summaryrefslogtreecommitdiff
path: root/deps/v8/src/ppc/full-codegen-ppc.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/ppc/full-codegen-ppc.cc')
-rw-r--r--deps/v8/src/ppc/full-codegen-ppc.cc5290
1 files changed, 5290 insertions, 0 deletions
diff --git a/deps/v8/src/ppc/full-codegen-ppc.cc b/deps/v8/src/ppc/full-codegen-ppc.cc
new file mode 100644
index 0000000000..1bb4f54f4a
--- /dev/null
+++ b/deps/v8/src/ppc/full-codegen-ppc.cc
@@ -0,0 +1,5290 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_PPC
+
+#include "src/code-factory.h"
+#include "src/code-stubs.h"
+#include "src/codegen.h"
+#include "src/compiler.h"
+#include "src/debug.h"
+#include "src/full-codegen.h"
+#include "src/ic/ic.h"
+#include "src/isolate-inl.h"
+#include "src/parser.h"
+#include "src/scopes.h"
+
+#include "src/ppc/code-stubs-ppc.h"
+#include "src/ppc/macro-assembler-ppc.h"
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm_)
+
+// A patch site is a location in the code which it is possible to patch. This
+// class has a number of methods to emit the code which is patchable and the
+// method EmitPatchInfo to record a marker back to the patchable code. This
+// marker is a cmpi rx, #yyy instruction, and x * 0x0000ffff + yyy (raw 16 bit
+// immediate value is used) is the delta from the pc to the first instruction of
+// the patchable code.
+// See PatchInlinedSmiCode in ic-ppc.cc for the code that patches it
+class JumpPatchSite BASE_EMBEDDED {
+ public:
+ explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
+#ifdef DEBUG
+ info_emitted_ = false;
+#endif
+ }
+
+ ~JumpPatchSite() { DCHECK(patch_site_.is_bound() == info_emitted_); }
+
+ // When initially emitting this ensure that a jump is always generated to skip
+ // the inlined smi code.
+ void EmitJumpIfNotSmi(Register reg, Label* target) {
+ DCHECK(!patch_site_.is_bound() && !info_emitted_);
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ __ bind(&patch_site_);
+ __ cmp(reg, reg, cr0);
+ __ beq(target, cr0); // Always taken before patched.
+ }
+
+ // When initially emitting this ensure that a jump is never generated to skip
+ // the inlined smi code.
+ void EmitJumpIfSmi(Register reg, Label* target) {
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ DCHECK(!patch_site_.is_bound() && !info_emitted_);
+ __ bind(&patch_site_);
+ __ cmp(reg, reg, cr0);
+ __ bne(target, cr0); // Never taken before patched.
+ }
+
+ void EmitPatchInfo() {
+ if (patch_site_.is_bound()) {
+ int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
+ Register reg;
+ // I believe this is using reg as the high bits of of the offset
+ reg.set_code(delta_to_patch_site / kOff16Mask);
+ __ cmpi(reg, Operand(delta_to_patch_site % kOff16Mask));
+#ifdef DEBUG
+ info_emitted_ = true;
+#endif
+ } else {
+ __ nop(); // Signals no inlined code.
+ }
+ }
+
+ private:
+ MacroAssembler* masm_;
+ Label patch_site_;
+#ifdef DEBUG
+ bool info_emitted_;
+#endif
+};
+
+
+// Generate code for a JS function. On entry to the function the receiver
+// and arguments have been pushed on the stack left to right. The actual
+// argument count matches the formal parameter count expected by the
+// function.
+//
+// The live registers are:
+// o r4: the JS function object being called (i.e., ourselves)
+// o cp: our context
+// o fp: our caller's frame pointer (aka r31)
+// o sp: stack pointer
+// o lr: return address
+// o ip: our own function entry (required by the prologue)
+//
+// The function builds a JS frame. Please see JavaScriptFrameConstants in
+// frames-ppc.h for its layout.
+void FullCodeGenerator::Generate() {
+ CompilationInfo* info = info_;
+ handler_table_ =
+ isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
+
+ profiling_counter_ = isolate()->factory()->NewCell(
+ Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
+ SetFunctionPosition(function());
+ Comment cmnt(masm_, "[ function compiled by full code generator");
+
+ ProfileEntryHookStub::MaybeCallEntryHook(masm_);
+
+#ifdef DEBUG
+ if (strlen(FLAG_stop_at) > 0 &&
+ info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
+ __ stop("stop-at");
+ }
+#endif
+
+ // Sloppy mode functions and builtins need to replace the receiver with the
+ // global proxy when called as functions (without an explicit receiver
+ // object).
+ if (info->strict_mode() == SLOPPY && !info->is_native()) {
+ Label ok;
+ int receiver_offset = info->scope()->num_parameters() * kPointerSize;
+ __ LoadP(r5, MemOperand(sp, receiver_offset), r0);
+ __ CompareRoot(r5, Heap::kUndefinedValueRootIndex);
+ __ bne(&ok);
+
+ __ LoadP(r5, GlobalObjectOperand());
+ __ LoadP(r5, FieldMemOperand(r5, GlobalObject::kGlobalProxyOffset));
+
+ __ StoreP(r5, MemOperand(sp, receiver_offset), r0);
+
+ __ bind(&ok);
+ }
+
+ // Open a frame scope to indicate that there is a frame on the stack. The
+ // MANUAL indicates that the scope shouldn't actually generate code to set up
+ // the frame (that is done below).
+ FrameScope frame_scope(masm_, StackFrame::MANUAL);
+ int prologue_offset = masm_->pc_offset();
+
+ if (prologue_offset) {
+ // Prologue logic requires it's starting address in ip and the
+ // corresponding offset from the function entry.
+ prologue_offset += Instruction::kInstrSize;
+ __ addi(ip, ip, Operand(prologue_offset));
+ }
+ info->set_prologue_offset(prologue_offset);
+ __ Prologue(info->IsCodePreAgingActive(), prologue_offset);
+ info->AddNoFrameRange(0, masm_->pc_offset());
+
+ {
+ Comment cmnt(masm_, "[ Allocate locals");
+ int locals_count = info->scope()->num_stack_slots();
+ // Generators allocate locals, if any, in context slots.
+ DCHECK(!info->function()->is_generator() || locals_count == 0);
+ if (locals_count > 0) {
+ if (locals_count >= 128) {
+ Label ok;
+ __ Add(ip, sp, -(locals_count * kPointerSize), r0);
+ __ LoadRoot(r5, Heap::kRealStackLimitRootIndex);
+ __ cmpl(ip, r5);
+ __ bc_short(ge, &ok);
+ __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
+ __ bind(&ok);
+ }
+ __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
+ int kMaxPushes = FLAG_optimize_for_size ? 4 : 32;
+ if (locals_count >= kMaxPushes) {
+ int loop_iterations = locals_count / kMaxPushes;
+ __ mov(r5, Operand(loop_iterations));
+ __ mtctr(r5);
+ Label loop_header;
+ __ bind(&loop_header);
+ // Do pushes.
+ for (int i = 0; i < kMaxPushes; i++) {
+ __ push(ip);
+ }
+ // Continue loop if not done.
+ __ bdnz(&loop_header);
+ }
+ int remaining = locals_count % kMaxPushes;
+ // Emit the remaining pushes.
+ for (int i = 0; i < remaining; i++) {
+ __ push(ip);
+ }
+ }
+ }
+
+ bool function_in_register = true;
+
+ // Possibly allocate a local context.
+ int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+ if (heap_slots > 0) {
+ // Argument to NewContext is the function, which is still in r4.
+ Comment cmnt(masm_, "[ Allocate context");
+ bool need_write_barrier = true;
+ if (FLAG_harmony_scoping && info->scope()->is_script_scope()) {
+ __ push(r4);
+ __ Push(info->scope()->GetScopeInfo());
+ __ CallRuntime(Runtime::kNewScriptContext, 2);
+ } else if (heap_slots <= FastNewContextStub::kMaximumSlots) {
+ FastNewContextStub stub(isolate(), heap_slots);
+ __ CallStub(&stub);
+ // Result of FastNewContextStub is always in new space.
+ need_write_barrier = false;
+ } else {
+ __ push(r4);
+ __ CallRuntime(Runtime::kNewFunctionContext, 1);
+ }
+ function_in_register = false;
+ // Context is returned in r3. It replaces the context passed to us.
+ // It's saved in the stack and kept live in cp.
+ __ mr(cp, r3);
+ __ StoreP(r3, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ // Copy any necessary parameters into the context.
+ int num_parameters = info->scope()->num_parameters();
+ for (int i = 0; i < num_parameters; i++) {
+ Variable* var = scope()->parameter(i);
+ if (var->IsContextSlot()) {
+ int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+ (num_parameters - 1 - i) * kPointerSize;
+ // Load parameter from stack.
+ __ LoadP(r3, MemOperand(fp, parameter_offset), r0);
+ // Store it in the context.
+ MemOperand target = ContextOperand(cp, var->index());
+ __ StoreP(r3, target, r0);
+
+ // Update the write barrier.
+ if (need_write_barrier) {
+ __ RecordWriteContextSlot(cp, target.offset(), r3, r6,
+ kLRHasBeenSaved, kDontSaveFPRegs);
+ } else if (FLAG_debug_code) {
+ Label done;
+ __ JumpIfInNewSpace(cp, r3, &done);
+ __ Abort(kExpectedNewSpaceObject);
+ __ bind(&done);
+ }
+ }
+ }
+ }
+
+ Variable* arguments = scope()->arguments();
+ if (arguments != NULL) {
+ // Function uses arguments object.
+ Comment cmnt(masm_, "[ Allocate arguments object");
+ if (!function_in_register) {
+ // Load this again, if it's used by the local context below.
