summaryrefslogtreecommitdiff
path: root/deps/v8/src/ppc/assembler-ppc.h
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/ppc/assembler-ppc.h')
-rw-r--r--deps/v8/src/ppc/assembler-ppc.h1493
1 files changed, 1493 insertions, 0 deletions
diff --git a/deps/v8/src/ppc/assembler-ppc.h b/deps/v8/src/ppc/assembler-ppc.h
new file mode 100644
index 0000000000..2b112d6ca5
--- /dev/null
+++ b/deps/v8/src/ppc/assembler-ppc.h
@@ -0,0 +1,1493 @@
+// Copyright (c) 1994-2006 Sun Microsystems Inc.
+// All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+//
+// - Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// - Redistribution in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the
+// distribution.
+//
+// - Neither the name of Sun Microsystems or the names of contributors may
+// be used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+// OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// The original source code covered by the above license above has been
+// modified significantly by Google Inc.
+// Copyright 2014 the V8 project authors. All rights reserved.
+
+// A light-weight PPC Assembler
+// Generates user mode instructions for the PPC architecture up
+
+#ifndef V8_PPC_ASSEMBLER_PPC_H_
+#define V8_PPC_ASSEMBLER_PPC_H_
+
+#include <stdio.h>
+#include <vector>
+
+#include "src/assembler.h"
+#include "src/ppc/constants-ppc.h"
+#include "src/serialize.h"
+
+#define ABI_USES_FUNCTION_DESCRIPTORS \
+ (V8_HOST_ARCH_PPC && (V8_OS_AIX || \
+ (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN)))
+
+#define ABI_PASSES_HANDLES_IN_REGS \
+ (!V8_HOST_ARCH_PPC || V8_OS_AIX || V8_TARGET_ARCH_PPC64)
+
+#define ABI_RETURNS_HANDLES_IN_REGS \
+ (!V8_HOST_ARCH_PPC || V8_TARGET_LITTLE_ENDIAN)
+
+#define ABI_RETURNS_OBJECT_PAIRS_IN_REGS \
+ (!V8_HOST_ARCH_PPC || V8_TARGET_LITTLE_ENDIAN)
+
+#define ABI_TOC_ADDRESSABILITY_VIA_IP \
+ (V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN)
+
+#if !V8_HOST_ARCH_PPC || V8_OS_AIX || V8_TARGET_ARCH_PPC64
+#define ABI_TOC_REGISTER kRegister_r2_Code
+#else
+#define ABI_TOC_REGISTER kRegister_r13_Code
+#endif
+
+#define INSTR_AND_DATA_CACHE_COHERENCY LWSYNC
+
+namespace v8 {
+namespace internal {
+
+// CPU Registers.
+//
+// 1) We would prefer to use an enum, but enum values are assignment-
+// compatible with int, which has caused code-generation bugs.
+//
+// 2) We would prefer to use a class instead of a struct but we don't like
+// the register initialization to depend on the particular initialization
+// order (which appears to be different on OS X, Linux, and Windows for the
+// installed versions of C++ we tried). Using a struct permits C-style
+// "initialization". Also, the Register objects cannot be const as this
+// forces initialization stubs in MSVC, making us dependent on initialization
+// order.
+//
+// 3) By not using an enum, we are possibly preventing the compiler from
+// doing certain constant folds, which may significantly reduce the
+// code generated for some assembly instructions (because they boil down
+// to a few constants). If this is a problem, we could change the code
+// such that we use an enum in optimized mode, and the struct in debug
+// mode. This way we get the compile-time error checking in debug mode
+// and best performance in optimized code.
+
+// Core register
+struct Register {
+ static const int kNumRegisters = 32;
+ static const int kSizeInBytes = kPointerSize;
+
+#if V8_TARGET_LITTLE_ENDIAN
+ static const int kMantissaOffset = 0;
+ static const int kExponentOffset = 4;
+#else
+ static const int kMantissaOffset = 4;
+ static const int kExponentOffset = 0;
+#endif
+
+ static const int kAllocatableLowRangeBegin = 3;
+ static const int kAllocatableLowRangeEnd = 10;
+ static const int kAllocatableHighRangeBegin = 14;
+#if V8_OOL_CONSTANT_POOL
+ static const int kAllocatableHighRangeEnd = 27;
+#else
+ static const int kAllocatableHighRangeEnd = 28;
+#endif
+ static const int kAllocatableContext = 30;
+
+ static const int kNumAllocatableLow =
+ kAllocatableLowRangeEnd - kAllocatableLowRangeBegin + 1;
+ static const int kNumAllocatableHigh =
+ kAllocatableHighRangeEnd - kAllocatableHighRangeBegin + 1;
+ static const int kMaxNumAllocatableRegisters =
+ kNumAllocatableLow + kNumAllocatableHigh + 1; // cp
+
+ static int NumAllocatableRegisters() { return kMaxNumAllocatableRegisters; }
+
+ static int ToAllocationIndex(Register reg) {
+ int index;
+ int code = reg.code();
+ if (code == kAllocatableContext) {
+ // Context is the last index
+ index = NumAllocatableRegisters() - 1;
+ } else if (code <= kAllocatableLowRangeEnd) {
+ // low range
+ index = code - kAllocatableLowRangeBegin;
+ } else {
+ // high range
+ index = code - kAllocatableHighRangeBegin + kNumAllocatableLow;
+ }
+ DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
+ return index;
+ }
+
+ static Register FromAllocationIndex(int index) {
+ DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
+ // Last index is always the 'cp' register.
+ if (index == kMaxNumAllocatableRegisters - 1) {
+ return from_code(kAllocatableContext);
+ }
+ return (index < kNumAllocatableLow)
+ ? from_code(index + kAllocatableLowRangeBegin)
+ : from_code(index - kNumAllocatableLow +
+ kAllocatableHighRangeBegin);
+ }
+
+ static const char* AllocationIndexToString(int index) {
+ DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
+ const char* const names[] = {
+ "r3",
+ "r4",
+ "r5",
+ "r6",
+ "r7",
+ "r8",
+ "r9",
+ "r10",
+ "r14",
+ "r15",
+ "r16",
+ "r17",
+ "r18",
+ "r19",
+ "r20",
+ "r21",
+ "r22",
+ "r23",
+ "r24",
+ "r25",
+ "r26",
+ "r27",
+#if !V8_OOL_CONSTANT_POOL
+ "r28",
+#endif
+ "cp",
+ };
+ return names[index];
+ }
+
+ static Register from_code(int code) {
+ Register r = {code};
+ return r;
+ }
+
+ bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
+ bool is(Register reg) const { return code_ == reg.code_; }
+ int code() const {
+ DCHECK(is_valid());
+ return code_;
+ }
+ int bit() const {
+ DCHECK(is_valid());
+ return 1 << code_;
+ }
+
+ void set_code(int code) {
+ code_ = code;
+ DCHECK(is_valid());
+ }
+
+ // Unfortunately we can't make this private in a struct.
