negation, unless we overflow.
- if (divisor == -1) {
- if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
- DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
- }
- return;
- }
-
- // If the negation could not overflow, simply shifting is OK.
- if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
- __ Mov(result, Operand(dividend, ASR, shift));
- return;
- }
-
- __ Asr(result, result, shift);
- __ Csel(result, result, kMinInt / divisor, vc);
-}
-
-
-void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
- Register dividend = ToRegister32(instr->dividend());
- int32_t divisor = instr->divisor();
- Register result = ToRegister32(instr->result());
- DCHECK(!AreAliased(dividend, result));
-
- if (divisor == 0) {
- Deoptimize(instr, DeoptimizeReason::kDivisionByZero);
- return;
- }
-
- // Check for (0 / -x) that will produce negative zero.
- HMathFloorOfDiv* hdiv = instr->hydrogen();
- if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
- DeoptimizeIfZero(dividend, instr, DeoptimizeReason::kMinusZero);
- }
-
- // Easy case: We need no dynamic check for the dividend and the flooring
- // division is the same as the truncating division.
- if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
- (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
- __ TruncatingDiv(result, dividend, Abs(divisor));
- if (divisor < 0) __ Neg(result, result);
- return;
- }
-
- // In the general case we may need to adjust before and after the truncating
- // division to get a flooring division.
- Register temp = ToRegister32(instr->temp());
- DCHECK(!AreAliased(temp, dividend, result));
- Label needs_adjustment, done;
- __ Cmp(dividend, 0);
- __ B(divisor > 0 ? lt : gt, &needs_adjustment);
- __ TruncatingDiv(result, dividend, Abs(divisor));
- if (divisor < 0) __ Neg(result, result);
- __ B(&done);
- __ Bind(&needs_adjustment);
- __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
- __ TruncatingDiv(result, temp, Abs(divisor));
- if (divisor < 0) __ Neg(result, result);
- __ Sub(result, result, Operand(1));
- __ Bind(&done);
-}
-
-
-// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
-void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
- Register dividend = ToRegister32(instr->dividend());
- Register divisor = ToRegister32(instr->divisor());
- Register remainder = ToRegister32(instr->temp());
- Register result = ToRegister32(instr->result());
-
- // This can't cause an exception on ARM, so we can speculatively
- // execute it already now.
- __ Sdiv(result, dividend, divisor);
-
- // Check for x / 0.
- DeoptimizeIfZero(divisor, instr, DeoptimizeReason::kDivisionByZero);
-
- // Check for (kMinInt / -1).
- if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
- // The V flag will be set iff dividend == kMinInt.
- __ Cmp(dividend, 1);
- __ Ccmp(divisor, -1, NoFlag, vs);
- DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
- }
-
- // Check for (0 / -x) that will produce negative zero.
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ Cmp(divisor, 0);
- __ Ccmp(dividend, 0, ZFlag, mi);
- // "divisor" can't be null because the code would have already been
- // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0).
- // In this case we need to deoptimize to produce a -0.
- DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
- }
-
- Label done;
- // If both operands have the same sign then we are done.
- __ Eor(remainder, dividend, divisor);
- __ Tbz(remainder, kWSignBit, &done);
-
- // Check if the result needs to be corrected.
- __ Msub(remainder, result, divisor, dividend);
- __ Cbz(remainder, &done);
- __ Sub(result, result, 1);
-
- __ Bind(&done);
-}
-
-
-void LCodeGen::DoMathLog(LMathLog* instr) {
- DCHECK(instr->IsMarkedAsCall());
- DCHECK(ToDoubleRegister(instr->value()).is(d0));
- __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1);
- DCHECK(ToDoubleRegister(instr->result()).Is(d0));
-}
-
-
-void LCodeGen::DoMathClz32(LMathClz32* instr) {
- Register input = ToRegister32(instr->value());
- Register result = ToRegister32(instr->result());
- __ Clz(result, input);
-}
-
-
-void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
- DoubleRegister input = ToDoubleRegister(instr->value());
- DoubleRegister result = ToDoubleRegister(instr->result());
- Label done;
-
- // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases:
- // Math.pow(-Infinity, 0.5) == +Infinity
- // Math.pow(-0.0, 0.5) == +0.0
-
- // Catch -infinity inputs first.
- // TODO(jbramley): A constant infinity register would be helpful here.
- __ Fmov(double_scratch(), kFP64NegativeInfinity);
- __ Fcmp(double_scratch(), input);
- __ Fabs(result, input);
- __ B(&done, eq);
-
- // Add +0.0 to convert -0.0 to +0.0.
- __ Fadd(double_scratch(), input, fp_zero);
- __ Fsqrt(result, double_scratch());
-
- __ Bind(&done);
-}
-
-
-void LCodeGen::DoPower(LPower* instr) {
- Representation exponent_type = instr->hydrogen()->right()->representation();
- // Having marked this as a call, we can use any registers.
- // Just make sure that the input/output registers are the expected ones.
- Register tagged_exponent = MathPowTaggedDescriptor::exponent();
- Register integer_exponent = MathPowIntegerDescriptor::exponent();
- DCHECK(!instr->right()->IsDoubleRegister() ||
- ToDoubleRegister(instr->right()).is(d1));
- DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() ||
- ToRegister(instr->right()).is(tagged_exponent));
- DCHECK(!exponent_type.IsInteger32() ||
- ToRegister(instr->right()).is(integer_exponent));
- DCHECK(ToDoubleRegister(instr->left()).is(d0));
- DCHECK(ToDoubleRegister(instr->result()).is(d0));
-
- if (exponent_type.IsSmi()) {
- MathPowStub stub(isolate(), MathPowStub::TAGGED);
- __ CallStub(&stub);
- } else if (exponent_type.IsTagged()) {
- Label no_deopt;
- __ JumpIfSmi(tagged_exponent, &no_deopt);
- DeoptimizeIfNotHeapNumber(tagged_exponent, instr);
- __ Bind(&no_deopt);
- MathPowStub stub(isolate(), MathPowStub::TAGGED);
- __ CallStub(&stub);
- } else if (exponent_type.IsInteger32()) {
- // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub
- // supports large integer exponents.
- __ Sxtw(integer_exponent, integer_exponent);
- MathPowStub stub(isolate(), MathPowStub::INTEGER);
- __ CallStub(&stub);
- } else {
- DCHECK(exponent_type.IsDouble());
- MathPowStub stub(isolate(), MathPowStub::DOUBLE);
- __ CallStub(&stub);
- }
-}
-
-
-void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
- DoubleRegister input = ToDoubleRegister(instr->value());
- DoubleRegister result = ToDoubleRegister(instr->result());
- DoubleRegister scratch_d = double_scratch();
-
- DCHECK(!AreAliased(input, result, scratch_d));
-
- Label done;
-
- __ Frinta(result, input);
- __ Fcmp(input, 0.0);
- __ Fccmp(result, input, ZFlag, lt);
- // The result is correct if the input was in [-0, +infinity], or was a
- // negative integral value.
- __ B(eq, &done);
-
- // Here the input is negative, non integral, with an exponent lower than 52.
- // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff)
- // case. So we can safely add 0.5.
- __ Fmov(scratch_d, 0.5);
- __ Fadd(result, input, scratch_d);
- __ Frintm(result, result);
- // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative.
- __ Fabs(result, result);
- __ Fneg(result, result);
-
- __ Bind(&done);
-}
-
-
-void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
- DoubleRegister input = ToDoubleRegister(instr->value());
- DoubleRegister temp = ToDoubleRegister(instr->temp1());
- DoubleRegister dot_five = double_scratch();
- Register result = ToRegister(instr->result());
- Label done;
-
- // Math.round() rounds to the nearest integer, with ties going towards
- // +infinity. This does not match any IEEE-754 rounding mode.
- // - Infinities and NaNs are propagated unchanged, but cause deopts because
- // they can't be represented as integers.
- // - The sign of the result is the same as the sign of the input. This means
- // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
- // result of -0.0.
-
- // Add 0.5 and round towards -infinity.