+ __ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ } else {
+ __ mr(r6, r4);
+ }
+ // Receiver is just before the parameters on the caller's stack.
+ int num_parameters = info->scope()->num_parameters();
+ int offset = num_parameters * kPointerSize;
+ __ addi(r5, fp, Operand(StandardFrameConstants::kCallerSPOffset + offset));
+ __ LoadSmiLiteral(r4, Smi::FromInt(num_parameters));
+ __ Push(r6, r5, r4);
+
+ // Arguments to ArgumentsAccessStub:
+ // function, receiver address, parameter count.
+ // The stub will rewrite receiever and parameter count if the previous
+ // stack frame was an arguments adapter frame.
+ ArgumentsAccessStub::Type type;
+ if (strict_mode() == STRICT) {
+ type = ArgumentsAccessStub::NEW_STRICT;
+ } else if (function()->has_duplicate_parameters()) {
+ type = ArgumentsAccessStub::NEW_SLOPPY_SLOW;
+ } else {
+ type = ArgumentsAccessStub::NEW_SLOPPY_FAST;
+ }
+ ArgumentsAccessStub stub(isolate(), type);
+ __ CallStub(&stub);
+
+ SetVar(arguments, r3, r4, r5);
+ }
+
+ if (FLAG_trace) {
+ __ CallRuntime(Runtime::kTraceEnter, 0);
+ }
+
+ // Visit the declarations and body unless there is an illegal
+ // redeclaration.
+ if (scope()->HasIllegalRedeclaration()) {
+ Comment cmnt(masm_, "[ Declarations");
+ scope()->VisitIllegalRedeclaration(this);
+
+ } else {
+ PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
+ {
+ Comment cmnt(masm_, "[ Declarations");
+ // For named function expressions, declare the function name as a
+ // constant.
+ if (scope()->is_function_scope() && scope()->function() != NULL) {
+ VariableDeclaration* function = scope()->function();
+ DCHECK(function->proxy()->var()->mode() == CONST ||
+ function->proxy()->var()->mode() == CONST_LEGACY);
+ DCHECK(function->proxy()->var()->location() != Variable::UNALLOCATED);
+ VisitVariableDeclaration(function);
+ }
+ VisitDeclarations(scope()->declarations());
+ }
+
+ {
+ Comment cmnt(masm_, "[ Stack check");
+ PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
+ Label ok;
+ __ LoadRoot(ip, Heap::kStackLimitRootIndex);
+ __ cmpl(sp, ip);
+ __ bc_short(ge, &ok);
+ __ Call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
+ __ bind(&ok);
+ }
+
+ {
+ Comment cmnt(masm_, "[ Body");
+ DCHECK(loop_depth() == 0);
+ VisitStatements(function()->body());
+ DCHECK(loop_depth() == 0);
+ }
+ }
+
+ // Always emit a 'return undefined' in case control fell off the end of
+ // the body.
+ {
+ Comment cmnt(masm_, "[ return <undefined>;");
+ __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
+ }
+ EmitReturnSequence();
+}
+
+
+void FullCodeGenerator::ClearAccumulator() {
+ __ LoadSmiLiteral(r3, Smi::FromInt(0));
+}
+
+
+void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
+ __ mov(r5, Operand(profiling_counter_));
+ __ LoadP(r6, FieldMemOperand(r5, Cell::kValueOffset));
+ __ SubSmiLiteral(r6, r6, Smi::FromInt(delta), r0);
+ __ StoreP(r6, FieldMemOperand(r5, Cell::kValueOffset), r0);
+}
+
+
+void FullCodeGenerator::EmitProfilingCounterReset() {
+ int reset_value = FLAG_interrupt_budget;
+ if (info_->is_debug()) {
+ // Detect debug break requests as soon as possible.
+ reset_value = FLAG_interrupt_budget >> 4;
+ }
+ __ mov(r5, Operand(profiling_counter_));
+ __ LoadSmiLiteral(r6, Smi::FromInt(reset_value));
+ __ StoreP(r6, FieldMemOperand(r5, Cell::kValueOffset), r0);
+}
+
+
+void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
+ Label* back_edge_target) {
+ Comment cmnt(masm_, "[ Back edge bookkeeping");
+ Label ok;
+
+ DCHECK(back_edge_target->is_bound());
+ int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target) +
+ kCodeSizeMultiplier / 2;
+ int weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier));
+ EmitProfilingCounterDecrement(weight);
+ {
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ // BackEdgeTable::PatchAt manipulates this sequence.
+ __ cmpi(r6, Operand::Zero());
+ __ bc_short(ge, &ok);
+ __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
+
+ // Record a mapping of this PC offset to the OSR id. This is used to find
+ // the AST id from the unoptimized code in order to use it as a key into
+ // the deoptimization input data found in the optimized code.
+ RecordBackEdge(stmt->OsrEntryId());
+ }
+ EmitProfilingCounterReset();
+
+ __ bind(&ok);
+ PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
+ // Record a mapping of the OSR id to this PC. This is used if the OSR
+ // entry becomes the target of a bailout. We don't expect it to be, but
+ // we want it to work if it is.
+ PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
+}
+
+
+void FullCodeGenerator::EmitReturnSequence() {
+ Comment cmnt(masm_, "[ Return sequence");
+ if (return_label_.is_bound()) {
+ __ b(&return_label_);
+ } else {
+ __ bind(&return_label_);
+ if (FLAG_trace) {
+ // Push the return value on the stack as the parameter.
+ // Runtime::TraceExit returns its parameter in r3
+ __ push(r3);
+ __ CallRuntime(Runtime::kTraceExit, 1);
+ }
+ // Pretend that the exit is a backwards jump to the entry.
+ int weight = 1;
+ if (info_->ShouldSelfOptimize()) {
+ weight = FLAG_interrupt_budget / FLAG_self_opt_count;
+ } else {
+ int distance = masm_->pc_offset() + kCodeSizeMultiplier / 2;
+ weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier));
+ }
+ EmitProfilingCounterDecrement(weight);
+ Label ok;
+ __ cmpi(r6, Operand::Zero());
+ __ bge(&ok);
+ __ push(r3);
+ __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
+ __ pop(r3);
+ EmitProfilingCounterReset();
+ __ bind(&ok);
+
+#ifdef DEBUG
+ // Add a label for checking the size of the code used for returning.
+ Label check_exit_codesize;
+ __ bind(&check_exit_codesize);
+#endif
+ // Make sure that the constant pool is not emitted inside of the return
+ // sequence.
+ {
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize;
+ CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
+ __ RecordJSReturn();
+ int no_frame_start = __ LeaveFrame(StackFrame::JAVA_SCRIPT, sp_delta);
+#if V8_TARGET_ARCH_PPC64
+ // With 64bit we may need nop() instructions to ensure we have
+ // enough space to SetDebugBreakAtReturn()
+ if (is_int16(sp_delta)) {
+#if !V8_OOL_CONSTANT_POOL
+ masm_->nop();
+#endif
+ masm_->nop();
+ }
+#endif
+ __ blr();
+ info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
+ }
+
+#ifdef DEBUG
+ // Check that the size of the code used for returning is large enough
+ // for the debugger's requirements.
+ DCHECK(Assembler::kJSReturnSequenceInstructions <=
+ masm_->InstructionsGeneratedSince(&check_exit_codesize));
+#endif
+ }
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
+ DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
+ DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+ codegen()->GetVar(result_register(), var);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
+ DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+ codegen()->GetVar(result_register(), var);
+ __ push(result_register());
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Variable* var) const {
+ DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+ // For simplicity we always test the accumulator register.
+ codegen()->GetVar(result_register(), var);
+ codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
+ codegen()->DoTest(this);
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+ Heap::RootListIndex index) const {
+ __ LoadRoot(result_register(), index);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(
+ Heap::RootListIndex index) const {
+ __ LoadRoot(result_register(), index);
+ __ push(result_register());
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
+ codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
+ false_label_);
+ if (index == Heap::kUndefinedValueRootIndex ||
+ index == Heap::kNullValueRootIndex ||
+ index == Heap::kFalseValueRootIndex) {
+ if (false_label_ != fall_through_) __ b(false_label_);
+ } else if (index == Heap::kTrueValueRootIndex) {
+ if (true_label_ != fall_through_) __ b(true_label_);
+ } else {
+ __ LoadRoot(result_register(), index);
+ codegen()->DoTest(this);
+ }
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+ Handle<Object> lit) const {
+ __ mov(result_register(), Operand(lit));
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
+ // Immediates cannot be pushed directly.
+ __ mov(result_register(), Operand(lit));
+ __ push(result_register());
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
+ codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
+ false_label_);
+ DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals.
+ if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
+ if (false_label_ != fall_through_) __ b(false_label_);
+ } else if (lit->IsTrue() || lit->IsJSObject()) {
+ if (true_label_ != fall_through_) __ b(true_label_);
+ } else if (lit->IsString()) {
+ if (String::cast(*lit)->length() == 0) {
+ if (false_label_ != fall_through_) __ b(false_label_);
+ } else {
+ if (true_label_ != fall_through_) __ b(true_label_);
+ }
+ } else if (lit->IsSmi()) {
+ if (Smi::cast(*lit)->value() == 0) {
+ if (false_label_ != fall_through_) __ b(false_label_);
+ } else {
+ if (true_label_ != fall_through_) __ b(true_label_);
+ }
+ } else {
+ // For simplicity we always test the accumulator register.
