diff options
Diffstat (limited to 'deps/v8/src/crankshaft/arm64/lithium-codegen-arm64.cc')
-rw-r--r-- | deps/v8/src/crankshaft/arm64/lithium-codegen-arm64.cc | 5593 |
1 files changed, 0 insertions, 5593 deletions
diff --git a/deps/v8/src/crankshaft/arm64/lithium-codegen-arm64.cc b/deps/v8/src/crankshaft/arm64/lithium-codegen-arm64.cc deleted file mode 100644 index c86971c6ce..0000000000 --- a/deps/v8/src/crankshaft/arm64/lithium-codegen-arm64.cc +++ /dev/null @@ -1,5593 +0,0 @@ -// Copyright 2013 the V8 project authors. All rights reserved. -// Use of this source code is governed by a BSD-style license that can be -// found in the LICENSE file. - -#include "src/crankshaft/arm64/lithium-codegen-arm64.h" - -#include "src/arm64/frames-arm64.h" -#include "src/arm64/macro-assembler-arm64-inl.h" -#include "src/base/bits.h" -#include "src/builtins/builtins-constructor.h" -#include "src/code-factory.h" -#include "src/code-stubs.h" -#include "src/crankshaft/arm64/lithium-gap-resolver-arm64.h" -#include "src/crankshaft/hydrogen-osr.h" -#include "src/ic/ic.h" -#include "src/ic/stub-cache.h" -#include "src/objects-inl.h" - -namespace v8 { -namespace internal { - - -class SafepointGenerator final : public CallWrapper { - public: - SafepointGenerator(LCodeGen* codegen, - LPointerMap* pointers, - Safepoint::DeoptMode mode) - : codegen_(codegen), - pointers_(pointers), - deopt_mode_(mode) { } - virtual ~SafepointGenerator() { } - - virtual void BeforeCall(int call_size) const { } - - virtual void AfterCall() const { - codegen_->RecordSafepoint(pointers_, deopt_mode_); - } - - private: - LCodeGen* codegen_; - LPointerMap* pointers_; - Safepoint::DeoptMode deopt_mode_; -}; - -LCodeGen::PushSafepointRegistersScope::PushSafepointRegistersScope( - LCodeGen* codegen) - : codegen_(codegen) { - DCHECK(codegen_->info()->is_calling()); - DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple); - codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters; - - UseScratchRegisterScope temps(codegen_->masm_); - // Preserve the value of lr which must be saved on the stack (the call to - // the stub will clobber it). - Register to_be_pushed_lr = - temps.UnsafeAcquire(StoreRegistersStateStub::to_be_pushed_lr()); - codegen_->masm_->Mov(to_be_pushed_lr, lr); - StoreRegistersStateStub stub(codegen_->isolate()); - codegen_->masm_->CallStub(&stub); -} - -LCodeGen::PushSafepointRegistersScope::~PushSafepointRegistersScope() { - DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters); - RestoreRegistersStateStub stub(codegen_->isolate()); - codegen_->masm_->CallStub(&stub); - codegen_->expected_safepoint_kind_ = Safepoint::kSimple; -} - -#define __ masm()-> - -// Emit code to branch if the given condition holds. -// The code generated here doesn't modify the flags and they must have -// been set by some prior instructions. -// -// The EmitInverted function simply inverts the condition. -class BranchOnCondition : public BranchGenerator { - public: - BranchOnCondition(LCodeGen* codegen, Condition cond) - : BranchGenerator(codegen), - cond_(cond) { } - - virtual void Emit(Label* label) const { - __ B(cond_, label); - } - - virtual void EmitInverted(Label* label) const { - if (cond_ != al) { - __ B(NegateCondition(cond_), label); - } - } - - private: - Condition cond_; -}; - - -// Emit code to compare lhs and rhs and branch if the condition holds. -// This uses MacroAssembler's CompareAndBranch function so it will handle -// converting the comparison to Cbz/Cbnz if the right-hand side is 0. -// -// EmitInverted still compares the two operands but inverts the condition. -class CompareAndBranch : public BranchGenerator { - public: - CompareAndBranch(LCodeGen* codegen, - Condition cond, - const Register& lhs, - const Operand& rhs) - : BranchGenerator(codegen), - cond_(cond), - lhs_(lhs), - rhs_(rhs) { } - - virtual void Emit(Label* label) const { - __ CompareAndBranch(lhs_, rhs_, cond_, label); - } - - virtual void EmitInverted(Label* label) const { - __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label); - } - - private: - Condition cond_; - const Register& lhs_; - const Operand& rhs_; -}; - - -// Test the input with the given mask and branch if the condition holds. -// If the condition is 'eq' or 'ne' this will use MacroAssembler's -// TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the -// conversion to Tbz/Tbnz when possible. -class TestAndBranch : public BranchGenerator { - public: - TestAndBranch(LCodeGen* codegen, - Condition cond, - const Register& value, - uint64_t mask) - : BranchGenerator(codegen), - cond_(cond), - value_(value), - mask_(mask) { } - - virtual void Emit(Label* label) const { - switch (cond_) { - case eq: - __ TestAndBranchIfAllClear(value_, mask_, label); - break; - case ne: - __ TestAndBranchIfAnySet(value_, mask_, label); - break; - default: - __ Tst(value_, mask_); - __ B(cond_, label); - } - } - - virtual void EmitInverted(Label* label) const { - // The inverse of "all clear" is "any set" and vice versa. - switch (cond_) { - case eq: - __ TestAndBranchIfAnySet(value_, mask_, label); - break; - case ne: - __ TestAndBranchIfAllClear(value_, mask_, label); - break; - default: - __ Tst(value_, mask_); - __ B(NegateCondition(cond_), label); - } - } - - private: - Condition cond_; - const Register& value_; - uint64_t mask_; -}; - - -// Test the input and branch if it is non-zero and not a NaN. -class BranchIfNonZeroNumber : public BranchGenerator { - public: - BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value, - const FPRegister& scratch) - : BranchGenerator(codegen), value_(value), scratch_(scratch) { } - - virtual void Emit(Label* label) const { - __ Fabs(scratch_, value_); - // Compare with 0.0. Because scratch_ is positive, the result can be one of - // nZCv (equal), nzCv (greater) or nzCV (unordered). - __ Fcmp(scratch_, 0.0); - __ B(gt, label); - } - - virtual void EmitInverted(Label* label) const { - __ Fabs(scratch_, value_); - __ Fcmp(scratch_, 0.0); - __ B(le, label); - } - - private: - const FPRegister& value_; - const FPRegister& scratch_; -}; - - -// Test the input and branch if it is a heap number. -class BranchIfHeapNumber : public BranchGenerator { - public: - BranchIfHeapNumber(LCodeGen* codegen, const Register& value) - : BranchGenerator(codegen), value_(value) { } - - virtual void Emit(Label* label) const { - __ JumpIfHeapNumber(value_, label); - } - - virtual void EmitInverted(Label* label) const { - __ JumpIfNotHeapNumber(value_, label); - } - - private: - const Register& value_; -}; - - -// Test the input and branch if it is the specified root value. -class BranchIfRoot : public BranchGenerator { - public: - BranchIfRoot(LCodeGen* codegen, const Register& value, - Heap::RootListIndex index) - : BranchGenerator(codegen), value_(value), index_(index) { } - - virtual void Emit(Label* label) const { - __ JumpIfRoot(value_, index_, label); - } - - virtual void EmitInverted(Label* label) const { - __ JumpIfNotRoot(value_, index_, label); - } - - private: - const Register& value_; - const Heap::RootListIndex index_; -}; - - -void LCodeGen::WriteTranslation(LEnvironment* environment, - Translation* translation) { - if (environment == NULL) return; - - // The translation includes one command per value in the environment. - int translation_size = environment->translation_size(); - - WriteTranslation(environment->outer(), translation); - WriteTranslationFrame(environment, translation); - - int object_index = 0; - int dematerialized_index = 0; - for (int i = 0; i < translation_size; ++i) { - LOperand* value = environment->values()->at(i); - AddToTranslation( - environment, translation, value, environment->HasTaggedValueAt(i), - environment->HasUint32ValueAt(i), &object_index, &dematerialized_index); - } -} - - -void LCodeGen::AddToTranslation(LEnvironment* environment, - Translation* translation, - LOperand* op, - bool is_tagged, - bool is_uint32, - int* object_index_pointer, - int* dematerialized_index_pointer) { - if (op == LEnvironment::materialization_marker()) { - int object_index = (*object_index_pointer)++; - if (environment->ObjectIsDuplicateAt(object_index)) { - int dupe_of = environment->ObjectDuplicateOfAt(object_index); - translation->DuplicateObject(dupe_of); - return; - } - int object_length = environment->ObjectLengthAt(object_index); - if (environment->ObjectIsArgumentsAt(object_index)) { - translation->BeginArgumentsObject(object_length); - } else { - translation->BeginCapturedObject(object_length); - } - int dematerialized_index = *dematerialized_index_pointer; - int env_offset = environment->translation_size() + dematerialized_index; - *dematerialized_index_pointer += object_length; - for (int i = 0; i < object_length; ++i) { - LOperand* value = environment->values()->at(env_offset + i); - AddToTranslation(environment, - translation, - value, - environment->HasTaggedValueAt(env_offset + i), - environment->HasUint32ValueAt(env_offset + i), - object_index_pointer, - dematerialized_index_pointer); - } - return; - } - - if (op->IsStackSlot()) { - int index = op->index(); - if (is_tagged) { - translation->StoreStackSlot(index); - } else if (is_uint32) { - translation->StoreUint32StackSlot(index); - } else { - translation->StoreInt32StackSlot(index); - } - } else if (op->IsDoubleStackSlot()) { - int index = op->index(); - translation->StoreDoubleStackSlot(index); - } else if (op->IsRegister()) { - Register reg = ToRegister(op); - if (is_tagged) { - translation->StoreRegister(reg); - } else if (is_uint32) { - translation->StoreUint32Register(reg); - } else { - translation->StoreInt32Register(reg); - } - } else if (op->IsDoubleRegister()) { - DoubleRegister reg = ToDoubleRegister(op); - translation->StoreDoubleRegister(reg); - } else if (op->IsConstantOperand()) { - HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); - int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); - translation->StoreLiteral(src_index); - } else { - UNREACHABLE(); - } -} - - -void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, - Safepoint::DeoptMode mode) { - environment->set_has_been_used(); - if (!environment->HasBeenRegistered()) { - int frame_count = 0; - int jsframe_count = 0; - for (LEnvironment* e = environment; e != NULL; e = e->outer()) { - ++frame_count; - if (e->frame_type() == JS_FUNCTION) { - ++jsframe_count; - } - } - Translation translation(&translations_, frame_count, jsframe_count, zone()); - WriteTranslation(environment, &translation); - int deoptimization_index = deoptimizations_.length(); - int pc_offset = masm()->pc_offset(); - environment->Register(deoptimization_index, - translation.index(), - (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); - deoptimizations_.Add(environment, zone()); - } -} - - -void LCodeGen::CallCode(Handle<Code> code, - RelocInfo::Mode mode, - LInstruction* instr) { - CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); -} - - -void LCodeGen::CallCodeGeneric(Handle<Code> code, - RelocInfo::Mode mode, - LInstruction* instr, - SafepointMode safepoint_mode) { - DCHECK(instr != NULL); - - Assembler::BlockPoolsScope scope(masm_); - __ Call(code, mode); - RecordSafepointWithLazyDeopt(instr, safepoint_mode); - - if ((code->kind() == Code::BINARY_OP_IC) || - (code->kind() == Code::COMPARE_IC)) { - // Signal that we don't inline smi code before these stubs in the - // optimizing code generator. - InlineSmiCheckInfo::EmitNotInlined(masm()); - } -} - - -void LCodeGen::DoCallNewArray(LCallNewArray* instr) { - DCHECK(instr->IsMarkedAsCall()); - DCHECK(ToRegister(instr->context()).is(cp)); - DCHECK(ToRegister(instr->constructor()).is(x1)); - - __ Mov(x0, Operand(instr->arity())); - __ Mov(x2, instr->hydrogen()->site()); - - ElementsKind kind = instr->hydrogen()->elements_kind(); - AllocationSiteOverrideMode override_mode = - (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) - ? DISABLE_ALLOCATION_SITES - : DONT_OVERRIDE; - - if (instr->arity() == 0) { - ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); - CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); - } else if (instr->arity() == 1) { - Label done; - if (IsFastPackedElementsKind(kind)) { - Label packed_case; - - // We might need to create a holey array; look at the first argument. - __ Peek(x10, 0); - __ Cbz(x10, &packed_case); - - ElementsKind holey_kind = GetHoleyElementsKind(kind); - ArraySingleArgumentConstructorStub stub(isolate(), - holey_kind, - override_mode); - CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); - __ B(&done); - __ Bind(&packed_case); - } - - ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); - CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); - __ Bind(&done); - } else { - ArrayNArgumentsConstructorStub stub(isolate()); - CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); - } - RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); - - DCHECK(ToRegister(instr->result()).is(x0)); -} - - -void LCodeGen::CallRuntime(const Runtime::Function* function, - int num_arguments, - LInstruction* instr, - SaveFPRegsMode save_doubles) { - DCHECK(instr != NULL); - - __ CallRuntime(function, num_arguments, save_doubles); - - RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); -} - - -void LCodeGen::LoadContextFromDeferred(LOperand* context) { - if (context->IsRegister()) { - __ Mov(cp, ToRegister(context)); - } else if (context->IsStackSlot()) { - __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer)); - } else if (context->IsConstantOperand()) { - HConstant* constant = - chunk_->LookupConstant(LConstantOperand::cast(context)); - __ LoadHeapObject(cp, - Handle<HeapObject>::cast(constant->handle(isolate()))); - } else { - UNREACHABLE(); - } -} - - -void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, - int argc, - LInstruction* instr, - LOperand* context) { - if (context != nullptr) LoadContextFromDeferred(context); - __ CallRuntimeSaveDoubles(id); - RecordSafepointWithRegisters( - instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); -} - - -void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr, - SafepointMode safepoint_mode) { - if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { - RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); - } else { - DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); - RecordSafepointWithRegisters( - instr->pointer_map(), 0, Safepoint::kLazyDeopt); - } -} - - -void LCodeGen::RecordSafepoint(LPointerMap* pointers, - Safepoint::Kind kind, - int arguments, - Safepoint::DeoptMode deopt_mode) { - DCHECK(expected_safepoint_kind_ == kind); - - const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); - Safepoint safepoint = safepoints_.DefineSafepoint( - masm(), kind, arguments, deopt_mode); - - for (int i = 0; i < operands->length(); i++) { - LOperand* pointer = operands->at(i); - if (pointer->IsStackSlot()) { - safepoint.DefinePointerSlot(pointer->index(), zone()); - } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { - safepoint.DefinePointerRegister(ToRegister(pointer), zone()); - } - } -} - -void LCodeGen::RecordSafepoint(LPointerMap* pointers, - Safepoint::DeoptMode deopt_mode) { - RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); -} - - -void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { - LPointerMap empty_pointers(zone()); - RecordSafepoint(&empty_pointers, deopt_mode); -} - - -void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, - int arguments, - Safepoint::DeoptMode deopt_mode) { - RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode); -} - - -bool LCodeGen::GenerateCode() { - LPhase phase("Z_Code generation", chunk()); - DCHECK(is_unused()); - status_ = GENERATING; - - // Open a frame scope to indicate that there is a frame on the stack. The - // NONE indicates that the scope shouldn't actually generate code to set up - // the frame (that is done in GeneratePrologue). - FrameScope frame_scope(masm_, StackFrame::NONE); - - return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && - GenerateJumpTable() && GenerateSafepointTable(); -} - - -void LCodeGen::SaveCallerDoubles() { - DCHECK(info()->saves_caller_doubles()); - DCHECK(NeedsEagerFrame()); - Comment(";;; Save clobbered callee double registers"); - BitVector* doubles = chunk()->allocated_double_registers(); - BitVector::Iterator iterator(doubles); - int count = 0; - while (!iterator.Done()) { - // TODO(all): Is this supposed to save just the callee-saved doubles? It - // looks like it's saving all of them. - FPRegister value = FPRegister::from_code(iterator.Current()); - __ Poke(value, count * kDoubleSize); - iterator.Advance(); - count++; - } -} - - -void LCodeGen::RestoreCallerDoubles() { - DCHECK(info()->saves_caller_doubles()); - DCHECK(NeedsEagerFrame()); - Comment(";;; Restore clobbered callee double registers"); - BitVector* doubles = chunk()->allocated_double_registers(); - BitVector::Iterator iterator(doubles); - int count = 0; - while (!iterator.Done()) { - // TODO(all): Is this supposed to restore just the callee-saved doubles? It - // looks like it's restoring all of them. - FPRegister value = FPRegister::from_code(iterator.Current()); - __ Peek(value, count * kDoubleSize); - iterator.Advance(); - count++; - } -} - - -bool LCodeGen::GeneratePrologue() { - DCHECK(is_generating()); - - if (info()->IsOptimizing()) { - ProfileEntryHookStub::MaybeCallEntryHook(masm_); - } - - DCHECK(__ StackPointer().Is(jssp)); - info()->set_prologue_offset(masm_->pc_offset()); - if (NeedsEagerFrame()) { - if (info()->IsStub()) { - __ StubPrologue( - StackFrame::STUB, - GetStackSlotCount() + TypedFrameConstants::kFixedSlotCount); - } else { - __ Prologue(info()->GeneratePreagedPrologue()); - // Reserve space for the stack slots needed by the code. - int slots = GetStackSlotCount(); - if (slots > 0) { - __ Claim(slots, kPointerSize); - } - } - frame_is_built_ = true; - } - - if (info()->saves_caller_doubles()) { - SaveCallerDoubles(); - } - return !is_aborted(); -} - - -void LCodeGen::DoPrologue(LPrologue* instr) { - Comment(";;; Prologue begin"); - - // Allocate a local context if needed. - if (info()->scope()->NeedsContext()) { - Comment(";;; Allocate local context"); - bool need_write_barrier = true; - // Argument to NewContext is the function, which is in x1. - int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; - Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt; - if (info()->scope()->is_script_scope()) { - __ Mov(x10, Operand(info()->scope()->scope_info())); - __ Push(x1, x10); - __ CallRuntime(Runtime::kNewScriptContext); - deopt_mode = Safepoint::kLazyDeopt; - } else { - if (slots <= ConstructorBuiltins::MaximumFunctionContextSlots()) { - Callable callable = CodeFactory::FastNewFunctionContext( - isolate(), info()->scope()->scope_type()); - __ Mov(FastNewFunctionContextDescriptor::SlotsRegister(), slots); - __ Call(callable.code(), RelocInfo::CODE_TARGET); - // Result of the FastNewFunctionContext builtin is always in new space. - need_write_barrier = false; - } else { - __ Push(x1); - __ Push(Smi::FromInt(info()->scope()->scope_type())); - __ CallRuntime(Runtime::kNewFunctionContext); - } - } - RecordSafepoint(deopt_mode); - // Context is returned in x0. It replaces the context passed to us. It's - // saved in the stack and kept live in cp. - __ Mov(cp, x0); - __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset)); - // Copy any necessary parameters into the context. - int num_parameters = info()->scope()->num_parameters(); - int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0; - for (int i = first_parameter; i < num_parameters; i++) { - Variable* var = (i == -1) ? info()->scope()->receiver() - : info()->scope()->parameter(i); - if (var->IsContextSlot()) { - Register value = x0; - Register scratch = x3; - - int parameter_offset = StandardFrameConstants::kCallerSPOffset + - (num_parameters - 1 - i) * kPointerSize; - // Load parameter from stack. - __ Ldr(value, MemOperand(fp, parameter_offset)); - // Store it in the context. - MemOperand target = ContextMemOperand(cp, var->index()); - __ Str(value, target); - // Update the write barrier. This clobbers value and scratch. - if (need_write_barrier) { - __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()), - value, scratch, GetLinkRegisterState(), - kSaveFPRegs); - } else if (FLAG_debug_code) { - Label done; - __ JumpIfInNewSpace(cp, &done); - __ Abort(kExpectedNewSpaceObject); - __ bind(&done); - } - } - } - Comment(";;; End allocate local context"); - } - - Comment(";;; Prologue end"); -} - - -void LCodeGen::GenerateOsrPrologue() { - // Generate the OSR entry prologue at the first unknown OSR value, or if there - // are none, at the OSR entrypoint instruction. - if (osr_pc_offset_ >= 0) return; - - osr_pc_offset_ = masm()->pc_offset(); - - // Adjust the frame size, subsuming the unoptimized frame into the - // optimized frame. - int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); - DCHECK(slots >= 0); - __ Claim(slots); -} - - -void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { - if (instr->IsCall()) { - EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); - } - if (!instr->IsLazyBailout() && !instr->IsGap()) { - safepoints_.BumpLastLazySafepointIndex(); - } -} - - -bool LCodeGen::GenerateDeferredCode() { - DCHECK(is_generating()); - if (deferred_.length() > 0) { - for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) { - LDeferredCode* code = deferred_[i]; - - HValue* value = - instructions_->at(code->instruction_index())->hydrogen_value(); - RecordAndWritePosition(value->position()); - - Comment(";;; <@%d,#%d> " - "-------------------- Deferred %s --------------------", - code->instruction_index(), - code->instr()->hydrogen_value()->id(), - code->instr()->Mnemonic()); - - __ Bind(code->entry()); - - if (NeedsDeferredFrame()) { - Comment(";;; Build frame"); - DCHECK(!frame_is_built_); - DCHECK(info()->IsStub()); - frame_is_built_ = true; - __ Push(lr, fp); - __ Mov(fp, StackFrame::TypeToMarker(StackFrame::STUB)); - __ Push(fp); - __ Add(fp, __ StackPointer(), - TypedFrameConstants::kFixedFrameSizeFromFp); - Comment(";;; Deferred code"); - } - - code->Generate(); - - if (NeedsDeferredFrame()) { - Comment(";;; Destroy frame"); - DCHECK(frame_is_built_); - __ Pop(xzr, fp, lr); - frame_is_built_ = false; - } - - __ B(code->exit()); - } - } - - // Force constant pool emission at the end of the deferred code to make - // sure that no constant pools are emitted after deferred code because - // deferred code generation is the last step which generates code. The two - // following steps