- __ Fmov(dot_five, 0.5);
- __ Fadd(temp, input, dot_five);
- __ Fcvtms(result, temp);
-
- // The result is correct if:
- // result is not 0, as the input could be NaN or [-0.5, -0.0].
- // result is not 1, as 0.499...94 will wrongly map to 1.
- // result fits in 32 bits.
- __ Cmp(result, Operand(result.W(), SXTW));
- __ Ccmp(result, 1, ZFlag, eq);
- __ B(hi, &done);
-
- // At this point, we have to handle possible inputs of NaN or numbers in the
- // range [-0.5, 1.5[, or numbers larger than 32 bits.
-
- // Deoptimize if the result > 1, as it must be larger than 32 bits.
- __ Cmp(result, 1);
- DeoptimizeIf(hi, instr, DeoptimizeReason::kOverflow);
-
- // Deoptimize for negative inputs, which at this point are only numbers in
- // the range [-0.5, -0.0]
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ Fmov(result, input);
- DeoptimizeIfNegative(result, instr, DeoptimizeReason::kMinusZero);
- }
-
- // Deoptimize if the input was NaN.
- __ Fcmp(input, dot_five);
- DeoptimizeIf(vs, instr, DeoptimizeReason::kNaN);
-
- // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[
- // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1,
- // else 0; we avoid dealing with 0.499...94 directly.
- __ Cset(result, ge);
- __ Bind(&done);
-}
-
-
-void LCodeGen::DoMathFround(LMathFround* instr) {
- DoubleRegister input = ToDoubleRegister(instr->value());
- DoubleRegister result = ToDoubleRegister(instr->result());
- __ Fcvt(result.S(), input);
- __ Fcvt(result, result.S());
-}
-
-
-void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
- DoubleRegister input = ToDoubleRegister(instr->value());
- DoubleRegister result = ToDoubleRegister(instr->result());
- __ Fsqrt(result, input);
-}
-
-
-void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
- HMathMinMax::Operation op = instr->hydrogen()->operation();
- if (instr->hydrogen()->representation().IsInteger32()) {
- Register result = ToRegister32(instr->result());
- Register left = ToRegister32(instr->left());
- Operand right = ToOperand32(instr->right());
-
- __ Cmp(left, right);
- __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
- } else if (instr->hydrogen()->representation().IsSmi()) {
- Register result = ToRegister(instr->result());
- Register left = ToRegister(instr->left());
- Operand right = ToOperand(instr->right());
-
- __ Cmp(left, right);
- __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
- } else {
- DCHECK(instr->hydrogen()->representation().IsDouble());
- DoubleRegister result = ToDoubleRegister(instr->result());
- DoubleRegister left = ToDoubleRegister(instr->left());
- DoubleRegister right = ToDoubleRegister(instr->right());
-
- if (op == HMathMinMax::kMathMax) {
- __ Fmax(result, left, right);
- } else {
- DCHECK(op == HMathMinMax::kMathMin);
- __ Fmin(result, left, right);
- }
- }
-}
-
-
-void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
- Register dividend = ToRegister32(instr->dividend());
- int32_t divisor = instr->divisor();
- DCHECK(dividend.is(ToRegister32(instr->result())));
-
- // Theoretically, a variation of the branch-free code for integer division by
- // a power of 2 (calculating the remainder via an additional multiplication
- // (which gets simplified to an 'and') and subtraction) should be faster, and
- // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
- // indicate that positive dividends are heavily favored, so the branching
- // version performs better.
- HMod* hmod = instr->hydrogen();
- int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
- Label dividend_is_not_negative, done;
- if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
- __ Tbz(dividend, kWSignBit, &dividend_is_not_negative);
- // Note that this is correct even for kMinInt operands.
- __ Neg(dividend, dividend);
- __ And(dividend, dividend, mask);
- __ Negs(dividend, dividend);
- if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
- }
- __ B(&done);
- }
-
- __ bind(&dividend_is_not_negative);
- __ And(dividend, dividend, mask);
- __ bind(&done);
-}
-
-
-void LCodeGen::DoModByConstI(LModByConstI* instr) {
- Register dividend = ToRegister32(instr->dividend());
- int32_t divisor = instr->divisor();
- Register result = ToRegister32(instr->result());
- Register temp = ToRegister32(instr->temp());
- DCHECK(!AreAliased(dividend, result, temp));
-
- if (divisor == 0) {
- Deoptimize(instr, DeoptimizeReason::kDivisionByZero);
- return;
- }
-
- __ TruncatingDiv(result, dividend, Abs(divisor));
- __ Sxtw(dividend.X(), dividend);
- __ Mov(temp, Abs(divisor));
- __ Smsubl(result.X(), result, temp, dividend.X());
-
- // Check for negative zero.
- HMod* hmod = instr->hydrogen();
- if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
- Label remainder_not_zero;
- __ Cbnz(result, &remainder_not_zero);
- DeoptimizeIfNegative(dividend, instr, DeoptimizeReason::kMinusZero);
- __ bind(&remainder_not_zero);
- }
-}
-
-
-void LCodeGen::DoModI(LModI* instr) {
- Register dividend = ToRegister32(instr->left());
- Register divisor = ToRegister32(instr->right());
- Register result = ToRegister32(instr->result());
-
- Label done;
- // modulo = dividend - quotient * divisor
- __ Sdiv(result, dividend, divisor);
- if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
- DeoptimizeIfZero(divisor, instr, DeoptimizeReason::kDivisionByZero);
- }
- __ Msub(result, result, divisor, dividend);
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ Cbnz(result, &done);
- DeoptimizeIfNegative(dividend, instr, DeoptimizeReason::kMinusZero);
- }
- __ Bind(&done);
-}
-
-
-void LCodeGen::DoMulConstIS(LMulConstIS* instr) {
- DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32());
- bool is_smi = instr->hydrogen()->representation().IsSmi();
- Register result =
- is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result());
- Register left =
- is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left());
- int32_t right = ToInteger32(instr->right());
- DCHECK((right > -kMaxInt) && (right < kMaxInt));
-
- bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
- bool bailout_on_minus_zero =
- instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
-
- if (bailout_on_minus_zero) {
- if (right < 0) {
- // The result is -0 if right is negative and left is zero.
- DeoptimizeIfZero(left, instr, DeoptimizeReason::kMinusZero);
- } else if (right == 0) {
- // The result is -0 if the right is zero and the left is negative.
- DeoptimizeIfNegative(left, instr, DeoptimizeReason::kMinusZero);
- }
- }
-
- switch (right) {
- // Cases which can detect overflow.
- case -1:
- if (can_overflow) {
- // Only 0x80000000 can overflow here.
- __ Negs(result, left);
- DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
- } else {
- __ Neg(result, left);
- }
- break;
- case 0:
- // This case can never overflow.
- __ Mov(result, 0);
- break;
- case 1:
- // This case can never overflow.
- __ Mov(result, left, kDiscardForSameWReg);
- break;
- case 2:
- if (can_overflow) {
- __ Adds(result, left, left);
- DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
- } else {
- __ Add(result, left, left);
- }
- break;
-
- default:
- // Multiplication by constant powers of two (and some related values)
- // can be done efficiently with shifted operands.
- int32_t right_abs = Abs(right);
-
- if (base::bits::IsPowerOfTwo32(right_abs)) {
- int right_log2 = WhichPowerOf2(right_abs);
-
- if (can_overflow) {
- Register scratch = result;
- DCHECK(!AreAliased(scratch, left));
- __ Cls(scratch, left);
- __ Cmp(scratch, right_log2);
- DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow);
- }
-
- if (right >= 0) {
- // result = left << log2(right)
- __ Lsl(result, left, right_log2);
- } else {
- // result = -left << log2(-right)
- if (can_overflow) {
- __ Negs(result, Operand(left, LSL, right_log2));
- DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
- } else {
- __ Neg(result, Operand(left, LSL, right_log2));
- }
- }
- return;
- }
-
-
- // For the following cases, we could perform a conservative overflow check
- // with CLS as above. However the few cycles saved are likely not worth
- // the risk of deoptimizing more often than required.