+ __ mov(result_register(), Operand(lit));
+ codegen()->DoTest(this);
+ }
+}
+
+
+void FullCodeGenerator::EffectContext::DropAndPlug(int count,
+ Register reg) const {
+ DCHECK(count > 0);
+ __ Drop(count);
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
+ int count, Register reg) const {
+ DCHECK(count > 0);
+ __ Drop(count);
+ __ Move(result_register(), reg);
+}
+
+
+void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
+ Register reg) const {
+ DCHECK(count > 0);
+ if (count > 1) __ Drop(count - 1);
+ __ StoreP(reg, MemOperand(sp, 0));
+}
+
+
+void FullCodeGenerator::TestContext::DropAndPlug(int count,
+ Register reg) const {
+ DCHECK(count > 0);
+ // For simplicity we always test the accumulator register.
+ __ Drop(count);
+ __ Move(result_register(), reg);
+ codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
+ codegen()->DoTest(this);
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
+ Label* materialize_false) const {
+ DCHECK(materialize_true == materialize_false);
+ __ bind(materialize_true);
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+ Label* materialize_true, Label* materialize_false) const {
+ Label done;
+ __ bind(materialize_true);
+ __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
+ __ b(&done);
+ __ bind(materialize_false);
+ __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
+ __ bind(&done);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(
+ Label* materialize_true, Label* materialize_false) const {
+ Label done;
+ __ bind(materialize_true);
+ __ LoadRoot(ip, Heap::kTrueValueRootIndex);
+ __ b(&done);
+ __ bind(materialize_false);
+ __ LoadRoot(ip, Heap::kFalseValueRootIndex);
+ __ bind(&done);
+ __ push(ip);
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
+ Label* materialize_false) const {
+ DCHECK(materialize_true == true_label_);
+ DCHECK(materialize_false == false_label_);
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(bool flag) const {}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
+ Heap::RootListIndex value_root_index =
+ flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
+ __ LoadRoot(result_register(), value_root_index);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
+ Heap::RootListIndex value_root_index =
+ flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
+ __ LoadRoot(ip, value_root_index);
+ __ push(ip);
+}
+
+
+void FullCodeGenerator::TestContext::Plug(bool flag) const {
+ codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
+ false_label_);
+ if (flag) {
+ if (true_label_ != fall_through_) __ b(true_label_);
+ } else {
+ if (false_label_ != fall_through_) __ b(false_label_);
+ }
+}
+
+
+void FullCodeGenerator::DoTest(Expression* condition, Label* if_true,
+ Label* if_false, Label* fall_through) {
+ Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
+ CallIC(ic, condition->test_id());
+ __ cmpi(result_register(), Operand::Zero());
+ Split(ne, if_true, if_false, fall_through);
+}
+
+
+void FullCodeGenerator::Split(Condition cond, Label* if_true, Label* if_false,
+ Label* fall_through, CRegister cr) {
+ if (if_false == fall_through) {
+ __ b(cond, if_true, cr);
+ } else if (if_true == fall_through) {
+ __ b(NegateCondition(cond), if_false, cr);
+ } else {
+ __ b(cond, if_true, cr);
+ __ b(if_false);
+ }
+}
+
+
+MemOperand FullCodeGenerator::StackOperand(Variable* var) {
+ DCHECK(var->IsStackAllocated());
+ // Offset is negative because higher indexes are at lower addresses.
+ int offset = -var->index() * kPointerSize;
+ // Adjust by a (parameter or local) base offset.
+ if (var->IsParameter()) {
+ offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
+ } else {
+ offset += JavaScriptFrameConstants::kLocal0Offset;
+ }
+ return MemOperand(fp, offset);
+}
+
+
+MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
+ DCHECK(var->IsContextSlot() || var->IsStackAllocated());
+ if (var->IsContextSlot()) {
+ int context_chain_length = scope()->ContextChainLength(var->scope());
+ __ LoadContext(scratch, context_chain_length);
+ return ContextOperand(scratch, var->index());
+ } else {
+ return StackOperand(var);
+ }
+}
+
+
+void FullCodeGenerator::GetVar(Register dest, Variable* var) {
+ // Use destination as scratch.
+ MemOperand location = VarOperand(var, dest);
+ __ LoadP(dest, location, r0);
+}
+
+
+void FullCodeGenerator::SetVar(Variable* var, Register src, Register scratch0,
+ Register scratch1) {
+ DCHECK(var->IsContextSlot() || var->IsStackAllocated());
+ DCHECK(!scratch0.is(src));
+ DCHECK(!scratch0.is(scratch1));
+ DCHECK(!scratch1.is(src));
+ MemOperand location = VarOperand(var, scratch0);
+ __ StoreP(src, location, r0);
+
+ // Emit the write barrier code if the location is in the heap.
+ if (var->IsContextSlot()) {
+ __ RecordWriteContextSlot(scratch0, location.offset(), src, scratch1,
+ kLRHasBeenSaved, kDontSaveFPRegs);
+ }
+}
+
+
+void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
+ bool should_normalize,
+ Label* if_true,
+ Label* if_false) {
+ // Only prepare for bailouts before splits if we're in a test
+ // context. Otherwise, we let the Visit function deal with the
+ // preparation to avoid preparing with the same AST id twice.
+ if (!context()->IsTest() || !info_->IsOptimizable()) return;
+
+ Label skip;
+ if (should_normalize) __ b(&skip);
+ PrepareForBailout(expr, TOS_REG);
+ if (should_normalize) {
+ __ LoadRoot(ip, Heap::kTrueValueRootIndex);
+ __ cmp(r3, ip);
+ Split(eq, if_true, if_false, NULL);
+ __ bind(&skip);
+ }
+}
+
+
+void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
+ // The variable in the declaration always resides in the current function
+ // context.
+ DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
+ if (generate_debug_code_) {
+ // Check that we're not inside a with or catch context.
+ __ LoadP(r4, FieldMemOperand(cp, HeapObject::kMapOffset));
+ __ CompareRoot(r4, Heap::kWithContextMapRootIndex);
+ __ Check(ne, kDeclarationInWithContext);
+ __ CompareRoot(r4, Heap::kCatchContextMapRootIndex);
+ __ Check(ne, kDeclarationInCatchContext);
+ }
+}
+
+
+void FullCodeGenerator::VisitVariableDeclaration(
+ VariableDeclaration* declaration) {
+ // If it was not possible to allocate the variable at compile time, we
+ // need to "declare" it at runtime to make sure it actually exists in the
+ // local context.
+ VariableProxy* proxy = declaration->proxy();
+ VariableMode mode = declaration->mode();
+ Variable* variable = proxy->var();
+ bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
+ switch (variable->location()) {
+ case Variable::UNALLOCATED:
+ globals_->Add(variable->name(), zone());
+ globals_->Add(variable->binding_needs_init()
+ ? isolate()->factory()->the_hole_value()
+ : isolate()->factory()->undefined_value(),
+ zone());
+ break;
+
+ case Variable::PARAMETER:
+ case Variable::LOCAL:
+ if (hole_init) {
+ Comment cmnt(masm_, "[ VariableDeclaration");
+ __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+ __ StoreP(ip, StackOperand(variable));
+ }
+ break;
+
+ case Variable::CONTEXT:
+ if (hole_init) {
+ Comment cmnt(masm_, "[ VariableDeclaration");
+ EmitDebugCheckDeclarationContext(variable);
+ __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+ __ StoreP(ip, ContextOperand(cp, variable->index()), r0);
+ // No write barrier since the_hole_value is in old space.
+ PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
+ }
+ break;
+
+ case Variable::LOOKUP: {
+ Comment cmnt(masm_, "[ VariableDeclaration");
+ __ mov(r5, Operand(variable->name()));
+ // Declaration nodes are always introduced in one of four modes.
+ DCHECK(IsDeclaredVariableMode(mode));
+ PropertyAttributes attr =
+ IsImmutableVariableMode(mode) ? READ_ONLY : NONE;
+ __ LoadSmiLiteral(r4, Smi::FromInt(attr));
+ // Push initial value, if any.
+ // Note: For variables we must not push an initial value (such as
+ // 'undefined') because we may have a (legal) redeclaration and we
+ // must not destroy the current value.
+ if (hole_init) {
+ __ LoadRoot(r3, Heap::kTheHoleValueRootIndex);
+ __ Push(cp, r5, r4, r3);
+ } else {
+ __ LoadSmiLiteral(r3, Smi::FromInt(0)); // Indicates no initial value.
+ __ Push(cp, r5, r4, r3);
+ }
+ __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
+ break;
+ }
+ }
+}
+
+
+void FullCodeGenerator::VisitFunctionDeclaration(
+ FunctionDeclaration* declaration) {
+ VariableProxy* proxy = declaration->proxy();
+ Variable* variable = proxy->var();
+ switch (variable->location()) {
+ case Variable::UNALLOCATED: {
+ globals_->Add(variable->name(), zone());
+ Handle<SharedFunctionInfo> function =
+ Compiler::BuildFunctionInfo(declaration->fun(), script(), info_);
+ // Check for stack-overflow exception.
+ if (function.is_null()) return SetStackOverflow();
+ globals_->Add(function, zone());
+ break;
+ }
+
+ case Variable::PARAMETER:
+ case Variable::LOCAL: {
+ Comment cmnt(masm_, "[ FunctionDeclaration");
+ VisitForAccumulatorValue(declaration->fun());
+ __ StoreP(result_register(), StackOperand(variable));
+ break;
+ }
+
+ case Variable::CONTEXT: {
+ Comment cmnt(masm_, "[ FunctionDeclaration");
+ EmitDebugCheckDeclarationContext(variable);
+ VisitForAccumulatorValue(declaration->fun());
+ __ StoreP(result_register(), ContextOperand(cp, variable->index()), r0);
+ int offset = Context::SlotOffset(variable->index());
+ // We know that we have written a function, which is not a smi.