+ int code_;
+};
+
+// These constants are used in several locations, including static initializers
+const int kRegister_no_reg_Code = -1;
+const int kRegister_r0_Code = 0; // general scratch
+const int kRegister_sp_Code = 1; // stack pointer
+const int kRegister_r2_Code = 2; // special on PowerPC
+const int kRegister_r3_Code = 3;
+const int kRegister_r4_Code = 4;
+const int kRegister_r5_Code = 5;
+const int kRegister_r6_Code = 6;
+const int kRegister_r7_Code = 7;
+const int kRegister_r8_Code = 8;
+const int kRegister_r9_Code = 9;
+const int kRegister_r10_Code = 10;
+const int kRegister_r11_Code = 11; // lithium scratch
+const int kRegister_ip_Code = 12; // ip (general scratch)
+const int kRegister_r13_Code = 13; // special on PowerPC
+const int kRegister_r14_Code = 14;
+const int kRegister_r15_Code = 15;
+
+const int kRegister_r16_Code = 16;
+const int kRegister_r17_Code = 17;
+const int kRegister_r18_Code = 18;
+const int kRegister_r19_Code = 19;
+const int kRegister_r20_Code = 20;
+const int kRegister_r21_Code = 21;
+const int kRegister_r22_Code = 22;
+const int kRegister_r23_Code = 23;
+const int kRegister_r24_Code = 24;
+const int kRegister_r25_Code = 25;
+const int kRegister_r26_Code = 26;
+const int kRegister_r27_Code = 27;
+const int kRegister_r28_Code = 28; // constant pool pointer
+const int kRegister_r29_Code = 29; // roots array pointer
+const int kRegister_r30_Code = 30; // context pointer
+const int kRegister_fp_Code = 31; // frame pointer
+
+const Register no_reg = {kRegister_no_reg_Code};
+
+const Register r0 = {kRegister_r0_Code};
+const Register sp = {kRegister_sp_Code};
+const Register r2 = {kRegister_r2_Code};
+const Register r3 = {kRegister_r3_Code};
+const Register r4 = {kRegister_r4_Code};
+const Register r5 = {kRegister_r5_Code};
+const Register r6 = {kRegister_r6_Code};
+const Register r7 = {kRegister_r7_Code};
+const Register r8 = {kRegister_r8_Code};
+const Register r9 = {kRegister_r9_Code};
+const Register r10 = {kRegister_r10_Code};
+const Register r11 = {kRegister_r11_Code};
+const Register ip = {kRegister_ip_Code};
+const Register r13 = {kRegister_r13_Code};
+const Register r14 = {kRegister_r14_Code};
+const Register r15 = {kRegister_r15_Code};
+
+const Register r16 = {kRegister_r16_Code};
+const Register r17 = {kRegister_r17_Code};
+const Register r18 = {kRegister_r18_Code};
+const Register r19 = {kRegister_r19_Code};
+const Register r20 = {kRegister_r20_Code};
+const Register r21 = {kRegister_r21_Code};
+const Register r22 = {kRegister_r22_Code};
+const Register r23 = {kRegister_r23_Code};
+const Register r24 = {kRegister_r24_Code};
+const Register r25 = {kRegister_r25_Code};
+const Register r26 = {kRegister_r26_Code};
+const Register r27 = {kRegister_r27_Code};
+const Register r28 = {kRegister_r28_Code};
+const Register r29 = {kRegister_r29_Code};
+const Register r30 = {kRegister_r30_Code};
+const Register fp = {kRegister_fp_Code};
+
+// Give alias names to registers
+const Register cp = {kRegister_r30_Code}; // JavaScript context pointer
+const Register kRootRegister = {kRegister_r29_Code}; // Roots array pointer.
+#if V8_OOL_CONSTANT_POOL
+const Register kConstantPoolRegister = {kRegister_r28_Code}; // Constant pool
+#endif
+
+// Double word FP register.
+struct DoubleRegister {
+ static const int kNumRegisters = 32;
+ static const int kMaxNumRegisters = kNumRegisters;
+ static const int kNumVolatileRegisters = 14; // d0-d13
+ static const int kSizeInBytes = 8;
+
+ static const int kAllocatableLowRangeBegin = 1;
+ static const int kAllocatableLowRangeEnd = 12;
+ static const int kAllocatableHighRangeBegin = 15;
+ static const int kAllocatableHighRangeEnd = 31;
+
+ static const int kNumAllocatableLow =
+ kAllocatableLowRangeEnd - kAllocatableLowRangeBegin + 1;
+ static const int kNumAllocatableHigh =
+ kAllocatableHighRangeEnd - kAllocatableHighRangeBegin + 1;
+ static const int kMaxNumAllocatableRegisters =
+ kNumAllocatableLow + kNumAllocatableHigh;
+ static int NumAllocatableRegisters() { return kMaxNumAllocatableRegisters; }
+
+ // TODO(turbofan)
+ inline static int NumAllocatableAliasedRegisters() {
+ return NumAllocatableRegisters();
+ }
+
+ static int ToAllocationIndex(DoubleRegister reg) {
+ int code = reg.code();
+ int index = (code <= kAllocatableLowRangeEnd)
+ ? code - kAllocatableLowRangeBegin
+ : code - kAllocatableHighRangeBegin + kNumAllocatableLow;
+ DCHECK(index < kMaxNumAllocatableRegisters);
+ return index;
+ }
+
+ static DoubleRegister FromAllocationIndex(int index) {
+ DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
+ return (index < kNumAllocatableLow)
+ ? from_code(index + kAllocatableLowRangeBegin)
+ : from_code(index - kNumAllocatableLow +
+ kAllocatableHighRangeBegin);
+ }
+
+ static const char* AllocationIndexToString(int index);
+
+ static DoubleRegister from_code(int code) {
+ DoubleRegister r = {code};
+ return r;
+ }
+
+ bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters; }
+ bool is(DoubleRegister reg) const { return code_ == reg.code_; }
+
+ int code() const {
+ DCHECK(is_valid());
+ return code_;
+ }
+ int bit() const {
+ DCHECK(is_valid());
+ return 1 << code_;
+ }
+ void split_code(int* vm, int* m) const {
+ DCHECK(is_valid());
+ *m = (code_ & 0x10) >> 4;
+ *vm = code_ & 0x0F;
+ }
+
+ int code_;
+};
+
+
+const DoubleRegister no_dreg = {-1};
+const DoubleRegister d0 = {0};
+const DoubleRegister d1 = {1};
+const DoubleRegister d2 = {2};
+const DoubleRegister d3 = {3};
+const DoubleRegister d4 = {4};
+const DoubleRegister d5 = {5};
+const DoubleRegister d6 = {6};
+const DoubleRegister d7 = {7};
+const DoubleRegister d8 = {8};
+const DoubleRegister d9 = {9};
+const DoubleRegister d10 = {10};
+const DoubleRegister d11 = {11};
+const DoubleRegister d12 = {12};
+const DoubleRegister d13 = {13};
+const DoubleRegister d14 = {14};
+const DoubleRegister d15 = {15};
+const DoubleRegister d16 = {16};
+const DoubleRegister d17 = {17};
+const DoubleRegister d18 = {18};
+const DoubleRegister d19 = {19};
+const DoubleRegister d20 = {20};
+const DoubleRegister d21 = {21};
+const DoubleRegister d22 = {22};
+const DoubleRegister d23 = {23};
+const DoubleRegister d24 = {24};
+const DoubleRegister d25 = {25};
+const DoubleRegister d26 = {26};
+const DoubleRegister d27 = {27};
+const DoubleRegister d28 = {28};
+const DoubleRegister d29 = {29};
+const DoubleRegister d30 = {30};
+const DoubleRegister d31 = {31};
+
+// Aliases for double registers. Defined using #define instead of
+// "static const DoubleRegister&" because Clang complains otherwise when a
+// compilation unit that includes this header doesn't use the variables.