- DCHECK(!can_overflow);
-
- if (right >= 0) {
- if (base::bits::IsPowerOfTwo32(right - 1)) {
- // result = left + left << log2(right - 1)
- __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1)));
- } else if (base::bits::IsPowerOfTwo32(right + 1)) {
- // result = -left + left << log2(right + 1)
- __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1)));
- __ Neg(result, result);
- } else {
- UNREACHABLE();
- }
- } else {
- if (base::bits::IsPowerOfTwo32(-right + 1)) {
- // result = left - left << log2(-right + 1)
- __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1)));
- } else if (base::bits::IsPowerOfTwo32(-right - 1)) {
- // result = -left - left << log2(-right - 1)
- __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1)));
- __ Neg(result, result);
- } else {
- UNREACHABLE();
- }
- }
- }
-}
-
-
-void LCodeGen::DoMulI(LMulI* instr) {
- Register result = ToRegister32(instr->result());
- Register left = ToRegister32(instr->left());
- Register right = ToRegister32(instr->right());
-
- bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
- bool bailout_on_minus_zero =
- instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
-
- if (bailout_on_minus_zero && !left.Is(right)) {
- // If one operand is zero and the other is negative, the result is -0.
- // - Set Z (eq) if either left or right, or both, are 0.
- __ Cmp(left, 0);
- __ Ccmp(right, 0, ZFlag, ne);
- // - If so (eq), set N (mi) if left + right is negative.
- // - Otherwise, clear N.
- __ Ccmn(left, right, NoFlag, eq);
- DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero);
- }
-
- if (can_overflow) {
- __ Smull(result.X(), left, right);
- __ Cmp(result.X(), Operand(result, SXTW));
- DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow);
- } else {
- __ Mul(result, left, right);
- }
-}
-
-
-void LCodeGen::DoMulS(LMulS* instr) {
- Register result = ToRegister(instr->result());
- Register left = ToRegister(instr->left());
- Register right = ToRegister(instr->right());
-
- bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
- bool bailout_on_minus_zero =
- instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
-
- if (bailout_on_minus_zero && !left.Is(right)) {
- // If one operand is zero and the other is negative, the result is -0.
- // - Set Z (eq) if either left or right, or both, are 0.
- __ Cmp(left, 0);
- __ Ccmp(right, 0, ZFlag, ne);
- // - If so (eq), set N (mi) if left + right is negative.
- // - Otherwise, clear N.
- __ Ccmn(left, right, NoFlag, eq);
- DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero);
- }
-
- STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
- if (can_overflow) {
- __ Smulh(result, left, right);
- __ Cmp(result, Operand(result.W(), SXTW));
- __ SmiTag(result);
- DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow);
- } else {
- if (AreAliased(result, left, right)) {
- // All three registers are the same: half untag the input and then
- // multiply, giving a tagged result.
- STATIC_ASSERT((kSmiShift % 2) == 0);
- __ Asr(result, left, kSmiShift / 2);
- __ Mul(result, result, result);
- } else if (result.Is(left) && !left.Is(right)) {
- // Registers result and left alias, right is distinct: untag left into
- // result, and then multiply by right, giving a tagged result.
- __ SmiUntag(result, left);
- __ Mul(result, result, right);
- } else {
- DCHECK(!left.Is(result));
- // Registers result and right alias, left is distinct, or all registers
- // are distinct: untag right into result, and then multiply by left,
- // giving a tagged result.
- __ SmiUntag(result, right);
- __ Mul(result, left, result);
- }
- }
-}
-
-
-void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
- // TODO(3095996): Get rid of this. For now, we need to make the
- // result register contain a valid pointer because it is already
- // contained in the register pointer map.
- Register result = ToRegister(instr->result());
- __ Mov(result, 0);
-
- PushSafepointRegistersScope scope(this);
- // Reset the context register.
- if (!result.is(cp)) {
- __ Mov(cp, 0);
- }
- __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
- RecordSafepointWithRegisters(
- instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
- __ StoreToSafepointRegisterSlot(x0, result);
-}
-
-
-void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
- class DeferredNumberTagD: public LDeferredCode {
- public:
- DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
- : LDeferredCode(codegen), instr_(instr) { }
- virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
- virtual LInstruction* instr() { return instr_; }
- private:
- LNumberTagD* instr_;
- };
-
- DoubleRegister input = ToDoubleRegister(instr->value());
- Register result = ToRegister(instr->result());
- Register temp1 = ToRegister(instr->temp1());
- Register temp2 = ToRegister(instr->temp2());
-
- DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
- if (FLAG_inline_new) {
- __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2);
- } else {
- __ B(deferred->entry());
- }
-
- __ Bind(deferred->exit());
- __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset));
-}
-
-
-void LCodeGen::DoDeferredNumberTagU(LInstruction* instr,
- LOperand* value,
- LOperand* temp1,
- LOperand* temp2) {
- Label slow, convert_and_store;
- Register src = ToRegister32(value);
- Register dst = ToRegister(instr->result());
- Register scratch1 = ToRegister(temp1);
-
- if (FLAG_inline_new) {
- Register scratch2 = ToRegister(temp2);
- __ AllocateHeapNumber(dst, &slow, scratch1, scratch2);
- __ B(&convert_and_store);
- }
-
- // Slow case: call the runtime system to do the number allocation.
- __ Bind(&slow);
- // TODO(3095996): Put a valid pointer value in the stack slot where the result
- // register is stored, as this register is in the pointer map, but contains an
- // integer value.
- __ Mov(dst, 0);
- {
- // Preserve the value of all registers.
- PushSafepointRegistersScope scope(this);
- // Reset the context register.
- if (!dst.is(cp)) {
- __ Mov(cp, 0);
- }
- __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
- RecordSafepointWithRegisters(
- instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
- __ StoreToSafepointRegisterSlot(x0, dst);
- }
-
- // Convert number to floating point and store in the newly allocated heap
- // number.
- __ Bind(&convert_and_store);
- DoubleRegister dbl_scratch = double_scratch();
- __ Ucvtf(dbl_scratch, src);
- __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
-}
-
-
-void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
- class DeferredNumberTagU: public LDeferredCode {
- public:
- DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
- : LDeferredCode(codegen), instr_(instr) { }
- virtual void Generate() {
- codegen()->DoDeferredNumberTagU(instr_,
- instr_->value(),
- instr_->temp1(),
- instr_->temp2());
- }
- virtual LInstruction* instr() { return instr_; }
- private:
- LNumberTagU* instr_;
- };
-
- Register value = ToRegister32(instr->value());
- Register result = ToRegister(instr->result());
-
- DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
- __ Cmp(value, Smi::kMaxValue);
- __ B(hi, deferred->entry());
- __ SmiTag(result, value.X());
- __ Bind(deferred->exit());
-}
-
-
-void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
- Register input = ToRegister(instr->value());
- Register scratch = ToRegister(instr->temp());
- DoubleRegister result = ToDoubleRegister(instr->result());
- bool can_convert_undefined_to_nan = instr->truncating();
-
- Label done, load_smi;
-
- // Work out what untag mode we're working with.
- HValue* value = instr->hydrogen()->value();
- NumberUntagDMode mode = value->representation().IsSmi()
- ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
-
- if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
- __ JumpIfSmi(input, &load_smi);
-
- Label convert_undefined;
-
- // Heap number map check.
- if (can_convert_undefined_to_nan) {
- __ JumpIfNotHeapNumber(input, &convert_undefined);
- } else {
- DeoptimizeIfNotHeapNumber(input, instr);
- }
-
- // Load heap number.
- __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset));
- if (instr->hydrogen()->deoptimize_on_minus_zero()) {
- DeoptimizeIfMinusZero(result, instr, DeoptimizeReason::kMinusZero);
- }
- __ B(&done);
-
- if (can_convert_undefined_to_nan) {
- __ Bind(&convert_undefined);
- DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
- DeoptimizeReason::kNotAHeapNumberUndefined);
-
- __ LoadRoot(scratch, Heap::kNanValueRootIndex);
- __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset));
- __ B(&done);
- }
-
- } else {
- DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
- // Fall through to load_smi.
- }
-
- // Smi to double register conversion.