+ __ RecordWriteContextSlot(cp, offset, result_register(), r5,
+ kLRHasBeenSaved, kDontSaveFPRegs,
+ EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
+ PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
+ break;
+ }
+
+ case Variable::LOOKUP: {
+ Comment cmnt(masm_, "[ FunctionDeclaration");
+ __ mov(r5, Operand(variable->name()));
+ __ LoadSmiLiteral(r4, Smi::FromInt(NONE));
+ __ Push(cp, r5, r4);
+ // Push initial value for function declaration.
+ VisitForStackValue(declaration->fun());
+ __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
+ break;
+ }
+ }
+}
+
+
+void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) {
+ Variable* variable = declaration->proxy()->var();
+ DCHECK(variable->location() == Variable::CONTEXT);
+ DCHECK(variable->interface()->IsFrozen());
+
+ Comment cmnt(masm_, "[ ModuleDeclaration");
+ EmitDebugCheckDeclarationContext(variable);
+
+ // Load instance object.
+ __ LoadContext(r4, scope_->ContextChainLength(scope_->ScriptScope()));
+ __ LoadP(r4, ContextOperand(r4, variable->interface()->Index()));
+ __ LoadP(r4, ContextOperand(r4, Context::EXTENSION_INDEX));
+
+ // Assign it.
+ __ StoreP(r4, ContextOperand(cp, variable->index()), r0);
+ // We know that we have written a module, which is not a smi.
+ __ RecordWriteContextSlot(cp, Context::SlotOffset(variable->index()), r4, r6,
+ kLRHasBeenSaved, kDontSaveFPRegs,
+ EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
+ PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS);
+
+ // Traverse into body.
+ Visit(declaration->module());
+}
+
+
+void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) {
+ VariableProxy* proxy = declaration->proxy();
+ Variable* variable = proxy->var();
+ switch (variable->location()) {
+ case Variable::UNALLOCATED:
+ // TODO(rossberg)
+ break;
+
+ case Variable::CONTEXT: {
+ Comment cmnt(masm_, "[ ImportDeclaration");
+ EmitDebugCheckDeclarationContext(variable);
+ // TODO(rossberg)
+ break;
+ }
+
+ case Variable::PARAMETER:
+ case Variable::LOCAL:
+ case Variable::LOOKUP:
+ UNREACHABLE();
+ }
+}
+
+
+void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) {
+ // TODO(rossberg)
+}
+
+
+void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
+ // Call the runtime to declare the globals.
+ // The context is the first argument.
+ __ mov(r4, Operand(pairs));
+ __ LoadSmiLiteral(r3, Smi::FromInt(DeclareGlobalsFlags()));
+ __ Push(cp, r4, r3);
+ __ CallRuntime(Runtime::kDeclareGlobals, 3);
+ // Return value is ignored.
+}
+
+
+void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
+ // Call the runtime to declare the modules.
+ __ Push(descriptions);
+ __ CallRuntime(Runtime::kDeclareModules, 1);
+ // Return value is ignored.
+}
+
+
+void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
+ Comment cmnt(masm_, "[ SwitchStatement");
+ Breakable nested_statement(this, stmt);
+ SetStatementPosition(stmt);
+
+ // Keep the switch value on the stack until a case matches.
+ VisitForStackValue(stmt->tag());
+ PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
+
+ ZoneList<CaseClause*>* clauses = stmt->cases();
+ CaseClause* default_clause = NULL; // Can occur anywhere in the list.
+
+ Label next_test; // Recycled for each test.
+ // Compile all the tests with branches to their bodies.
+ for (int i = 0; i < clauses->length(); i++) {
+ CaseClause* clause = clauses->at(i);
+ clause->body_target()->Unuse();
+
+ // The default is not a test, but remember it as final fall through.
+ if (clause->is_default()) {
+ default_clause = clause;
+ continue;
+ }
+
+ Comment cmnt(masm_, "[ Case comparison");
+ __ bind(&next_test);
+ next_test.Unuse();
+
+ // Compile the label expression.
+ VisitForAccumulatorValue(clause->label());
+
+ // Perform the comparison as if via '==='.
+ __ LoadP(r4, MemOperand(sp, 0)); // Switch value.
+ bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
+ JumpPatchSite patch_site(masm_);
+ if (inline_smi_code) {
+ Label slow_case;
+ __ orx(r5, r4, r3);
+ patch_site.EmitJumpIfNotSmi(r5, &slow_case);
+
+ __ cmp(r4, r3);
+ __ bne(&next_test);
+ __ Drop(1); // Switch value is no longer needed.
+ __ b(clause->body_target());
+ __ bind(&slow_case);
+ }
+
+ // Record position before stub call for type feedback.
+ SetSourcePosition(clause->position());
+ Handle<Code> ic =
+ CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code();
+ CallIC(ic, clause->CompareId());
+ patch_site.EmitPatchInfo();
+
+ Label skip;
+ __ b(&skip);
+ PrepareForBailout(clause, TOS_REG);
+ __ LoadRoot(ip, Heap::kTrueValueRootIndex);
+ __ cmp(r3, ip);
+ __ bne(&next_test);
+ __ Drop(1);
+ __ b(clause->body_target());
+ __ bind(&skip);
+
+ __ cmpi(r3, Operand::Zero());
+ __ bne(&next_test);
+ __ Drop(1); // Switch value is no longer needed.
+ __ b(clause->body_target());
+ }
+
+ // Discard the test value and jump to the default if present, otherwise to
+ // the end of the statement.
+ __ bind(&next_test);
+ __ Drop(1); // Switch value is no longer needed.
+ if (default_clause == NULL) {
+ __ b(nested_statement.break_label());
+ } else {
+ __ b(default_clause->body_target());
+ }
+
+ // Compile all the case bodies.
+ for (int i = 0; i < clauses->length(); i++) {
+ Comment cmnt(masm_, "[ Case body");
+ CaseClause* clause = clauses->at(i);
+ __ bind(clause->body_target());
+ PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
+ VisitStatements(clause->statements());
+ }
+
+ __ bind(nested_statement.break_label());
+ PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
+}
+
+
+void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
+ Comment cmnt(masm_, "[ ForInStatement");
+ FeedbackVectorSlot slot = stmt->ForInFeedbackSlot();
+ SetStatementPosition(stmt);
+
+ Label loop, exit;
+ ForIn loop_statement(this, stmt);
+ increment_loop_depth();
+
+ // Get the object to enumerate over. If the object is null or undefined, skip
+ // over the loop. See ECMA-262 version 5, section 12.6.4.
+ VisitForAccumulatorValue(stmt->enumerable());
+ __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
+ __ cmp(r3, ip);
+ __ beq(&exit);
+ Register null_value = r7;
+ __ LoadRoot(null_value, Heap::kNullValueRootIndex);
+ __ cmp(r3, null_value);
+ __ beq(&exit);
+
+ PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
+
+ // Convert the object to a JS object.
+ Label convert, done_convert;
+ __ JumpIfSmi(r3, &convert);
+ __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
+ __ bge(&done_convert);
+ __ bind(&convert);
+ __ push(r3);
+ __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
+ __ bind(&done_convert);
+ PrepareForBailoutForId(stmt->ToObjectId(), TOS_REG);
+ __ push(r3);
+
+ // Check for proxies.
+ Label call_runtime;
+ STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
+ __ CompareObjectType(r3, r4, r4, LAST_JS_PROXY_TYPE);
+ __ ble(&call_runtime);
+
+ // Check cache validity in generated code. This is a fast case for
+ // the JSObject::IsSimpleEnum cache validity checks. If we cannot
+ // guarantee cache validity, call the runtime system to check cache
+ // validity or get the property names in a fixed array.
+ __ CheckEnumCache(null_value, &call_runtime);
+
+ // The enum cache is valid. Load the map of the object being
+ // iterated over and use the cache for the iteration.
+ Label use_cache;
+ __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
+ __ b(&use_cache);
+
+ // Get the set of properties to enumerate.
+ __ bind(&call_runtime);
+ __ push(r3); // Duplicate the enumerable object on the stack.
+ __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
+ PrepareForBailoutForId(stmt->EnumId(), TOS_REG);
+
+ // If we got a map from the runtime call, we can do a fast
+ // modification check. Otherwise, we got a fixed array, and we have
+ // to do a slow check.
+ Label fixed_array;
+ __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
+ __ LoadRoot(ip, Heap::kMetaMapRootIndex);
+ __ cmp(r5, ip);
+ __ bne(&fixed_array);
+
+ // We got a map in register r3. Get the enumeration cache from it.
+ Label no_descriptors;
+ __ bind(&use_cache);
+
+ __ EnumLength(r4, r3);
+ __ CmpSmiLiteral(r4, Smi::FromInt(0), r0);
+ __ beq(&no_descriptors);
+
+ __ LoadInstanceDescriptors(r3, r5);
+ __ LoadP(r5, FieldMemOperand(r5, DescriptorArray::kEnumCacheOffset));
+ __ LoadP(r5,
+ FieldMemOperand(r5, DescriptorArray::kEnumCacheBridgeCacheOffset));
+
+ // Set up the four remaining stack slots.
+ __ push(r3); // Map.
+ __ LoadSmiLiteral(r3, Smi::FromInt(0));
+ // Push enumeration cache, enumeration cache length (as smi) and zero.
+ __ Push(r5, r4, r3);
+ __ b(&loop);
+
+ __ bind(&no_descriptors);
+ __ Drop(1);
+ __ b(&exit);
+
+ // We got a fixed array in register r3. Iterate through that.