+#define kFirstCalleeSavedDoubleReg d14
+#define kLastCalleeSavedDoubleReg d31
+#define kDoubleRegZero d14
+#define kScratchDoubleReg d13
+
+Register ToRegister(int num);
+
+// Coprocessor register
+struct CRegister {
+ bool is_valid() const { return 0 <= code_ && code_ < 16; }
+ bool is(CRegister creg) const { return code_ == creg.code_; }
+ int code() const {
+ DCHECK(is_valid());
+ return code_;
+ }
+ int bit() const {
+ DCHECK(is_valid());
+ return 1 << code_;
+ }
+
+ // Unfortunately we can't make this private in a struct.
+ int code_;
+};
+
+
+const CRegister no_creg = {-1};
+
+const CRegister cr0 = {0};
+const CRegister cr1 = {1};
+const CRegister cr2 = {2};
+const CRegister cr3 = {3};
+const CRegister cr4 = {4};
+const CRegister cr5 = {5};
+const CRegister cr6 = {6};
+const CRegister cr7 = {7};
+const CRegister cr8 = {8};
+const CRegister cr9 = {9};
+const CRegister cr10 = {10};
+const CRegister cr11 = {11};
+const CRegister cr12 = {12};
+const CRegister cr13 = {13};
+const CRegister cr14 = {14};
+const CRegister cr15 = {15};
+
+// -----------------------------------------------------------------------------
+// Machine instruction Operands
+
+#if V8_TARGET_ARCH_PPC64
+const RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE64;
+#else
+const RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE32;
+#endif
+
+// Class Operand represents a shifter operand in data processing instructions
+class Operand BASE_EMBEDDED {
+ public:
+ // immediate
+ INLINE(explicit Operand(intptr_t immediate,
+ RelocInfo::Mode rmode = kRelocInfo_NONEPTR));
+ INLINE(static Operand Zero()) { return Operand(static_cast<intptr_t>(0)); }
+ INLINE(explicit Operand(const ExternalReference& f));
+ explicit Operand(Handle<Object> handle);
+ INLINE(explicit Operand(Smi* value));
+
+ // rm
+ INLINE(explicit Operand(Register rm));
+
+ // Return true if this is a register operand.
+ INLINE(bool is_reg() const);
+
+ // For mov. Return the number of actual instructions required to
+ // load the operand into a register. This can be anywhere from
+ // one (constant pool small section) to five instructions (full
+ // 64-bit sequence).
+ //
+ // The value returned is only valid as long as no entries are added to the
+ // constant pool between this call and the actual instruction being emitted.
+ bool must_output_reloc_info(const Assembler* assembler) const;
+
+ inline intptr_t immediate() const {
+ DCHECK(!rm_.is_valid());
+ return imm_;
+ }
+
+ Register rm() const { return rm_; }
+
+ private:
+ Register rm_;
+ intptr_t imm_; // valid if rm_ == no_reg
+ RelocInfo::Mode rmode_;
+
+ friend class Assembler;
+ friend class MacroAssembler;
+};
+
+
+// Class MemOperand represents a memory operand in load and store instructions
+// On PowerPC we have base register + 16bit signed value
+// Alternatively we can have a 16bit signed value immediate
+class MemOperand BASE_EMBEDDED {
+ public:
+ explicit MemOperand(Register rn, int32_t offset = 0);
+
+ explicit MemOperand(Register ra, Register rb);
+
+ int32_t offset() const {
+ DCHECK(rb_.is(no_reg));
+ return offset_;
+ }
+
+ // PowerPC - base register
+ Register ra() const {
+ DCHECK(!ra_.is(no_reg));
+ return ra_;
+ }
+
+ Register rb() const {
+ DCHECK(offset_ == 0 && !rb_.is(no_reg));
+ return rb_;
+ }
+
+ private:
+ Register ra_; // base
+ int32_t offset_; // offset
+ Register rb_; // index
+
+ friend class Assembler;
+};
+
+
+#if V8_OOL_CONSTANT_POOL
+// Class used to build a constant pool.
+class ConstantPoolBuilder BASE_EMBEDDED {
+ public:
+ ConstantPoolBuilder();
+ ConstantPoolArray::LayoutSection AddEntry(Assembler* assm,
+ const RelocInfo& rinfo);
+ void Relocate(intptr_t pc_delta);
+ bool IsEmpty();
+ Handle<ConstantPoolArray> New(Isolate* isolate);
+ void Populate(Assembler* assm, ConstantPoolArray* constant_pool);
+
+ inline ConstantPoolArray::LayoutSection current_section() const {
+ return current_section_;
+ }
+
+ // Rather than increasing the capacity of the ConstantPoolArray's
+ // small section to match the longer (16-bit) reach of PPC's load
+ // instruction (at the expense of a larger header to describe the
+ // layout), the PPC implementation utilizes the extended section to
+ // satisfy that reach. I.e. all entries (regardless of their
+ // section) are reachable with a single load instruction.
+ //
+ // This implementation does not support an unlimited constant pool
+ // size (which would require a multi-instruction sequence). [See
+ // ARM commit e27ab337 for a reference on the changes required to
+ // support the longer instruction sequence.] Note, however, that
+ // going down that path will necessarily generate that longer
+ // sequence for all extended section accesses since the placement of
+ // a given entry within the section is not known at the time of
+ // code generation.
+ //
+ // TODO(mbrandy): Determine whether there is a benefit to supporting
+ // the longer sequence given that nops could be used for those
+ // entries which are reachable with a single instruction.
+ inline bool is_full() const { return !is_int16(size_); }
+
+ inline ConstantPoolArray::NumberOfEntries* number_of_entries(
+ ConstantPoolArray::LayoutSection section) {
+ return &number_of_entries_[section];
+ }
+
+ inline ConstantPoolArray::NumberOfEntries* small_entries() {
+ return number_of_entries(ConstantPoolArray::SMALL_SECTION);
+ }
+
+ inline ConstantPoolArray::NumberOfEntries* extended_entries() {
+ return number_of_entries(ConstantPoolArray::EXTENDED_SECTION);
+ }
+
+ private:
+ struct ConstantPoolEntry {
+ ConstantPoolEntry(RelocInfo rinfo, ConstantPoolArray::LayoutSection section,
+ int merged_index)
+ : rinfo_(rinfo), section_(section), merged_index_(merged_index) {}
+
+ RelocInfo rinfo_;
+ ConstantPoolArray::LayoutSection section_;
+ int merged_index_;
+ };
+
+ ConstantPoolArray::Type GetConstantPoolType(RelocInfo::Mode rmode);
+
+ uint32_t size_;
+ std::vector<ConstantPoolEntry> entries_;
+ ConstantPoolArray::LayoutSection current_section_;
+ ConstantPoolArray::NumberOfEntries number_of_entries_[2];
+};
+#endif
+
+
+class Assembler : public AssemblerBase {
+ public:
+ // Create an assembler. Instructions and relocation information are emitted
+ // into a buffer, with the instructions starting from the beginning and the
+ // relocation information starting from the end of the buffer. See CodeDesc
+ // for a detailed comment on the layout (globals.h).