- __ Bind(&load_smi);
- __ SmiUntagToDouble(result, input);
-
- __ Bind(&done);
-}
-
-
-void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
- // This is a pseudo-instruction that ensures that the environment here is
- // properly registered for deoptimization and records the assembler's PC
- // offset.
- LEnvironment* environment = instr->environment();
-
- // If the environment were already registered, we would have no way of
- // backpatching it with the spill slot operands.
- DCHECK(!environment->HasBeenRegistered());
- RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
-
- GenerateOsrPrologue();
-}
-
-
-void LCodeGen::DoParameter(LParameter* instr) {
- // Nothing to do.
-}
-
-
-void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) {
- __ PushPreamble(instr->argc(), kPointerSize);
-}
-
-
-void LCodeGen::DoPushArguments(LPushArguments* instr) {
- MacroAssembler::PushPopQueue args(masm());
-
- for (int i = 0; i < instr->ArgumentCount(); ++i) {
- LOperand* arg = instr->argument(i);
- if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) {
- Abort(kDoPushArgumentNotImplementedForDoubleType);
- return;
- }
- args.Queue(ToRegister(arg));
- }
-
- // The preamble was done by LPreparePushArguments.
- args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE);
-
- RecordPushedArgumentsDelta(instr->ArgumentCount());
-}
-
-
-void LCodeGen::DoReturn(LReturn* instr) {
- if (FLAG_trace && info()->IsOptimizing()) {
- // Push the return value on the stack as the parameter.
- // Runtime::TraceExit returns its parameter in x0. We're leaving the code
- // managed by the register allocator and tearing down the frame, it's
- // safe to write to the context register.
- __ Push(x0);
- __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
- __ CallRuntime(Runtime::kTraceExit);
- }
-
- if (info()->saves_caller_doubles()) {
- RestoreCallerDoubles();
- }
-
- if (NeedsEagerFrame()) {
- Register stack_pointer = masm()->StackPointer();
- __ Mov(stack_pointer, fp);
- __ Pop(fp, lr);
- }
-
- if (instr->has_constant_parameter_count()) {
- int parameter_count = ToInteger32(instr->constant_parameter_count());
- __ Drop(parameter_count + 1);
- } else {
- DCHECK(info()->IsStub()); // Functions would need to drop one more value.
- Register parameter_count = ToRegister(instr->parameter_count());
- __ DropBySMI(parameter_count);
- }
- __ Ret();
-}
-
-
-MemOperand LCodeGen::BuildSeqStringOperand(Register string,
- Register temp,
- LOperand* index,
- String::Encoding encoding) {
- if (index->IsConstantOperand()) {
- int offset = ToInteger32(LConstantOperand::cast(index));
- if (encoding == String::TWO_BYTE_ENCODING) {
- offset *= kUC16Size;
- }
- STATIC_ASSERT(kCharSize == 1);
- return FieldMemOperand(string, SeqString::kHeaderSize + offset);
- }
-
- __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag);
- if (encoding == String::ONE_BYTE_ENCODING) {
- return MemOperand(temp, ToRegister32(index), SXTW);
- } else {
- STATIC_ASSERT(kUC16Size == 2);
- return MemOperand(temp, ToRegister32(index), SXTW, 1);
- }
-}
-
-
-void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
- String::Encoding encoding = instr->hydrogen()->encoding();
- Register string = ToRegister(instr->string());
- Register result = ToRegister(instr->result());
- Register temp = ToRegister(instr->temp());
-
- if (FLAG_debug_code) {
- // Even though this lithium instruction comes with a temp register, we
- // can't use it here because we want to use "AtStart" constraints on the
- // inputs and the debug code here needs a scratch register.
- UseScratchRegisterScope temps(masm());
- Register dbg_temp = temps.AcquireX();
-
- __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset));
- __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset));
-
- __ And(dbg_temp, dbg_temp,
- Operand(kStringRepresentationMask | kStringEncodingMask));
- static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
- static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
- __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING
- ? one_byte_seq_type : two_byte_seq_type));
- __ Check(eq, kUnexpectedStringType);
- }
-
- MemOperand operand =
- BuildSeqStringOperand(string, temp, instr->index(), encoding);
- if (encoding == String::ONE_BYTE_ENCODING) {
- __ Ldrb(result, operand);
- } else {
- __ Ldrh(result, operand);
- }
-}
-
-
-void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
- String::Encoding encoding = instr->hydrogen()->encoding();
- Register string = ToRegister(instr->string());
- Register value = ToRegister(instr->value());
- Register temp = ToRegister(instr->temp());
-
- if (FLAG_debug_code) {
- DCHECK(ToRegister(instr->context()).is(cp));
- Register index = ToRegister(instr->index());
- static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
- static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
- int encoding_mask =
- instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
- ? one_byte_seq_type : two_byte_seq_type;
- __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp,
- encoding_mask);
- }
- MemOperand operand =
- BuildSeqStringOperand(string, temp, instr->index(), encoding);
- if (encoding == String::ONE_BYTE_ENCODING) {
- __ Strb(value, operand);
- } else {
- __ Strh(value, operand);
- }
-}
-
-
-void LCodeGen::DoSmiTag(LSmiTag* instr) {
- HChange* hchange = instr->hydrogen();
- Register input = ToRegister(instr->value());
- Register output = ToRegister(instr->result());
- if (hchange->CheckFlag(HValue::kCanOverflow) &&
- hchange->value()->CheckFlag(HValue::kUint32)) {
- DeoptimizeIfNegative(input.W(), instr, DeoptimizeReason::kOverflow);
- }
- __ SmiTag(output, input);
-}
-
-
-void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
- Register input = ToRegister(instr->value());
- Register result = ToRegister(instr->result());
- Label done, untag;
-
- if (instr->needs_check()) {
- DeoptimizeIfNotSmi(input, instr, DeoptimizeReason::kNotASmi);
- }
-
- __ Bind(&untag);
- __ SmiUntag(result, input);
- __ Bind(&done);
-}
-
-
-void LCodeGen::DoShiftI(LShiftI* instr) {
- LOperand* right_op = instr->right();
- Register left = ToRegister32(instr->left());
- Register result = ToRegister32(instr->result());
-
- if (right_op->IsRegister()) {
- Register right = ToRegister32(instr->right());
- switch (instr->op()) {
- case Token::ROR: __ Ror(result, left, right); break;
- case Token::SAR: __ Asr(result, left, right); break;
- case Token::SHL: __ Lsl(result, left, right); break;
- case Token::SHR:
- __ Lsr(result, left, right);
- if (instr->can_deopt()) {
- // If `left >>> right` >= 0x80000000, the result is not representable
- // in a signed 32-bit smi.
- DeoptimizeIfNegative(result, instr, DeoptimizeReason::kNegativeValue);
- }
- break;
- default: UNREACHABLE();
- }
- } else {
- DCHECK(right_op->IsConstantOperand());
- int shift_count = JSShiftAmountFromLConstant(right_op);
- if (shift_count == 0) {
- if ((instr->op() == Token::SHR) && instr->can_deopt()) {
- DeoptimizeIfNegative(left, instr, DeoptimizeReason::kNegativeValue);
- }
- __ Mov(result, left, kDiscardForSameWReg);
- } else {
- switch (instr->op()) {
- case Token::ROR: __ Ror(result, left, shift_count); break;
- case Token::SAR: __ Asr(result, left, shift_count); break;
- case Token::SHL: __ Lsl(result, left, shift_count); break;
- case Token::SHR: __ Lsr(result, left, shift_count); break;
- default: UNREACHABLE();
- }
- }
- }
-}
-
-
-void LCodeGen::DoShiftS(LShiftS* instr) {
- LOperand* right_op = instr->right();
- Register left = ToRegister(instr->left());
- Register result = ToRegister(instr->result());
-
- if (right_op->IsRegister()) {
- Register right = ToRegister(instr->right());
-
- // JavaScript shifts only look at the bottom 5 bits of the 'right' operand.
- // Since we're handling smis in X registers, we have to extract these bits
- // explicitly.