+ Label non_proxy;
+ __ bind(&fixed_array);
+
+ __ Move(r4, FeedbackVector());
+ __ mov(r5, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate())));
+ int vector_index = FeedbackVector()->GetIndex(slot);
+ __ StoreP(
+ r5, FieldMemOperand(r4, FixedArray::OffsetOfElementAt(vector_index)), r0);
+
+ __ LoadSmiLiteral(r4, Smi::FromInt(1)); // Smi indicates slow check
+ __ LoadP(r5, MemOperand(sp, 0 * kPointerSize)); // Get enumerated object
+ STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
+ __ CompareObjectType(r5, r6, r6, LAST_JS_PROXY_TYPE);
+ __ bgt(&non_proxy);
+ __ LoadSmiLiteral(r4, Smi::FromInt(0)); // Zero indicates proxy
+ __ bind(&non_proxy);
+ __ Push(r4, r3); // Smi and array
+ __ LoadP(r4, FieldMemOperand(r3, FixedArray::kLengthOffset));
+ __ LoadSmiLiteral(r3, Smi::FromInt(0));
+ __ Push(r4, r3); // Fixed array length (as smi) and initial index.
+
+ // Generate code for doing the condition check.
+ PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
+ __ bind(&loop);
+ // Load the current count to r3, load the length to r4.
+ __ LoadP(r3, MemOperand(sp, 0 * kPointerSize));
+ __ LoadP(r4, MemOperand(sp, 1 * kPointerSize));
+ __ cmpl(r3, r4); // Compare to the array length.
+ __ bge(loop_statement.break_label());
+
+ // Get the current entry of the array into register r6.
+ __ LoadP(r5, MemOperand(sp, 2 * kPointerSize));
+ __ addi(r5, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ SmiToPtrArrayOffset(r6, r3);
+ __ LoadPX(r6, MemOperand(r6, r5));
+
+ // Get the expected map from the stack or a smi in the
+ // permanent slow case into register r5.
+ __ LoadP(r5, MemOperand(sp, 3 * kPointerSize));
+
+ // Check if the expected map still matches that of the enumerable.
+ // If not, we may have to filter the key.
+ Label update_each;
+ __ LoadP(r4, MemOperand(sp, 4 * kPointerSize));
+ __ LoadP(r7, FieldMemOperand(r4, HeapObject::kMapOffset));
+ __ cmp(r7, r5);
+ __ beq(&update_each);
+
+ // For proxies, no filtering is done.
+ // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
+ __ CmpSmiLiteral(r5, Smi::FromInt(0), r0);
+ __ beq(&update_each);
+
+ // Convert the entry to a string or (smi) 0 if it isn't a property
+ // any more. If the property has been removed while iterating, we
+ // just skip it.
+ __ Push(r4, r6); // Enumerable and current entry.
+ __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
+ __ mr(r6, r3);
+ __ cmpi(r6, Operand::Zero());
+ __ beq(loop_statement.continue_label());
+
+ // Update the 'each' property or variable from the possibly filtered
+ // entry in register r6.
+ __ bind(&update_each);
+ __ mr(result_register(), r6);
+ // Perform the assignment as if via '='.
+ {
+ EffectContext context(this);
+ EmitAssignment(stmt->each());
+ }
+
+ // Generate code for the body of the loop.
+ Visit(stmt->body());
+
+ // Generate code for the going to the next element by incrementing
+ // the index (smi) stored on top of the stack.
+ __ bind(loop_statement.continue_label());
+ __ pop(r3);
+ __ AddSmiLiteral(r3, r3, Smi::FromInt(1), r0);
+ __ push(r3);
+
+ EmitBackEdgeBookkeeping(stmt, &loop);
+ __ b(&loop);
+
+ // Remove the pointers stored on the stack.
+ __ bind(loop_statement.break_label());
+ __ Drop(5);
+
+ // Exit and decrement the loop depth.
+ PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
+ __ bind(&exit);
+ decrement_loop_depth();
+}
+
+
+void FullCodeGenerator::VisitForOfStatement(ForOfStatement* stmt) {
+ Comment cmnt(masm_, "[ ForOfStatement");
+ SetStatementPosition(stmt);
+
+ Iteration loop_statement(this, stmt);
+ increment_loop_depth();
+
+ // var iterator = iterable[Symbol.iterator]();
+ VisitForEffect(stmt->assign_iterator());
+
+ // Loop entry.
+ __ bind(loop_statement.continue_label());
+
+ // result = iterator.next()
+ VisitForEffect(stmt->next_result());
+
+ // if (result.done) break;
+ Label result_not_done;
+ VisitForControl(stmt->result_done(), loop_statement.break_label(),
+ &result_not_done, &result_not_done);
+ __ bind(&result_not_done);
+
+ // each = result.value
+ VisitForEffect(stmt->assign_each());
+
+ // Generate code for the body of the loop.
+ Visit(stmt->body());
+
+ // Check stack before looping.
+ PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
+ EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label());
+ __ b(loop_statement.continue_label());
+
+ // Exit and decrement the loop depth.
+ PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
+ __ bind(loop_statement.break_label());
+ decrement_loop_depth();
+}
+
+
+void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
+ bool pretenure) {
+ // Use the fast case closure allocation code that allocates in new
+ // space for nested functions that don't need literals cloning. If
+ // we're running with the --always-opt or the --prepare-always-opt
+ // flag, we need to use the runtime function so that the new function
+ // we are creating here gets a chance to have its code optimized and
+ // doesn't just get a copy of the existing unoptimized code.
+ if (!FLAG_always_opt && !FLAG_prepare_always_opt && !pretenure &&
+ scope()->is_function_scope() && info->num_literals() == 0) {
+ FastNewClosureStub stub(isolate(), info->strict_mode(), info->kind());
+ __ mov(r5, Operand(info));
+ __ CallStub(&stub);
+ } else {
+ __ mov(r3, Operand(info));
+ __ LoadRoot(
+ r4, pretenure ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex);
+ __ Push(cp, r3, r4);
+ __ CallRuntime(Runtime::kNewClosure, 3);
+ }
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
+ Comment cmnt(masm_, "[ VariableProxy");
+ EmitVariableLoad(expr);
+}
+
+
+void FullCodeGenerator::EmitLoadHomeObject(SuperReference* expr) {
+ Comment cnmt(masm_, "[ SuperReference ");
+
+ __ LoadP(LoadDescriptor::ReceiverRegister(),
+ MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+
+ Handle<Symbol> home_object_symbol(isolate()->heap()->home_object_symbol());
+ __ Move(LoadDescriptor::NameRegister(), home_object_symbol);
+
+ if (FLAG_vector_ics) {
+ __ mov(VectorLoadICDescriptor::SlotRegister(),
+ Operand(SmiFromSlot(expr->HomeObjectFeedbackSlot())));
+ CallLoadIC(NOT_CONTEXTUAL);
+ } else {
+ CallLoadIC(NOT_CONTEXTUAL, expr->HomeObjectFeedbackId());
+ }
+
+ __ Cmpi(r3, Operand(isolate()->factory()->undefined_value()), r0);
+ Label done;
+ __ bne(&done);
+ __ CallRuntime(Runtime::kThrowNonMethodError, 0);
+ __ bind(&done);
+}
+
+
+void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
+ TypeofState typeof_state,
+ Label* slow) {
+ Register current = cp;
+ Register next = r4;
+ Register temp = r5;
+
+ Scope* s = scope();
+ while (s != NULL) {
+ if (s->num_heap_slots() > 0) {
+ if (s->calls_sloppy_eval()) {
+ // Check that extension is NULL.
+ __ LoadP(temp, ContextOperand(current, Context::EXTENSION_INDEX));
+ __ cmpi(temp, Operand::Zero());
+ __ bne(slow);
+ }
+ // Load next context in chain.
+ __ LoadP(next, ContextOperand(current, Context::PREVIOUS_INDEX));
+ // Walk the rest of the chain without clobbering cp.
+ current = next;
+ }
+ // If no outer scope calls eval, we do not need to check more
+ // context extensions.
+ if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
+ s = s->outer_scope();
+ }
+
+ if (s->is_eval_scope()) {
+ Label loop, fast;
+ if (!current.is(next)) {
+ __ Move(next, current);
+ }
+ __ bind(&loop);
+ // Terminate at native context.
+ __ LoadP(temp, FieldMemOperand(next, HeapObject::kMapOffset));
+ __ LoadRoot(ip, Heap::kNativeContextMapRootIndex);
+ __ cmp(temp, ip);
+ __ beq(&fast);
+ // Check that extension is NULL.
+ __ LoadP(temp, ContextOperand(next, Context::EXTENSION_INDEX));
+ __ cmpi(temp, Operand::Zero());
+ __ bne(slow);
+ // Load next context in chain.
+ __ LoadP(next, ContextOperand(next, Context::PREVIOUS_INDEX));
+ __ b(&loop);
+ __ bind(&fast);
+ }
+
+ __ LoadP(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
+ __ mov(LoadDescriptor::NameRegister(), Operand(proxy->var()->name()));
+ if (FLAG_vector_ics) {
+ __ mov(VectorLoadICDescriptor::SlotRegister(),
+ Operand(SmiFromSlot(proxy->VariableFeedbackSlot())));
+ }
+
+ ContextualMode mode =
+ (typeof_state == INSIDE_TYPEOF) ? NOT_CONTEXTUAL : CONTEXTUAL;
+ CallLoadIC(mode);
+}
+
+
+MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
+ Label* slow) {
+ DCHECK(var->IsContextSlot());
+ Register context = cp;
+ Register next = r6;
+ Register temp = r7;
+
+ for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
+ if (s->num_heap_slots() > 0) {
+ if (s->calls_sloppy_eval()) {
+ // Check that extension is NULL.
+ __ LoadP(temp, ContextOperand(context, Context::EXTENSION_INDEX));
+ __ cmpi(temp, Operand::Zero());
+ __ bne(slow);
+ }
+ __ LoadP(next, ContextOperand(context, Context::PREVIOUS_INDEX));
+ // Walk the rest of the chain without clobbering cp.