will only output data used by crakshaft. - masm()->CheckConstPool(true, false); - - return !is_aborted(); -} - - -bool LCodeGen::GenerateJumpTable() { - Label needs_frame, call_deopt_entry; - - if (jump_table_.length() > 0) { - Comment(";;; -------------------- Jump table --------------------"); - Address base = jump_table_[0]->address; - - UseScratchRegisterScope temps(masm()); - Register entry_offset = temps.AcquireX(); - - int length = jump_table_.length(); - for (int i = 0; i < length; i++) { - Deoptimizer::JumpTableEntry* table_entry = jump_table_[i]; - __ Bind(&table_entry->label); - - Address entry = table_entry->address; - DeoptComment(table_entry->deopt_info); - - // Second-level deopt table entries are contiguous and small, so instead - // of loading the full, absolute address of each one, load the base - // address and add an immediate offset. - __ Mov(entry_offset, entry - base); - - if (table_entry->needs_frame) { - DCHECK(!info()->saves_caller_doubles()); - Comment(";;; call deopt with frame"); - // Save lr before Bl, fp will be adjusted in the needs_frame code. - __ Push(lr, fp); - // Reuse the existing needs_frame code. - __ Bl(&needs_frame); - } else { - // There is nothing special to do, so just continue to the second-level - // table. - __ Bl(&call_deopt_entry); - } - - masm()->CheckConstPool(false, false); - } - - if (needs_frame.is_linked()) { - // This variant of deopt can only be used with stubs. Since we don't - // have a function pointer to install in the stack frame that we're - // building, install a special marker there instead. - DCHECK(info()->IsStub()); - - Comment(";;; needs_frame common code"); - UseScratchRegisterScope temps(masm()); - Register stub_marker = temps.AcquireX(); - __ Bind(&needs_frame); - __ Mov(stub_marker, StackFrame::TypeToMarker(StackFrame::STUB)); - __ Push(cp, stub_marker); - __ Add(fp, __ StackPointer(), 2 * kPointerSize); - } - - // Generate common code for calling the second-level deopt table. - __ Bind(&call_deopt_entry); - - if (info()->saves_caller_doubles()) { - DCHECK(info()->IsStub()); - RestoreCallerDoubles(); - } - - Register deopt_entry = temps.AcquireX(); - __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base), - RelocInfo::RUNTIME_ENTRY)); - __ Add(deopt_entry, deopt_entry, entry_offset); - __ Br(deopt_entry); - } - - // Force constant pool emission at the end of the deopt jump table to make - // sure that no constant pools are emitted after. - masm()->CheckConstPool(true, false); - - // The deoptimization jump table is the last part of the instruction - // sequence. Mark the generated code as done unless we bailed out. - if (!is_aborted()) status_ = DONE; - return !is_aborted(); -} - - -bool LCodeGen::GenerateSafepointTable() { - DCHECK(is_done()); - // We do not know how much data will be emitted for the safepoint table, so - // force emission of the veneer pool. - masm()->CheckVeneerPool(true, true); - safepoints_.Emit(masm(), GetTotalFrameSlotCount()); - return !is_aborted(); -} - - -void LCodeGen::FinishCode(Handle<Code> code) { - DCHECK(is_done()); - code->set_stack_slots(GetTotalFrameSlotCount()); - code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); - PopulateDeoptimizationData(code); -} - -void LCodeGen::DeoptimizeBranch( - LInstruction* instr, DeoptimizeReason deopt_reason, BranchType branch_type, - Register reg, int bit, Deoptimizer::BailoutType* override_bailout_type) { - LEnvironment* environment = instr->environment(); - RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); - Deoptimizer::BailoutType bailout_type = - info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER; - - if (override_bailout_type != NULL) { - bailout_type = *override_bailout_type; - } - - DCHECK(environment->HasBeenRegistered()); - int id = environment->deoptimization_index(); - Address entry = - Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); - - if (entry == NULL) { - Abort(kBailoutWasNotPrepared); - } - - if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) { - Label not_zero; - ExternalReference count = ExternalReference::stress_deopt_count(isolate()); - - __ Push(x0, x1, x2); - __ Mrs(x2, NZCV); - __ Mov(x0, count); - __ Ldr(w1, MemOperand(x0)); - __ Subs(x1, x1, 1); - __ B(gt, ¬_zero); - __ Mov(w1, FLAG_deopt_every_n_times); - __ Str(w1, MemOperand(x0)); - __ Pop(x2, x1, x0); - DCHECK(frame_is_built_); - __ Call(entry, RelocInfo::RUNTIME_ENTRY); - __ Unreachable(); - - __ Bind(¬_zero); - __ Str(w1, MemOperand(x0)); - __ Msr(NZCV, x2); - __ Pop(x2, x1, x0); - } - - if (info()->ShouldTrapOnDeopt()) { - Label dont_trap; - __ B(&dont_trap, InvertBranchType(branch_type), reg, bit); - __ Debug("trap_on_deopt", __LINE__, BREAK); - __ Bind(&dont_trap); - } - - Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id); - - DCHECK(info()->IsStub() || frame_is_built_); - // Go through jump table if we need to build frame, or restore caller doubles. - if (branch_type == always && - frame_is_built_ && !info()->saves_caller_doubles()) { - DeoptComment(deopt_info); - __ Call(entry, RelocInfo::RUNTIME_ENTRY); - } else { - Deoptimizer::JumpTableEntry* table_entry = - new (zone()) Deoptimizer::JumpTableEntry( - entry, deopt_info, bailout_type, !frame_is_built_); - // We often have several deopts to the same entry, reuse the last - // jump entry if this is the case. - if (FLAG_trace_deopt || isolate()->is_profiling() || - jump_table_.is_empty() || - !table_entry->IsEquivalentTo(*jump_table_.last())) { - jump_table_.Add(table_entry, zone()); - } - __ B(&jump_table_.last()->label, branch_type, reg, bit); - } -} - -void LCodeGen::Deoptimize(LInstruction* instr, DeoptimizeReason deopt_reason, - Deoptimizer::BailoutType* override_bailout_type) { - DeoptimizeBranch(instr, deopt_reason, always, NoReg, -1, - override_bailout_type); -} - -void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr, - DeoptimizeReason deopt_reason) { - DeoptimizeBranch(instr, deopt_reason, static_cast<BranchType>(cond)); -} - -void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr, - DeoptimizeReason deopt_reason) { - DeoptimizeBranch(instr, deopt_reason, reg_zero, rt); -} - -void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr, - DeoptimizeReason deopt_reason) { - DeoptimizeBranch(instr, deopt_reason, reg_not_zero, rt); -} - -void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr, - DeoptimizeReason deopt_reason) { - int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit; - DeoptimizeIfBitSet(rt, sign_bit, instr, deopt_reason); -} - -void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr, - DeoptimizeReason deopt_reason) { - DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, deopt_reason); -} - -void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr, - DeoptimizeReason deopt_reason) { - DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, deopt_reason); -} - -void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index, - LInstruction* instr, - DeoptimizeReason deopt_reason) { - __ CompareRoot(rt, index); - DeoptimizeIf(eq, instr, deopt_reason); -} - -void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index, - LInstruction* instr, - DeoptimizeReason deopt_reason) { - __ CompareRoot(rt, index); - DeoptimizeIf(ne, instr, deopt_reason); -} - -void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr, - DeoptimizeReason deopt_reason) { - __ TestForMinusZero(input); - DeoptimizeIf(vs, instr, deopt_reason); -} - - -void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) { - __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex); - DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber); -} - -void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr, - DeoptimizeReason deopt_reason) { - DeoptimizeBranch(instr, deopt_reason, reg_bit_set, rt, bit); -} - -void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr, - DeoptimizeReason deopt_reason) { - DeoptimizeBranch(instr, deopt_reason, reg_bit_clear, rt, bit); -} - - -void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { - if (info()->ShouldEnsureSpaceForLazyDeopt()) { - // Ensure that we have enough space after the previous lazy-bailout - // instruction for patching the code here. - intptr_t current_pc = masm()->pc_offset(); - - if (current_pc < (last_lazy_deopt_pc_ + space_needed)) { - ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; - DCHECK((padding_size % kInstructionSize) == 0); - InstructionAccurateScope instruction_accurate( - masm(), padding_size / kInstructionSize); - - while (padding_size > 0) { - __ nop(); - padding_size -= kInstructionSize; - } - } - } - last_lazy_deopt_pc_ = masm()->pc_offset(); -} - - -Register LCodeGen::ToRegister(LOperand* op) const { - // TODO(all): support zero register results, as ToRegister32. - DCHECK((op != NULL) && op->IsRegister()); - return Register::from_code(op->index()); -} - - -Register LCodeGen::ToRegister32(LOperand* op) const { - DCHECK(op != NULL); - if (op->IsConstantOperand()) { - // If this is a constant operand, the result must be the zero register. - DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0); - return wzr; - } else { - return ToRegister(op).W(); - } -} - - -Smi* LCodeGen::ToSmi(LConstantOperand* op) const { - HConstant* constant = chunk_->LookupConstant(op); - return Smi::FromInt(constant->Integer32Value()); -} - - -DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { - DCHECK((op != NULL) && op->IsDoubleRegister()); - return DoubleRegister::from_code(op->index()); -} - - -Operand LCodeGen::ToOperand(LOperand* op) { - DCHECK(op != NULL); - if (op->IsConstantOperand()) { - LConstantOperand* const_op = LConstantOperand::cast(op); - HConstant* constant = chunk()->LookupConstant(const_op); - Representation r = chunk_->LookupLiteralRepresentation(const_op); - if (r.IsSmi()) { - DCHECK(constant->HasSmiValue()); - return Operand(Smi::FromInt(constant->Integer32Value())); - } else if (r.IsInteger32()) { - DCHECK(constant->HasInteger32Value()); - return Operand(constant->Integer32Value()); - } else if (r.IsDouble()) { - Abort(kToOperandUnsupportedDoubleImmediate); - } - DCHECK(r.IsTagged()); - return Operand(constant->handle(isolate())); - } else if (op->IsRegister()) { - return Operand(ToRegister(op)); - } else if (op->IsDoubleRegister()) { - Abort(kToOperandIsDoubleRegisterUnimplemented); - return Operand(0); - } - // Stack slots not implemented, use ToMemOperand instead. - UNREACHABLE(); - return Operand(0); -} - - -Operand LCodeGen::ToOperand32(LOperand* op) { - DCHECK(op != NULL); - if (op->IsRegister()) { - return Operand(ToRegister32(op)); - } else if (op->IsConstantOperand()) { - LConstantOperand* const_op = LConstantOperand::cast(op); - HConstant* constant = chunk()->LookupConstant(const_op); - Representation r = chunk_->LookupLiteralRepresentation(const_op); - if (r.IsInteger32()) { - return Operand(constant->Integer32Value()); - } else { - // Other constants not implemented. - Abort(kToOperand32UnsupportedImmediate); - } - } - // Other cases are not implemented. - UNREACHABLE(); - return Operand(0); -} - - -static int64_t ArgumentsOffsetWithoutFrame(int index) { - DCHECK(index < 0); - return -(index + 1) * kPointerSize; -} - - -MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const { - DCHECK(op != NULL); - DCHECK(!op->IsRegister()); - DCHECK(!op->IsDoubleRegister()); - DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); - if (NeedsEagerFrame()) { - int fp_offset = FrameSlotToFPOffset(op->index()); - // Loads and stores have a bigger reach in positive offset than negative. - // We try to access using jssp (positive offset) first, then fall back to - // fp (negative offset) if that fails. - // - // We can reference a stack slot from jssp only if we know how much we've - // put on the stack. We don't know this in the following cases: - // - stack_mode != kCanUseStackPointer: this is the case when deferred - // code has saved the registers. - // - saves_caller_doubles(): some double registers have been pushed, jssp - // references the end of the double registers and not the end of the stack - // slots. - // In both of the cases above, we _could_ add the tracking information - // required so that we can use jssp here, but in practice it isn't worth it. - if ((stack_mode == kCanUseStackPointer) && - !info()->saves_caller_doubles()) { - int jssp_offset_to_fp = - (pushed_arguments_ + GetTotalFrameSlotCount()) * kPointerSize - - StandardFrameConstants::kFixedFrameSizeAboveFp; - int jssp_offset = fp_offset + jssp_offset_to_fp; - if (masm()->IsImmLSScaled(jssp_offset, LSDoubleWord)) { - return MemOperand(masm()->StackPointer(), jssp_offset); - } - } - return MemOperand(fp, fp_offset); - } else { - // Retrieve parameter without eager stack-frame relative to the - // stack-pointer. - return MemOperand(masm()->StackPointer(), - ArgumentsOffsetWithoutFrame(op->index())); - } -} - - -Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { - HConstant* constant = chunk_->LookupConstant(op); - DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); - return constant->handle(isolate()); -} - - -template <class LI> -Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) { - if (shift_info->shift() == NO_SHIFT) { - return ToOperand32(right); - } else { - return Operand( - ToRegister32(right), - shift_info->shift(), - JSShiftAmountFromLConstant(shift_info->shift_amount())); - } -} - - -bool LCodeGen::IsSmi(LConstantOperand* op) const { - return chunk_->LookupLiteralRepresentation(op).IsSmi(); -} - - -bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const { - return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); -} - - -int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { - HConstant* constant = chunk_->LookupConstant(op); - return constant->Integer32Value(); -} - - -double LCodeGen::ToDouble(LConstantOperand* op) const { - HConstant* constant = chunk_->LookupConstant(op); - DCHECK(constant->HasDoubleValue()); - return constant->DoubleValue(); -} - - -Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { - Condition cond = nv; - switch (op) { - case Token::EQ: - case Token::EQ_STRICT: - cond = eq; - break; - case Token::NE: - case Token::NE_STRICT: - cond = ne; - break; - case Token::LT: - cond = is_unsigned ? lo : lt; - break; - case Token::GT: - cond = is_unsigned ? hi : gt; - break; - case Token::LTE: - cond = is_unsigned ? ls : le; - break; - case Token::GTE: - cond = is_unsigned ? hs : ge; - break; - case Token::IN: - case Token::INSTANCEOF: - default: - UNREACHABLE(); - } - return cond; -} - - -template<class InstrType> -void LCodeGen::EmitBranchGeneric(InstrType instr, - const BranchGenerator& branch) { - int left_block = instr->TrueDestination(chunk_); - int right_block = instr->FalseDestination(chunk_); - - int next_block = GetNextEmittedBlock(); - - if (right_block == left_block) { - EmitGoto(left_block); - } else if (left_block == next_block) { - branch.EmitInverted(chunk_->GetAssemblyLabel(right_block)); - } else { - branch.Emit(chunk_->GetAssemblyLabel(left_block)); - if (right_block != next_block) { - __ B(chunk_->GetAssemblyLabel(right_block)); - } - } -} - - -template<class InstrType> -void LCodeGen::EmitBranch(InstrType instr, Condition condition) { - DCHECK((condition != al) && (condition != nv)); - BranchOnCondition branch(this, condition); - EmitBranchGeneric(instr, branch); -} - - -template<class InstrType> -void LCodeGen::EmitCompareAndBranch(InstrType instr, - Condition condition, - const Register& lhs, - const Operand& rhs) { - DCHECK((condition != al) && (condition != nv)); - CompareAndBranch branch(this, condition, lhs, rhs); - EmitBranchGeneric(instr, branch); -} - - -template<class InstrType> -void LCodeGen::EmitTestAndBranch(InstrType instr, - Condition condition, - const Register& value, - uint64_t mask) { - DCHECK((condition != al) && (condition != nv)); - TestAndBranch branch(this, condition, value, mask); - EmitBranchGeneric(instr, branch); -} - - -template<class InstrType> -void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr, - const FPRegister& value, - const FPRegister& scratch) { - BranchIfNonZeroNumber branch(this, value, scratch); - EmitBranchGeneric(instr, branch); -} - - -template<class InstrType> -void LCodeGen::EmitBranchIfHeapNumber(InstrType instr, - const Register& value) { - BranchIfHeapNumber branch(this, value); - EmitBranchGeneric(instr, branch); -} - - -template<class InstrType> -void LCodeGen::EmitBranchIfRoot(InstrType instr, - const Register& value, - Heap::RootListIndex index) { - BranchIfRoot branch(this, value, index); - EmitBranchGeneric(instr, branch); -} - - -void LCodeGen::DoGap(LGap* gap) { - for (int i = LGap::FIRST_INNER_POSITION; - i <= LGap::LAST_INNER_POSITION; - i++) { - LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); - LParallelMove* move = gap->GetParallelMove(inner_pos); - if (move != NULL) { - resolver_.Resolve(move); - } - } -} - - -void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { - Register arguments = ToRegister(instr->arguments()); - Register result = ToRegister(instr->result()); - - // The pointer to the arguments array come from DoArgumentsElements. - // It does not point directly to the arguments and there is an offest of - // two words that we must take into account when accessing an argument. - // Subtracting the index from length accounts for one, so we add one more. - - if (instr->length()->IsConstantOperand() && - instr->index()->IsConstantOperand()) { - int index = ToInteger32(LConstantOperand::cast(instr->index())); - int length = ToInteger32(LConstantOperand::cast(instr->length())); - int offset = ((length - index) + 1) * kPointerSize; - __ Ldr(result, MemOperand(arguments, offset)); - } else if (instr->index()->IsConstantOperand()) { - Register length = ToRegister32(instr->length()); - int index = ToInteger32(LConstantOperand::cast(instr->index())); - int loc = index - 1; - if (loc != 0) { - __ Sub(result.W(), length, loc); - __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2)); - } else { - __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2)); - } - } else { - Register length = ToRegister32(instr->length()); - Operand index = ToOperand32(instr->index()); - __ Sub(result.W(), length, index); - __ Add(result.W(), result.W(), 1); - __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2)); - } -} - - -void LCodeGen::DoAddE(LAddE* instr) { - Register result = ToRegister(instr->result()); - Register left = ToRegister(instr->left()); - Operand right = Operand(x0); // Dummy initialization. - if (instr->hydrogen()->external_add_type() == AddOfExternalAndTagged) { - right = Operand(ToRegister(instr->right())); - } else if (instr->right()->IsConstantOperand()) { - right = ToInteger32(LConstantOperand::cast(instr->right())); - } else { - right = Operand(ToRegister32(instr->right()), SXTW); - } - - DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)); - __ Add(result, left, right); -} - - -void LCodeGen::DoAddI(LAddI* instr) { - bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); - Register result = ToRegister32(instr->result()); - Register left = ToRegister32(instr->left()); - Operand right = ToShiftedRightOperand32(instr->right(), instr); - - if (can_overflow) { - __ Adds(result, left, right); - DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); - } else { - __ Add(result, left, right); - } -} - - -void LCodeGen::DoAddS(LAddS* instr) { - bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); - Register result = ToRegister(instr->result()); - Register left = ToRegister(instr->left()); - Operand right = ToOperand(instr->right()); - if (can_overflow) { - __ Adds(result, left, right); - DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); - } else { - __ Add(result, left, right); - } -} - - -void LCodeGen::DoAllocate(LAllocate* instr) { - class DeferredAllocate: public LDeferredCode { - public: - DeferredAllocate(LCodeGen* codegen, LAllocate* instr) - : LDeferredCode(codegen), instr_(instr) { } - virtual void Generate() { codegen()->DoDeferredAllocate(instr_); } - virtual LInstruction* instr() { return instr_; } - private: - LAllocate* instr_; - }; - - DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr); - - Register result = ToRegister(instr->result()); - Register temp1 = ToRegister(instr->temp1()); - Register temp2 = ToRegister(instr->temp2()); - - // Allocate memory for the object. - AllocationFlags flags = NO_ALLOCATION_FLAGS; - if (instr->hydrogen()->MustAllocateDoubleAligned()) { - flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); - } - - if (instr->hydrogen()->IsOldSpaceAllocation()) { - DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); - flags = static_cast<AllocationFlags>(flags | PRETENURE); - } - - if (instr->hydrogen()->IsAllocationFoldingDominator()) { - flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR); - } - DCHECK(!instr->hydrogen()->IsAllocationFolded()); - - if (instr->size()->IsConstantOperand()) { - int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); - CHECK(size <= kMaxRegularHeapObjectSize); - __ Allocate(size, result, temp1, temp2, deferred->entry(), flags); - } else { - Register size = ToRegister32(instr->size()); - __ Sxtw(size.X(), size); - __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags); - } - - __ Bind(deferred->exit()); - - if (instr->hydrogen()->MustPrefillWithFiller()) { - Register start = temp1; - Register end = temp2; - Register filler = ToRegister(instr->temp3()); - - __ Sub(start, result, kHeapObjectTag); - - if (instr->size()->IsConstantOperand()) { - int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); - __ Add(end, start, size); - } else { - __ Add(end, start, ToRegister(instr->size())); - } - __ LoadRoot(filler, Heap::kOnePointerFillerMapRootIndex); - __ InitializeFieldsWithFiller(start, end, filler); - } else { - DCHECK(instr->temp3() == NULL); - } -} - - -void LCodeGen::DoDeferredAllocate(LAllocate* instr) { - // TODO(3095996): Get rid of this. For now, we need to make the - // result register contain a valid pointer because it is already - // contained in the register pointer map. - __ Mov(ToRegister(instr->result()), Smi::kZero); - - PushSafepointRegistersScope scope(this); - LoadContextFromDeferred(instr->context()); - // We're in a SafepointRegistersScope so we can use any scratch registers. - Register size = x0; - if (instr->size()->IsConstantOperand()) { - __ Mov(size, ToSmi(LConstantOperand::cast(instr->size()))); - } else { - __ SmiTag(size, ToRegister32(instr->size()).X()); - } - int flags = AllocateDoubleAlignFlag::encode( - instr->hydrogen()->MustAllocateDoubleAligned()); - if (instr->hydrogen()->IsOldSpaceAllocation()) { - DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); - flags = AllocateTargetSpace::update(flags, OLD_SPACE); - } else { - flags = AllocateTargetSpace::update(flags, NEW_SPACE); - } - __ Mov(x10, Smi::FromInt(flags)); - __ Push(size, x10); - - CallRuntimeFromDeferred(Runtime::kAllocateInTargetSpace, 2, instr, nullptr); - __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result())); - - if (instr->hydrogen()->IsAllocationFoldingDominator()) { - AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS; - if (instr->hydrogen()->IsOldSpaceAllocation()) { - DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); - allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE); - } - // If the allocation folding dominator allocate triggered a GC, allocation - // happend in the runtime. We have to reset the top pointer to virtually - // undo the allocation. - ExternalReference allocation_top = - AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags); - Register top_address = x10; - __ Sub(x0, x0, Operand(kHeapObjectTag)); - __ Mov(top_address, Operand(allocation_top)); - __ Str(x0, MemOperand(top_address)); - __ Add(x0, x0, Operand(kHeapObjectTag)); - } -} - -void LCodeGen::DoFastAllocate(LFastAllocate* instr) { - DCHECK(instr->hydrogen()->IsAllocationFolded()); - DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator()); - Register result = ToRegister(instr->result()); - Register scratch1 = ToRegister(instr->temp1()); - Register scratch2 = ToRegister(instr->temp2()); - - AllocationFlags flags = ALLOCATION_FOLDED; - if (instr->hydrogen()->MustAllocateDoubleAligned()) { - flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); - } - if (instr->hydrogen()->IsOldSpaceAllocation()) { - DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); - flags = static_cast<AllocationFlags>(flags | PRETENURE); - } - if (instr->size()->IsConstantOperand()) { - int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); - CHECK(size <= kMaxRegularHeapObjectSize); - __ FastAllocate(size, result, scratch1, scratch2, flags); - } else { - Register size = ToRegister(instr->size()); - __ FastAllocate(size, result, scratch1, scratch2, flags); - } -} - - -void LCodeGen::DoApplyArguments(LApplyArguments* instr) { - Register receiver = ToRegister(instr->receiver()); - Register function = ToRegister(instr->function()); - Register length = ToRegister32(instr->length()); - - Register elements = ToRegister(instr->elements()); - Register scratch = x5; - DCHECK(receiver.Is(x0)); // Used for parameter count. - DCHECK(function.Is(x1)); // Required by InvokeFunction. - DCHECK(ToRegister(instr->result()).Is(x0)); - DCHECK(instr->IsMarkedAsCall()); - - // Copy the arguments to this function possibly from the - // adaptor frame below it. - const uint32_t kArgumentsLimit = 1 * KB; - __ Cmp(length, kArgumentsLimit); - DeoptimizeIf(hi, instr, DeoptimizeReason::kTooManyArguments); - - // Push the receiver and use the register to keep the original - // number of arguments. - __ Push(receiver); - Register argc = receiver; - receiver = NoReg; - __ Sxtw(argc, length); - // The arguments are at a one pointer size offset from elements. - __ Add(elements, elements, 1 * kPointerSize); - - // Loop through the arguments pushing them onto the execution - // stack. - Label invoke, loop; - // length is a small non-negative integer, due to the test above. - __ Cbz(length, &invoke); - __ Bind(&loop); - __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2)); - __ Push(scratch); - __ Subs(length, length, 1); - __ B(ne, &loop); - - __ Bind(&invoke); - - InvokeFlag flag = CALL_FUNCTION; - if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) { - DCHECK(!info()->saves_caller_doubles()); - // TODO(ishell): drop current frame before pushing arguments to the stack. - flag = JUMP_FUNCTION; - ParameterCount actual(x0); - // It is safe to use x3, x4 and x5 as scratch registers here given that - // 1) we are not going to return to caller function anyway, - // 2) x3 (new.target) will be initialized below. - PrepareForTailCall(actual, x3, x4, x5); - } - - DCHECK(instr->HasPointerMap()); - LPointerMap* pointers = instr->pointer_map(); - SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt); - // The number of arguments is stored in argc (receiver) which is x0, as - // expected by InvokeFunction. - ParameterCount actual(argc); - __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator); -} - - -void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { - Register result = ToRegister(instr->result()); - - if (instr->hydrogen()->from_inlined()) { - // When we are inside an inlined function, the arguments are the last things - // that have been pushed on the stack. Therefore the arguments array can be - // accessed directly from jssp. - // However in the normal case, it is accessed via fp but there are two words - // on the stack between fp and the arguments (the saved lr and fp) and the - // LAccessArgumentsAt implementation take that into account. - // In the inlined case we need to subtract the size of 2 words to jssp to - // get a pointer which will work well with LAccessArgumentsAt. - DCHECK(masm()->StackPointer().Is(jssp)); - __ Sub(result, jssp, 2 * kPointerSize); - } else if (instr->hydrogen()->arguments_adaptor()) { - DCHECK(instr->temp() != NULL); - Register previous_fp = ToRegister(instr->temp()); - - __ Ldr(previous_fp, - MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); - __ Ldr(result, MemOperand(previous_fp, - CommonFrameConstants::kContextOrFrameTypeOffset)); - __ Cmp(result, StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)); - __ Csel(result, fp, previous_fp, ne); - } else { - __ Mov(result, fp); - } -} - - -void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { - Register elements = ToRegister(instr->elements()); - Register result = ToRegister32(instr->result()); - Label done; - - // If no arguments adaptor frame the number of arguments is fixed. - __ Cmp(fp, elements); - __ Mov(result, scope()->num_parameters()); - __ B(eq, &done); - - // Arguments adaptor frame present. Get argument length from there. - __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); - __ Ldr(result, - UntagSmiMemOperand(result.X(), - ArgumentsAdaptorFrameConstants::kLengthOffset)); - - // Argument length is in result register. - __ Bind(&done); -} - - -void LCodeGen::DoArithmeticD(LArithmeticD* instr) { - DoubleRegister left = ToDoubleRegister(instr->left()); - DoubleRegister right = ToDoubleRegister(instr->right()); - DoubleRegister result = ToDoubleRegister(instr->result()); - - switch (instr->op()) { - case Token::ADD: __ Fadd(result, left, right); break; - case Token::SUB: __ Fsub(result, left, right); break; - case Token::MUL: __ Fmul(result, left, right); break; - case Token::DIV: __ Fdiv(result, left, right); break; - case Token::MOD: { - // The ECMA-262 remainder operator is the remainder from a truncating - // (round-towards-zero) division. Note that this differs from IEEE-754. - // - // TODO(jbramley): See if it's possible to do this inline, rather than by - // calling a helper function. With frintz (to produce the intermediate - // quotient) and fmsub (to calculate the remainder without loss of - // precision), it should be possible. However, we would need support for - // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't - // support that yet. - DCHECK(left.Is(d0)); - DCHECK(right.Is(d1)); - __ CallCFunction( - ExternalReference::mod_two_doubles_operation(isolate()), - 0, 2); - DCHECK(result.Is(d0)); - break; - } - default: - UNREACHABLE(); - break; - } -} - - -void LCodeGen::DoArithmeticT(LArithmeticT* instr) { - DCHECK(ToRegister(instr->context()).is(cp)); - DCHECK(ToRegister(instr->left()).is(x1)); - DCHECK(ToRegister(instr->right()).is(x0)); - DCHECK(ToRegister(instr->result()).is(x0)); - - Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code(); - CallCode(code, RelocInfo::CODE_TARGET, instr); -} - - -void LCodeGen::DoBitI(LBitI* instr) { - Register result = ToRegister32(instr->result()); - Register left = ToRegister32(instr->left()); - Operand right = ToShiftedRightOperand32(instr->right(), instr); - - switch (instr->op()) { - case Token::BIT_AND: __ And(result, left, right); break; - case Token::BIT_OR: __ Orr(result, left, right); break; - case Token::BIT_XOR: __ Eor(result, left, right); break; - default: - UNREACHABLE(); - break; - } -} - - -void LCodeGen::DoBitS(LBitS* instr) { - Register result = ToRegister(instr->result()); - Register left = ToRegister(instr->left()); - Operand right = ToOperand(instr->right()); - - switch (instr->op()) { - case Token::BIT_AND: __ And(result, left, right); break; - case Token::BIT_OR: __ Orr(result, left, right); break; - case Token::BIT_XOR: __ Eor(result, left, right); break; - default: - UNREACHABLE(); - break; - } -} - - -void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) { - Condition cond = instr->hydrogen()->allow_equality() ? hi : hs; - DCHECK(instr->hydrogen()->index()->representation().IsInteger32()); - DCHECK(instr->hydrogen()->length()->representation().IsInteger32()); - if (instr->index()->IsConstantOperand()) { - Operand index = ToOperand32(instr->index()); - Register length = ToRegister32(instr->length()); - __ Cmp(length, index); - cond = CommuteCondition(cond); - } else { - Register index = ToRegister32(instr->index()); - Operand length = ToOperand32(instr->length()); - __ Cmp(index, length); - } - if (FLAG_debug_code && instr->hydrogen()->skip_check()) { - __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed); - } else { - DeoptimizeIf(cond, instr, DeoptimizeReason::kOutOfBounds); - } -} - - -void LCodeGen::DoBranch(LBranch* instr) { - Representation r = instr->hydrogen()->value()->representation(); - Label* true_label = instr->TrueLabel(chunk_); - Label* false_label = instr->FalseLabel(chunk_); - - if (r.IsInteger32()) { - DCHECK(!info()->IsStub()); - EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0); - } else if (r.IsSmi()) { - DCHECK(!info()->IsStub()); - STATIC_ASSERT(kSmiTag == 0); - EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0); - } else if (r.IsDouble()) { - DoubleRegister value = ToDoubleRegister(instr->value()); - // Test the double value. Zero and NaN are false. - EmitBranchIfNonZeroNumber(instr, value, double_scratch()); - } else { - DCHECK(r.IsTagged()); - Register value = ToRegister(instr->value()); - HType type = instr->hydrogen()->value()->type(); - - if (type.IsBoolean()) { - DCHECK(!info()->IsStub()); - __ CompareRoot(value, Heap::kTrueValueRootIndex); - EmitBranch(instr, eq); - } else if (type.IsSmi()) { - DCHECK(!info()->IsStub()); - EmitCompareAndBranch(instr, ne, value, Smi::kZero); - } else if (type.IsJSArray()) { - DCHECK(!info()->IsStub()); - EmitGoto(instr->TrueDestination(chunk())); - } else if (type.IsHeapNumber()) { - DCHECK(!info()->IsStub()); - __ Ldr(double_scratch(), FieldMemOperand(value, - HeapNumber::kValueOffset)); - // Test the double value. Zero and NaN are false. - EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch()); - } else if (type.IsString()) { - DCHECK(!info()->IsStub()); - Register temp = ToRegister(instr->temp1()); - __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset)); - EmitCompareAndBranch(instr, ne, temp, 0); - } else { - ToBooleanHints expected = instr->hydrogen()->expected_input_types(); - // Avoid deopts in the case where we've never executed this path before. - if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny; - - if (expected & ToBooleanHint::kUndefined) { - // undefined -> false. - __ JumpIfRoot( - value, Heap::kUndefinedValueRootIndex, false_label); - } - - if (expected & ToBooleanHint::kBoolean) { - // Boolean -> its value. - __ JumpIfRoot( - value, Heap::kTrueValueRootIndex, true_label); - __ JumpIfRoot( - value, Heap::kFalseValueRootIndex, false_label); - } - - if (expected & ToBooleanHint::kNull) { - // 'null' -> false. - __ JumpIfRoot( - value, Heap::kNullValueRootIndex, false_label); - } - - if (expected & ToBooleanHint::kSmallInteger) { - // Smis: 0 -> false, all other -> true. - DCHECK(Smi::kZero == 0); - __ Cbz(value, false_label); - __ JumpIfSmi(value, true_label); - } else if (expected & ToBooleanHint::kNeedsMap) { - // If we need a map later and have a smi, deopt. - DeoptimizeIfSmi(value, instr, DeoptimizeReason::kSmi); - } - - Register map = NoReg; - Register scratch = NoReg; - - if (expected & ToBooleanHint::kNeedsMap) { - DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); - map = ToRegister(instr->temp1()); - scratch = ToRegister(instr->temp2()); - - __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); - - if (expected & ToBooleanHint::kCanBeUndetectable) { - // Undetectable -> false. - __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); - __ TestAndBranchIfAnySet( - scratch, 1 << Map::kIsUndetectable, false_label); - } - } - - if (expected & ToBooleanHint::kReceiver) { - // spec object -> true. - __ CompareInstanceType(map, scratch, FIRST_JS_RECEIVER_TYPE); - __ B(ge, true_label); - } - - if (expected & ToBooleanHint::kString) { - // String value -> false iff empty. - Label not_string; - __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE); - __ B(ge, ¬_string); - __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset)); - __ Cbz(scratch, false_label); - __ B(true_label); - __ Bind(¬_string); - } - - if (expected & ToBooleanHint::kSymbol) { - // Symbol value -> true. - __ CompareInstanceType(map, scratch, SYMBOL_TYPE); - __ B(eq, true_label); - } - - if (expected & ToBooleanHint::kHeapNumber) { - Label not_heap_number; - __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, ¬_heap_number); - - __ Ldr(double_scratch(), - FieldMemOperand(value, HeapNumber::kValueOffset)); - __ Fcmp(double_scratch(), 0.0); - // If we got a NaN (overflow bit is set), jump to the false branch. - __ B(vs, false_label); - __ B(eq, false_label); - __ B(true_label); - __ Bind(¬_heap_number); - } - - if (expected != ToBooleanHint::kAny) { - // We've seen something for the first time -> deopt. - // This can only happen if we are not generic already. - Deoptimize(instr, DeoptimizeReason::kUnexpectedObject); - } - } - } -} - -void LCodeGen::CallKnownFunction(Handle<JSFunction> function, - int formal_parameter_count, int arity, - bool is_tail_call, LInstruction* instr) { - bool dont_adapt_arguments = - formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; - bool can_invoke_directly = - dont_adapt_arguments || formal_parameter_count == arity; - - // The function interface relies on the following register assignments. - Register function_reg = x1; - Register arity_reg = x0; - - LPointerMap* pointers = instr->pointer_map(); - - if (FLAG_debug_code) { - Label is_not_smi; - // Try to confirm that function_reg (x1) is a tagged pointer. - __ JumpIfNotSmi(function_reg, &is_not_smi); - __ Abort(kExpectedFunctionObject); - __ Bind(&is_not_smi); - } - - if (can_invoke_directly) { - // Change context. - __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset)); - - // Always initialize new target and number of actual arguments. - __ LoadRoot(x3, Heap::kUndefinedValueRootIndex); - __ Mov(arity_reg, arity); - - bool is_self_call = function.is_identical_to(info()->closure()); - - // Invoke function. - if (is_self_call) { - Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location())); - if (is_tail_call) { - __ Jump(self, RelocInfo::CODE_TARGET); - } else { - __ Call(self, RelocInfo::CODE_TARGET); - } - } else { - __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset)); - if (is_tail_call) { - __ Jump(x10); - } else { - __ Call(x10); - } - } - - if (!is_tail_call) { - // Set up deoptimization. - RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); - } - } else { - SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); - ParameterCount actual(arity); - ParameterCount expected(formal_parameter_count); - InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION; - __ InvokeFunction(function_reg, expected, actual, flag, generator); - } -} - -void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { - DCHECK(instr->IsMarkedAsCall()); - DCHECK(ToRegister(instr->result()).Is(x0)); - - if (instr->hydrogen()->IsTailCall()) { - if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL); - - if (instr->target()->IsConstantOperand()) { - LConstantOperand* target = LConstantOperand::cast(instr->target()); - Handle<Code> code = Handle<Code>::cast(ToHandle(target)); - // TODO(all): on ARM we use a call descriptor to specify a storage mode - // but on ARM64 we only have one storage mode so it isn't necessary. Check - // this understanding is correct. - __ Jump(code, RelocInfo::CODE_TARGET); - } else { - DCHECK(instr->target()->IsRegister()); - Register target = ToRegister(instr->target()); - __ Add(target, target, Code::kHeaderSize - kHeapObjectTag); - __ Br(target); - } - } else { - LPointerMap* pointers = instr->pointer_map(); - SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); - - if (instr->target()->IsConstantOperand()) { - LConstantOperand* target = LConstantOperand::cast(instr->target()); - Handle<Code> code = Handle<Code>::cast(ToHandle(target)); - generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET)); - // TODO(all): on ARM we use a call descriptor to specify a storage mode - // but on ARM64 we only have one storage mode so it isn't necessary. Check - // this understanding is correct. - __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None()); - } else { - DCHECK(instr->target()->IsRegister()); - Register target = ToRegister(instr->target()); - generator.BeforeCall(__ CallSize(target)); - __ Add(target, target, Code::kHeaderSize - kHeapObjectTag); - __ Call(target); - } - generator.AfterCall(); - } - - HCallWithDescriptor* hinstr = instr->hydrogen(); - RecordPushedArgumentsDelta(hinstr->argument_delta()); - - // HCallWithDescriptor instruction is translated to zero or more - // LPushArguments (they handle parameters passed on the stack) followed by - // a LCallWithDescriptor. Each LPushArguments instruction generated records - // the number of arguments pushed thus we need to offset them here. - // The |argument_delta()| used above "knows" only about JS parameters while - // we are dealing here with particular calling convention details. - RecordPushedArgumentsDelta(-hinstr->descriptor().GetStackParameterCount()); -} - - -void LCodeGen::DoCallRuntime(LCallRuntime* instr) { - CallRuntime(instr->function(), instr->arity(), instr); - RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); -} - - -void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { - GenerateOsrPrologue(); -} - - -void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { - Register temp = ToRegister(instr->temp()); - Label deopt, done; - // If the map is not deprecated the migration attempt does not make sense. - __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); - __ Ldr(temp, FieldMemOperand(temp, Map::kBitField3Offset)); - __ Tst(temp, Operand(Map::Deprecated::kMask)); - __ B(eq, &deopt); - - { - PushSafepointRegistersScope scope(this); - __ Push(object); - __ Mov(cp, 0); - __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); - RecordSafepointWithRegisters( - instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); - __ StoreToSafepointRegisterSlot(x0, temp); - } - __ Tst(temp, Operand(kSmiTagMask)); - __ B(ne, &done); - - __ bind(&deopt); - Deoptimize(instr, DeoptimizeReason::kInstanceMigrationFailed); - - __ bind(&done); -} - - -void LCodeGen::DoCheckMaps(LCheckMaps* instr) { - class DeferredCheckMaps: public LDeferredCode { - public: - DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) - : LDeferredCode(codegen), instr_(instr), object_(object) { - SetExit(check_maps()); - } - virtual void Generate() { - codegen()->DoDeferredInstanceMigration(instr_, object_); - } - Label* check_maps() { return &check_maps_; } - virtual LInstruction* instr() { return instr_; } - private: - LCheckMaps* instr_; - Label check_maps_; - Register object_; - }; - - if (instr->hydrogen()->IsStabilityCheck()) { - const UniqueSet<Map>* maps = instr->hydrogen()->maps(); - for (int i = 0; i < maps->size(); ++i) { - AddStabilityDependency(maps->at(i).handle()); - } - return; - } - - Register object = ToRegister(instr->value()); - Register map_reg = ToRegister(instr->temp()); - - __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset)); - - DeferredCheckMaps* deferred = NULL; - if (instr->hydrogen()->HasMigrationTarget()) { - deferred = new(zone()) DeferredCheckMaps(this, instr, object); - __ Bind(deferred->check_maps()); - } - - const UniqueSet<Map>* maps = instr->hydrogen()->maps(); - Label success; - for (int i = 0; i < maps->size() - 1; i++) { - Handle<Map> map = maps->at(i).handle(); - __ CompareMap(map_reg, map); - __ B(eq, &success); - } - Handle<Map> map = maps->at(maps->size() - 1).handle(); - __ CompareMap(map_reg, map); - - // We didn't match a map. - if (instr->hydrogen()->HasMigrationTarget()) { - __ B(ne, deferred->entry()); - } else { - DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap); - } - - __ Bind(&success); -} - - -void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { - if (!instr->hydrogen()->value()->type().IsHeapObject()) { - DeoptimizeIfSmi(ToRegister(instr->value()), instr, DeoptimizeReason::kSmi); - } -} - - -void LCodeGen::DoCheckSmi(LCheckSmi* instr) { - Register value = ToRegister(instr->value()); - DCHECK(!instr->result() || ToRegister(instr->result()).Is(value)); - DeoptimizeIfNotSmi(value, instr, DeoptimizeReason::kNotASmi); -} - - -void LCodeGen::DoCheckArrayBufferNotNeutered( - LCheckArrayBufferNotNeutered* instr) { - UseScratchRegisterScope temps(masm()); - Register view = ToRegister(instr->view()); - Register scratch = temps.AcquireX(); - - __ Ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset)); - __ Ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset)); - __ Tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift)); - DeoptimizeIf(ne, instr, DeoptimizeReason::kOutOfBounds); -} - - -void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { - Register input = ToRegister(instr->value()); - Register scratch = ToRegister(instr->temp()); - - __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); - __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); - - if (instr->hydrogen()->is_interval_check()) { - InstanceType first, last; - instr->hydrogen()->GetCheckInterval(&first, &last); - - __ Cmp(scratch, first); - if (first == last) { - // If there is only one type in the interval check for equality. - DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType); - } else if (last == LAST_TYPE) { - // We don't need to compare with the higher bound of the interval. - DeoptimizeIf(lo, instr, DeoptimizeReason::kWrongInstanceType); - } else { - // If we are below the lower bound, set the C flag and clear the Z flag - // to force a deopt. - __ Ccmp(scratch, last, CFlag, hs); - DeoptimizeIf(hi, instr, DeoptimizeReason::kWrongInstanceType); - } - } else { - uint8_t mask; - uint8_t tag; - instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); - - if (base::bits::IsPowerOfTwo32(mask)) { - DCHECK((tag == 0) || (tag == mask)); - if (tag == 0) { - DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr, - DeoptimizeReason::kWrongInstanceType); - } else { - DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr, - DeoptimizeReason::kWrongInstanceType); - } - } else { - if (tag == 0) { - __ Tst(scratch, mask); - } else { - __ And(scratch, scratch, mask); - __ Cmp(scratch, tag); - } - DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType); - } - } -} - - -void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { - DoubleRegister input = ToDoubleRegister(instr->unclamped()); - Register result = ToRegister32(instr->result()); - __ ClampDoubleToUint8(result, input, double_scratch()); -} - - -void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { - Register input = ToRegister32(instr->unclamped()); - Register result = ToRegister32(instr->result()); - __ ClampInt32ToUint8(result, input); -} - - -void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { - Register input = ToRegister(instr->unclamped()); - Register result = ToRegister32(instr->result()); - Label done; - - // Both smi and heap number cases are handled. - Label is_not_smi; - __ JumpIfNotSmi(input, &is_not_smi); - __ SmiUntag(result.X(), input); - __ ClampInt32ToUint8(result); - __ B(&done); - - __ Bind(&is_not_smi); - - // Check for heap number. - Label is_heap_number; - __ JumpIfHeapNumber(input, &is_heap_number); - - // Check for undefined. Undefined is coverted to zero for clamping conversion. - DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr, - DeoptimizeReason::kNotAHeapNumberUndefined); - __ Mov(result, 0); - __ B(&done); - - // Heap number case. - __ Bind(&is_heap_number); - DoubleRegister dbl_scratch = double_scratch(); - DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1()); - __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset)); - __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2); - - __ Bind(&done); -} - -void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { - Handle<String> class_name = instr->hydrogen()->class_name(); - Label* true_label = instr->TrueLabel(chunk_); - Label* false_label = instr->FalseLabel(chunk_); - Register input = ToRegister(instr->value()); - Register scratch1 = ToRegister(instr->temp1()); - Register scratch2 = ToRegister(instr->temp2()); - - __ JumpIfSmi(input, false_label); - - Register map = scratch2; - __ CompareObjectType(input, map, scratch1, FIRST_FUNCTION_TYPE); - STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); - if (String::Equals(isolate()->factory()->Function_string(), class_name)) { - __ B(hs, true_label); - } else { - __ B(hs, false_label); - } - - // Check if the constructor in the map is a function. - { - UseScratchRegisterScope temps(masm()); - Register instance_type = temps.AcquireX(); - __ GetMapConstructor(scratch1, map, scratch2, instance_type); - __ Cmp(instance_type, JS_FUNCTION_TYPE); - } - // Objects with a non-function constructor have class 'Object'. - if (String::Equals(class_name, isolate()->factory()->Object_string())) { - __ B(ne, true_label); - } else { - __ B(ne, false_label); - } - - // The constructor function is in scratch1. Get its instance class name. - __ Ldr(scratch1, - FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset)); - __ Ldr(scratch1, FieldMemOperand( - scratch1, SharedFunctionInfo::kInstanceClassNameOffset)); - - // The class name we are testing against is internalized since it's a literal. - // The name in the constructor is internalized because of the way the context - // is booted. This routine isn't expected to work for random API-created - // classes and it doesn't have to because you can't access it with natives - // syntax. Since both sides are internalized it is sufficient to use an - // identity comparison. - EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name)); -} - -void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) { - DCHECK(instr->hydrogen()->representation().IsDouble()); - FPRegister object = ToDoubleRegister(instr->object()); - Register temp = ToRegister(instr->temp()); - - // If we don't have a NaN, we don't have the hole, so branch now to avoid the - // (relatively expensive) hole-NaN check. - __ Fcmp(object, object); - __ B(vc, instr->FalseLabel(chunk_)); - - // We have a NaN, but is it the hole? - __ Fmov(temp, object); - EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64); -} - - -void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) { - DCHECK(instr->hydrogen()->representation().IsTagged()); - Register object = ToRegister(instr->object()); - - EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex); -} - - -void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { - Register value = ToRegister(instr->value()); - Register map = ToRegister(instr->temp()); - - __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); - EmitCompareAndBranch(instr, eq, map, Operand(instr->map())); -} - - -void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { - LOperand* left = instr->left(); - LOperand* right = instr->right(); - bool is_unsigned = - instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || - instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); - Condition cond = TokenToCondition(instr->op(), is_unsigned); - - if (left->IsConstantOperand() && right->IsConstantOperand()) { - // We can statically evaluate the comparison. - double left_val = ToDouble(LConstantOperand::cast(left)); - double right_val = ToDouble(LConstantOperand::cast(right)); - int next_block = Token::EvalComparison(instr->op(), left_val, right_val) - ? instr->TrueDestination(chunk_) - : instr->FalseDestination(chunk_); - EmitGoto(next_block); - } else { - if (instr->is_double()) { - __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right)); - - // If a NaN is involved, i.e. the result is unordered (V set), - // jump to false block label. - __ B(vs, instr->FalseLabel(chunk_)); - EmitBranch(instr, cond); - } else { - if (instr->hydrogen_value()->representation().IsInteger32()) { - if (right->IsConstantOperand()) { - EmitCompareAndBranch(instr, cond, ToRegister32(left), - ToOperand32(right)); - } else { - // Commute the operands and the condition. - EmitCompareAndBranch(instr, CommuteCondition(cond), - ToRegister32(right), ToOperand32(left)); - } - } else { - DCHECK(instr->hydrogen_value()->representation().IsSmi()); - if (right->IsConstantOperand()) { - int32_t value = ToInteger32(LConstantOperand::cast(right)); - EmitCompareAndBranch(instr, - cond, - ToRegister(left), - Operand(Smi::FromInt(value))); - } else if (left->IsConstantOperand()) { - // Commute the operands and the condition. - int32_t value = ToInteger32(LConstantOperand::cast(left)); - EmitCompareAndBranch(instr, - CommuteCondition(cond), - ToRegister(right), - Operand(Smi::FromInt(value))); - } else { - EmitCompareAndBranch(instr, - cond, - ToRegister(left), - ToRegister(right)); - } - } - } - } -} - - -void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { - Register left = ToRegister(instr->left()); - Register right = ToRegister(instr->right()); - EmitCompareAndBranch(instr, eq, left, right); -} - - -void LCodeGen::DoCmpT(LCmpT* instr) { - DCHECK(ToRegister(instr->context()).is(cp)); - Token::Value op = instr->op(); - Condition cond = TokenToCondition(op, false); - - DCHECK(ToRegister(instr->left()).Is(x1)); - DCHECK(ToRegister(instr->right()).Is(x0)); - Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code(); - CallCode(ic, RelocInfo::CODE_TARGET, instr); - // Signal that we don't inline smi code before this stub. - InlineSmiCheckInfo::EmitNotInlined(masm()); - - // Return true or false depending on CompareIC result. - // This instruction is marked as call. We can clobber any register. - DCHECK(instr->IsMarkedAsCall()); - __ LoadTrueFalseRoots(x1, x2); - __ Cmp(x0, 0); - __ Csel(ToRegister(instr->result()), x1, x2, cond); -} - - -void LCodeGen::DoConstantD(LConstantD* instr) { - DCHECK(instr->result()->IsDoubleRegister()); - DoubleRegister result = ToDoubleRegister(instr->result()); - if (instr->value() == 0) { - if (copysign(1.0, instr->value()) == 1.0) { - __ Fmov(result, fp_zero); - } else { - __ Fneg(result, fp_zero); - } - } else { - __ Fmov(result, instr->value()); - } -} - - -void LCodeGen::DoConstantE(LConstantE* instr) { - __ Mov(ToRegister(instr->result()), Operand(instr->value())); -} - - -void LCodeGen::DoConstantI(LConstantI* instr) { - DCHECK(is_int32(instr->value())); - // Cast the value here to ensure that the value isn't sign extended by the - // implicit Operand constructor. - __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value())); -} - - -void LCodeGen::DoConstantS(LConstantS* instr) { - __ Mov(ToRegister(instr->result()), Operand(instr->value())); -} - - -void LCodeGen::DoConstantT(LConstantT* instr) { - Handle<Object> object = instr->value(isolate()); - AllowDeferredHandleDereference smi_check; - __ LoadObject(ToRegister(instr->result()), object); -} - - -void LCodeGen::DoContext(LContext* instr) { - // If there is a non-return use, the context must be moved to a register. - Register result = ToRegister(instr->result()); - if (info()->IsOptimizing()) { - __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset)); - } else { - // If there is no frame, the context must be in cp. - DCHECK(result.is(cp)); - } -} - - -void LCodeGen::DoCheckValue(LCheckValue* instr) { - Register reg = ToRegister(instr->value()); - Handle<HeapObject> object = instr->hydrogen()->object().handle(); - AllowDeferredHandleDereference smi_check; - if (isolate()->heap()->InNewSpace(*object)) { - UseScratchRegisterScope temps(masm()); - Register temp = temps.AcquireX(); - Handle<Cell> cell = isolate()->factory()->NewCell(object); - __ Mov(temp, Operand(cell)); - __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset)); - __ Cmp(reg, temp); - } else { - __ Cmp(reg, Operand(object)); - } - DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch); -} - - -void LCodeGen::DoLazyBailout(LLazyBailout* instr) { - last_lazy_deopt_pc_ = masm()->pc_offset(); - DCHECK(instr->HasEnvironment()); - LEnvironment* env = instr->environment(); - RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); - safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); -} - - -void LCodeGen::DoDeoptimize(LDeoptimize* instr) { - Deoptimizer::BailoutType type = instr->hydrogen()->type(); - // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the - // needed return address), even though the implementation of LAZY and EAGER is - // now identical. When LAZY is eventually completely folded into EAGER, remove - // the special case below. - if (info()->IsStub() && (type == Deoptimizer::EAGER)) { - type = Deoptimizer::LAZY; - } - - Deoptimize(instr, instr->hydrogen()->reason(), &type); -} - - -void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { - Register dividend = ToRegister32(instr->dividend()); - int32_t divisor = instr->divisor(); - Register result = ToRegister32(instr->result()); - DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); - DCHECK(!result.is(dividend)); - - // Check for (0 / -x) that will produce negative zero. - HDiv* hdiv = instr->hydrogen(); - if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { - DeoptimizeIfZero(dividend, instr, DeoptimizeReason::kDivisionByZero); - } - // Check for (kMinInt / -1). - if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { - // Test dividend for kMinInt by subtracting one (cmp) and checking for - // overflow. - __ Cmp(dividend, 1); - DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); - } - // Deoptimize if remainder will not be 0. - if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && - divisor != 1 && divisor != -1) { - int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); - __ Tst(dividend, mask); - DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision); - } - - if (divisor == -1) { // Nice shortcut, not needed for correctness. - __ Neg(result, dividend); - return; - } - int32_t shift = WhichPowerOf2Abs(divisor); - if (shift == 0) { - __ Mov(result, dividend); - } else if (shift == 1) { - __ Add(result, dividend, Operand(dividend, LSR, 31)); - } else { - __ Mov(result, Operand(dividend, ASR, 31)); - __ Add(result, dividend, Operand(result, LSR, 32 - shift)); - } - if (shift > 0) __ Mov(result, Operand(result, ASR, shift)); - if (divisor < 0) __ Neg(result, result); -} - - -void LCodeGen::DoDivByConstI(LDivByConstI* instr) { - Register dividend = ToRegister32(instr->dividend()); - int32_t divisor = instr->divisor(); - Register result = ToRegister32(instr->result()); - DCHECK(!AreAliased(dividend, result)); - - if (divisor == 0) { - Deoptimize(instr, DeoptimizeReason::kDivisionByZero); - return; - } - - // Check for (0 / -x) that will produce negative zero. - HDiv* hdiv = instr->hydrogen(); - if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { - DeoptimizeIfZero(dividend, instr, DeoptimizeReason::kMinusZero); - } - - __ TruncatingDiv(result, dividend, Abs(divisor)); - if (divisor < 0) __ Neg(result, result); - - if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { - Register temp = ToRegister32(instr->temp()); - DCHECK(!AreAliased(dividend, result, temp)); - __ Sxtw(dividend.X(), dividend); - __ Mov(temp, divisor); - __ Smsubl(temp.X(), result, temp, dividend.X()); - DeoptimizeIfNotZero(temp, instr, DeoptimizeReason::kLostPrecision); - } -} - - -// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. -void LCodeGen::DoDivI(LDivI* instr) { - HBinaryOperation* hdiv = instr->hydrogen(); - Register dividend = ToRegister32(instr->dividend()); - Register divisor = ToRegister32(instr->divisor()); - Register result = ToRegister32(instr->result()); - - // Issue the division first, and then check for any deopt cases whilst the - // result is computed. - __ Sdiv(result, dividend, divisor); - - if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { - DCHECK(!instr->temp()); - return; - } - - // Check for x / 0. - if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { - DeoptimizeIfZero(divisor, instr, DeoptimizeReason::kDivisionByZero); - } - - // Check for (0 / -x) as that will produce negative zero. - if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { - __ Cmp(divisor, 0); - - // If the divisor < 0 (mi), compare the dividend, and deopt if it is - // zero, ie. zero dividend with negative divisor deopts. - // If the divisor >= 0 (pl, the opposite of mi) set the flags to - // condition ne, so we don't deopt, ie. positive divisor doesn't deopt. - __ Ccmp(dividend, 0, NoFlag, mi); - DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); - } - - // Check for (kMinInt / -1). - if (hdiv->CheckFlag(HValue::kCanOverflow)) { - // Test dividend for kMinInt by subtracting one (cmp) and checking for - // overflow. - __ Cmp(dividend, 1); - // If overflow is set, ie. dividend = kMinInt, compare the divisor with - // -1. If overflow is clear, set the flags for condition ne, as the - // dividend isn't -1, and thus we shouldn't deopt. - __ Ccmp(divisor, -1, NoFlag, vs); - DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow); - } - - // Compute remainder and deopt if it's not zero. - Register remainder = ToRegister32(instr->temp()); - __ Msub(remainder, result, divisor, dividend); - DeoptimizeIfNotZero(remainder, instr, DeoptimizeReason::kLostPrecision); -} - - -void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) { - DoubleRegister input = ToDoubleRegister(instr->value()); - Register result = ToRegister32(instr->result()); - - if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { - DeoptimizeIfMinusZero(input, instr, DeoptimizeReason::kMinusZero); - } - - __ TryRepresentDoubleAsInt32(result, input, double_scratch()); - DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN); - - if (instr->tag_result()) { - __ SmiTag(result.X()); - } -} - - -void LCodeGen::DoDrop(LDrop* instr) { - __ Drop(instr->count()); - - RecordPushedArgumentsDelta(instr->hydrogen_value()->argument_delta()); -} - - -void LCodeGen::DoDummy(LDummy* instr) { - // Nothing to see here, move on! -} - - -void LCodeGen::DoDummyUse(LDummyUse* instr) { - // Nothing to see here, move on! -} - - -void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { - Register map = ToRegister(instr->map()); - Register result = ToRegister(instr->result()); - Label load_cache, done; - - __ EnumLengthUntagged(result, map); - __ Cbnz(result, &load_cache); - - __ Mov(result, Operand(isolate()->factory()->empty_fixed_array())); - __ B(&done); - - __ Bind(&load_cache); - __ LoadInstanceDescriptors(map, result); - __ Ldr(result, - FieldMemOperand(result, DescriptorArray::kEnumCacheBridgeOffset)); - __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); - DeoptimizeIfZero(result, instr, DeoptimizeReason::kNoCache); - - __ Bind(&done); -} - - -void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { - Register object = ToRegister(instr->object()); - - DCHECK(instr->IsMarkedAsCall()); - DCHECK(object.Is(x0)); - - Label use_cache, call_runtime; - __ CheckEnumCache(object, x5, x1, x2, x3, x4, &call_runtime); - - __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset)); - __ B(&use_cache); - - // Get the set of properties to enumerate. - __ Bind(&call_runtime); - __ Push(object); - CallRuntime(Runtime::kForInEnumerate, instr); - __ Bind(&use_cache); -} - -void LCodeGen::EmitGoto(int block) { - // Do not emit jump if we are emitting a goto to the next block. - if (!IsNextEmittedBlock(block)) { - __ B(chunk_->GetAssemblyLabel(LookupDestination(block))); - } -} - -void LCodeGen::DoGoto(LGoto* instr) { - EmitGoto(instr->block_id()); -} - -// HHasInstanceTypeAndBranch instruction is built with an interval of type -// to test but is only used in very restricted ways. The only possible kinds -// of intervals are: -// - [ FIRST_TYPE, instr->to() ] -// - [ instr->form(), LAST_TYPE ] -// - instr->from() == instr->to() -// -// These kinds of intervals can be check with only one compare instruction -// providing the correct value and test condition are used. -// -// TestType() will return the value to use in the compare instruction and -// BranchCondition() will return the condition to use depending on the kind -// of interval actually specified in the instruction. -static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { - InstanceType from = instr->from(); - InstanceType to = instr->to(); - if (from == FIRST_TYPE) return to; - DCHECK((from == to) || (to == LAST_TYPE)); - return from; -} - - -// See comment above TestType function for what this function does. -static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { - InstanceType from = instr->from(); - InstanceType to = instr->to(); - if (from == to) return eq; - if (to == LAST_TYPE) return hs; - if (from == FIRST_TYPE) return ls; - UNREACHABLE(); - return eq; -} - - -void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { - Register input = ToRegister(instr->value()); - Register scratch = ToRegister(instr->temp()); - - if (!instr->hydrogen()->value()->type().IsHeapObject()) { - __ JumpIfSmi(input, instr->FalseLabel(chunk_)); - } - __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen())); - EmitBranch(instr, BranchCondition(instr->hydrogen())); -} - - -void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { - Register result = ToRegister(instr->result()); - Register base = ToRegister(instr->base_object()); - if (instr->offset()->IsConstantOperand()) { - __ Add(result, base, ToOperand32(instr->offset())); - } else { - __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW)); - } -} - - -void LCodeGen::DoHasInPrototypeChainAndBranch( - LHasInPrototypeChainAndBranch* instr) { - Register const object = ToRegister(instr->object()); - Register const object_map = ToRegister(instr->scratch1()); - Register const object_instance_type = ToRegister(instr->scratch2()); - Register const object_prototype = object_map; - Register const prototype = ToRegister(instr->prototype()); - - // The {object} must be a spec object. It's sufficient to know that {object} - // is not a smi, since all other non-spec objects have {null} prototypes and - // will be ruled out below. - if (instr->hydrogen()->ObjectNeedsSmiCheck()) { - __ JumpIfSmi(object, instr->FalseLabel(chunk_)); - } - - // Loop through the {object}s prototype chain looking for the {prototype}. - __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset)); - Label loop; - __ Bind(&loop); - - // Deoptimize if the object needs to be access checked. - __ Ldrb(object_instance_type, - FieldMemOperand(object_map, Map::kBitFieldOffset)); - __ Tst(object_instance_type, Operand(1 << Map::kIsAccessCheckNeeded)); - DeoptimizeIf(ne, instr, DeoptimizeReason::kAccessCheck); - // Deoptimize for proxies. - __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE); - DeoptimizeIf(eq, instr, DeoptimizeReason::kProxy); - - __ Ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset)); - __ CompareRoot(object_prototype, Heap::kNullValueRootIndex); - __ B(eq, instr->FalseLabel(chunk_)); - __ Cmp(object_prototype, prototype); - __ B(eq, instr->TrueLabel(chunk_)); - __ Ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset)); - __ B(&loop); -} - - -void LCodeGen::DoInstructionGap(LInstructionGap* instr) { - DoGap(instr); -} - - -void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { - Register value = ToRegister32(instr->value()); - DoubleRegister result = ToDoubleRegister(instr->result()); - __ Scvtf(result, value); -} - -void LCodeGen::PrepareForTailCall(const ParameterCount& actual, - Register scratch1, Register scratch2, - Register scratch3) { -#if DEBUG - if (actual.is_reg()) { - DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3)); - } else { - DCHECK(!AreAliased(scratch1, scratch2, scratch3)); - } -#endif - if (FLAG_code_comments) { - if (actual.is_reg()) { - Comment(";;; PrepareForTailCall, actual: %s {", - RegisterConfiguration::Crankshaft()->GetGeneralRegisterName( - actual.reg().code())); - } else { - Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate()); - } - } - - // Check if next frame is an arguments adaptor frame. - Register caller_args_count_reg = scratch1; - Label no_arguments_adaptor, formal_parameter_count_loaded; - __ Ldr(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); - __ Ldr(scratch3, - MemOperand(scratch2, StandardFrameConstants::kContextOffset)); - __ Cmp(scratch3, - Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); - __ B(ne, &no_arguments_adaptor); - - // Drop current frame and load arguments count from arguments adaptor frame. - __ mov(fp, scratch2); - __ Ldr(caller_args_count_reg, - MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); - __ SmiUntag(caller_args_count_reg); - __ B(&formal_parameter_count_loaded); - - __ bind(&no_arguments_adaptor); - // Load caller's formal parameter count - __ Mov(caller_args_count_reg, - Immediate(info()->literal()->parameter_count())); - - __ bind(&formal_parameter_count_loaded); - __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3); - - Comment(";;; }"); -} - -void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { - HInvokeFunction* hinstr = instr->hydrogen(); - DCHECK(ToRegister(instr->context()).is(cp)); - // The function is required to be in x1. - DCHECK(ToRegister(instr->function()).is(x1)); - DCHECK(instr->HasPointerMap()); - - bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow; - - if (is_tail_call) { - DCHECK(!info()->saves_caller_doubles()); - ParameterCount actual(instr->arity()); - // It is safe to use x3, x4 and x5 as scratch registers here given that - // 1) we are not going to return to caller function anyway, - // 2) x3 (new.target) will be initialized below. - PrepareForTailCall(actual, x3, x4, x5); - } - - Handle<JSFunction> known_function = hinstr->known_function(); - if (known_function.is_null()) { - LPointerMap* pointers = instr->pointer_map(); - SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); - ParameterCount actual(instr->arity()); - InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION; - __ InvokeFunction(x1, no_reg, actual, flag, generator); - } else { - CallKnownFunction(known_function, hinstr->formal_parameter_count(), - instr->arity(), is_tail_call, instr); - } - RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); -} - - -Condition LCodeGen::EmitIsString(Register input, - Register temp1, - Label* is_not_string, - SmiCheck check_needed = INLINE_SMI_CHECK) { - if (check_needed == INLINE_SMI_CHECK) { - __ JumpIfSmi(input, is_not_string); - } - __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE); - - return lt; -} - - -void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { - Register val = ToRegister(instr->value()); - Register scratch = ToRegister(instr->temp()); - - SmiCheck check_needed = - instr->hydrogen()->value()->type().IsHeapObject() - ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; - Condition true_cond = - EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed); - - EmitBranch(instr, true_cond); -} - - -void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { - Register value = ToRegister(instr->value()); - STATIC_ASSERT(kSmiTag == 0); - EmitTestAndBranch(instr, eq, value, kSmiTagMask); -} - - -void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { - Register input = ToRegister(instr->value()); - Register temp = ToRegister(instr->temp()); - - if (!instr->hydrogen()->value()->type().IsHeapObject()) { - __ JumpIfSmi(input, instr->FalseLabel(chunk_)); - } - __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset)); - __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); - - EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable); -} - - -static const char* LabelType(LLabel* label) { - if (label->is_loop_header()) return " (loop header)"; - if (label->is_osr_entry()) return " (OSR entry)"; - return ""; -} - - -void LCodeGen::DoLabel(LLabel* label) { - Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", - current_instruction_, - label->hydrogen_value()->id(), - label->block_id(), - LabelType(label)); - - // Inherit pushed_arguments_ from the predecessor's argument count. - if (label->block()->HasPredecessor()) { - pushed_arguments_ = label->block()->predecessors()->at(0)->argument_count(); -#ifdef DEBUG - for (auto p : *label->block()->predecessors()) { - DCHECK_EQ(p->argument_count(), pushed_arguments_); - } -#endif - } - - __ Bind(label->label()); - current_block_ = label->block_id(); - DoGap(label); -} - - -void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { - Register context = ToRegister(instr->context()); - Register result = ToRegister(instr->result()); - __ Ldr(result, ContextMemOperand(context, instr->slot_index())); - if (instr->hydrogen()->RequiresHoleCheck()) { - if (instr->hydrogen()->DeoptimizesOnHole()) { - DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, - DeoptimizeReason::kHole); - } else { - Label not_the_hole; - __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, ¬_the_hole); - __ LoadRoot(result, Heap::kUndefinedValueRootIndex); - __ Bind(¬_the_hole); - } - } -} - - -void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { - Register function = ToRegister(instr->function()); - Register result = ToRegister(instr->result()); - Register temp = ToRegister(instr->temp()); - - // Get the prototype or initial map from the function. - __ Ldr(result, FieldMemOperand(function, - JSFunction::kPrototypeOrInitialMapOffset)); - - // Check that the function has a prototype or an initial map. - DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, - DeoptimizeReason::kHole); - - // If the function does not have an initial map, we're done. - Label done; - __ CompareObjectType(result, temp, temp, MAP_TYPE); - __ B(ne, &done); - - // Get the prototype from the initial map. - __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); - - // All done. - __ Bind(&done); -} - - -MemOperand LCodeGen::PrepareKeyedExternalArrayOperand( - Register key, - Register base, - Register scratch, - bool key_is_smi, - bool key_is_constant, - int constant_key, - ElementsKind elements_kind, - int base_offset) { - int element_size_shift = ElementsKindToShiftSize(elements_kind); - - if (key_is_constant) { - int key_offset = constant_key << element_size_shift; - return MemOperand(base, key_offset + base_offset); - } - - if (key_is_smi) { - __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift)); - return MemOperand(scratch, base_offset); - } - - if (base_offset == 0) { - return MemOperand(base, key, SXTW, element_size_shift); - } - - DCHECK(!AreAliased(scratch, key)); - __ Add(scratch, base, base_offset); - return MemOperand(scratch, key, SXTW, element_size_shift); -} - - -void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) { - Register ext_ptr = ToRegister(instr->elements()); - Register scratch; - ElementsKind elements_kind = instr->elements_kind(); - - bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); - bool key_is_constant = instr->key()->IsConstantOperand(); - Register key = no_reg; - int constant_key = 0; - if (key_is_constant) { - DCHECK(instr->temp() == NULL); - constant_key = ToInteger32(LConstantOperand::cast(instr->key())); - if (constant_key & 0xf0000000) { - Abort(kArrayIndexConstantValueTooBig); - } - } else { - scratch = ToRegister(instr->temp()); - key = ToRegister(instr->key()); - } - - MemOperand mem_op = - PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi, - key_is_constant, constant_key, - elements_kind, - instr->base_offset()); - - if (elements_kind == FLOAT32_ELEMENTS) { - DoubleRegister result = ToDoubleRegister(instr->result()); - __ Ldr(result.S(), mem_op); - __ Fcvt(result, result.S()); - } else if (elements_kind == FLOAT64_ELEMENTS) { - DoubleRegister result = ToDoubleRegister(instr->result()); - __ Ldr(result, mem_op); - } else { - Register result = ToRegister(instr->result()); - - switch (elements_kind) { - case INT8_ELEMENTS: - __ Ldrsb(result, mem_op); - break; - case UINT8_ELEMENTS: - case UINT8_CLAMPED_ELEMENTS: - __ Ldrb(result, mem_op); - break; - case INT16_ELEMENTS: - __ Ldrsh(result, mem_op); - break; - case UINT16_ELEMENTS: - __ Ldrh(result, mem_op); - break; - case INT32_ELEMENTS: - __ Ldrsw(result, mem_op); - break; - case UINT32_ELEMENTS: - __ Ldr(result.W(), mem_op); - if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { - // Deopt if value > 0x80000000. - __ Tst(result, 0xFFFFFFFF80000000); - DeoptimizeIf(ne, instr, DeoptimizeReason::kNegativeValue); - } - break; - case FLOAT32_ELEMENTS: - case FLOAT64_ELEMENTS: - case FAST_HOLEY_DOUBLE_ELEMENTS: - case FAST_HOLEY_ELEMENTS: - case FAST_HOLEY_SMI_ELEMENTS: - case FAST_DOUBLE_ELEMENTS: - case FAST_ELEMENTS: - case FAST_SMI_ELEMENTS: - case DICTIONARY_ELEMENTS: - case FAST_SLOPPY_ARGUMENTS_ELEMENTS: - case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: - case FAST_STRING_WRAPPER_ELEMENTS: - case SLOW_STRING_WRAPPER_ELEMENTS: - case NO_ELEMENTS: - UNREACHABLE(); - break; - } - } -} - - -MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base, - Register elements, - Register key, - bool key_is_tagged, - ElementsKind elements_kind, - Representation representation, - int base_offset) { - STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); - STATIC_ASSERT(kSmiTag == 0); - int element_size_shift = ElementsKindToShiftSize(elements_kind); - - // Even though the HLoad/StoreKeyed instructions force the input - // representation for the key to be an integer, the input gets replaced during - // bounds check elimination with the index argument to the bounds check, which - // can be tagged, so that case must be handled here, too. - if (key_is_tagged) { - __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift)); - if (representation.IsInteger32()) { - DCHECK(elements_kind == FAST_SMI_ELEMENTS); - // Read or write only the smi payload in the case of fast smi arrays. - return UntagSmiMemOperand(base, base_offset); - } else { - return MemOperand(base, base_offset); - } - } else { - // Sign extend key because it could be a 32-bit negative value or contain - // garbage in the top 32-bits. The address computation happens in 64-bit. - DCHECK((element_size_shift >= 0) && (element_size_shift <= 4)); - if (representation.IsInteger32()) { - DCHECK(elements_kind == FAST_SMI_ELEMENTS); - // Read or write only the smi payload in the case of fast smi arrays. - __ Add(base, elements, Operand(key, SXTW, element_size_shift)); - return UntagSmiMemOperand(base, base_offset); - } else { - __ Add(base, elements, base_offset); - return MemOperand(base, key, SXTW, element_size_shift); - } - } -} - - -void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) { - Register elements = ToRegister(instr->elements()); - DoubleRegister result = ToDoubleRegister(instr->result()); - MemOperand mem_op; - - if (instr->key()->IsConstantOperand()) { - DCHECK(instr->hydrogen()->RequiresHoleCheck() || - (instr->temp() == NULL)); - - int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); - if (constant_key & 0xf0000000) { - Abort(kArrayIndexConstantValueTooBig); - } - int offset = instr->base_offset() + constant_key * kDoubleSize; - mem_op = MemOperand(elements, offset); - } else { - Register load_base = ToRegister(instr->temp()); - Register key = ToRegister(instr->key()); - bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); - mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged, - instr->hydrogen()->elements_kind(), - instr->hydrogen()->representation(), - instr->base_offset()); - } - - __ Ldr(result, mem_op); - - if (instr->hydrogen()->RequiresHoleCheck()) { - Register scratch = ToRegister(instr->temp()); - __ Fmov(scratch, result); - __ Eor(scratch, scratch, kHoleNanInt64); - DeoptimizeIfZero(scratch, instr, DeoptimizeReason::kHole); - } -} - - -void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) { - Register elements = ToRegister(instr->elements()); - Register result = ToRegister(instr->result()); - MemOperand mem_op; - - Representation representation = instr->hydrogen()->representation(); - if (instr->key()->IsConstantOperand()) { - DCHECK(instr->temp() == NULL); - LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); - int offset = instr->base_offset() + - ToInteger32(const_operand) * kPointerSize; - if (representation.IsInteger32()) { - DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS); - STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); - STATIC_ASSERT(kSmiTag == 0); - mem_op = UntagSmiMemOperand(elements, offset); - } else { - mem_op = MemOperand(elements, offset); - } - } else { - Register load_base = ToRegister(instr->temp()); - Register key = ToRegister(instr->key()); - bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); - - mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged, - instr->hydrogen()->elements_kind(), - representation, instr->base_offset()); - } - - __ Load(result, mem_op, representation); - - if (instr->hydrogen()->RequiresHoleCheck()) { - if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { - DeoptimizeIfNotSmi(result, instr, DeoptimizeReason::kNotASmi); - } else { - DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, - DeoptimizeReason::kHole); - } - } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) { - DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS); - Label done; - __ CompareRoot(result, Heap::kTheHoleValueRootIndex); - __ B(ne, &done); - if (info()->IsStub()) { - // A stub can safely convert the hole to undefined only if the array - // protector cell contains (Smi) Isolate::kProtectorValid. Otherwise - // it needs to bail out. - __ LoadRoot(result, Heap::kArrayProtectorRootIndex); - __ Ldr(result, FieldMemOperand(result, PropertyCell::kValueOffset)); - __ Cmp(result, Operand(Smi::FromInt(Isolate::kProtectorValid))); - DeoptimizeIf(ne, instr, DeoptimizeReason::kHole); - } - __ LoadRoot(result, Heap::kUndefinedValueRootIndex); - __ Bind(&done); - } -} - - -void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { - HObjectAccess access = instr->hydrogen()->access(); - int offset = access.offset(); - Register object = ToRegister(instr->object()); - - if (access.IsExternalMemory()) { - Register result = ToRegister(instr->result()); - __ Load(result, MemOperand(object, offset), access.representation()); - return; - } - - if (instr->hydrogen()->representation().IsDouble()) { - DCHECK(access.IsInobject()); - FPRegister result = ToDoubleRegister(instr->result()); - __ Ldr(result, FieldMemOperand(object, offset)); - return; - } - - Register result = ToRegister(instr->result()); - Register source; - if (access.IsInobject()) { - source = object; - } else { - // Load the properties array, using result as a scratch register. - __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); - source = result; - } - - if (access.representation().IsSmi() && - instr->hydrogen()->representation().IsInteger32()) { - // Read int value directly from upper half of the smi. - STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); - STATIC_ASSERT(kSmiTag == 0); - __ Load(result, UntagSmiFieldMemOperand(source, offset), - Representation::Integer32()); - } else { - __ Load(result, FieldMemOperand(source, offset), access.representation()); - } -} - - -void LCodeGen::DoLoadRoot(LLoadRoot* instr) { - Register result = ToRegister(instr->result()); - __ LoadRoot(result, instr->index()); -} - - -void LCodeGen::DoMathAbs(LMathAbs* instr) { - Representation r = instr->hydrogen()->value()->representation(); - if (r.IsDouble()) { - DoubleRegister input = ToDoubleRegister(instr->value()); - DoubleRegister result = ToDoubleRegister(instr->result()); - __ Fabs(result, input); - } else if (r.IsSmi() || r.IsInteger32()) { - Register input = r.IsSmi() ? ToRegister(instr->value()) - : ToRegister32(instr->value()); - Register result = r.IsSmi() ? ToRegister(instr->result()) - : ToRegister32(instr->result()); - __ Abs(result, input); - DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); - } -} - - -void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr, - Label* exit, - Label* allocation_entry) { - // Handle the tricky cases of MathAbsTagged: - // - HeapNumber inputs. - // - Negative inputs produce a positive result, so a new HeapNumber is - // allocated to hold it. - // - Positive inputs are returned as-is, since there is no need to allocate - // a new HeapNumber for the result. - // - The (smi) input -0x80000000, produces +0x80000000, which does not fit - // a smi. In this case, the inline code sets the result and jumps directly - // to the allocation_entry label. - DCHECK(instr->context() != NULL); - DCHECK(ToRegister(instr->context()).is(cp)); - Register input = ToRegister(instr->value()); - Register temp1 = ToRegister(instr->temp1()); - Register temp2 = ToRegister(instr->temp2()); - Register result_bits = ToRegister(instr->temp3()); - Register result = ToRegister(instr->result()); - - Label runtime_allocation; - - // Deoptimize if the input is not a HeapNumber. - DeoptimizeIfNotHeapNumber(input, instr); - - // If the argument is positive, we can return it as-is, without any need to - // allocate a new HeapNumber for the result. We have to do this in integer - // registers (rather than with fabs) because we need to be able to distinguish - // the two zeroes. - __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset)); - __ Mov(result, input); - __ Tbz(result_bits, kXSignBit, exit); - - // Calculate abs(input) by clearing the sign bit. - __ Bic(result_bits, result_bits, kXSignMask); - - // Allocate a new HeapNumber to hold the result. - // result_bits The bit representation of the (double) result. - __ Bind(allocation_entry); - __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2); - // The inline (non-deferred) code will store result_bits into result. - __ B(exit); - - __ Bind(&runtime_allocation); - if (FLAG_debug_code) { - // Because result is in the pointer map, we need to make sure it has a valid - // tagged value before we call the runtime. We speculatively set it to the - // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already - // be valid. - Label result_ok; - Register input = ToRegister(instr->value()); - __ JumpIfSmi(result, &result_ok); - __ Cmp(input, result); - __ Assert(eq, kUnexpectedValue); - __ Bind(&result_ok); - } - - { PushSafepointRegistersScope scope(this); - CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr, - instr->context()); - __ StoreToSafepointRegisterSlot(x0, result); - } - // The inline (non-deferred) code will store result_bits into result. -} - - -void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) { - // Class for deferred case. - class DeferredMathAbsTagged: public LDeferredCode { - public: - DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr) - : LDeferredCode(codegen), instr_(instr) { } - virtual void Generate() { - codegen()->DoDeferredMathAbsTagged(instr_, exit(), - allocation_entry()); - } - virtual LInstruction* instr() { return instr_; } - Label* allocation_entry() { return &allocation; } - private: - LMathAbsTagged* instr_; - Label allocation; - }; - - // TODO(jbramley): The early-exit mechanism would skip the new frame handling - // in GenerateDeferredCode. Tidy this up. - DCHECK(!NeedsDeferredFrame()); - - DeferredMathAbsTagged* deferred = - new(zone()) DeferredMathAbsTagged(this, instr); - - DCHECK(instr->hydrogen()->value()->representation().IsTagged() || - instr->hydrogen()->value()->representation().IsSmi()); - Register input = ToRegister(instr->value()); - Register result_bits = ToRegister(instr->temp3()); - Register result = ToRegister(instr->result()); - Label done; - - // Handle smis inline. - // We can treat smis as 64-bit integers, since the (low-order) tag bits will - // never get set by the negation. This is therefore the same as the Integer32 - // case in DoMathAbs, except that it operates on 64-bit values. - STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0)); - - __ JumpIfNotSmi(input, deferred->entry()); - - __ Abs(result, input, NULL, &done); - - // The result is the magnitude (abs) of the smallest value a smi can - // represent, encoded as a double. - __ Mov(result_bits, double_to_rawbits(0x80000000)); - __ B(deferred->allocation_entry()); - - __ Bind(deferred->exit()); - __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset)); - - __ Bind(&done); -} - -void LCodeGen::DoMathCos(LMathCos* instr) { - DCHECK(instr->IsMarkedAsCall()); - DCHECK(ToDoubleRegister(instr->value()).is(d0)); - __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1); - DCHECK(ToDoubleRegister(instr->result()).Is(d0)); -} - -void LCodeGen::DoMathSin(LMathSin* instr) { - DCHECK(instr->IsMarkedAsCall()); - DCHECK(ToDoubleRegister(instr->value()).is(d0)); - __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1); - DCHECK(ToDoubleRegister(instr->result()).Is(d0)); -} - -void LCodeGen::DoMathExp(LMathExp* instr) { - DCHECK(instr->IsMarkedAsCall()); - DCHECK(ToDoubleRegister(instr->value()).is(d0)); - __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1); - DCHECK(ToDoubleRegister(instr->result()).Is(d0)); -} - - -void LCodeGen::DoMathFloorD(LMathFloorD* instr) { - DoubleRegister input = ToDoubleRegister(instr->value()); - DoubleRegister result = ToDoubleRegister(instr->result()); - - __ Frintm(result, input); -} - - -void LCodeGen::DoMathFloorI(LMathFloorI* instr) { - DoubleRegister input = ToDoubleRegister(instr->value()); - Register result = ToRegister(instr->result()); - - if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { - DeoptimizeIfMinusZero(input, instr, DeoptimizeReason::kMinusZero); - } - - __ Fcvtms(result, input); - - // Check that the result fits into a 32-bit integer. - // - The result did not overflow. - __ Cmp(result, Operand(result, SXTW)); - // - The input was not NaN. - __ Fccmp(input, input, NoFlag, eq); - DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN); -} - - -void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { - Register dividend = ToRegister32(instr->dividend()); - Register result = ToRegister32(instr->result()); - int32_t divisor = instr->divisor(); - - // If the divisor is 1, return the dividend. - if (divisor == 1) { - __ Mov(result, dividend, kDiscardForSameWReg); - return; - } - - // If the divisor is positive, things are easy: There can be no deopts and we - // can simply do an arithmetic right shift. - int32_t shift = WhichPowerOf2Abs(divisor); - if (divisor > 1) { - __ Mov(result, Operand(dividend, ASR, shift)); - return; - } - - // If the divisor is negative, we