- __ Ubfx(result, right, kSmiShift, 5);
-
- switch (instr->op()) {
- case Token::ROR: {
- // This is the only case that needs a scratch register. To keep things
- // simple for the other cases, borrow a MacroAssembler scratch register.
- UseScratchRegisterScope temps(masm());
- Register temp = temps.AcquireW();
- __ SmiUntag(temp, left);
- __ Ror(result.W(), temp.W(), result.W());
- __ SmiTag(result);
- break;
- }
- case Token::SAR:
- __ Asr(result, left, result);
- __ Bic(result, result, kSmiShiftMask);
- break;
- case Token::SHL:
- __ Lsl(result, left, result);
- break;
- case Token::SHR:
- __ Lsr(result, left, result);
- __ Bic(result, result, kSmiShiftMask);
- if (instr->can_deopt()) {
- // If `left >>> right` >= 0x80000000, the result is not representable
- // in a signed 32-bit smi.
- DeoptimizeIfNegative(result, instr, DeoptimizeReason::kNegativeValue);
- }
- break;
- default: UNREACHABLE();
- }
- } else {
- DCHECK(right_op->IsConstantOperand());
- int shift_count = JSShiftAmountFromLConstant(right_op);
- if (shift_count == 0) {
- if ((instr->op() == Token::SHR) && instr->can_deopt()) {
- DeoptimizeIfNegative(left, instr, DeoptimizeReason::kNegativeValue);
- }
- __ Mov(result, left);
- } else {
- switch (instr->op()) {
- case Token::ROR:
- __ SmiUntag(result, left);
- __ Ror(result.W(), result.W(), shift_count);
- __ SmiTag(result);
- break;
- case Token::SAR:
- __ Asr(result, left, shift_count);
- __ Bic(result, result, kSmiShiftMask);
- break;
- case Token::SHL:
- __ Lsl(result, left, shift_count);
- break;
- case Token::SHR:
- __ Lsr(result, left, shift_count);
- __ Bic(result, result, kSmiShiftMask);
- break;
- default: UNREACHABLE();
- }
- }
- }
-}
-
-
-void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
- __ Debug("LDebugBreak", 0, BREAK);
-}
-
-
-void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
- DCHECK(ToRegister(instr->context()).is(cp));
- Register scratch1 = x5;
- Register scratch2 = x6;
- DCHECK(instr->IsMarkedAsCall());
-
- // TODO(all): if Mov could handle object in new space then it could be used
- // here.
- __ LoadHeapObject(scratch1, instr->hydrogen()->declarations());
- __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags()));
- __ Push(scratch1, scratch2);
- __ LoadHeapObject(scratch1, instr->hydrogen()->feedback_vector());
- __ Push(scratch1);
- CallRuntime(Runtime::kDeclareGlobals, instr);
-}
-
-
-void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
- PushSafepointRegistersScope scope(this);
- LoadContextFromDeferred(instr->context());
- __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
- RecordSafepointWithLazyDeopt(
- instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
- DCHECK(instr->HasEnvironment());
- LEnvironment* env = instr->environment();
- safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
-}
-
-
-void LCodeGen::DoStackCheck(LStackCheck* instr) {
- class DeferredStackCheck: public LDeferredCode {
- public:
- DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
- : LDeferredCode(codegen), instr_(instr) { }
- virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
- virtual LInstruction* instr() { return instr_; }
- private:
- LStackCheck* instr_;
- };
-
- DCHECK(instr->HasEnvironment());
- LEnvironment* env = instr->environment();
- // There is no LLazyBailout instruction for stack-checks. We have to
- // prepare for lazy deoptimization explicitly here.
- if (instr->hydrogen()->is_function_entry()) {
- // Perform stack overflow check.
- Label done;
- __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
- __ B(hs, &done);
-
- PredictableCodeSizeScope predictable(masm_,
- Assembler::kCallSizeWithRelocation);
- DCHECK(instr->context()->IsRegister());
- DCHECK(ToRegister(instr->context()).is(cp));
- CallCode(isolate()->builtins()->StackCheck(),
- RelocInfo::CODE_TARGET,
- instr);
- __ Bind(&done);
- } else {
- DCHECK(instr->hydrogen()->is_backwards_branch());
- // Perform stack overflow check if this goto needs it before jumping.
- DeferredStackCheck* deferred_stack_check =
- new(zone()) DeferredStackCheck(this, instr);
- __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
- __ B(lo, deferred_stack_check->entry());
-
- EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
- __ Bind(instr->done_label());
- deferred_stack_check->SetExit(instr->done_label());
- RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
- // Don't record a deoptimization index for the safepoint here.
- // This will be done explicitly when emitting call and the safepoint in
- // the deferred code.
- }
-}
-
-
-void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
- Register function = ToRegister(instr->function());
- Register code_object = ToRegister(instr->code_object());
- Register temp = ToRegister(instr->temp());
- __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag);
- __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
-}
-
-
-void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
- Register context = ToRegister(instr->context());
- Register value = ToRegister(instr->value());
- Register scratch = ToRegister(instr->temp());
- MemOperand target = ContextMemOperand(context, instr->slot_index());
-
- Label skip_assignment;
-
- if (instr->hydrogen()->RequiresHoleCheck()) {
- __ Ldr(scratch, target);
- if (instr->hydrogen()->DeoptimizesOnHole()) {
- DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr,
- DeoptimizeReason::kHole);
- } else {
- __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment);
- }
- }
-
- __ Str(value, target);
- if (instr->hydrogen()->NeedsWriteBarrier()) {
- SmiCheck check_needed =
- instr->hydrogen()->value()->type().IsHeapObject()
- ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
- __ RecordWriteContextSlot(context, static_cast<int>(target.offset()), value,
- scratch, GetLinkRegisterState(), kSaveFPRegs,
- EMIT_REMEMBERED_SET, check_needed);
- }
- __ Bind(&skip_assignment);
-}
-
-
-void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) {
- Register ext_ptr = ToRegister(instr->elements());
- Register key = no_reg;
- Register scratch;
- ElementsKind elements_kind = instr->elements_kind();
-
- bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
- bool key_is_constant = instr->key()->IsConstantOperand();
- int constant_key = 0;
- if (key_is_constant) {
- DCHECK(instr->temp() == NULL);
- constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
- if (constant_key & 0xf0000000) {
- Abort(kArrayIndexConstantValueTooBig);
- }
- } else {
- key = ToRegister(instr->key());
- scratch = ToRegister(instr->temp());
- }
-
- MemOperand dst =
- PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
- key_is_constant, constant_key,
- elements_kind,
- instr->base_offset());
-
- if (elements_kind == FLOAT32_ELEMENTS) {
- DoubleRegister value = ToDoubleRegister(instr->value());
- DoubleRegister dbl_scratch = double_scratch();
- __ Fcvt(dbl_scratch.S(), value);
- __ Str(dbl_scratch.S(), dst);
- } else if (elements_kind == FLOAT64_ELEMENTS) {
- DoubleRegister value = ToDoubleRegister(instr->value());
- __ Str(value, dst);
- } else {
- Register value = ToRegister(instr->value());
-
- switch (elements_kind) {
- case UINT8_ELEMENTS:
- case UINT8_CLAMPED_ELEMENTS:
- case INT8_ELEMENTS:
- __ Strb(value, dst);
- break;
- case INT16_ELEMENTS:
- case UINT16_ELEMENTS:
- __ Strh(value, dst);
- break;
- case INT32_ELEMENTS:
- case UINT32_ELEMENTS:
- __ Str(value.W(), dst);
- break;
- case FLOAT32_ELEMENTS:
- case FLOAT64_ELEMENTS:
- case FAST_DOUBLE_ELEMENTS:
- case FAST_ELEMENTS:
- case FAST_SMI_ELEMENTS:
- case FAST_HOLEY_DOUBLE_ELEMENTS:
- case FAST_HOLEY_ELEMENTS:
- case FAST_HOLEY_SMI_ELEMENTS:
- case DICTIONARY_ELEMENTS:
- case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
- case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
- case FAST_STRING_WRAPPER_ELEMENTS:
- case SLOW_STRING_WRAPPER_ELEMENTS:
- case NO_ELEMENTS:
- UNREACHABLE();
- break;
- }
- }
-}
-
-
-void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) {
- Register elements = ToRegister(instr->elements());
- DoubleRegister value = ToDoubleRegister(instr->value());
- MemOperand mem_op;
-
- if (instr->key()->IsConstantOperand()) {
- int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
- if (constant_key & 0xf0000000) {
- Abort(kArrayIndexConstantValueTooBig);
- }
- int offset = instr->base_offset() + constant_key * kDoubleSize;
- mem_op = MemOperand(elements, offset);
- } else {
- Register store_base = ToRegister(instr->temp());
- Register key = ToRegister(instr->key());
- bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
- mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
- instr->hydrogen()->elements_kind(),
- instr->hydrogen()->representation(),
- instr->base_offset());
- }
-
- if (instr->NeedsCanonicalization()) {
- __ CanonicalizeNaN(double_scratch(), value);
- __ Str(double_scratch(), mem_op);
- } else {
- __ Str(value, mem_op);
- }
-}
-
-
-void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) {
- Register value = ToRegister(instr->value());
- Register elements = ToRegister(instr->elements());
- Register scratch = no_reg;
- Register store_base = no_reg;
- Register key = no_reg;
- MemOperand mem_op;
-
- if (!instr->key()->IsConstantOperand() ||
- instr->hydrogen()->NeedsWriteBarrier()) {
- scratch = ToRegister(instr->temp());
- }
-
- Representation representation = instr->hydrogen()->value()->representation();
- if (instr->key()->IsConstantOperand()) {
- LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
- int offset = instr->base_offset() +
- ToInteger32(const_operand) * kPointerSize;
- store_base = elements;
- if (representation.IsInteger32()) {
- DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
- DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
- STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
- STATIC_ASSERT(kSmiTag == 0);
- mem_op = UntagSmiMemOperand(store_base, offset);
- } else {
- mem_op = MemOperand(store_base, offset);
- }
- } else {
- store_base = scratch;
- key = ToRegister(instr->key());
- bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
-
- mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
- instr->hydrogen()->elements_kind(),
- representation, instr->base_offset());
- }
-
- __ Store(value, mem_op, representation);
-
- if (instr->hydrogen()->NeedsWriteBarrier()) {
- DCHECK(representation.IsTagged());
- // This assignment may cause element_addr to alias store_base.