+ context = next;
+ }
+ }
+ // Check that last extension is NULL.
+ __ LoadP(temp, ContextOperand(context, Context::EXTENSION_INDEX));
+ __ cmpi(temp, Operand::Zero());
+ __ bne(slow);
+
+ // This function is used only for loads, not stores, so it's safe to
+ // return an cp-based operand (the write barrier cannot be allowed to
+ // destroy the cp register).
+ return ContextOperand(context, var->index());
+}
+
+
+void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
+ TypeofState typeof_state,
+ Label* slow, Label* done) {
+ // Generate fast-case code for variables that might be shadowed by
+ // eval-introduced variables. Eval is used a lot without
+ // introducing variables. In those cases, we do not want to
+ // perform a runtime call for all variables in the scope
+ // containing the eval.
+ Variable* var = proxy->var();
+ if (var->mode() == DYNAMIC_GLOBAL) {
+ EmitLoadGlobalCheckExtensions(proxy, typeof_state, slow);
+ __ b(done);
+ } else if (var->mode() == DYNAMIC_LOCAL) {
+ Variable* local = var->local_if_not_shadowed();
+ __ LoadP(r3, ContextSlotOperandCheckExtensions(local, slow));
+ if (local->mode() == LET || local->mode() == CONST ||
+ local->mode() == CONST_LEGACY) {
+ __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
+ __ bne(done);
+ if (local->mode() == CONST_LEGACY) {
+ __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
+ } else { // LET || CONST
+ __ mov(r3, Operand(var->name()));
+ __ push(r3);
+ __ CallRuntime(Runtime::kThrowReferenceError, 1);
+ }
+ }
+ __ b(done);
+ }
+}
+
+
+void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
+ // Record position before possible IC call.
+ SetSourcePosition(proxy->position());
+ Variable* var = proxy->var();
+
+ // Three cases: global variables, lookup variables, and all other types of
+ // variables.
+ switch (var->location()) {
+ case Variable::UNALLOCATED: {
+ Comment cmnt(masm_, "[ Global variable");
+ __ LoadP(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
+ __ mov(LoadDescriptor::NameRegister(), Operand(var->name()));
+ if (FLAG_vector_ics) {
+ __ mov(VectorLoadICDescriptor::SlotRegister(),
+ Operand(SmiFromSlot(proxy->VariableFeedbackSlot())));
+ }
+ CallLoadIC(CONTEXTUAL);
+ context()->Plug(r3);
+ break;
+ }
+
+ case Variable::PARAMETER:
+ case Variable::LOCAL:
+ case Variable::CONTEXT: {
+ Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable"
+ : "[ Stack variable");
+ if (var->binding_needs_init()) {
+ // var->scope() may be NULL when the proxy is located in eval code and
+ // refers to a potential outside binding. Currently those bindings are
+ // always looked up dynamically, i.e. in that case
+ // var->location() == LOOKUP.
+ // always holds.
+ DCHECK(var->scope() != NULL);
+
+ // Check if the binding really needs an initialization check. The check
+ // can be skipped in the following situation: we have a LET or CONST
+ // binding in harmony mode, both the Variable and the VariableProxy have
+ // the same declaration scope (i.e. they are both in global code, in the
+ // same function or in the same eval code) and the VariableProxy is in
+ // the source physically located after the initializer of the variable.
+ //
+ // We cannot skip any initialization checks for CONST in non-harmony
+ // mode because const variables may be declared but never initialized:
+ // if (false) { const x; }; var y = x;
+ //
+ // The condition on the declaration scopes is a conservative check for
+ // nested functions that access a binding and are called before the
+ // binding is initialized:
+ // function() { f(); let x = 1; function f() { x = 2; } }
+ //
+ bool skip_init_check;
+ if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
+ skip_init_check = false;
+ } else {
+ // Check that we always have valid source position.
+ DCHECK(var->initializer_position() != RelocInfo::kNoPosition);
+ DCHECK(proxy->position() != RelocInfo::kNoPosition);
+ skip_init_check = var->mode() != CONST_LEGACY &&
+ var->initializer_position() < proxy->position();
+ }
+
+ if (!skip_init_check) {
+ Label done;
+ // Let and const need a read barrier.
+ GetVar(r3, var);
+ __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
+ __ bne(&done);
+ if (var->mode() == LET || var->mode() == CONST) {
+ // Throw a reference error when using an uninitialized let/const
+ // binding in harmony mode.
+ __ mov(r3, Operand(var->name()));
+ __ push(r3);
+ __ CallRuntime(Runtime::kThrowReferenceError, 1);
+ } else {
+ // Uninitalized const bindings outside of harmony mode are unholed.
+ DCHECK(var->mode() == CONST_LEGACY);
+ __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
+ }
+ __ bind(&done);
+ context()->Plug(r3);
+ break;
+ }
+ }
+ context()->Plug(var);
+ break;
+ }
+
+ case Variable::LOOKUP: {
+ Comment cmnt(masm_, "[ Lookup variable");
+ Label done, slow;
+ // Generate code for loading from variables potentially shadowed
+ // by eval-introduced variables.
+ EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
+ __ bind(&slow);
+ __ mov(r4, Operand(var->name()));
+ __ Push(cp, r4); // Context and name.
+ __ CallRuntime(Runtime::kLoadLookupSlot, 2);
+ __ bind(&done);
+ context()->Plug(r3);
+ }
+ }
+}
+
+
+void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
+ Comment cmnt(masm_, "[ RegExpLiteral");
+ Label materialized;
+ // Registers will be used as follows:
+ // r8 = materialized value (RegExp literal)
+ // r7 = JS function, literals array
+ // r6 = literal index
+ // r5 = RegExp pattern
+ // r4 = RegExp flags
+ // r3 = RegExp literal clone
+ __ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ LoadP(r7, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
+ int literal_offset =
+ FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
+ __ LoadP(r8, FieldMemOperand(r7, literal_offset), r0);
+ __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
+ __ cmp(r8, ip);
+ __ bne(&materialized);
+
+ // Create regexp literal using runtime function.
+ // Result will be in r3.
+ __ LoadSmiLiteral(r6, Smi::FromInt(expr->literal_index()));
+ __ mov(r5, Operand(expr->pattern()));
+ __ mov(r4, Operand(expr->flags()));
+ __ Push(r7, r6, r5, r4);
+ __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
+ __ mr(r8, r3);
+
+ __ bind(&materialized);
+ int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
+ Label allocated, runtime_allocate;
+ __ Allocate(size, r3, r5, r6, &runtime_allocate, TAG_OBJECT);
+ __ b(&allocated);
+
+ __ bind(&runtime_allocate);
+ __ LoadSmiLiteral(r3, Smi::FromInt(size));
+ __ Push(r8, r3);
+ __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
+ __ pop(r8);
+
+ __ bind(&allocated);
+ // After this, registers are used as follows:
+ // r3: Newly allocated regexp.
+ // r8: Materialized regexp.
+ // r5: temp.
+ __ CopyFields(r3, r8, r5.bit(), size / kPointerSize);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitAccessor(Expression* expression) {
+ if (expression == NULL) {
+ __ LoadRoot(r4, Heap::kNullValueRootIndex);
+ __ push(r4);
+ } else {
+ VisitForStackValue(expression);
+ }
+}
+
+
+void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
+ Comment cmnt(masm_, "[ ObjectLiteral");
+
+ expr->BuildConstantProperties(isolate());
+ Handle<FixedArray> constant_properties = expr->constant_properties();
+ __ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ LoadP(r6, FieldMemOperand(r6, JSFunction::kLiteralsOffset));
+ __ LoadSmiLiteral(r5, Smi::FromInt(expr->literal_index()));
+ __ mov(r4, Operand(constant_properties));
+ int flags = expr->fast_elements() ? ObjectLiteral::kFastElements
+ : ObjectLiteral::kNoFlags;
+ flags |= expr->has_function() ? ObjectLiteral::kHasFunction
+ : ObjectLiteral::kNoFlags;
+ __ LoadSmiLiteral(r3, Smi::FromInt(flags));
+ int properties_count = constant_properties->length() / 2;
+ if (expr->may_store_doubles() || expr->depth() > 1 ||
+ masm()->serializer_enabled() || flags != ObjectLiteral::kFastElements ||
+ properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
+ __ Push(r6, r5, r4, r3);
+ __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
+ } else {
+ FastCloneShallowObjectStub stub(isolate(), properties_count);
+ __ CallStub(&stub);
+ }
+ PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
+
+ // If result_saved is true the result is on top of the stack. If
+ // result_saved is false the result is in r3.
+ bool result_saved = false;
+
+ // Mark all computed expressions that are bound to a key that
+ // is shadowed by a later occurrence of the same key. For the
+ // marked expressions, no store code is emitted.
+ expr->CalculateEmitStore(zone());
+
+ AccessorTable accessor_table(zone());
+ for (int i = 0; i < expr->properties()->length(); i++) {
+ ObjectLiteral::Property* property = expr->properties()->at(i);
+ if (property->IsCompileTimeValue()) continue;
+
+ Literal* key = property->key();
+ Expression* value = property->value();
+ if (!result_saved) {
+ __ push(r3); // Save result on stack
+ result_saved = true;
+ }
+ switch (property->kind()) {
+ case ObjectLiteral::Property::CONSTANT:
+ UNREACHABLE();
+ case ObjectLiteral::Property::MATERIALIZED_LITERAL:
+ DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value()));
+ // Fall through.
+ case ObjectLiteral::Property::COMPUTED:
+ // It is safe to use [[Put]] here because the boilerplate already
+ // contains computed properties with an uninitialized value.