have to negate and handle edge cases. - __ Negs(result, dividend); - if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { - DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); - } - - // Dividing by -1 is basically negation, unless we overflow. - if (divisor == -1) { - if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { - DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); - } - return; - } - - // If the negation could not overflow, simply shifting is OK. - if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { - __ Mov(result, Operand(dividend, ASR, shift)); - return; - } - - __ Asr(result, result, shift); - __ Csel(result, result, kMinInt / divisor, vc); -} - - -void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { - Register dividend = ToRegister32(instr->dividend()); - int32_t divisor = instr->divisor(); - Register result = ToRegister32(instr->result()); - DCHECK(!AreAliased(dividend, result)); - - if (divisor == 0) { - Deoptimize(instr, DeoptimizeReason::kDivisionByZero); - return; - } - - // Check for (0 / -x) that will produce negative zero. - HMathFloorOfDiv* hdiv = instr->hydrogen(); - if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { - DeoptimizeIfZero(dividend, instr, DeoptimizeReason::kMinusZero); - } - - // Easy case: We need no dynamic check for the dividend and the flooring - // division is the same as the truncating division. - if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || - (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { - __ TruncatingDiv(result, dividend, Abs(divisor)); - if (divisor < 0) __ Neg(result, result); - return; - } - - // In the general case we may need to adjust before and after the truncating - // division to get a flooring division. - Register temp = ToRegister32(instr->temp()); - DCHECK(!AreAliased(temp, dividend, result)); - Label needs_adjustment, done; - __ Cmp(dividend, 0); - __ B(divisor > 0 ? lt : gt, &needs_adjustment); - __ TruncatingDiv(result, dividend, Abs(divisor)); - if (divisor < 0) __ Neg(result, result); - __ B(&done); - __ Bind(&needs_adjustment); - __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1)); - __ TruncatingDiv(result, temp, Abs(divisor)); - if (divisor < 0) __ Neg(result, result); - __ Sub(result, result, Operand(1)); - __ Bind(&done); -} - - -// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. -void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { - Register dividend = ToRegister32(instr->dividend()); - Register divisor = ToRegister32(instr->divisor()); - Register remainder = ToRegister32(instr->temp()); - Register result = ToRegister32(instr->result()); - - // This can't cause an exception on ARM, so we can speculatively - // execute it already now. - __ Sdiv(result, dividend, divisor); - - // Check for x / 0. - DeoptimizeIfZero(divisor, instr, DeoptimizeReason::kDivisionByZero); - - // Check for (kMinInt / -1). - if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { - // The V flag will be set iff dividend == kMinInt. - __ Cmp(dividend, 1); - __ Ccmp(divisor, -1, NoFlag, vs); - DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow); - } - - // Check for (0 / -x) that will produce negative zero. - if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { - __ Cmp(divisor, 0); - __ Ccmp(dividend, 0, ZFlag, mi); - // "divisor" can't be null because the code would have already been - // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0). - // In this case we need to deoptimize to produce a -0. - DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); - } - - Label done; - // If both operands have the same sign then we are done. - __ Eor(remainder, dividend, divisor); - __ Tbz(remainder, kWSignBit, &done); - - // Check if the result needs to be corrected. - __ Msub(remainder, result, divisor, dividend); - __ Cbz(remainder, &done); - __ Sub(result, result, 1); - - __ Bind(&done); -} - - -void LCodeGen::DoMathLog(LMathLog* instr) { - DCHECK(instr->IsMarkedAsCall()); - DCHECK(ToDoubleRegister(instr->value()).is(d0)); - __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1); - DCHECK(ToDoubleRegister(instr->result()).Is(d0)); -} - - -void LCodeGen::DoMathClz32(LMathClz32* instr) { - Register input = ToRegister32(instr->value()); - Register result = ToRegister32(instr->result()); - __ Clz(result, input); -} - - -void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { - DoubleRegister input = ToDoubleRegister(instr->value()); - DoubleRegister result = ToDoubleRegister(instr->result()); - Label done; - - // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases: - // Math.pow(-Infinity, 0.5) == +Infinity - // Math.pow(-0.0, 0.5) == +0.0 - - // Catch -infinity inputs first. - // TODO(jbramley): A constant infinity register would be helpful here. - __ Fmov(double_scratch(), kFP64NegativeInfinity); - __ Fcmp(double_scratch(), input); - __ Fabs(result, input); - __ B(&done, eq); - - // Add +0.0 to convert -0.0 to +0.0. - __ Fadd(double_scratch(), input, fp_zero); - __ Fsqrt(result, double_scratch()); - - __ Bind(&done); -} - - -void LCodeGen::DoPower(LPower* instr) { - Representation exponent_type = instr->hydrogen()->right()->representation(); - // Having marked this as a call, we can use any registers. - // Just make sure that the input/output registers are the expected ones. - Register tagged_exponent = MathPowTaggedDescriptor::exponent(); - Register integer_exponent = MathPowIntegerDescriptor::exponent(); - DCHECK(!instr->right()->IsDoubleRegister() || - ToDoubleRegister(instr->right()).is(d1)); - DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() || - ToRegister(instr->right()).is(tagged_exponent)); - DCHECK(!exponent_type.IsInteger32() || - ToRegister(instr->right()).is(integer_exponent)); - DCHECK(ToDoubleRegister(instr->left()).is(d0)); - DCHECK(ToDoubleRegister(instr->result()).is(d0)); - - if (exponent_type.IsSmi()) { - MathPowStub stub(isolate(), MathPowStub::TAGGED); - __ CallStub(&stub); - } else if (exponent_type.IsTagged()) { - Label no_deopt; - __ JumpIfSmi(tagged_exponent, &no_deopt); - DeoptimizeIfNotHeapNumber(tagged_exponent, instr); - __ Bind(&no_deopt); - MathPowStub stub(isolate(), MathPowStub::TAGGED); - __ CallStub(&stub); - } else if (exponent_type.IsInteger32()) { - // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub - // supports large integer exponents. - __ Sxtw(integer_exponent, integer_exponent); - MathPowStub stub(isolate(), MathPowStub::INTEGER); - __ CallStub(&stub); - } else { - DCHECK(exponent_type.IsDouble()); - MathPowStub stub(isolate(), MathPowStub::DOUBLE); - __ CallStub(&stub); - } -} - - -void LCodeGen::DoMathRoundD(LMathRoundD* instr) { - DoubleRegister input = ToDoubleRegister(instr->value()); - DoubleRegister result = ToDoubleRegister(instr->result()); - DoubleRegister scratch_d = double_scratch(); - - DCHECK(!AreAliased(input, result, scratch_d)); - - Label done; - - __ Frinta(result, input); - __ Fcmp(input, 0.0); - __ Fccmp(result, input, ZFlag, lt); - // The result is correct if the input was in [-0, +infinity], or was a - // negative integral value. - __ B(eq, &done); - - // Here the input is negative, non integral, with an exponent lower than 52. - // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff) - // case. So we can safely add 0.5. - __ Fmov(scratch_d, 0.5); - __ Fadd(result, input, scratch_d); - __ Frintm(result, result); - // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative. - __ Fabs(result, result); - __ Fneg(result, result); - - __ Bind(&done); -} - - -void LCodeGen::DoMathRoundI(LMathRoundI* instr) { - DoubleRegister input = ToDoubleRegister(instr->value()); - DoubleRegister temp = ToDoubleRegister(instr->temp1()); - DoubleRegister dot_five = double_scratch(); - Register result = ToRegister(instr->result()); - Label done; - - // Math.round() rounds to the nearest integer, with ties going towards - // +infinity. This does not match any IEEE-754 rounding mode. - // - Infinities and NaNs are propagated unchanged, but cause deopts because - // they can't be represented as integers. - // - The sign of the result is the same as the sign of the input. This means - // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a - // result of -0.0. - - // Add 0.5 and round towards -infinity. - __ Fmov(dot_five, 0.5); - __ Fadd(temp, input, dot_five); - __ Fcvtms(result, temp); - - // The result is correct if: - // result is not 0, as the input could be NaN or [-0.5, -0.0]. - // result is not 1, as 0.499...94 will wrongly map to 1. - // result fits in 32 bits. - __ Cmp(result, Operand(result.W(), SXTW)); - __ Ccmp(result, 1, ZFlag, eq); - __ B(hi, &done); - - // At this point, we have to handle possible inputs of NaN or numbers in the - // range [-0.5, 1.5[, or numbers larger than 32 bits. - - // Deoptimize if the result > 1, as it must be larger than 32 bits. - __ Cmp(result, 1); - DeoptimizeIf(hi, instr, DeoptimizeReason::kOverflow); - - // Deoptimize for negative inputs, which at this point are only numbers in - // the range [-0.5, -0.0] - if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { - __ Fmov(result, input); - DeoptimizeIfNegative(result, instr, DeoptimizeReason::kMinusZero); - } - - // Deoptimize if the input was NaN. - __ Fcmp(input, dot_five); - DeoptimizeIf(vs, instr, DeoptimizeReason::kNaN); - - // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[ - // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1, - // else 0; we avoid dealing with 0.499...94 directly. - __ Cset(result, ge); - __ Bind(&done); -} - - -void LCodeGen::DoMathFround(LMathFround* instr) { - DoubleRegister input = ToDoubleRegister(instr->value()); - DoubleRegister result = ToDoubleRegister(instr->result()); - __ Fcvt(result.S(), input); - __ Fcvt(result, result.S()); -} - - -void LCodeGen::DoMathSqrt(LMathSqrt* instr) { - DoubleRegister input = ToDoubleRegister(instr->value()); - DoubleRegister result = ToDoubleRegister(instr->result()); - __ Fsqrt(result, input); -} - - -void LCodeGen::DoMathMinMax(LMathMinMax* instr) { - HMathMinMax::Operation op = instr->hydrogen()->operation(); - if (instr->hydrogen()->representation().IsInteger32()) { - Register result = ToRegister32(instr->result()); - Register left = ToRegister32(instr->left()); - Operand right = ToOperand32(instr->right()); - - __ Cmp(left, right); - __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le); - } else if (instr->hydrogen()->representation().IsSmi()) { - Register result = ToRegister(instr->result()); - Register left = ToRegister(instr->left()); - Operand right = ToOperand(instr->right()); - - __ Cmp(left, right); - __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le); - } else { - DCHECK(instr->hydrogen()->representation().IsDouble()); - DoubleRegister result = ToDoubleRegister(instr->result()); - DoubleRegister left = ToDoubleRegister(instr->left()); - DoubleRegister right = ToDoubleRegister(instr->right()); - - if (op == HMathMinMax::kMathMax) { - __ Fmax(result, left, right); - } else { - DCHECK(op == HMathMinMax::kMathMin); - __ Fmin(result, left, right); - } - } -} - - -void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { - Register dividend = ToRegister32(instr->dividend()); - int32_t divisor = instr->divisor(); - DCHECK(dividend.is(ToRegister32(instr->result()))); - - // Theoretically, a variation of the branch-free code for integer division by - // a power of 2 (calculating the remainder via an additional multiplication - // (which gets simplified to an 'and') and subtraction) should be faster, and - // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to - // indicate that positive dividends are heavily favored, so the branching - // version performs better. - HMod* hmod = instr->hydrogen(); - int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); - Label dividend_is_not_negative, done; - if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { - __ Tbz(dividend, kWSignBit, ÷nd_is_not_negative); - // Note that this is correct even for kMinInt operands. - __ Neg(dividend, dividend); - __ And(dividend, dividend, mask); - __ Negs(dividend, dividend); - if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { - DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); - } - __ B(&done); - } - - __ bind(÷nd_is_not_negative); - __ And(dividend, dividend, mask); - __ bind(&done); -} - - -void LCodeGen::DoModByConstI(LModByConstI* instr) { - Register dividend = ToRegister32(instr->dividend()); - int32_t divisor = instr->divisor(); - Register result = ToRegister32(instr->result()); - Register temp = ToRegister32(instr->temp()); - DCHECK(!AreAliased(dividend, result, temp)); - - if (divisor == 0) { - Deoptimize(instr, DeoptimizeReason::kDivisionByZero); - return; - } - - __ TruncatingDiv(result, dividend, Abs(divisor)); - __ Sxtw(dividend.X(), dividend); - __ Mov(temp, Abs(divisor)); - __ Smsubl(result.X(), result, temp, dividend.X()); - - // Check for negative zero. - HMod* hmod = instr->hydrogen(); - if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { - Label remainder_not_zero; - __ Cbnz(result, &remainder_not_zero); - DeoptimizeIfNegative(dividend, instr, DeoptimizeReason::kMinusZero); - __ bind(&remainder_not_zero); - } -} - - -void LCodeGen::DoModI(LModI* instr) { - Register dividend = ToRegister32(instr->left()); - Register divisor = ToRegister32(instr->right()); - Register result = ToRegister32(instr->result()); - - Label done; - // modulo = dividend - quotient * divisor - __ Sdiv(result, dividend, divisor); - if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { - DeoptimizeIfZero(divisor, instr, DeoptimizeReason::kDivisionByZero); - } - __ Msub(result, result, divisor, dividend); - if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { - __ Cbnz(result, &done); - DeoptimizeIfNegative(dividend, instr, DeoptimizeReason::kMinusZero); - } - __ Bind(&done); -} - - -void LCodeGen::DoMulConstIS(LMulConstIS* instr) { - DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32()); - bool is_smi = instr->hydrogen()->representation().IsSmi(); - Register result = - is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result()); - Register left = - is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left()); - int32_t right = ToInteger32(instr->right()); - DCHECK((right > -kMaxInt) && (right < kMaxInt)); - - bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); - bool bailout_on_minus_zero = - instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); - - if (bailout_on_minus_zero) { - if (right < 0) { - // The result is -0 if right is negative and left is zero. - DeoptimizeIfZero(left, instr, DeoptimizeReason::kMinusZero); - } else if (right == 0) { - // The result is -0 if the right is zero and the left is negative. - DeoptimizeIfNegative(left, instr, DeoptimizeReason::kMinusZero); - } - } - - switch (right) { - // Cases which can detect overflow. - case -1: - if (can_overflow) { - // Only 0x80000000 can overflow here. - __ Negs(result, left); - DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); - } else { - __ Neg(result, left); - } - break; - case 0: - // This case can never overflow. - __ Mov(result, 0); - break; - case 1: - // This case can never overflow. - __ Mov(result, left, kDiscardForSameWReg); - break; - case 2: - if (can_overflow) { - __ Adds(result, left, left); - DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); - } else { - __ Add(result, left, left); - } - break; - - default: - // Multiplication by constant powers of two (and some related values) - // can be done efficiently with shifted operands. - int32_t right_abs = Abs(right); - - if (base::bits::IsPowerOfTwo32(right_abs)) { - int right_log2 = WhichPowerOf2(right_abs); - - if (can_overflow) { - Register scratch = result; - DCHECK(!AreAliased(scratch, left)); - __ Cls(scratch, left); - __ Cmp(scratch, right_log2); - DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow); - } - - if (right >= 0) { - // result = left << log2(right) - __ Lsl(result, left, right_log2); - } else { - // result = -left << log2(-right) - if (can_overflow) { - __ Negs(result, Operand(left, LSL, right_log2)); - DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); - } else { - __ Neg(result, Operand(left, LSL, right_log2)); - } - } - return; - } - - - // For the following cases, we could perform a conservative overflow check - // with CLS as above. However the few cycles saved are likely not worth - // the risk of deoptimizing more often than required. - DCHECK(!can_overflow); - - if (right >= 0) { - if (base::bits::IsPowerOfTwo32(right - 1)) { - // result = left + left << log2(right - 1) - __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1))); - } else if (base::bits::IsPowerOfTwo32(right + 1)) { - // result = -left + left << log2(right + 1) - __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1))); - __ Neg(result, result); - } else { - UNREACHABLE(); - } - } else { - if (base::bits::IsPowerOfTwo32(-right + 1)) { - // result = left - left << log2(-right + 1) - __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1))); - } else if (base::bits::IsPowerOfTwo32(-right - 1)) { - // result = -left - left << log2(-right - 1) - __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1))); - __ Neg(result, result); - } else { - UNREACHABLE(); - } - } - } -} - - -void LCodeGen::DoMulI(LMulI* instr) { - Register result = ToRegister32(instr->result()); - Register left = ToRegister32(instr->left()); - Register right = ToRegister32(instr->right()); - - bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); - bool bailout_on_minus_zero = - instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); - - if (bailout_on_minus_zero && !left.Is(right)) { - // If one operand is zero and the other is negative, the result is -0. - // - Set Z (eq) if either left or right, or both, are 0. - __ Cmp(left, 0); - __ Ccmp(right, 0, ZFlag, ne); - // - If so (eq), set N (mi) if left + right is negative. - // - Otherwise, clear N. - __ Ccmn(left, right, NoFlag, eq); - DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero); - } - - if (can_overflow) { - __ Smull(result.X(), left, right); - __ Cmp(result.X(), Operand(result, SXTW)); - DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow); - } else { - __ Mul(result, left, right); - } -} - - -void LCodeGen::DoMulS(LMulS* instr) { - Register result = ToRegister(instr->result()); - Register left = ToRegister(instr->left()); - Register right = ToRegister(instr->right()); - - bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); - bool bailout_on_minus_zero = - instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); - - if (bailout_on_minus_zero && !left.Is(right)) { - // If one operand is zero and the other is negative, the result is -0. - // - Set Z (eq) if either left or right, or both, are 0. - __ Cmp(left, 0); - __ Ccmp(right, 0, ZFlag, ne); - // - If so (eq), set N (mi) if left + right is negative. - // - Otherwise, clear N. - __ Ccmn(left, right, NoFlag, eq); - DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero); - } - - STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0)); - if (can_overflow) { - __ Smulh(result, left, right); - __ Cmp(result, Operand(result.W(), SXTW)); - __ SmiTag(result); - DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow); - } else { - if (AreAliased(result, left, right)) { - // All three registers are the same: half untag the input and then - // multiply, giving a tagged result. - STATIC_ASSERT((kSmiShift % 2) == 0); - __ Asr(result, left, kSmiShift / 2); - __ Mul(result, result, result); - } else if (result.Is(left) && !left.Is(right)) { - // Registers result and left alias, right is distinct: untag left into - // result, and then multiply by right, giving a tagged result. - __ SmiUntag(result, left); - __ Mul(result, result, right); - } else { - DCHECK(!left.Is(result)); - // Registers result and right alias, left is distinct, or all registers - // are distinct: untag right into result, and then multiply by left, - // giving a tagged result. - __ SmiUntag(result, right); - __ Mul(result, left, result); - } - } -} - - -void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { - // TODO(3095996): Get rid of this. For now, we need to make the - // result register contain a valid pointer because it is already - // contained in the register pointer map. - Register result = ToRegister(instr->result()); - __ Mov(result, 0); - - PushSafepointRegistersScope scope(this); - // Reset the context register. - if (!result.is(cp)) { - __ Mov(cp, 0); - } - __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); - RecordSafepointWithRegisters( - instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); - __ StoreToSafepointRegisterSlot(x0, result); -} - - -void LCodeGen::DoNumberTagD(LNumberTagD* instr) { - class DeferredNumberTagD: public LDeferredCode { - public: - DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) - : LDeferredCode(codegen), instr_(instr) { } - virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } - virtual LInstruction* instr() { return instr_; } - private: - LNumberTagD* instr_; - }; - - DoubleRegister input = ToDoubleRegister(instr->value()); - Register result = ToRegister(instr->result()); - Register temp1 = ToRegister(instr->temp1()); - Register temp2 = ToRegister(instr->temp2()); - - DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); - if (FLAG_inline_new) { - __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2); - } else { - __ B(deferred->entry()); - } - - __ Bind(deferred->exit()); - __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset)); -} - - -void LCodeGen::DoDeferredNumberTagU(LInstruction* instr, - LOperand* value, - LOperand* temp1, - LOperand* temp2) { - Label slow, convert_and_store; - Register src = ToRegister32(value); - Register dst = ToRegister(instr->result()); - Register scratch1 = ToRegister(temp1); - - if (FLAG_inline_new) { - Register scratch2 = ToRegister(temp2); - __ AllocateHeapNumber(dst, &slow, scratch1, scratch2); - __ B(&convert_and_store); - } - - // Slow case: call the runtime system to do the number allocation. - __ Bind(&slow); - // TODO(3095996): Put a valid pointer value in the stack slot where the result - // register is stored, as this register is in the pointer map, but contains an - // integer value. - __ Mov(dst, 0); - { - // Preserve the value of all registers. - PushSafepointRegistersScope scope(this); - // Reset the context register. - if (!dst.is(cp)) { - __ Mov(cp, 0); - } - __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); - RecordSafepointWithRegisters( - instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); - __ StoreToSafepointRegisterSlot(x0, dst); - } - - // Convert number to floating point and store in the newly allocated heap - // number. - __ Bind(&convert_and_store); - DoubleRegister dbl_scratch = double_scratch(); - __ Ucvtf(dbl_scratch, src); - __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset)); -} - - -void LCodeGen::DoNumberTagU(LNumberTagU* instr) { - class DeferredNumberTagU: public LDeferredCode { - public: - DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) - : LDeferredCode(codegen), instr_(instr) { } - virtual void Generate() { - codegen()->DoDeferredNumberTagU(instr_, - instr_->value(), - instr_->temp1(), - instr_->temp2()); - } - virtual LInstruction* instr() { return instr_; } - private: - LNumberTagU* instr_; - }; - - Register value = ToRegister32(instr->value()); - Register result = ToRegister(instr->result()); - - DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); - __ Cmp(value, Smi::kMaxValue); - __ B(hi, deferred->entry()); - __ SmiTag(result, value.X()); - __ Bind(deferred->exit()); -} - - -void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { - Register input = ToRegister(instr->value()); - Register scratch = ToRegister(instr->temp()); - DoubleRegister result = ToDoubleRegister(instr->result()); - bool can_convert_undefined_to_nan = instr->truncating(); - - Label done, load_smi; - - // Work out what untag mode we're working with. - HValue* value = instr->hydrogen()->value(); - NumberUntagDMode mode = value->representation().IsSmi() - ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; - - if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { - __ JumpIfSmi(input, &load_smi); - - Label convert_undefined; - - // Heap number map check. - if (can_convert_undefined_to_nan) { - __ JumpIfNotHeapNumber(input, &convert_undefined); - } else { - DeoptimizeIfNotHeapNumber(input, instr); - } - - // Load heap number. - __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset)); - if (instr->hydrogen()->deoptimize_on_minus_zero()) { - DeoptimizeIfMinusZero(result, instr, DeoptimizeReason::kMinusZero); - } - __ B(&done); - - if (can_convert_undefined_to_nan) { - __ Bind(&convert_undefined); - DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr, - DeoptimizeReason::kNotAHeapNumberUndefined); - - __ LoadRoot(scratch, Heap::kNanValueRootIndex); - __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset)); - __ B(&done); - } - - } else { - DCHECK(mode == NUMBER_CANDIDATE_IS_SMI); - // Fall through to load_smi. - } - - // Smi to double register conversion. - __ Bind(&load_smi); - __ SmiUntagToDouble(result, input); - - __ Bind(&done); -} - - -void LCodeGen::DoOsrEntry(LOsrEntry* instr) { - // This is a pseudo-instruction that ensures that the environment here is - // properly registered for deoptimization and records the assembler's PC - // offset. - LEnvironment* environment = instr->environment(); - - // If the environment were already registered, we would have no way of - // backpatching it with the spill slot operands. - DCHECK(!environment->HasBeenRegistered()); - RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); - - GenerateOsrPrologue(); -} - - -void LCodeGen::DoParameter(LParameter* instr) { - // Nothing to do. -} - - -void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) { - __ PushPreamble(instr->argc(), kPointerSize); -} - - -void LCodeGen::DoPushArguments(LPushArguments* instr) { - MacroAssembler::PushPopQueue args(masm()); - - for (int i = 0; i < instr->ArgumentCount(); ++i) { - LOperand* arg = instr->argument(i); - if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) { - Abort(kDoPushArgumentNotImplementedForDoubleType); - return; - } - args.Queue(ToRegister(arg)); - } - - // The preamble was done by LPreparePushArguments. - args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE); - - RecordPushedArgumentsDelta(instr->ArgumentCount()); -} - - -void LCodeGen::DoReturn(LReturn* instr) { - if (FLAG_trace && info()->IsOptimizing()) { - // Push the return value on the stack as the parameter. - // Runtime::TraceExit returns its parameter in x0. We're leaving the code - // managed by the register allocator and tearing down the frame, it's - // safe to write to the context register. - __ Push(x0); - __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); - __ CallRuntime(Runtime::kTraceExit); - } - - if (info()->saves_caller_doubles()) { - RestoreCallerDoubles(); - } - - if (NeedsEagerFrame()) { - Register stack_pointer = masm()->StackPointer(); - __ Mov(stack_pointer, fp); - __ Pop(fp, lr); - } - - if (instr->has_constant_parameter_count()) { - int parameter_count = ToInteger32(instr->constant_parameter_count()); - __ Drop(parameter_count + 1); - } else { - DCHECK(info()->IsStub()); // Functions would need to drop one more value. - Register parameter_count = ToRegister(instr->parameter_count()); - __ DropBySMI(parameter_count); - } - __ Ret(); -} - - -MemOperand LCodeGen::BuildSeqStringOperand(Register string, - Register temp, - LOperand* index, - String::Encoding encoding) { - if (index->IsConstantOperand()) { - int offset = ToInteger32(LConstantOperand::cast(index)); - if (encoding == String::TWO_BYTE_ENCODING) { - offset *= kUC16Size; - } - STATIC_ASSERT(kCharSize == 1); - return FieldMemOperand(string, SeqString::kHeaderSize + offset); - } - - __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag); - if (encoding == String::ONE_BYTE_ENCODING) { - return MemOperand(temp, ToRegister32(index), SXTW); - } else { - STATIC_ASSERT(kUC16Size == 2); - return MemOperand(temp, ToRegister32(index), SXTW, 1); - } -} - - -void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { - String::Encoding encoding = instr->hydrogen()->encoding(); - Register string = ToRegister(instr->string()); - Register result = ToRegister(instr->result()); - Register temp = ToRegister(instr->temp()); - - if (FLAG_debug_code) { - // Even though this lithium instruction comes with a temp register, we - // can't use it here because we want to use "AtStart" constraints on the - // inputs and the debug code here needs a scratch register. - UseScratchRegisterScope temps(masm()); - Register dbg_temp = temps.AcquireX(); - - __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset)); - __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset)); - - __ And(dbg_temp, dbg_temp, - Operand(kStringRepresentationMask | kStringEncodingMask)); - static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; - static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; - __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING - ? one_byte_seq_type : two_byte_seq_type)); - __ Check(eq, kUnexpectedStringType); - } - - MemOperand operand = - BuildSeqStringOperand(string, temp, instr->index(), encoding); - if (encoding == String::ONE_BYTE_ENCODING) { - __ Ldrb(result, operand); - } else { - __ Ldrh(result, operand); - } -} - - -void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { - String::Encoding encoding = instr->hydrogen()->encoding(); - Register string = ToRegister(instr->string()); - Register value = ToRegister(instr->value()); - Register temp = ToRegister(instr->temp()); - - if (FLAG_debug_code) { - DCHECK(ToRegister(instr->context()).is(cp)); - Register index = ToRegister(instr->index()); - static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; - static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; - int encoding_mask = - instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING - ? one_byte_seq_type : two_byte_seq_type; - __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp, - encoding_mask); - } - MemOperand operand = - BuildSeqStringOperand(string, temp, instr->index(), encoding); - if (encoding == String::ONE_BYTE_ENCODING) { - __ Strb(value, operand); - } else { - __ Strh(value, operand); - } -} - - -void LCodeGen::DoSmiTag(LSmiTag* instr) { - HChange* hchange = instr->hydrogen(); - Register input = ToRegister(instr->value()); - Register output = ToRegister(instr->result()); - if (hchange->CheckFlag(HValue::kCanOverflow) && - hchange->value()->CheckFlag(HValue::kUint32)) { - DeoptimizeIfNegative(input.W(), instr, DeoptimizeReason::kOverflow); - } - __ SmiTag(output, input); -} - - -void LCodeGen::DoSmiUntag(LSmiUntag* instr) { - Register input = ToRegister(instr->value()); - Register result = ToRegister(instr->result()); - Label done, untag; - - if (instr->needs_check()) { - DeoptimizeIfNotSmi(input, instr, DeoptimizeReason::kNotASmi); - } - - __ Bind(&untag); - __ SmiUntag(result, input); - __ Bind(&done); -} - - -void LCodeGen::DoShiftI(LShiftI* instr) { - LOperand* right_op = instr->right(); - Register left = ToRegister32(instr->left()); - Register result = ToRegister32(instr->result()); - - if (right_op->IsRegister()) { - Register right = ToRegister32(instr->right()); - switch (instr->op()) { - case Token::ROR: __ Ror(result, left, right); break; - case Token::SAR: __ Asr(result, left, right); break; - case Token::SHL: __ Lsl(result, left, right); break; - case Token::SHR: - __ Lsr(result, left, right); - if (instr->can_deopt()) { - // If `left >>> right` >= 0x80000000, the result is not representable - // in a signed 32-bit smi. - DeoptimizeIfNegative(result, instr, DeoptimizeReason::kNegativeValue); - } - break; - default: UNREACHABLE(); - } - } else { - DCHECK(right_op->IsConstantOperand()); - int shift_count = JSShiftAmountFromLConstant(right_op); - if (shift_count == 0) { - if ((instr->op() == Token::SHR) && instr->can_deopt()) { - DeoptimizeIfNegative(left, instr, DeoptimizeReason::kNegativeValue); - } - __ Mov(result, left, kDiscardForSameWReg); - } else { - switch (instr->op()) { - case Token::ROR: __ Ror(result, left, shift_count); break; - case Token::SAR: __ Asr(result, left, shift_count); break; - case Token::SHL: __ Lsl(result, left, shift_count); break; - case Token::SHR: __ Lsr(result, left, shift_count); break; - default: UNREACHABLE(); - } - } - } -} - - -void LCodeGen::DoShiftS(LShiftS* instr) { - LOperand* right_op = instr->right(); - Register left = ToRegister(instr->left()); - Register result = ToRegister(instr->result()); - - if (right_op->IsRegister()) { - Register right = ToRegister(instr->right()); - - // JavaScript shifts only look at the bottom 5 bits of the 'right' operand. - // Since we're handling smis in X registers, we have to extract these bits - // explicitly. - __ Ubfx(result, right, kSmiShift, 5); - - switch (instr->op()) { - case Token::ROR: { - // This is the only case that needs a scratch register. To keep things - // simple for the other cases, borrow a MacroAssembler scratch register. - UseScratchRegisterScope temps(masm()); - Register temp = temps.AcquireW(); - __ SmiUntag(temp, left); - __ Ror(result.W(), temp.W(), result.W()); - __ SmiTag(result); - break; - } - case Token::SAR: - __ Asr(result, left, result); - __ Bic(result, result, kSmiShiftMask); - break; - case Token::SHL: - __ Lsl(result, left, result); - break; - case Token::SHR: - __ Lsr(result, left, result); - __ Bic(result, result, kSmiShiftMask); - if (instr->can_deopt()) { - // If `left >>> right` >= 0x80000000, the result is not representable - // in a signed 32-bit smi. - DeoptimizeIfNegative(result, instr, DeoptimizeReason::kNegativeValue); - } - break; - default: UNREACHABLE(); - } - } else { - DCHECK(right_op->IsConstantOperand()); - int shift_count = JSShiftAmountFromLConstant(right_op); - if (shift_count == 0) { - if ((instr->op() == Token::SHR) && instr->can_deopt()) { - DeoptimizeIfNegative(left, instr, DeoptimizeReason::kNegativeValue); - } - __ Mov(result, left); - } else { - switch (instr->op()) { - case Token::ROR: - __ SmiUntag(result, left); - __ Ror(result.W(), result.W(), shift_count); - __ SmiTag(result); - break; - case Token::SAR: - __ Asr(result, left, shift_count); - __ Bic(result, result, kSmiShiftMask); - break; - case Token::SHL: - __ Lsl(result, left, shift_count); - break; - case Token::SHR: - __ Lsr(result, left, shift_count); - __ Bic(result, result, kSmiShiftMask); - break; - default: UNREACHABLE(); - } - } - } -} - - -void LCodeGen::DoDebugBreak(LDebugBreak* instr) { - __ Debug("LDebugBreak", 0, BREAK); -} - - -void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { - DCHECK(ToRegister(instr->context()).is(cp)); - Register scratch1 = x5; - Register scratch2 = x6; - DCHECK(instr->IsMarkedAsCall()); - - // TODO(all): if Mov could handle object in new space then it could be used - // here. - __ LoadHeapObject(scratch1, instr->hydrogen()->declarations()); - __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags())); - __ Push(scratch1, scratch2); - __ LoadHeapObject(scratch1, instr->hydrogen()->feedback_vector()); - __ Push(scratch1); - CallRuntime(Runtime::kDeclareGlobals, instr); -} - - -void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { - PushSafepointRegistersScope scope(this); - LoadContextFromDeferred(instr->context()); - __ CallRuntimeSaveDoubles(Runtime::kStackGuard); - RecordSafepointWithLazyDeopt( - instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); - DCHECK(instr->HasEnvironment()); - LEnvironment* env = instr->environment(); - safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); -} - - -void LCodeGen::DoStackCheck(LStackCheck* instr) { - class DeferredStackCheck: public LDeferredCode { - public: - DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) - : LDeferredCode(codegen), instr_(instr) { } - virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } - virtual LInstruction* instr() { return instr_; } - private: - LStackCheck* instr_; - }; - - DCHECK(instr->HasEnvironment()); - LEnvironment* env = instr->environment(); - // There is no LLazyBailout instruction for stack-checks. We have to - // prepare for lazy deoptimization explicitly here. - if (instr->hydrogen()->is_function_entry()) { - // Perform stack overflow check. - Label done; - __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex); - __ B(hs, &done); - - PredictableCodeSizeScope predictable(masm_, - Assembler::kCallSizeWithRelocation); - DCHECK(instr->context()->IsRegister()); - DCHECK(ToRegister(instr->context()).is(cp)); - CallCode(isolate()->builtins()->StackCheck(), - RelocInfo::CODE_TARGET, - instr); - __ Bind(&done); - } else { - DCHECK(instr->hydrogen()->is_backwards_branch()); - // Perform stack overflow check if this goto needs it before jumping. - DeferredStackCheck* deferred_stack_check = - new(zone()) DeferredStackCheck(this, instr); - __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex); - __ B(lo, deferred_stack_check->entry()); - - EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); - __ Bind(instr->done_label()); - deferred_stack_check->SetExit(instr->done_label()); - RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); - // Don't record a deoptimization index for the safepoint here. - // This will be done explicitly when emitting call and the safepoint in - // the deferred code. - } -} - - -void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { - Register function = ToRegister(instr->function()); - Register code_object = ToRegister(instr->code_object()); - Register temp = ToRegister(instr->temp()); - __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag); - __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); -} - - -void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { - Register context = ToRegister(instr->context()); - Register value = ToRegister(instr->value()); - Register scratch = ToRegister(instr->temp()); - MemOperand target = ContextMemOperand(context, instr->slot_index()); - - Label skip_assignment; - - if (instr->hydrogen()->RequiresHoleCheck()) { - __ Ldr(scratch, target); - if (instr->hydrogen()->DeoptimizesOnHole()) { - DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr, - DeoptimizeReason::kHole); - } else { - __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment); - } - } - - __ Str(value, target); - if (instr->hydrogen()->NeedsWriteBarrier()) { - SmiCheck check_needed = - instr->hydrogen()->value()->type().IsHeapObject() - ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; - __ RecordWriteContextSlot(context, static_cast<int>(target.offset()), value, - scratch, GetLinkRegisterState(), kSaveFPRegs, - EMIT_REMEMBERED_SET, check_needed); - } - __ Bind(&skip_assignment); -} - - -void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) { - Register ext_ptr = ToRegister(instr->elements()); - Register key = no_reg; - Register scratch; - ElementsKind elements_kind = instr->elements_kind(); - - bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); - bool key_is_constant = instr->key()->IsConstantOperand(); - int constant_key = 0; - if (key_is_constant) { - DCHECK(instr->temp() == NULL); - constant_key = ToInteger32(LConstantOperand::cast(instr->key())); - if (constant_key & 0xf0000000) { - Abort(kArrayIndexConstantValueTooBig); - } - } else { - key = ToRegister(instr->key()); - scratch = ToRegister(instr->temp()); - } - - MemOperand dst = - PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi, - key_is_constant, constant_key, - elements_kind, - instr->base_offset()); - - if (elements_kind == FLOAT32_ELEMENTS) { - DoubleRegister value = ToDoubleRegister(instr->value()); - DoubleRegister dbl_scratch = double_scratch(); - __ Fcvt(dbl_scratch.S(), value); - __ Str(dbl_scratch.S(), dst); - } else if (elements_kind == FLOAT64_ELEMENTS) { - DoubleRegister value = ToDoubleRegister(instr->value()); - __ Str(value, dst); - } else { - Register value = ToRegister(instr->value()); - - switch (elements_kind) { - case UINT8_ELEMENTS: - case UINT8_CLAMPED_ELEMENTS: - case INT8_ELEMENTS: - __ Strb(value, dst); - break; - case INT16_ELEMENTS: - case UINT16_ELEMENTS: - __ Strh(value, dst); - break; - case INT32_ELEMENTS: - case UINT32_ELEMENTS: - __ Str(value.W(), dst); - break; - case FLOAT32_ELEMENTS: - case FLOAT64_ELEMENTS: - case FAST_DOUBLE_ELEMENTS: - case FAST_ELEMENTS: - case FAST_SMI_ELEMENTS: - case FAST_HOLEY_DOUBLE_ELEMENTS: - case FAST_HOLEY_ELEMENTS: - case FAST_HOLEY_SMI_ELEMENTS: - case DICTIONARY_ELEMENTS: - case FAST_SLOPPY_ARGUMENTS_ELEMENTS: - case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: - case FAST_STRING_WRAPPER_ELEMENTS: - case SLOW_STRING_WRAPPER_ELEMENTS: - case NO_ELEMENTS: - UNREACHABLE(); - break; - } - } -} - - -void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) { - Register elements = ToRegister(instr->elements()); - DoubleRegister value = ToDoubleRegister(instr->value()); - MemOperand mem_op; - - if (instr->key()->IsConstantOperand()) { - int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); - if (constant_key & 0xf0000000) { - Abort(kArrayIndexConstantValueTooBig); - } - int offset = instr->base_offset() + constant_key * kDoubleSize; - mem_op = MemOperand(elements, offset); - } else { - Register store_base = ToRegister(instr->temp()); - Register key = ToRegister(instr->key()); - bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); - mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged, - instr->hydrogen()->elements_kind(), - instr->hydrogen()->representation(), - instr->base_offset()); - } - - if (instr->NeedsCanonicalization()) { - __ CanonicalizeNaN(double_scratch(), value); - __ Str(double_scratch(), mem_op); - } else { - __ Str(value, mem_op); - } -} - - -void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) { - Register value = ToRegister(instr->value()); - Register elements = ToRegister(instr->elements()); - Register scratch = no_reg; - Register store_base = no_reg; - Register key = no_reg; - MemOperand mem_op; - - if (!instr->key()->IsConstantOperand() || - instr->hydrogen()->NeedsWriteBarrier()) { - scratch = ToRegister(instr->temp()); - } - - Representation representation = instr->hydrogen()->value()->representation(); - if (instr->key()->IsConstantOperand()) { - LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); - int offset = instr->base_offset() + - ToInteger32(const_operand) * kPointerSize; - store_base = elements; - if (representation.IsInteger32()) { - DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); - DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS); - STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); - STATIC_ASSERT(kSmiTag == 0); - mem_op = UntagSmiMemOperand(store_base, offset); - } else { - mem_op = MemOperand(store_base, offset); - } - } else { - store_base = scratch; - key = ToRegister(instr->key()); - bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); - - mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged, - instr->hydrogen()->elements_kind(), - representation, instr->base_offset()); - } - - __ Store(value, mem_op, representation); - - if (instr->hydrogen()->NeedsWriteBarrier()) { - DCHECK(representation.IsTagged()); - // This assignment may cause element_addr to alias store_base. - Register element_addr = scratch; - SmiCheck check_needed = - instr->hydrogen()->value()->type().IsHeapObject() - ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; - // Compute address of modified element and store it into key register. - __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand()); - __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(), - kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed, - instr->hydrogen()->PointersToHereCheckForValue()); - } -} - - -void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) { - class DeferredMaybeGrowElements final : public LDeferredCode { - public: - DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr) - : LDeferredCode(codegen), instr_(instr) {} - void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); } - LInstruction* instr() override { return instr_; } - - private: - LMaybeGrowElements* instr_; - }; - - Register result = x0; - DeferredMaybeGrowElements* deferred = - new (zone()) DeferredMaybeGrowElements(this, instr); - LOperand* key = instr->key(); - LOperand* current_capacity = instr->current_capacity(); - - DCHECK(instr->hydrogen()->key()->representation().IsInteger32()); - DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32()); - DCHECK(key->IsConstantOperand() || key->IsRegister()); - DCHECK(current_capacity->IsConstantOperand() || - current_capacity->IsRegister()); - - if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) { - int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); - int32_t constant_capacity = - ToInteger32(LConstantOperand::cast(current_capacity)); - if (constant_key >= constant_capacity) { - // Deferred case. - __ B(deferred->entry()); - } - } else if (key->IsConstantOperand()) { - int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); - __ Cmp(ToRegister(current_capacity), Operand(constant_key)); - __ B(le, deferred->entry()); - } else if (current_capacity->IsConstantOperand()) { - int32_t constant_capacity = - ToInteger32(LConstantOperand::cast(current_capacity)); - __ Cmp(ToRegister(key), Operand(constant_capacity)); - __ B(ge, deferred->entry()); - } else { - __ Cmp(ToRegister(key), ToRegister(current_capacity)); - __ B(ge, deferred->entry()); - } - - __ Mov(result, ToRegister(instr->elements())); - - __ Bind(deferred->exit()); -} - - -void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) { - // TODO(3095996): Get rid of this. For now, we need to make the - // result register contain a valid pointer because it is already - // contained in the register pointer map. - Register result = x0; - __ Mov(result, 0); - - // We have to call a stub. - { - PushSafepointRegistersScope scope(this); - __ Move(result, ToRegister(instr->object())); - - LOperand* key = instr->key(); - if (key->IsConstantOperand()) { - __ Mov(x3, Operand(ToSmi(LConstantOperand::cast(key)))); - } else { - __ Mov(x3, ToRegister(key)); - __ SmiTag(x3); - } - - GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind()); - __ CallStub(&stub); - RecordSafepointWithLazyDeopt( - instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); - __ StoreToSafepointRegisterSlot(result, result); - } - - // Deopt on smi, which means the elements array changed to dictionary mode. - DeoptimizeIfSmi(result, instr, DeoptimizeReason::kSmi); -} - - -void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { - Representation representation = instr->representation(); - - Register object = ToRegister(instr->object()); - HObjectAccess access = instr->hydrogen()->access(); - int offset = access.offset(); - - if (access.IsExternalMemory()) { - DCHECK(!instr->hydrogen()->has_transition()); - DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); - Register value = ToRegister(instr->value()); - __ Store(value, MemOperand(object, offset), representation); - return; - } - - __ AssertNotSmi(object); - - if (!FLAG_unbox_double_fields && representation.IsDouble()) { - DCHECK(access.IsInobject()); - DCHECK(!instr->hydrogen()->has_transition()); - DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); - FPRegister value = ToDoubleRegister(instr->value()); - __ Str(value, FieldMemOperand(object, offset)); - return; - } - - DCHECK(!representation.IsSmi() || - !instr->value()->IsConstantOperand() || - IsInteger32Constant(LConstantOperand::cast(instr->value()))); - - if (instr->hydrogen()->has_transition()) { - Handle<Map> transition = instr->hydrogen()->transition_map(); - AddDeprecationDependency(transition); - // Store the new map value. - Register new_map_value = ToRegister(instr->temp0()); - __ Mov(new_map_value, Operand(transition)); - __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset)); - if (instr->hydrogen()->NeedsWriteBarrierForMap()) { - // Update the write barrier for the map field. - __ RecordWriteForMap(object, - new_map_value, - ToRegister(instr->temp1()), - GetLinkRegisterState(), - kSaveFPRegs); - } - } - - // Do the store. - Register destination; - if (access.IsInobject()) { - destination = object; - } else { - Register temp0 = ToRegister(instr->temp0()); - __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset)); - destination = temp0; - } - - if (FLAG_unbox_double_fields && representation.IsDouble()) { - DCHECK(access.IsInobject()); - FPRegister value = ToDoubleRegister(instr->value()); - __ Str(value, FieldMemOperand(object, offset)); - } else if (representation.IsSmi() && - instr->hydrogen()->value()->representation().IsInteger32()) { - DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); -#ifdef DEBUG - Register temp0 = ToRegister(instr->temp0()); - __ Ldr(temp0, FieldMemOperand(destination, offset)); - __ AssertSmi(temp0); - // If destination aliased temp0, restore it to the address calculated - // earlier. - if (destination.Is(temp0)) { - DCHECK(!access.IsInobject()); - __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset)); - } -#endif - STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); - STATIC_ASSERT(kSmiTag == 0); - Register value = ToRegister(instr->value()); - __ Store(value, UntagSmiFieldMemOperand(destination, offset), - Representation::Integer32()); - } else { - Register value = ToRegister(instr->value()); - __ Store(value, FieldMemOperand(destination, offset), representation); - } - if (instr->hydrogen()->NeedsWriteBarrier()) { - Register value = ToRegister(instr->value()); - __ RecordWriteField(destination, - offset, - value, // Clobbered. - ToRegister(instr->temp1()), // Clobbered. - GetLinkRegisterState(), - kSaveFPRegs, - EMIT_REMEMBERED_SET, - instr->hydrogen()->SmiCheckForWriteBarrier(), - instr->hydrogen()->PointersToHereCheckForValue()); - } -} - - -void LCodeGen::DoStringAdd(LStringAdd* instr) { - DCHECK(ToRegister(instr->context()).is(cp)); - DCHECK(ToRegister(instr->left()).Is(x1)); - DCHECK(ToRegister(instr->right()).Is(x0)); - StringAddStub stub(isolate(), - instr->hydrogen()->flags(), - instr->hydrogen()->pretenure_flag()); - CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); -} - - -void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { - class DeferredStringCharCodeAt: public LDeferredCode { - public: - DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) - : LDeferredCode(codegen), instr_(instr) { } - virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } - virtual LInstruction* instr() { return instr_; } - private: - LStringCharCodeAt* instr_; - }; - - DeferredStringCharCodeAt* deferred = - new(zone()) DeferredStringCharCodeAt(this, instr); - - StringCharLoadGenerator::Generate(masm(), - ToRegister(instr->string()), - ToRegister32(instr->index()), - ToRegister(instr->result()), - deferred->entry()); - __ Bind(deferred->exit()); -} - - -void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { - Register string = ToRegister(instr->string()); - Register result = ToRegister(instr->result()); - - // TODO(3095996): Get rid of this. For now, we need to make the - // result register contain a valid pointer because it is already - // contained in the register pointer map. - __ Mov(result, 0); - - PushSafepointRegistersScope scope(this); - __ Push(string); - // Push the index as a smi. This is safe because of the checks in - // DoStringCharCodeAt above. - Register index = ToRegister(instr->index()); - __ SmiTagAndPush(index); - - CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr, - instr->context()); - __ AssertSmi(x0); - __ SmiUntag(x0); - __ StoreToSafepointRegisterSlot(x0, result); -} - - -void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { - class DeferredStringCharFromCode: public LDeferredCode { - public: - DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) - : LDeferredCode(codegen), instr_(instr) { } - virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } - virtual LInstruction* instr() { return instr_; } - private: - LStringCharFromCode* instr_; - }; - - DeferredStringCharFromCode* deferred = - new(zone()) DeferredStringCharFromCode(this, instr); - - DCHECK(instr->hydrogen()->value()->representation().IsInteger32()); - Register char_code = ToRegister32(instr->char_code()); - Register result = ToRegister(instr->result()); - - __ Cmp(char_code, String::kMaxOneByteCharCode); - __ B(hi, deferred->entry()); - __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); - __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag); - __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2)); - __ CompareRoot(result, Heap::kUndefinedValueRootIndex); - __ B(eq, deferred->entry()); - __ Bind(deferred->exit()); -} - - -void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { - Register char_code = ToRegister(instr->char_code()); - Register result = ToRegister(instr->result()); - - // TODO(3095996): Get rid of this. For now, we need to make the - // result register contain a valid pointer because it is already - // contained in the register pointer map. - __ Mov(result, 0); - - PushSafepointRegistersScope scope(this); - __ SmiTagAndPush(char_code); - CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr, - instr->context()); - __ StoreToSafepointRegisterSlot(x0, result); -} - - -void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { - DCHECK(ToRegister(instr->context()).is(cp)); - DCHECK(ToRegister(instr->left()).is(x1)); - DCHECK(ToRegister(instr->right()).is(x0)); - - Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code(); - CallCode(code, RelocInfo::CODE_TARGET, instr); - __ CompareRoot(x0, Heap::kTrueValueRootIndex); - EmitBranch(instr, eq); -} - - -void LCodeGen::DoSubI(LSubI* instr) { - bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); - Register result = ToRegister32(instr->result()); - Register left = ToRegister32(instr->left()); - Operand right = ToShiftedRightOperand32(instr->right(), instr); - - if (can_overflow) { - __ Subs(result, left, right); - DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); - } else { - __ Sub(result, left, right); - } -} - - -void LCodeGen::DoSubS(LSubS* instr) { - bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); - Register result = ToRegister(instr->result()); - Register left = ToRegister(instr->left()); - Operand right = ToOperand(instr->right()); - if (can_overflow) { - __ Subs(result, left, right); - DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); - } else { - __ Sub(result, left, right); - } -} - - -void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, - LOperand* value, - LOperand* temp1, - LOperand* temp2) { - Register input = ToRegister(value); - Register scratch1 = ToRegister(temp1); - DoubleRegister dbl_scratch1 = double_scratch(); - - Label done; - - if (instr->truncating()) { - UseScratchRegisterScope temps(masm()); - Register output = ToRegister(instr->result()); - Register input_map = temps.AcquireX(); - Register input_instance_type = input_map; - Label truncate; - __ CompareObjectType(input, input_map, input_instance_type, - HEAP_NUMBER_TYPE); - __ B(eq, &truncate); - __ Cmp(input_instance_type, ODDBALL_TYPE); - DeoptimizeIf(ne, instr, DeoptimizeReason::kNotANumberOrOddball); - __ Bind(&truncate); - __ TruncateHeapNumberToI(output, input); - } else { - Register output = ToRegister32(instr->result()); - DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2); - - DeoptimizeIfNotHeapNumber(input, instr); - - // A heap number: load value and convert to int32 using non-truncating - // function. If the result is out of range, branch to deoptimize. - __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset)); - __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2); - DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN); - - if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { - __ Cmp(output, 0); - __ B(ne, &done); - __ Fmov(scratch1, dbl_scratch1); - DeoptimizeIfNegative(scratch1, instr, DeoptimizeReason::kMinusZero); - } - } - __ Bind(&done); -} - - -void LCodeGen::DoTaggedToI(LTaggedToI* instr) { - class DeferredTaggedToI: public LDeferredCode { - public: - DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) - : LDeferredCode(codegen), instr_(instr) { } - virtual void Generate() { - codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(), - instr_->temp2()); - } - - virtual LInstruction* instr() { return instr_; } - private: - LTaggedToI* instr_; - }; - - Register input = ToRegister(instr->value()); - Register output = ToRegister(instr->result()); - - if (instr->hydrogen()->value()->representation().IsSmi()) { - __ SmiUntag(output, input); - } else { - DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); - - __ JumpIfNotSmi(input, deferred->entry()); - __ SmiUntag(output, input); - __ Bind(deferred->exit()); - } -} - - -void LCodeGen::DoThisFunction(LThisFunction* instr) { - Register result = ToRegister(instr->result()); - __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); -} - - -void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { - Register object = ToRegister(instr->object()); - - Handle<Map> from_map = instr->original_map(); - Handle<Map> to_map = instr->transitioned_map(); - ElementsKind from_kind = instr->from_kind(); - ElementsKind to_kind = instr->to_kind(); - - Label not_applicable; - - if (IsSimpleMapChangeTransition(from_kind, to_kind)) { - Register temp1 = ToRegister(instr->temp1()); - Register new_map = ToRegister(instr->temp2()); - __ CheckMap(object, temp1, from_map, ¬_applicable, DONT_DO_SMI_CHECK); - __ Mov(new_map, Operand(to_map)); - __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset)); - // Write barrier. - __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(), - kDontSaveFPRegs); - } else { - { - UseScratchRegisterScope temps(masm()); - // Use the temp register only in a restricted scope - the codegen checks - // that we do not use any register across a call. - __ CheckMap(object, temps.AcquireX(), from_map, ¬_applicable, - DONT_DO_SMI_CHECK); - } - DCHECK(object.is(x0)); - DCHECK(ToRegister(instr->context()).is(cp)); - PushSafepointRegistersScope scope(this); - __ Mov(x1, Operand(to_map)); - TransitionElementsKindStub stub(isolate(), from_kind, to_kind); - __ CallStub(&stub); - RecordSafepointWithRegisters( - instr->pointer_map(), 0, Safepoint::kLazyDeopt); - } - __ Bind(¬_applicable); -} - - -void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { - Register object = ToRegister(instr->object()); - Register temp1 = ToRegister(instr->temp1()); - Register temp2 = ToRegister(instr->temp2()); - - Label no_memento_found; - __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found); - DeoptimizeIf(eq, instr, DeoptimizeReason::kMementoFound); - __ Bind(&no_memento_found); -} - - -void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) { - DoubleRegister input = ToDoubleRegister(instr->value()); - Register result = ToRegister(instr->result()); - __ TruncateDoubleToI(result, input); - if (instr->tag_result()) { - __ SmiTag(result, result); - } -} - - -void LCodeGen::DoTypeof(LTypeof* instr) { - DCHECK(ToRegister(instr->value()).is(x3)); - DCHECK(ToRegister(instr->result()).is(x0)); - Label end, do_call; - Register value_register = ToRegister(instr->value()); - __ JumpIfNotSmi(value_register, &do_call); - __ Mov(x0, Immediate(isolate()->factory()->number_string())); - __ B(&end); - __ Bind(&do_call); - Callable callable = CodeFactory::Typeof(isolate()); - CallCode(callable.code(), RelocInfo::CODE_TARGET, instr); - __ Bind(&end); -} - - -void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { - Handle<String> type_name = instr->type_literal(); - Label* true_label = instr->TrueLabel(chunk_); - Label* false_label = instr->FalseLabel(chunk_); - Register value = ToRegister(instr->value()); - - Factory* factory = isolate()->factory(); - if (String::Equals(type_name, factory->number_string())) { - __ JumpIfSmi(value, true_label); - - int true_block = instr->TrueDestination(chunk_); - int false_block = instr->FalseDestination(chunk_); - int next_block = GetNextEmittedBlock(); - - if (true_block == false_block) { - EmitGoto(true_block); - } else if (true_block == next_block) { - __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block)); - } else { - __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block)); - if (false_block != next_block) { - __ B(chunk_->GetAssemblyLabel(false_block)); - } - } - - } else if (String::Equals(type_name, factory->string_string())) { - DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); - Register map = ToRegister(instr->temp1()); - Register scratch = ToRegister(instr->temp2()); - - __ JumpIfSmi(value, false_label); - __ CompareObjectType(value, map, scratch, FIRST_NONSTRING_TYPE); - EmitBranch(instr, lt); - - } else if (String::Equals(type_name, factory->symbol_string())) { - DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); - Register map = ToRegister(instr->temp1()); - Register scratch = ToRegister(instr->temp2()); - - __ JumpIfSmi(value, false_label); - __ CompareObjectType(value, map, scratch, SYMBOL_TYPE); - EmitBranch(instr, eq); - - } else if (String::Equals(type_name, factory->boolean_string())) { - __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label); - __ CompareRoot(value, Heap::kFalseValueRootIndex); - EmitBranch(instr, eq); - - } else if (String::Equals(type_name, factory->undefined_string())) { - DCHECK(instr->temp1() != NULL); - Register scratch = ToRegister(instr->temp1()); - - __ JumpIfRoot(value, Heap::kNullValueRootIndex, false_label); - __ JumpIfSmi(value, false_label); - // Check for undetectable objects and jump to the true branch in this case. - __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); - __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); - EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable); - - } else if (String::Equals(type_name, factory->function_string())) { - DCHECK(instr->temp1() != NULL); - Register scratch = ToRegister(instr->temp1()); - - __ JumpIfSmi(value, false_label); - __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); - __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); - __ And(scratch, scratch, - (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)); - EmitCompareAndBranch(instr, eq, scratch, 1 << Map::kIsCallable); - - } else if (String::Equals(type_name, factory->object_string())) { - DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); - Register map = ToRegister(instr->temp1()); - Register scratch = ToRegister(instr->temp2()); - - __ JumpIfSmi(value, false_label); - __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label); - STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); - __ JumpIfObjectType(value, map, scratch, FIRST_JS_RECEIVER_TYPE, - false_label, lt); - // Check for callable or undetectable objects => false. - __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); - EmitTestAndBranch(instr, eq, scratch, - (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)); - - } else { - __ B(false_label); - } -} - - -void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { - __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value())); -} - - -void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { - Register object = ToRegister(instr->value()); - Register map = ToRegister(instr->map()); - Register temp = ToRegister(instr->temp()); - __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); - __ Cmp(map, temp); - DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap); -} - - -void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { - Register receiver = ToRegister(instr->receiver()); - Register function = ToRegister(instr->function()); - Register result = ToRegister(instr->result()); - - // If the receiver is null or undefined, we have to pass the global object as - // a receiver to normal functions. Values have to be passed unchanged to - // builtins and strict-mode functions. - Label global_object, done, copy_receiver; - - if (!instr->hydrogen()->known_function()) { - __ Ldr(result, FieldMemOperand(function, - JSFunction::kSharedFunctionInfoOffset)); - - // CompilerHints is an int32 field. See objects.h. - __ Ldr(result.W(), - FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset)); - - // Do not transform the receiver to object for strict mode functions. - __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, ©_receiver); - - // Do not transform the receiver to object for builtins. - __ Tbnz(result, SharedFunctionInfo::kNative, ©_receiver); - } - - // Normal function. Replace undefined or null with global receiver. - __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object); - __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object); - - // Deoptimize if the receiver is not a JS object. - DeoptimizeIfSmi(receiver, instr, DeoptimizeReason::kSmi); - __ CompareObjectType(receiver, result, result, FIRST_JS_RECEIVER_TYPE); - __ B(ge, ©_receiver); - Deoptimize(instr, DeoptimizeReason::kNotAJavaScriptObject); - - __ Bind(&global_object); - __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset)); - __ Ldr(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX)); - __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX)); - __ B(&done); - - __ Bind(©_receiver); - __ Mov(result, receiver); - __ Bind(&done); -} - - -void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, - Register result, - Register object, - Register index) { - PushSafepointRegistersScope scope(this); - __ Push(object); - __ Push(index); - __ Mov(cp, 0); - __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble); - RecordSafepointWithRegisters( - instr->pointer_map(), 2, Safepoint::kNoLazyDeopt); - __ StoreToSafepointRegisterSlot(x0, result); -} - - -void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { - class DeferredLoadMutableDouble final : public LDeferredCode { - public: - DeferredLoadMutableDouble(LCodeGen* codegen, - LLoadFieldByIndex* instr, - Register result, - Register object, - Register index) - : LDeferredCode(codegen), - instr_(instr), - result_(result), - object_(object), - index_(index) { - } - void Generate() override { - codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_); - } - LInstruction* instr() override { return instr_; } - - private: - LLoadFieldByIndex* instr_; - Register result_; - Register object_; - Register index_; - }; - Register object = ToRegister(instr->object()); - Register index = ToRegister(instr->index()); - Register result = ToRegister(instr->result()); - - __ AssertSmi(index); - - DeferredLoadMutableDouble* deferred; - deferred = new(zone()) DeferredLoadMutableDouble( - this, instr, result, object, index); - - Label out_of_object, done; - - __ TestAndBranchIfAnySet( - index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry()); - __ Mov(index, Operand(index, ASR, 1)); - - __ Cmp(index, Smi::kZero); - __ B(lt, &out_of_object); - - STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize); - __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); - __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize)); - - __ B(&done); - - __ Bind(&out_of_object); - __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); - // Index is equal to negated out of object property index plus 1. - __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); - __ Ldr(result, FieldMemOperand(result, - FixedArray::kHeaderSize - kPointerSize)); - __ Bind(deferred->exit()); - __ Bind(&done); -} - -} // namespace internal -} // namespace v8 |