- Register element_addr = scratch;
- SmiCheck check_needed =
- instr->hydrogen()->value()->type().IsHeapObject()
- ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
- // Compute address of modified element and store it into key register.
- __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand());
- __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(),
- kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed,
- instr->hydrogen()->PointersToHereCheckForValue());
- }
-}
-
-
-void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
- class DeferredMaybeGrowElements final : public LDeferredCode {
- public:
- DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
- : LDeferredCode(codegen), instr_(instr) {}
- void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
- LInstruction* instr() override { return instr_; }
-
- private:
- LMaybeGrowElements* instr_;
- };
-
- Register result = x0;
- DeferredMaybeGrowElements* deferred =
- new (zone()) DeferredMaybeGrowElements(this, instr);
- LOperand* key = instr->key();
- LOperand* current_capacity = instr->current_capacity();
-
- DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
- DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
- DCHECK(key->IsConstantOperand() || key->IsRegister());
- DCHECK(current_capacity->IsConstantOperand() ||
- current_capacity->IsRegister());
-
- if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
- int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
- int32_t constant_capacity =
- ToInteger32(LConstantOperand::cast(current_capacity));
- if (constant_key >= constant_capacity) {
- // Deferred case.
- __ B(deferred->entry());
- }
- } else if (key->IsConstantOperand()) {
- int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
- __ Cmp(ToRegister(current_capacity), Operand(constant_key));
- __ B(le, deferred->entry());
- } else if (current_capacity->IsConstantOperand()) {
- int32_t constant_capacity =
- ToInteger32(LConstantOperand::cast(current_capacity));
- __ Cmp(ToRegister(key), Operand(constant_capacity));
- __ B(ge, deferred->entry());
- } else {
- __ Cmp(ToRegister(key), ToRegister(current_capacity));
- __ B(ge, deferred->entry());
- }
-
- __ Mov(result, ToRegister(instr->elements()));
-
- __ Bind(deferred->exit());
-}
-
-
-void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
- // TODO(3095996): Get rid of this. For now, we need to make the
- // result register contain a valid pointer because it is already
- // contained in the register pointer map.
- Register result = x0;
- __ Mov(result, 0);
-
- // We have to call a stub.
- {
- PushSafepointRegistersScope scope(this);
- __ Move(result, ToRegister(instr->object()));
-
- LOperand* key = instr->key();
- if (key->IsConstantOperand()) {
- __ Mov(x3, Operand(ToSmi(LConstantOperand::cast(key))));
- } else {
- __ Mov(x3, ToRegister(key));
- __ SmiTag(x3);
- }
-
- GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind());
- __ CallStub(&stub);
- RecordSafepointWithLazyDeopt(
- instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
- __ StoreToSafepointRegisterSlot(result, result);
- }
-
- // Deopt on smi, which means the elements array changed to dictionary mode.
- DeoptimizeIfSmi(result, instr, DeoptimizeReason::kSmi);
-}
-
-
-void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
- Representation representation = instr->representation();
-
- Register object = ToRegister(instr->object());
- HObjectAccess access = instr->hydrogen()->access();
- int offset = access.offset();
-
- if (access.IsExternalMemory()) {
- DCHECK(!instr->hydrogen()->has_transition());
- DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
- Register value = ToRegister(instr->value());
- __ Store(value, MemOperand(object, offset), representation);
- return;
- }
-
- __ AssertNotSmi(object);
-
- if (!FLAG_unbox_double_fields && representation.IsDouble()) {
- DCHECK(access.IsInobject());
- DCHECK(!instr->hydrogen()->has_transition());
- DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
- FPRegister value = ToDoubleRegister(instr->value());
- __ Str(value, FieldMemOperand(object, offset));
- return;
- }
-
- DCHECK(!representation.IsSmi() ||
- !instr->value()->IsConstantOperand() ||
- IsInteger32Constant(LConstantOperand::cast(instr->value())));
-
- if (instr->hydrogen()->has_transition()) {
- Handle<Map> transition = instr->hydrogen()->transition_map();
- AddDeprecationDependency(transition);
- // Store the new map value.
- Register new_map_value = ToRegister(instr->temp0());
- __ Mov(new_map_value, Operand(transition));
- __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset));
- if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
- // Update the write barrier for the map field.
- __ RecordWriteForMap(object,
- new_map_value,
- ToRegister(instr->temp1()),
- GetLinkRegisterState(),
- kSaveFPRegs);
- }
- }
-
- // Do the store.
- Register destination;
- if (access.IsInobject()) {
- destination = object;
- } else {
- Register temp0 = ToRegister(instr->temp0());
- __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset));
- destination = temp0;
- }
-
- if (FLAG_unbox_double_fields && representation.IsDouble()) {
- DCHECK(access.IsInobject());
- FPRegister value = ToDoubleRegister(instr->value());
- __ Str(value, FieldMemOperand(object, offset));
- } else if (representation.IsSmi() &&
- instr->hydrogen()->value()->representation().IsInteger32()) {
- DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
-#ifdef DEBUG
- Register temp0 = ToRegister(instr->temp0());
- __ Ldr(temp0, FieldMemOperand(destination, offset));
- __ AssertSmi(temp0);
- // If destination aliased temp0, restore it to the address calculated
- // earlier.
- if (destination.Is(temp0)) {
- DCHECK(!access.IsInobject());
- __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
- }
-#endif
- STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
- STATIC_ASSERT(kSmiTag == 0);
- Register value = ToRegister(instr->value());
- __ Store(value, UntagSmiFieldMemOperand(destination, offset),
- Representation::Integer32());
- } else {
- Register value = ToRegister(instr->value());
- __ Store(value, FieldMemOperand(destination, offset), representation);
- }
- if (instr->hydrogen()->NeedsWriteBarrier()) {
- Register value = ToRegister(instr->value());
- __ RecordWriteField(destination,
- offset,
- value, // Clobbered.