+ //
+ // If the provided buffer is NULL, the assembler allocates and grows its own
+ // buffer, and buffer_size determines the initial buffer size. The buffer is
+ // owned by the assembler and deallocated upon destruction of the assembler.
+ //
+ // If the provided buffer is not NULL, the assembler uses the provided buffer
+ // for code generation and assumes its size to be buffer_size. If the buffer
+ // is too small, a fatal error occurs. No deallocation of the buffer is done
+ // upon destruction of the assembler.
+ Assembler(Isolate* isolate, void* buffer, int buffer_size);
+ virtual ~Assembler() {}
+
+ // GetCode emits any pending (non-emitted) code and fills the descriptor
+ // desc. GetCode() is idempotent; it returns the same result if no other
+ // Assembler functions are invoked in between GetCode() calls.
+ void GetCode(CodeDesc* desc);
+
+ // Label operations & relative jumps (PPUM Appendix D)
+ //
+ // Takes a branch opcode (cc) and a label (L) and generates
+ // either a backward branch or a forward branch and links it
+ // to the label fixup chain. Usage:
+ //
+ // Label L; // unbound label
+ // j(cc, &L); // forward branch to unbound label
+ // bind(&L); // bind label to the current pc
+ // j(cc, &L); // backward branch to bound label
+ // bind(&L); // illegal: a label may be bound only once
+ //
+ // Note: The same Label can be used for forward and backward branches
+ // but it may be bound only once.
+
+ void bind(Label* L); // binds an unbound label L to the current code position
+ // Determines if Label is bound and near enough so that a single
+ // branch instruction can be used to reach it.
+ bool is_near(Label* L, Condition cond);
+
+ // Returns the branch offset to the given label from the current code position
+ // Links the label to the current position if it is still unbound
+ // Manages the jump elimination optimization if the second parameter is true.
+ int branch_offset(Label* L, bool jump_elimination_allowed);
+
+ // Puts a labels target address at the given position.
+ // The high 8 bits are set to zero.
+ void label_at_put(Label* L, int at_offset);
+
+#if V8_OOL_CONSTANT_POOL
+ INLINE(static bool IsConstantPoolLoadStart(Address pc));
+ INLINE(static bool IsConstantPoolLoadEnd(Address pc));
+ INLINE(static int GetConstantPoolOffset(Address pc));
+ INLINE(static void SetConstantPoolOffset(Address pc, int offset));
+
+ // Return the address in the constant pool of the code target address used by
+ // the branch/call instruction at pc, or the object in a mov.
+ INLINE(static Address target_constant_pool_address_at(
+ Address pc, ConstantPoolArray* constant_pool));
+#endif
+
+ // Read/Modify the code target address in the branch/call instruction at pc.
+ INLINE(static Address target_address_at(Address pc,
+ ConstantPoolArray* constant_pool));
+ INLINE(static void set_target_address_at(
+ Address pc, ConstantPoolArray* constant_pool, Address target,
+ ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
+ INLINE(static Address target_address_at(Address pc, Code* code)) {
+ ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
+ return target_address_at(pc, constant_pool);
+ }
+ INLINE(static void set_target_address_at(
+ Address pc, Code* code, Address target,
+ ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
+ ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
+ set_target_address_at(pc, constant_pool, target, icache_flush_mode);
+ }
+
+ // Return the code target address at a call site from the return address
+ // of that call in the instruction stream.
+ inline static Address target_address_from_return_address(Address pc);
+
+ // Given the address of the beginning of a call, return the address
+ // in the instruction stream that the call will return to.
+ INLINE(static Address return_address_from_call_start(Address pc));
+
+ // Return the code target address of the patch debug break slot
+ INLINE(static Address break_address_from_return_address(Address pc));
+
+ // This sets the branch destination.
+ // This is for calls and branches within generated code.
+ inline static void deserialization_set_special_target_at(
+ Address instruction_payload, Code* code, Address target);
+
+ // Size of an instruction.
+ static const int kInstrSize = sizeof(Instr);
+
+ // Here we are patching the address in the LUI/ORI instruction pair.
+ // These values are used in the serialization process and must be zero for
+ // PPC platform, as Code, Embedded Object or External-reference pointers
+ // are split across two consecutive instructions and don't exist separately
+ // in the code, so the serializer should not step forwards in memory after
+ // a target is resolved and written.
+ static const int kSpecialTargetSize = 0;
+
+// Number of instructions to load an address via a mov sequence.
+#if V8_TARGET_ARCH_PPC64
+ static const int kMovInstructionsConstantPool = 2;
+ static const int kMovInstructionsNoConstantPool = 5;
+#else
+ static const int kMovInstructionsConstantPool = 1;
+ static const int kMovInstructionsNoConstantPool = 2;
+#endif
+#if V8_OOL_CONSTANT_POOL
+ static const int kMovInstructions = kMovInstructionsConstantPool;
+#else
+ static const int kMovInstructions = kMovInstructionsNoConstantPool;
+#endif
+
+ // Distance between the instruction referring to the address of the call
+ // target and the return address.
+
+ // Call sequence is a FIXED_SEQUENCE:
+ // mov r8, @ call address
+ // mtlr r8
+ // blrl
+ // @ return address
+ static const int kCallTargetAddressOffset =
+ (kMovInstructions + 2) * kInstrSize;
+
+ // Distance between start of patched return sequence and the emitted address
+ // to jump to.
+ // Patched return sequence is a FIXED_SEQUENCE:
+ // mov r0, <address>
+ // mtlr r0
+ // blrl
+ static const int kPatchReturnSequenceAddressOffset = 0 * kInstrSize;
+
+ // Distance between start of patched debug break slot and the emitted address
+ // to jump to.
+ // Patched debug break slot code is a FIXED_SEQUENCE:
+ // mov r0, <address>
+ // mtlr r0
+ // blrl
+ static const int kPatchDebugBreakSlotAddressOffset = 0 * kInstrSize;
+
+ // This is the length of the BreakLocationIterator::SetDebugBreakAtReturn()
+ // code patch FIXED_SEQUENCE
+ static const int kJSReturnSequenceInstructions =
+ kMovInstructionsNoConstantPool + 3;
+
+ // This is the length of the code sequence from SetDebugBreakAtSlot()
+ // FIXED_SEQUENCE
+ static const int kDebugBreakSlotInstructions =
+ kMovInstructionsNoConstantPool + 2;
+ static const int kDebugBreakSlotLength =
+ kDebugBreakSlotInstructions * kInstrSize;
+
+ static inline int encode_crbit(const CRegister& cr, enum CRBit crbit) {
+ return ((cr.code() * CRWIDTH) + crbit);
+ }
+
+ // ---------------------------------------------------------------------------
+ // Code generation
+
+ // Insert the smallest number of nop instructions
+ // possible to align the pc offset to a multiple
+ // of m. m must be a power of 2 (>= 4).
+ void Align(int m);
+ // Aligns code to something that's optimal for a jump target for the platform.