+ if (key->value()->IsInternalizedString()) {
+ if (property->emit_store()) {
+ VisitForAccumulatorValue(value);
+ DCHECK(StoreDescriptor::ValueRegister().is(r3));
+ __ mov(StoreDescriptor::NameRegister(), Operand(key->value()));
+ __ LoadP(StoreDescriptor::ReceiverRegister(), MemOperand(sp));
+ CallStoreIC(key->LiteralFeedbackId());
+ PrepareForBailoutForId(key->id(), NO_REGISTERS);
+ } else {
+ VisitForEffect(value);
+ }
+ break;
+ }
+ // Duplicate receiver on stack.
+ __ LoadP(r3, MemOperand(sp));
+ __ push(r3);
+ VisitForStackValue(key);
+ VisitForStackValue(value);
+ if (property->emit_store()) {
+ __ LoadSmiLiteral(r3, Smi::FromInt(SLOPPY)); // PropertyAttributes
+ __ push(r3);
+ __ CallRuntime(Runtime::kSetProperty, 4);
+ } else {
+ __ Drop(3);
+ }
+ break;
+ case ObjectLiteral::Property::PROTOTYPE:
+ // Duplicate receiver on stack.
+ __ LoadP(r3, MemOperand(sp));
+ __ push(r3);
+ VisitForStackValue(value);
+ if (property->emit_store()) {
+ __ CallRuntime(Runtime::kInternalSetPrototype, 2);
+ } else {
+ __ Drop(2);
+ }
+ break;
+ case ObjectLiteral::Property::GETTER:
+ accessor_table.lookup(key)->second->getter = value;
+ break;
+ case ObjectLiteral::Property::SETTER:
+ accessor_table.lookup(key)->second->setter = value;
+ break;
+ }
+ }
+
+ // Emit code to define accessors, using only a single call to the runtime for
+ // each pair of corresponding getters and setters.
+ for (AccessorTable::Iterator it = accessor_table.begin();
+ it != accessor_table.end(); ++it) {
+ __ LoadP(r3, MemOperand(sp)); // Duplicate receiver.
+ __ push(r3);
+ VisitForStackValue(it->first);
+ EmitAccessor(it->second->getter);
+ EmitAccessor(it->second->setter);
+ __ LoadSmiLiteral(r3, Smi::FromInt(NONE));
+ __ push(r3);
+ __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5);
+ }
+
+ if (expr->has_function()) {
+ DCHECK(result_saved);
+ __ LoadP(r3, MemOperand(sp));
+ __ push(r3);
+ __ CallRuntime(Runtime::kToFastProperties, 1);
+ }
+
+ if (result_saved) {
+ context()->PlugTOS();
+ } else {
+ context()->Plug(r3);
+ }
+}
+
+
+void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
+ Comment cmnt(masm_, "[ ArrayLiteral");
+
+ expr->BuildConstantElements(isolate());
+ int flags = expr->depth() == 1 ? ArrayLiteral::kShallowElements
+ : ArrayLiteral::kNoFlags;
+
+ ZoneList<Expression*>* subexprs = expr->values();
+ int length = subexprs->length();
+ Handle<FixedArray> constant_elements = expr->constant_elements();
+ DCHECK_EQ(2, constant_elements->length());
+ ElementsKind constant_elements_kind =
+ static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
+ bool has_fast_elements = IsFastObjectElementsKind(constant_elements_kind);
+ Handle<FixedArrayBase> constant_elements_values(
+ FixedArrayBase::cast(constant_elements->get(1)));
+
+ AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
+ if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
+ // If the only customer of allocation sites is transitioning, then
+ // we can turn it off if we don't have anywhere else to transition to.
+ allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
+ }
+
+ __ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ LoadP(r6, FieldMemOperand(r6, JSFunction::kLiteralsOffset));
+ __ LoadSmiLiteral(r5, Smi::FromInt(expr->literal_index()));
+ __ mov(r4, Operand(constant_elements));
+ if (expr->depth() > 1 || length > JSObject::kInitialMaxFastElementArray) {
+ __ LoadSmiLiteral(r3, Smi::FromInt(flags));
+ __ Push(r6, r5, r4, r3);
+ __ CallRuntime(Runtime::kCreateArrayLiteral, 4);
+ } else {
+ FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
+ __ CallStub(&stub);
+ }
+
+ bool result_saved = false; // Is the result saved to the stack?
+
+ // Emit code to evaluate all the non-constant subexpressions and to store
+ // them into the newly cloned array.
+ for (int i = 0; i < length; i++) {
+ Expression* subexpr = subexprs->at(i);
+ // If the subexpression is a literal or a simple materialized literal it
+ // is already set in the cloned array.
+ if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
+
+ if (!result_saved) {
+ __ push(r3);
+ __ Push(Smi::FromInt(expr->literal_index()));
+ result_saved = true;
+ }
+ VisitForAccumulatorValue(subexpr);
+
+ if (IsFastObjectElementsKind(constant_elements_kind)) {
+ int offset = FixedArray::kHeaderSize + (i * kPointerSize);
+ __ LoadP(r8, MemOperand(sp, kPointerSize)); // Copy of array literal.
+ __ LoadP(r4, FieldMemOperand(r8, JSObject::kElementsOffset));
+ __ StoreP(result_register(), FieldMemOperand(r4, offset), r0);
+ // Update the write barrier for the array store.
+ __ RecordWriteField(r4, offset, result_register(), r5, kLRHasBeenSaved,
+ kDontSaveFPRegs, EMIT_REMEMBERED_SET,
+ INLINE_SMI_CHECK);
+ } else {
+ __ LoadSmiLiteral(r6, Smi::FromInt(i));
+ StoreArrayLiteralElementStub stub(isolate());
+ __ CallStub(&stub);
+ }
+
+ PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
+ }
+
+ if (result_saved) {
+ __ pop(); // literal index
+ context()->PlugTOS();
+ } else {
+ context()->Plug(r3);
+ }
+}
+
+
+void FullCodeGenerator::VisitAssignment(Assignment* expr) {
+ DCHECK(expr->target()->IsValidReferenceExpression());
+
+ Comment cmnt(masm_, "[ Assignment");
+
+ Property* property = expr->target()->AsProperty();
+ LhsKind assign_type = GetAssignType(property);
+
+ // Evaluate LHS expression.
+ switch (assign_type) {
+ case VARIABLE:
+ // Nothing to do here.
+ break;
+ case NAMED_PROPERTY:
+ if (expr->is_compound()) {
+ // We need the receiver both on the stack and in the register.
+ VisitForStackValue(property->obj());
+ __ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
+ } else {
+ VisitForStackValue(property->obj());
+ }
+ break;
+ case NAMED_SUPER_PROPERTY:
+ VisitForStackValue(property->obj()->AsSuperReference()->this_var());
+ EmitLoadHomeObject(property->obj()->AsSuperReference());
+ __ Push(result_register());
+ if (expr->is_compound()) {
+ const Register scratch = r4;
+ __ LoadP(scratch, MemOperand(sp, kPointerSize));
+ __ Push(scratch, result_register());
+ }
+ break;
+ case KEYED_SUPER_PROPERTY: {
+ const Register scratch = r4;
+ VisitForStackValue(property->obj()->AsSuperReference()->this_var());
+ EmitLoadHomeObject(property->obj()->AsSuperReference());
+ __ Move(scratch, result_register());
+ VisitForAccumulatorValue(property->key());
+ __ Push(scratch, result_register());
+ if (expr->is_compound()) {
+ const Register scratch1 = r5;
+ __ LoadP(scratch1, MemOperand(sp, 2 * kPointerSize));
+ __ Push(scratch1, scratch, result_register());
+ }
+ break;
+ }
+ case KEYED_PROPERTY:
+ if (expr->is_compound()) {
+ VisitForStackValue(property->obj());
+ VisitForStackValue(property->key());
+ __ LoadP(LoadDescriptor::ReceiverRegister(),
+ MemOperand(sp, 1 * kPointerSize));
+ __ LoadP(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
+ } else {
+ VisitForStackValue(property->obj());
+ VisitForStackValue(property->key());
+ }
+ break;
+ }
+
+ // For compound assignments we need another deoptimization point after the
+ // variable/property load.
+ if (expr->is_compound()) {
+ {
+ AccumulatorValueContext context(this);
+ switch (assign_type) {
+ case VARIABLE:
+ EmitVariableLoad(expr->target()->AsVariableProxy());
+ PrepareForBailout(expr->target(), TOS_REG);
+ break;
+ case NAMED_PROPERTY:
+ EmitNamedPropertyLoad(property);
+ PrepareForBailoutForId(property->LoadId(), TOS_REG);
+ break;
+ case NAMED_SUPER_PROPERTY:
+ EmitNamedSuperPropertyLoad(property);
+ PrepareForBailoutForId(property->LoadId(), TOS_REG);
+ break;
+ case KEYED_SUPER_PROPERTY:
+ EmitKeyedSuperPropertyLoad(property);
+ PrepareForBailoutForId(property->LoadId(), TOS_REG);
+ break;
+ case KEYED_PROPERTY:
+ EmitKeyedPropertyLoad(property);
+ PrepareForBailoutForId(property->LoadId(), TOS_REG);
+ break;
+ }
+ }
+
+ Token::Value op = expr->binary_op();
+ __ push(r3); // Left operand goes on the stack.
+ VisitForAccumulatorValue(expr->value());
+
+ OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
+ ? OVERWRITE_RIGHT
+ : NO_OVERWRITE;
+ SetSourcePosition(expr->position() + 1);
+ AccumulatorValueContext context(this);
+ if (ShouldInlineSmiCase(op)) {
+ EmitInlineSmiBinaryOp(expr->binary_operation(), op, mode, expr->target(),
+ expr->value());
+ } else {
+ EmitBinaryOp(expr->binary_operation(), op, mode);
+ }
+
+ // Deoptimization point in case the binary operation may have side effects.