- ToRegister(instr->temp1()), // Clobbered.
- GetLinkRegisterState(),
- kSaveFPRegs,
- EMIT_REMEMBERED_SET,
- instr->hydrogen()->SmiCheckForWriteBarrier(),
- instr->hydrogen()->PointersToHereCheckForValue());
- }
-}
-
-
-void LCodeGen::DoStringAdd(LStringAdd* instr) {
- DCHECK(ToRegister(instr->context()).is(cp));
- DCHECK(ToRegister(instr->left()).Is(x1));
- DCHECK(ToRegister(instr->right()).Is(x0));
- StringAddStub stub(isolate(),
- instr->hydrogen()->flags(),
- instr->hydrogen()->pretenure_flag());
- CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
-}
-
-
-void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
- class DeferredStringCharCodeAt: public LDeferredCode {
- public:
- DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
- : LDeferredCode(codegen), instr_(instr) { }
- virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
- virtual LInstruction* instr() { return instr_; }
- private:
- LStringCharCodeAt* instr_;
- };
-
- DeferredStringCharCodeAt* deferred =
- new(zone()) DeferredStringCharCodeAt(this, instr);
-
- StringCharLoadGenerator::Generate(masm(),
- ToRegister(instr->string()),
- ToRegister32(instr->index()),
- ToRegister(instr->result()),
- deferred->entry());
- __ Bind(deferred->exit());
-}
-
-
-void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
- Register string = ToRegister(instr->string());
- Register result = ToRegister(instr->result());
-
- // TODO(3095996): Get rid of this. For now, we need to make the
- // result register contain a valid pointer because it is already
- // contained in the register pointer map.
- __ Mov(result, 0);
-
- PushSafepointRegistersScope scope(this);
- __ Push(string);
- // Push the index as a smi. This is safe because of the checks in
- // DoStringCharCodeAt above.
- Register index = ToRegister(instr->index());
- __ SmiTagAndPush(index);
-
- CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
- instr->context());
- __ AssertSmi(x0);
- __ SmiUntag(x0);
- __ StoreToSafepointRegisterSlot(x0, result);
-}
-
-
-void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
- class DeferredStringCharFromCode: public LDeferredCode {
- public:
- DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
- : LDeferredCode(codegen), instr_(instr) { }
- virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
- virtual LInstruction* instr() { return instr_; }
- private:
- LStringCharFromCode* instr_;
- };
-
- DeferredStringCharFromCode* deferred =
- new(zone()) DeferredStringCharFromCode(this, instr);
-
- DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
- Register char_code = ToRegister32(instr->char_code());
- Register result = ToRegister(instr->result());
-
- __ Cmp(char_code, String::kMaxOneByteCharCode);
- __ B(hi, deferred->entry());
- __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
- __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag);
- __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2));
- __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
- __ B(eq, deferred->entry());
- __ Bind(deferred->exit());
-}
-
-
-void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
- Register char_code = ToRegister(instr->char_code());
- Register result = ToRegister(instr->result());
-
- // TODO(3095996): Get rid of this. For now, we need to make the
- // result register contain a valid pointer because it is already
- // contained in the register pointer map.
- __ Mov(result, 0);
-
- PushSafepointRegistersScope scope(this);
- __ SmiTagAndPush(char_code);
- CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
- instr->context());
- __ StoreToSafepointRegisterSlot(x0, result);
-}
-
-
-void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
- DCHECK(ToRegister(instr->context()).is(cp));
- DCHECK(ToRegister(instr->left()).is(x1));
- DCHECK(ToRegister(instr->right()).is(x0));
-
- Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
- CallCode(code, RelocInfo::CODE_TARGET, instr);
- __ CompareRoot(x0, Heap::kTrueValueRootIndex);
- EmitBranch(instr, eq);
-}
-
-
-void LCodeGen::DoSubI(LSubI* instr) {
- bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
- Register result = ToRegister32(instr->result());
- Register left = ToRegister32(instr->left());
- Operand right = ToShiftedRightOperand32(instr->right(), instr);
-
- if (can_overflow) {
- __ Subs(result, left, right);
- DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
- } else {
- __ Sub(result, left, right);
- }
-}
-
-
-void LCodeGen::DoSubS(LSubS* instr) {
- bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
- Register result = ToRegister(instr->result());
- Register left = ToRegister(instr->left());
- Operand right = ToOperand(instr->right());
- if (can_overflow) {
- __ Subs(result, left, right);
- DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
- } else {
- __ Sub(result, left, right);
- }
-}
-
-
-void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr,
- LOperand* value,
- LOperand* temp1,
- LOperand* temp2) {
- Register input = ToRegister(value);
- Register scratch1 = ToRegister(temp1);
- DoubleRegister dbl_scratch1 = double_scratch();
-
- Label done;
-
- if (instr->truncating()) {
- UseScratchRegisterScope temps(masm());
- Register output = ToRegister(instr->result());
- Register input_map = temps.AcquireX();
- Register input_instance_type = input_map;
- Label truncate;
- __ CompareObjectType(input, input_map, input_instance_type,
- HEAP_NUMBER_TYPE);
- __ B(eq, &truncate);
- __ Cmp(input_instance_type, ODDBALL_TYPE);
- DeoptimizeIf(ne, instr, DeoptimizeReason::kNotANumberOrOddball);
- __ Bind(&truncate);
- __ TruncateHeapNumberToI(output, input);
- } else {
- Register output = ToRegister32(instr->result());
- DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2);
-
- DeoptimizeIfNotHeapNumber(input, instr);
-
- // A heap number: load value and convert to int32 using non-truncating
- // function. If the result is out of range, branch to deoptimize.
- __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
- __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2);
- DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
-
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ Cmp(output, 0);
- __ B(ne, &done);
- __ Fmov(scratch1, dbl_scratch1);
- DeoptimizeIfNegative(scratch1, instr, DeoptimizeReason::kMinusZero);
- }
- }
- __ Bind(&done);
-}
-
-
-void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
- class DeferredTaggedToI: public LDeferredCode {
- public:
- DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
- : LDeferredCode(codegen), instr_(instr) { }
- virtual void Generate() {
- codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(),
- instr_->temp2());
- }
-
- virtual LInstruction* instr() { return instr_; }
- private:
- LTaggedToI* instr_;
- };
-
- Register input = ToRegister(instr->value());
- Register output = ToRegister(instr->result());
-
- if (instr->hydrogen()->value()->representation().IsSmi()) {
- __ SmiUntag(output, input);
- } else {
- DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
-
- __ JumpIfNotSmi(input, deferred->entry());
- __ SmiUntag(output, input);
- __ Bind(deferred->exit());
- }
-}
-
-
-void LCodeGen::DoThisFunction(LThisFunction* instr) {
- Register result = ToRegister(instr->result());
- __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
-}
-
-
-void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
- Register object = ToRegister(instr->object());
-
- Handle<Map> from_map = instr->original_map();
- Handle<Map> to_map = instr->transitioned_map();
- ElementsKind from_kind = instr->from_kind();
- ElementsKind to_kind = instr->to_kind();
-
- Label not_applicable;
-
- if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
- Register temp1 = ToRegister(instr->temp1());
- Register new_map = ToRegister(instr->temp2());
- __ CheckMap(object, temp1, from_map, &not_applicable, DONT_DO_SMI_CHECK);
- __ Mov(new_map, Operand(to_map));
- __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset));
- // Write barrier.
- __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(),
- kDontSaveFPRegs);
- } else {
- {
- UseScratchRegisterScope temps(masm());
- // Use the temp register only in a restricted scope - the codegen checks
- // that we do not use any register across a call.