+ void CodeTargetAlign();
+
+ // Branch instructions
+ void bclr(BOfield bo, LKBit lk);
+ void blr();
+ void bc(int branch_offset, BOfield bo, int condition_bit, LKBit lk = LeaveLK);
+ void b(int branch_offset, LKBit lk);
+
+ void bcctr(BOfield bo, LKBit lk);
+ void bctr();
+ void bctrl();
+
+ // Convenience branch instructions using labels
+ void b(Label* L, LKBit lk = LeaveLK) { b(branch_offset(L, false), lk); }
+
+ void bc_short(Condition cond, Label* L, CRegister cr = cr7,
+ LKBit lk = LeaveLK) {
+ DCHECK(cond != al);
+ DCHECK(cr.code() >= 0 && cr.code() <= 7);
+
+ int b_offset = branch_offset(L, false);
+
+ switch (cond) {
+ case eq:
+ bc(b_offset, BT, encode_crbit(cr, CR_EQ), lk);
+ break;
+ case ne:
+ bc(b_offset, BF, encode_crbit(cr, CR_EQ), lk);
+ break;
+ case gt:
+ bc(b_offset, BT, encode_crbit(cr, CR_GT), lk);
+ break;
+ case le:
+ bc(b_offset, BF, encode_crbit(cr, CR_GT), lk);
+ break;
+ case lt:
+ bc(b_offset, BT, encode_crbit(cr, CR_LT), lk);
+ break;
+ case ge:
+ bc(b_offset, BF, encode_crbit(cr, CR_LT), lk);
+ break;
+ case unordered:
+ bc(b_offset, BT, encode_crbit(cr, CR_FU), lk);
+ break;
+ case ordered:
+ bc(b_offset, BF, encode_crbit(cr, CR_FU), lk);
+ break;
+ case overflow:
+ bc(b_offset, BT, encode_crbit(cr, CR_SO), lk);
+ break;
+ case nooverflow:
+ bc(b_offset, BF, encode_crbit(cr, CR_SO), lk);
+ break;
+ default:
+ UNIMPLEMENTED();
+ }
+ }
+
+ void b(Condition cond, Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
+ if (cond == al) {
+ b(L, lk);
+ return;
+ }
+
+ if ((L->is_bound() && is_near(L, cond)) || !is_trampoline_emitted()) {
+ bc_short(cond, L, cr, lk);
+ return;
+ }
+
+ Label skip;
+ Condition neg_cond = NegateCondition(cond);
+ bc_short(neg_cond, &skip, cr);
+ b(L, lk);
+ bind(&skip);
+ }
+
+ void bne(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
+ b(ne, L, cr, lk);
+ }
+ void beq(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
+ b(eq, L, cr, lk);
+ }
+ void blt(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
+ b(lt, L, cr, lk);
+ }
+ void bge(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
+ b(ge, L, cr, lk);
+ }
+ void ble(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
+ b(le, L, cr, lk);
+ }
+ void bgt(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
+ b(gt, L, cr, lk);
+ }
+ void bunordered(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
+ b(unordered, L, cr, lk);
+ }
+ void bordered(Label* L, CRegister cr = cr7, LKBit lk = LeaveLK) {
+ b(ordered, L, cr, lk);
+ }
+ void boverflow(Label* L, CRegister cr = cr0, LKBit lk = LeaveLK) {
+ b(overflow, L, cr, lk);
+ }
+ void bnooverflow(Label* L, CRegister cr = cr0, LKBit lk = LeaveLK) {
+ b(nooverflow, L, cr, lk);
+ }
+
+ // Decrement CTR; branch if CTR != 0
+ void bdnz(Label* L, LKBit lk = LeaveLK) {
+ bc(branch_offset(L, false), DCBNZ, 0, lk);
+ }
+
+ // Data-processing instructions
+
+ void sub(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
+ RCBit r = LeaveRC);
+
+ void subfic(Register dst, Register src, const Operand& imm);
+
+ void subfc(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
+ RCBit r = LeaveRC);
+
+ void add(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
+ RCBit r = LeaveRC);
+
+ void addc(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
+ RCBit r = LeaveRC);
+
+ void addze(Register dst, Register src1, OEBit o, RCBit r);
+
+ void mullw(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
+ RCBit r = LeaveRC);
+
+ void mulhw(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
+ RCBit r = LeaveRC);
+
+ void divw(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
+ RCBit r = LeaveRC);
+
+ void addi(Register dst, Register src, const Operand& imm);
+ void addis(Register dst, Register src, const Operand& imm);
+ void addic(Register dst, Register src, const Operand& imm);
+
+ void and_(Register dst, Register src1, Register src2, RCBit rc = LeaveRC);
+ void andc(Register dst, Register src1, Register src2, RCBit rc = LeaveRC);
+ void andi(Register ra, Register rs, const Operand& imm);
+ void andis(Register ra, Register rs, const Operand& imm);
+ void nor(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
+ void notx(Register dst, Register src, RCBit r = LeaveRC);
+ void ori(Register dst, Register src, const Operand& imm);
+ void oris(Register dst, Register src, const Operand& imm);
+ void orx(Register dst, Register src1, Register src2, RCBit rc = LeaveRC);
+ void xori(Register dst, Register src, const Operand& imm);
+ void xoris(Register ra, Register rs, const Operand& imm);
+ void xor_(Register dst, Register src1, Register src2, RCBit rc = LeaveRC);
+ void cmpi(Register src1, const Operand& src2, CRegister cr = cr7);
+ void cmpli(Register src1, const Operand& src2, CRegister cr = cr7);
+ void cmpwi(Register src1, const Operand& src2, CRegister cr = cr7);
+ void cmplwi(Register src1, const Operand& src2, CRegister cr = cr7);
+ void li(Register dst, const Operand& src);
+ void lis(Register dst, const Operand& imm);
+ void mr(Register dst, Register src);
+
+ void lbz(Register dst, const MemOperand& src);
+ void lbzx(Register dst, const MemOperand& src);
+ void lbzux(Register dst, const MemOperand& src);
+ void lhz(Register dst, const MemOperand& src);
+ void lhzx(Register dst, const MemOperand& src);
+ void lhzux(Register dst, const MemOperand& src);
+ void lwz(Register dst, const MemOperand& src);
+ void lwzu(Register dst, const MemOperand& src);
+ void lwzx(Register dst, const MemOperand& src);
+ void lwzux(Register dst, const MemOperand& src);
+ void lwa(Register dst, const MemOperand& src);
+ void stb(Register dst, const MemOperand& src);
+ void stbx(Register dst, const MemOperand& src);
+ void stbux(Register dst, const MemOperand& src);
+ void sth(Register dst, const MemOperand& src);
+ void sthx(Register dst, const MemOperand& src);
+ void sthux(Register dst, const MemOperand& src);
+ void stw(Register dst, const MemOperand& src);
+ void stwu(Register dst, const MemOperand& src);
+ void stwx(Register rs, const MemOperand& src);
+ void stwux(Register rs, const MemOperand& src);
+
+ void extsb(Register rs, Register ra, RCBit r = LeaveRC);
+ void extsh(Register rs, Register ra, RCBit r = LeaveRC);
+
+ void neg(Register rt, Register ra, OEBit o = LeaveOE, RCBit c = LeaveRC);
+
+#if V8_TARGET_ARCH_PPC64
+ void ld(Register rd, const MemOperand& src);