- __ CheckMap(object, temps.AcquireX(), from_map, &not_applicable,
- DONT_DO_SMI_CHECK);
- }
- DCHECK(object.is(x0));
- DCHECK(ToRegister(instr->context()).is(cp));
- PushSafepointRegistersScope scope(this);
- __ Mov(x1, Operand(to_map));
- TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
- __ CallStub(&stub);
- RecordSafepointWithRegisters(
- instr->pointer_map(), 0, Safepoint::kLazyDeopt);
- }
- __ Bind(&not_applicable);
-}
-
-
-void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
- Register object = ToRegister(instr->object());
- Register temp1 = ToRegister(instr->temp1());
- Register temp2 = ToRegister(instr->temp2());
-
- Label no_memento_found;
- __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
- DeoptimizeIf(eq, instr, DeoptimizeReason::kMementoFound);
- __ Bind(&no_memento_found);
-}
-
-
-void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) {
- DoubleRegister input = ToDoubleRegister(instr->value());
- Register result = ToRegister(instr->result());
- __ TruncateDoubleToI(result, input);
- if (instr->tag_result()) {
- __ SmiTag(result, result);
- }
-}
-
-
-void LCodeGen::DoTypeof(LTypeof* instr) {
- DCHECK(ToRegister(instr->value()).is(x3));
- DCHECK(ToRegister(instr->result()).is(x0));
- Label end, do_call;
- Register value_register = ToRegister(instr->value());
- __ JumpIfNotSmi(value_register, &do_call);
- __ Mov(x0, Immediate(isolate()->factory()->number_string()));
- __ B(&end);
- __ Bind(&do_call);
- Callable callable = CodeFactory::Typeof(isolate());
- CallCode(callable.code(), RelocInfo::CODE_TARGET, instr);
- __ Bind(&end);
-}
-
-
-void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
- Handle<String> type_name = instr->type_literal();
- Label* true_label = instr->TrueLabel(chunk_);
- Label* false_label = instr->FalseLabel(chunk_);
- Register value = ToRegister(instr->value());
-
- Factory* factory = isolate()->factory();
- if (String::Equals(type_name, factory->number_string())) {
- __ JumpIfSmi(value, true_label);
-
- int true_block = instr->TrueDestination(chunk_);
- int false_block = instr->FalseDestination(chunk_);
- int next_block = GetNextEmittedBlock();
-
- if (true_block == false_block) {
- EmitGoto(true_block);
- } else if (true_block == next_block) {
- __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block));
- } else {
- __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block));
- if (false_block != next_block) {
- __ B(chunk_->GetAssemblyLabel(false_block));
- }
- }
-
- } else if (String::Equals(type_name, factory->string_string())) {
- DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
- Register map = ToRegister(instr->temp1());
- Register scratch = ToRegister(instr->temp2());
-
- __ JumpIfSmi(value, false_label);
- __ CompareObjectType(value, map, scratch, FIRST_NONSTRING_TYPE);
- EmitBranch(instr, lt);
-
- } else if (String::Equals(type_name, factory->symbol_string())) {
- DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
- Register map = ToRegister(instr->temp1());
- Register scratch = ToRegister(instr->temp2());
-
- __ JumpIfSmi(value, false_label);
- __ CompareObjectType(value, map, scratch, SYMBOL_TYPE);
- EmitBranch(instr, eq);
-
- } else if (String::Equals(type_name, factory->boolean_string())) {
- __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label);
- __ CompareRoot(value, Heap::kFalseValueRootIndex);
- EmitBranch(instr, eq);
-
- } else if (String::Equals(type_name, factory->undefined_string())) {
- DCHECK(instr->temp1() != NULL);
- Register scratch = ToRegister(instr->temp1());
-
- __ JumpIfRoot(value, Heap::kNullValueRootIndex, false_label);
- __ JumpIfSmi(value, false_label);
- // Check for undetectable objects and jump to the true branch in this case.
- __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
- __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
- EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable);
-
- } else if (String::Equals(type_name, factory->function_string())) {
- DCHECK(instr->temp1() != NULL);
- Register scratch = ToRegister(instr->temp1());
-
- __ JumpIfSmi(value, false_label);
- __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
- __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
- __ And(scratch, scratch,
- (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
- EmitCompareAndBranch(instr, eq, scratch, 1 << Map::kIsCallable);
-
- } else if (String::Equals(type_name, factory->object_string())) {
- DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
- Register map = ToRegister(instr->temp1());
- Register scratch = ToRegister(instr->temp2());
-
- __ JumpIfSmi(value, false_label);
- __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label);
- STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
- __ JumpIfObjectType(value, map, scratch, FIRST_JS_RECEIVER_TYPE,
- false_label, lt);
- // Check for callable or undetectable objects => false.
- __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
- EmitTestAndBranch(instr, eq, scratch,
- (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
-
- } else {
- __ B(false_label);
- }
-}
-
-
-void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
- __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value()));
-}
-
-
-void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
- Register object = ToRegister(instr->value());
- Register map = ToRegister(instr->map());
- Register temp = ToRegister(instr->temp());
- __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
- __ Cmp(map, temp);
- DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap);
-}
-
-
-void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
- Register receiver = ToRegister(instr->receiver());
- Register function = ToRegister(instr->function());
- Register result = ToRegister(instr->result());
-
- // If the receiver is null or undefined, we have to pass the global object as
- // a receiver to normal functions. Values have to be passed unchanged to
- // builtins and strict-mode functions.
- Label global_object, done, copy_receiver;
-
- if (!instr->hydrogen()->known_function()) {
- __ Ldr(result, FieldMemOperand(function,
- JSFunction::kSharedFunctionInfoOffset));
-
- // CompilerHints is an int32 field. See objects.h.
- __ Ldr(result.W(),
- FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset));
-
- // Do not transform the receiver to object for strict mode functions.
- __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, &copy_receiver);
-
- // Do not transform the receiver to object for builtins.
- __ Tbnz(result, SharedFunctionInfo::kNative, &copy_receiver);
- }
-
- // Normal function. Replace undefined or null with global receiver.
- __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object);
- __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object);
-
- // Deoptimize if the receiver is not a JS object.
- DeoptimizeIfSmi(receiver, instr, DeoptimizeReason::kSmi);
- __ CompareObjectType(receiver, result, result, FIRST_JS_RECEIVER_TYPE);
- __ B(ge, &copy_receiver);
- Deoptimize(instr, DeoptimizeReason::kNotAJavaScriptObject);
-
- __ Bind(&global_object);
- __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
- __ Ldr(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
- __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
- __ B(&done);
-
- __ Bind(&copy_receiver);
- __ Mov(result, receiver);
- __ Bind(&done);
-}
-
-
-void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
- Register result,
- Register object,
- Register index) {
- PushSafepointRegistersScope scope(this);
- __ Push(object);
- __ Push(index);
- __ Mov(cp, 0);
- __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
- RecordSafepointWithRegisters(
- instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
- __ StoreToSafepointRegisterSlot(x0, result);
-}
-
-
-void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
- class DeferredLoadMutableDouble final : public LDeferredCode {
- public:
- DeferredLoadMutableDouble(LCodeGen* codegen,
- LLoadFieldByIndex* instr,
- Register result,
- Register object,
- Register index)
- : LDeferredCode(codegen),
- instr_(instr),
- result_(result),
- object_(object),
- index_(index) {
- }
- void Generate() override {
- codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
- }
- LInstruction* instr() override { return instr_; }
-
- private:
- LLoadFieldByIndex* instr_;
- Register result_;
- Register object_;
- Register index_;
- };
- Register object = ToRegister(instr->object());
- Register index = ToRegister(instr->index());
- Register result = ToRegister(instr->result());
-
- __ AssertSmi(index);
-
- DeferredLoadMutableDouble* deferred;
- deferred = new(zone()) DeferredLoadMutableDouble(
- this, instr, result, object, index);
-
- Label out_of_object, done;
-
- __ TestAndBranchIfAnySet(
- index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry());
- __ Mov(index, Operand(index, ASR, 1));
-
- __ Cmp(index, Smi::kZero);
- __ B(lt, &out_of_object);
-
- STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
- __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
- __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize));
-
- __ B(&done);
-
- __ Bind(&out_of_object);
- __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
- // Index is equal to negated out of object property index plus 1.
- __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
- __ Ldr(result, FieldMemOperand(result,
- FixedArray::kHeaderSize - kPointerSize));
- __ Bind(deferred->exit());
- __ Bind(&done);
-}
-
-} // namespace internal
-} // namespace v8