+ void ldx(Register rd, const MemOperand& src);
+ void ldu(Register rd, const MemOperand& src);
+ void ldux(Register rd, const MemOperand& src);
+ void std(Register rs, const MemOperand& src);
+ void stdx(Register rs, const MemOperand& src);
+ void stdu(Register rs, const MemOperand& src);
+ void stdux(Register rs, const MemOperand& src);
+ void rldic(Register dst, Register src, int sh, int mb, RCBit r = LeaveRC);
+ void rldicl(Register dst, Register src, int sh, int mb, RCBit r = LeaveRC);
+ void rldcl(Register ra, Register rs, Register rb, int mb, RCBit r = LeaveRC);
+ void rldicr(Register dst, Register src, int sh, int me, RCBit r = LeaveRC);
+ void rldimi(Register dst, Register src, int sh, int mb, RCBit r = LeaveRC);
+ void sldi(Register dst, Register src, const Operand& val, RCBit rc = LeaveRC);
+ void srdi(Register dst, Register src, const Operand& val, RCBit rc = LeaveRC);
+ void clrrdi(Register dst, Register src, const Operand& val,
+ RCBit rc = LeaveRC);
+ void clrldi(Register dst, Register src, const Operand& val,
+ RCBit rc = LeaveRC);
+ void sradi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
+ void srd(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
+ void sld(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
+ void srad(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
+ void rotld(Register ra, Register rs, Register rb, RCBit r = LeaveRC);
+ void rotldi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
+ void rotrdi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
+ void cntlzd_(Register dst, Register src, RCBit rc = LeaveRC);
+ void extsw(Register rs, Register ra, RCBit r = LeaveRC);
+ void mulld(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
+ RCBit r = LeaveRC);
+ void divd(Register dst, Register src1, Register src2, OEBit o = LeaveOE,
+ RCBit r = LeaveRC);
+#endif
+
+ void rlwinm(Register ra, Register rs, int sh, int mb, int me,
+ RCBit rc = LeaveRC);
+ void rlwimi(Register ra, Register rs, int sh, int mb, int me,
+ RCBit rc = LeaveRC);
+ void rlwnm(Register ra, Register rs, Register rb, int mb, int me,
+ RCBit rc = LeaveRC);
+ void slwi(Register dst, Register src, const Operand& val, RCBit rc = LeaveRC);
+ void srwi(Register dst, Register src, const Operand& val, RCBit rc = LeaveRC);
+ void clrrwi(Register dst, Register src, const Operand& val,
+ RCBit rc = LeaveRC);
+ void clrlwi(Register dst, Register src, const Operand& val,
+ RCBit rc = LeaveRC);
+ void srawi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
+ void srw(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
+ void slw(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
+ void sraw(Register dst, Register src1, Register src2, RCBit r = LeaveRC);
+ void rotlw(Register ra, Register rs, Register rb, RCBit r = LeaveRC);
+ void rotlwi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
+ void rotrwi(Register ra, Register rs, int sh, RCBit r = LeaveRC);
+
+ void cntlzw_(Register dst, Register src, RCBit rc = LeaveRC);
+
+ void subi(Register dst, Register src1, const Operand& src2);
+
+ void cmp(Register src1, Register src2, CRegister cr = cr7);
+ void cmpl(Register src1, Register src2, CRegister cr = cr7);
+ void cmpw(Register src1, Register src2, CRegister cr = cr7);
+ void cmplw(Register src1, Register src2, CRegister cr = cr7);
+
+ void mov(Register dst, const Operand& src);
+
+ // Load the position of the label relative to the generated code object
+ // pointer in a register.
+ void mov_label_offset(Register dst, Label* label);
+
+ // Multiply instructions
+ void mul(Register dst, Register src1, Register src2, OEBit s = LeaveOE,
+ RCBit r = LeaveRC);
+
+ // Miscellaneous arithmetic instructions
+
+ // Special register access
+ void crxor(int bt, int ba, int bb);
+ void crclr(int bt) { crxor(bt, bt, bt); }
+ void creqv(int bt, int ba, int bb);
+ void crset(int bt) { creqv(bt, bt, bt); }
+ void mflr(Register dst);
+ void mtlr(Register src);
+ void mtctr(Register src);
+ void mtxer(Register src);
+ void mcrfs(int bf, int bfa);
+ void mfcr(Register dst);
+#if V8_TARGET_ARCH_PPC64
+ void mffprd(Register dst, DoubleRegister src);
+ void mffprwz(Register dst, DoubleRegister src);
+ void mtfprd(DoubleRegister dst, Register src);
+ void mtfprwz(DoubleRegister dst, Register src);
+ void mtfprwa(DoubleRegister dst, Register src);
+#endif
+
+ void fake_asm(enum FAKE_OPCODE_T fopcode);
+ void marker_asm(int mcode);
+ void function_descriptor();
+
+ // Exception-generating instructions and debugging support
+ void stop(const char* msg, Condition cond = al,
+ int32_t code = kDefaultStopCode, CRegister cr = cr7);
+
+ void bkpt(uint32_t imm16); // v5 and above
+
+ // Informational messages when simulating
+ void info(const char* msg, Condition cond = al,
+ int32_t code = kDefaultStopCode, CRegister cr = cr7);
+
+ void dcbf(Register ra, Register rb);
+ void sync();
+ void lwsync();
+ void icbi(Register ra, Register rb);
+ void isync();
+
+ // Support for floating point
+ void lfd(const DoubleRegister frt, const MemOperand& src);
+ void lfdu(const DoubleRegister frt, const MemOperand& src);
+ void lfdx(const DoubleRegister frt, const MemOperand& src);
+ void lfdux(const DoubleRegister frt, const MemOperand& src);
+ void lfs(const DoubleRegister frt, const MemOperand& src);
+ void lfsu(const DoubleRegister frt, const MemOperand& src);
+ void lfsx(const DoubleRegister frt, const MemOperand& src);
+ void lfsux(const DoubleRegister frt, const MemOperand& src);
+ void stfd(const DoubleRegister frs, const MemOperand& src);
+ void stfdu(const DoubleRegister frs, const MemOperand& src);
+ void stfdx(const DoubleRegister frs, const MemOperand& src);
+ void stfdux(const DoubleRegister frs, const MemOperand& src);
+ void stfs(const DoubleRegister frs, const MemOperand& src);
+ void stfsu(const DoubleRegister frs, const MemOperand& src);
+ void stfsx(const DoubleRegister frs, const MemOperand& src);
+ void stfsux(const DoubleRegister frs, const MemOperand& src);
+
+ void fadd(const DoubleRegister frt, const DoubleRegister fra,
+ const DoubleRegister frb, RCBit rc = LeaveRC);
+ void fsub(const DoubleRegister frt, const DoubleRegister fra,
+ const DoubleRegister frb, RCBit rc = LeaveRC);
+ void fdiv(const DoubleRegister frt, const DoubleRegister fra,
+ const DoubleRegister frb, RCBit rc = LeaveRC);
+ void fmul(const DoubleRegister frt, const DoubleRegister fra,
+ const DoubleRegister frc, RCBit rc = LeaveRC);
+ void fcmpu(const DoubleRegister fra, const DoubleRegister frb,
+ CRegister cr = cr7);
+ void fmr(const DoubleRegister frt, const DoubleRegister frb,
+ RCBit rc = LeaveRC);
+ void fctiwz(const DoubleRegister frt, const DoubleRegister frb);
+ void fctiw(const DoubleRegister frt, const DoubleRegister frb);
+ void frim(const DoubleRegister frt, const DoubleRegister frb);
+ void frsp(const DoubleRegister frt, const DoubleRegister frb,
+ RCBit rc = LeaveRC);
+ void fcfid(const DoubleRegister frt, const DoubleRegister frb,
+ RCBit rc = LeaveRC);
+ void fctid(const DoubleRegister frt, const DoubleRegister frb,
+ RCBit rc = LeaveRC);
+ void fctidz(const DoubleRegister frt, const DoubleRegister frb,
+ RCBit rc = LeaveRC);
+ void fsel(const DoubleRegister frt, const DoubleRegister fra,
+ const DoubleRegister frc, const DoubleRegister frb,
+ RCBit rc = LeaveRC);
+ void fneg(const DoubleRegister frt, const DoubleRegister frb,
+ RCBit rc = LeaveRC);
+ void mtfsfi(int bf, int immediate, RCBit rc = LeaveRC);
+ void mffs(const DoubleRegister frt, RCBit rc = LeaveRC);
+ void mtfsf(const DoubleRegister frb, bool L = 1, int FLM = 0, bool W = 0,
+ RCBit rc = LeaveRC);
+ void fsqrt(const DoubleRegister frt, const DoubleRegister frb,
+ RCBit rc = LeaveRC);
+ void fabs(const DoubleRegister frt, const DoubleRegister frb,
+ RCBit rc = LeaveRC);
+ void fmadd(const DoubleRegister frt, const DoubleRegister fra,
+ const DoubleRegister frc, const DoubleRegister frb,
+ RCBit rc = LeaveRC);
+ void fmsub(const DoubleRegister frt, const DoubleRegister fra,
+ const DoubleRegister frc, const DoubleRegister frb,
+ RCBit rc = LeaveRC);
+
+ // Pseudo instructions
+
+ // Different nop operations are used by the code generator to detect certain
+ // states of the generated code.
+ enum NopMarkerTypes {
+ NON_MARKING_NOP = 0,
+ GROUP_ENDING_NOP,
+ DEBUG_BREAK_NOP,
+ // IC markers.
+ PROPERTY_ACCESS_INLINED,
+ PROPERTY_ACCESS_INLINED_CONTEXT,
+ PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
+ // Helper values.
+ LAST_CODE_MARKER,
+ FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED
+ };
+
+ void nop(int type = 0); // 0 is the default non-marking type.
+
+ void push(Register src) {
+#if V8_TARGET_ARCH_PPC64
+ stdu(src, MemOperand(sp, -kPointerSize));
+#else
+ stwu(src, MemOperand(sp, -kPointerSize));
+#endif
+ }
+
+ void pop(Register dst) {
+#if V8_TARGET_ARCH_PPC64
+ ld(dst, MemOperand(sp));
+#else
+ lwz(dst, MemOperand(sp));
+#endif
+ addi(sp, sp, Operand(kPointerSize));
+ }
+
+ void pop() { addi(sp, sp, Operand(kPointerSize)); }
+
+ // Jump unconditionally to given label.
+ void jmp(Label* L) { b(L); }
+
+ // Check the code size generated from label to here.
+ int SizeOfCodeGeneratedSince(Label* label) {
+ return pc_offset() - label->pos();
+ }
+
+ // Check the number of instructions generated from label to here.
+ int InstructionsGeneratedSince(Label* label) {
+ return SizeOfCodeGeneratedSince(label) / kInstrSize;
+ }
+
+ // Class for scoping postponing the trampoline pool generation.
+ class BlockTrampolinePoolScope {
+ public:
+ explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
+ assem_->StartBlockTrampolinePool();
+ }
+ ~BlockTrampolinePoolScope() { assem_->EndBlockTrampolinePool(); }
+
+ private:
+ Assembler* assem_;
+
+ DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
+ };
+
+ // Debugging
+
+ // Mark address of the ExitJSFrame code.
+ void RecordJSReturn();
+
+ // Mark address of a debug break slot.
+ void RecordDebugBreakSlot();
+
+ // Record the AST id of the CallIC being compiled, so that it can be placed
+ // in the relocation information.
+ void SetRecordedAstId(TypeFeedbackId ast_id) {
+ // Causes compiler to fail
+ // DCHECK(recorded_ast_id_.IsNone());
+ recorded_ast_id_ = ast_id;
+ }
+
+ TypeFeedbackId RecordedAstId() {
+ // Causes compiler to fail
+ // DCHECK(!recorded_ast_id_.IsNone());
+ return recorded_ast_id_;
+ }
+
+ void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
+
+ // Record a comment relocation entry that can be used by a disassembler.
+ // Use --code-comments to enable.
+ void RecordComment(const char* msg);
+
+ // Writes a single byte or word of data in the code stream. Used
+ // for inline tables, e.g., jump-tables.
+ void db(uint8_t data);
+ void dd(uint32_t data);
+ void emit_ptr(uintptr_t data);
+
+ PositionsRecorder* positions_recorder() { return &positions_recorder_; }
+
+ // Read/patch instructions
+ Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
+ void instr_at_put(int pos, Instr instr) {
+ *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
+ }
+ static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
+ static void instr_at_put(byte* pc, Instr instr) {
+ *reinterpret_cast<Instr*>(pc) = instr;
+ }
+ static Condition GetCondition(Instr instr);
+
+ static bool IsLis(Instr instr);
+ static bool IsLi(Instr instr);
+ static bool IsAddic(Instr instr);
+ static bool IsOri(Instr instr);
+
+ static bool IsBranch(Instr instr);
+ static Register GetRA(Instr instr);
+ static Register GetRB(Instr instr);
+#if V8_TARGET_ARCH_PPC64
+ static bool Is64BitLoadIntoR12(Instr instr1, Instr instr2, Instr instr3,
+ Instr instr4, Instr instr5);
+#else
+ static bool Is32BitLoadIntoR12(Instr instr1, Instr instr2);
+#endif
+
+ static bool IsCmpRegister(Instr instr);
+ static bool IsCmpImmediate(Instr instr);
+ static bool IsRlwinm(Instr instr);
+#if V8_TARGET_ARCH_PPC64
+ static bool IsRldicl(Instr instr);
+#endif
+ static bool IsCrSet(Instr instr);
+ static Register GetCmpImmediateRegister(Instr instr);
+ static int GetCmpImmediateRawImmediate(Instr instr);
+ static bool IsNop(Instr instr, int type = NON_MARKING_NOP);
+
+ // Postpone the generation of the trampoline pool for the specified number of
+ // instructions.
+ void BlockTrampolinePoolFor(int instructions);
+ void CheckTrampolinePool();
+
+ int instructions_required_for_mov(const Operand& x) const;
+
+#if V8_OOL_CONSTANT_POOL
+ // Decide between using the constant pool vs. a mov immediate sequence.
+ bool use_constant_pool_for_mov(const Operand& x, bool canOptimize) const;
+
+ // The code currently calls CheckBuffer() too often. This has the side
+ // effect of randomly growing the buffer in the middle of multi-instruction
+ // sequences.
+ // MacroAssembler::LoadConstantPoolPointerRegister() includes a relocation
+ // and multiple instructions. We cannot grow the buffer until the
+ // relocation and all of the instructions are written.
+ //
+ // This function allows outside callers to check and grow the buffer
+ void EnsureSpaceFor(int space_needed);
+#endif
+
+ // Allocate a constant pool of the correct size for the generated code.
+ Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
+
+ // Generate the constant pool for the generated code.
+ void PopulateConstantPool(ConstantPoolArray* constant_pool);
+
+#if V8_OOL_CONSTANT_POOL
+ bool is_constant_pool_full() const {
+ return constant_pool_builder_.is_full();
+ }
+
+ bool use_extended_constant_pool() const {
+ return constant_pool_builder_.current_section() ==
+ ConstantPoolArray::EXTENDED_SECTION;
+ }
+#endif
+
+#if ABI_USES_FUNCTION_DESCRIPTORS || V8_OOL_CONSTANT_POOL
+ static void RelocateInternalReference(
+ Address pc, intptr_t delta, Address code_start,
+ ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
+ static int DecodeInternalReference(Vector<char> buffer, Address pc);
+#endif
+
+ protected:
+ // Relocation for a type-recording IC has the AST id added to it. This
+ // member variable is a way to pass the information from the call site to
+ // the relocation info.
+ TypeFeedbackId recorded_ast_id_;
+
+ int buffer_space() const { return reloc_info_writer.pos() - pc_; }
+
+ // Decode branch instruction at pos and return branch target pos
+ int target_at(int pos);
+
+ // Patch branch instruction at pos to branch to given branch target pos
+ void target_at_put(int pos, int target_pos);
+
+ // Record reloc info for current pc_
+ void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
+ void RecordRelocInfo(const RelocInfo& rinfo);
+#if V8_OOL_CONSTANT_POOL
+ ConstantPoolArray::LayoutSection ConstantPoolAddEntry(
+ const RelocInfo& rinfo) {
+ return constant_pool_builder_.AddEntry(this, rinfo);
+ }
+#endif
+
+ // Block the emission of the trampoline pool before pc_offset.
+ void BlockTrampolinePoolBefore(int pc_offset) {
+ if (no_trampoline_pool_before_ < pc_offset)
+ no_trampoline_pool_before_ = pc_offset;
+ }
+
+ void StartBlockTrampolinePool() { trampoline_pool_blocked_nesting_++; }
+
+ void EndBlockTrampolinePool() { trampoline_pool_blocked_nesting_--; }
+
+ bool is_trampoline_pool_blocked() const {
+ return trampoline_pool_blocked_nesting_ > 0;
+ }
+
+ bool has_exception() const { return internal_trampoline_exception_; }
+
+ bool is_trampoline_emitted() const { return trampoline_emitted_; }
+
+#if V8_OOL_CONSTANT_POOL
+ void set_constant_pool_available(bool available) {
+ constant_pool_available_ = available;
+ }
+#endif
+
+ private:
+ // Code generation
+ // The relocation writer's position is at least kGap bytes below the end of
+ // the generated instructions. This is so that multi-instruction sequences do
+ // not have to check for overflow. The same is true for writes of large
+ // relocation info entries.
+ static const int kGap = 32;
+
+ // Repeated checking whether the trampoline pool should be emitted is rather
+ // expensive. By default we only check again once a number of instructions
+ // has been generated.
+ int next_buffer_check_; // pc offset of next buffer check.
+
+ // Emission of the trampoline pool may be blocked in some code sequences.
+ int trampoline_pool_blocked_nesting_; // Block emission if this is not zero.
+ int no_trampoline_pool_before_; // Block emission before this pc offset.
+
+ // Relocation info generation
+ // Each relocation is encoded as a variable size value
+ static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
+ RelocInfoWriter reloc_info_writer;
+
+ // The bound position, before this we cannot do instruction elimination.
+ int last_bound_pos_;
+
+#if V8_OOL_CONSTANT_POOL
+ ConstantPoolBuilder constant_pool_builder_;
+#endif
+
+ // Code emission
+ inline void CheckBuffer();
+ void GrowBuffer();
+ inline void emit(Instr x);
+ inline void CheckTrampolinePoolQuick();
+
+ // Instruction generation
+ void a_form(Instr instr, DoubleRegister frt, DoubleRegister fra,
+ DoubleRegister frb, RCBit r);
+ void d_form(Instr instr, Register rt, Register ra, const intptr_t val,
+ bool signed_disp);
+ void x_form(Instr instr, Register ra, Register rs, Register rb, RCBit r);
+ void xo_form(Instr instr, Register rt, Register ra, Register rb, OEBit o,
+ RCBit r);
+ void md_form(Instr instr, Register ra, Register rs, int shift, int maskbit,
+ RCBit r);
+ void mds_form(Instr instr, Register ra, Register rs, Register rb, int maskbit,
+ RCBit r);
+
+ // Labels
+ void print(Label* L);
+ int max_reach_from(int pos);
+ void bind_to(Label* L, int pos);
+ void next(Label* L);
+
+ class Trampoline {
+ public:
+ Trampoline() {
+ next_slot_ = 0;
+ free_slot_count_ = 0;
+ }
+ Trampoline(int start, int slot_count) {
+ next_slot_ = start;
+ free_slot_count_ = slot_count;
+ }
+ int take_slot() {
+ int trampoline_slot = kInvalidSlotPos;
+ if (free_slot_count_ <= 0) {
+ // We have run out of space on trampolines.
+ // Make sure we fail in debug mode, so we become aware of each case
+ // when this happens.
+ DCHECK(0);
+ // Internal exception will be caught.
+ } else {
+ trampoline_slot = next_slot_;
+ free_slot_count_--;
+ next_slot_ += kTrampolineSlotsSize;
+ }
+ return trampoline_slot;
+ }
+
+ private:
+ int next_slot_;
+ int free_slot_count_;
+ };
+
+ int32_t get_trampoline_entry();
+ int unbound_labels_count_;
+ // If trampoline is emitted, generated code is becoming large. As
+ // this is already a slow case which can possibly break our code
+ // generation for the extreme case, we use this information to
+ // trigger different mode of branch instruction generation, where we
+ // no longer use a single branch instruction.
+ bool trampoline_emitted_;
+ static const int kTrampolineSlotsSize = kInstrSize;
+ static const int kMaxCondBranchReach = (1 << (16 - 1)) - 1;
+ static const int kMaxBlockTrampolineSectionSize = 64 * kInstrSize;
+ static const int kInvalidSlotPos = -1;
+
+ Trampoline trampoline_;
+ bool internal_trampoline_exception_;
+
+ friend class RegExpMacroAssemblerPPC;
+ friend class RelocInfo;
+ friend class CodePatcher;
+ friend class BlockTrampolinePoolScope;
+ PositionsRecorder positions_recorder_;
+ friend class PositionsRecorder;
+ friend class EnsureSpace;
+};
+
+
+class EnsureSpace BASE_EMBEDDED {
+ public:
+ explicit EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
+};
+}
+} // namespace v8::internal
+
+#endif // V8_PPC_ASSEMBLER_PPC_H_