+ PrepareForBailout(expr->binary_operation(), TOS_REG);
+ } else {
+ VisitForAccumulatorValue(expr->value());
+ }
+
+ // Record source position before possible IC call.
+ SetSourcePosition(expr->position());
+
+ // Store the value.
+ switch (assign_type) {
+ case VARIABLE:
+ EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
+ expr->op());
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ context()->Plug(r3);
+ break;
+ case NAMED_PROPERTY:
+ EmitNamedPropertyAssignment(expr);
+ break;
+ case NAMED_SUPER_PROPERTY:
+ EmitNamedSuperPropertyStore(property);
+ context()->Plug(r3);
+ break;
+ case KEYED_SUPER_PROPERTY:
+ EmitKeyedSuperPropertyStore(property);
+ context()->Plug(r3);
+ break;
+ case KEYED_PROPERTY:
+ EmitKeyedPropertyAssignment(expr);
+ break;
+ }
+}
+
+
+void FullCodeGenerator::VisitYield(Yield* expr) {
+ Comment cmnt(masm_, "[ Yield");
+ // Evaluate yielded value first; the initial iterator definition depends on
+ // this. It stays on the stack while we update the iterator.
+ VisitForStackValue(expr->expression());
+
+ switch (expr->yield_kind()) {
+ case Yield::kSuspend:
+ // Pop value from top-of-stack slot; box result into result register.
+ EmitCreateIteratorResult(false);
+ __ push(result_register());
+ // Fall through.
+ case Yield::kInitial: {
+ Label suspend, continuation, post_runtime, resume;
+
+ __ b(&suspend);
+
+ __ bind(&continuation);
+ __ b(&resume);
+
+ __ bind(&suspend);
+ VisitForAccumulatorValue(expr->generator_object());
+ DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
+ __ LoadSmiLiteral(r4, Smi::FromInt(continuation.pos()));
+ __ StoreP(r4, FieldMemOperand(r3, JSGeneratorObject::kContinuationOffset),
+ r0);
+ __ StoreP(cp, FieldMemOperand(r3, JSGeneratorObject::kContextOffset), r0);
+ __ mr(r4, cp);
+ __ RecordWriteField(r3, JSGeneratorObject::kContextOffset, r4, r5,
+ kLRHasBeenSaved, kDontSaveFPRegs);
+ __ addi(r4, fp, Operand(StandardFrameConstants::kExpressionsOffset));
+ __ cmp(sp, r4);
+ __ beq(&post_runtime);
+ __ push(r3); // generator object
+ __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
+ __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ __ bind(&post_runtime);
+ __ pop(result_register());
+ EmitReturnSequence();
+
+ __ bind(&resume);
+ context()->Plug(result_register());
+ break;
+ }
+
+ case Yield::kFinal: {
+ VisitForAccumulatorValue(expr->generator_object());
+ __ LoadSmiLiteral(r4, Smi::FromInt(JSGeneratorObject::kGeneratorClosed));
+ __ StoreP(r4, FieldMemOperand(result_register(),
+ JSGeneratorObject::kContinuationOffset),
+ r0);
+ // Pop value from top-of-stack slot, box result into result register.
+ EmitCreateIteratorResult(true);
+ EmitUnwindBeforeReturn();
+ EmitReturnSequence();
+ break;
+ }
+
+ case Yield::kDelegating: {
+ VisitForStackValue(expr->generator_object());
+
+ // Initial stack layout is as follows:
+ // [sp + 1 * kPointerSize] iter
+ // [sp + 0 * kPointerSize] g
+
+ Label l_catch, l_try, l_suspend, l_continuation, l_resume;
+ Label l_next, l_call;
+ Register load_receiver = LoadDescriptor::ReceiverRegister();
+ Register load_name = LoadDescriptor::NameRegister();
+
+ // Initial send value is undefined.
+ __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
+ __ b(&l_next);
+
+ // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
+ __ bind(&l_catch);
+ handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos()));
+ __ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw"
+ __ LoadP(r6, MemOperand(sp, 1 * kPointerSize)); // iter
+ __ Push(load_name, r6, r3); // "throw", iter, except
+ __ b(&l_call);
+
+ // try { received = %yield result }
+ // Shuffle the received result above a try handler and yield it without
+ // re-boxing.
+ __ bind(&l_try);
+ __ pop(r3); // result
+ __ PushTryHandler(StackHandler::CATCH, expr->index());
+ const int handler_size = StackHandlerConstants::kSize;
+ __ push(r3); // result
+ __ b(&l_suspend);
+ __ bind(&l_continuation);
+ __ b(&l_resume);
+ __ bind(&l_suspend);
+ const int generator_object_depth = kPointerSize + handler_size;
+ __ LoadP(r3, MemOperand(sp, generator_object_depth));
+ __ push(r3); // g
+ DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
+ __ LoadSmiLiteral(r4, Smi::FromInt(l_continuation.pos()));
+ __ StoreP(r4, FieldMemOperand(r3, JSGeneratorObject::kContinuationOffset),
+ r0);
+ __ StoreP(cp, FieldMemOperand(r3, JSGeneratorObject::kContextOffset), r0);
+ __ mr(r4, cp);
+ __ RecordWriteField(r3, JSGeneratorObject::kContextOffset, r4, r5,
+ kLRHasBeenSaved, kDontSaveFPRegs);
+ __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
+ __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ __ pop(r3); // result
+ EmitReturnSequence();
+ __ bind(&l_resume); // received in r3
+ __ PopTryHandler();
+
+ // receiver = iter; f = 'next'; arg = received;
+ __ bind(&l_next);
+
+ __ LoadRoot(load_name, Heap::knext_stringRootIndex); // "next"
+ __ LoadP(r6, MemOperand(sp, 1 * kPointerSize)); // iter
+ __ Push(load_name, r6, r3); // "next", iter, received
+
+ // result = receiver[f](arg);
+ __ bind(&l_call);
+ __ LoadP(load_receiver, MemOperand(sp, kPointerSize));
+ __ LoadP(load_name, MemOperand(sp, 2 * kPointerSize));
+ if (FLAG_vector_ics) {
+ __ mov(VectorLoadICDescriptor::SlotRegister(),
+ Operand(SmiFromSlot(expr->KeyedLoadFeedbackSlot())));
+ }
+ Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
+ CallIC(ic, TypeFeedbackId::None());
+ __ mr(r4, r3);
+ __ StoreP(r4, MemOperand(sp, 2 * kPointerSize));
+ CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD);
+ __ CallStub(&stub);
+
+ __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ __ Drop(1); // The function is still on the stack; drop it.
+
+ // if (!result.done) goto l_try;
+ __ Move(load_receiver, r3);
+
+ __ push(load_receiver); // save result
+ __ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done"
+ if (FLAG_vector_ics) {
+ __ mov(VectorLoadICDescriptor::SlotRegister(),
+ Operand(SmiFromSlot(expr->DoneFeedbackSlot())));
+ }
+ CallLoadIC(NOT_CONTEXTUAL); // r0=result.done
+ Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
+ CallIC(bool_ic);
+ __ cmpi(r3, Operand::Zero());
+ __ beq(&l_try);
+
+ // result.value
+ __ pop(load_receiver); // result
+ __ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value"
+ if (FLAG_vector_ics) {
+ __ mov(VectorLoadICDescriptor::SlotRegister(),
+ Operand(SmiFromSlot(expr->ValueFeedbackSlot())));
+ }
+ CallLoadIC(NOT_CONTEXTUAL); // r3=result.value
+ context()->DropAndPlug(2, r3); // drop iter and g
+ break;
+ }
+ }
+}
+
+
+void FullCodeGenerator::EmitGeneratorResume(
+ Expression* generator, Expression* value,
+ JSGeneratorObject::ResumeMode resume_mode) {
+ // The value stays in r3, and is ultimately read by the resumed generator, as
+ // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
+ // is read to throw the value when the resumed generator is already closed.
+ // r4 will hold the generator object until the activation has been resumed.
+ VisitForStackValue(generator);
+ VisitForAccumulatorValue(value);
+ __ pop(r4);
+
+ // Check generator state.
+ Label wrong_state, closed_state, done;
+ __ LoadP(r6, FieldMemOperand(r4, JSGeneratorObject::kContinuationOffset));
+ STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
+ STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
+ __ CmpSmiLiteral(r6, Smi::FromInt(0), r0);
+ __ beq(&closed_state);
+ __ blt(&wrong_state);
+
+ // Load suspended function and context.
+ __ LoadP(cp, FieldMemOperand(r4, JSGeneratorObject::kContextOffset));
+ __ LoadP(r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset));
+
+ // Load receiver and store as the first argument.
+ __ LoadP(r5, FieldMemOperand(r4, JSGeneratorObject::kReceiverOffset));
+ __ push(r5);
+
+ // Push holes for the rest of the arguments to the generator function.
+ __ LoadP(r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset));
+ __ LoadWordArith(
+ r6, FieldMemOperand(r6, SharedFunctionInfo::kFormalParameterCountOffset));
+ __ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
+ Label argument_loop, push_frame;
+#if V8_TARGET_ARCH_PPC64
+ __ cmpi(r6, Operand::Zero());
+ __ beq(&push_frame);
+#else
+ __ SmiUntag(r6, SetRC);
+ __ beq(&push_frame, cr0);
+#endif
+ __ mtctr(r6);
+ __ bind(&argument_loop);
+ __ push(r5);
+ __ bdnz(&argument_loop);
+
+ // Enter a new JavaScript frame, and initialize its slots as they were when
+ // the generator was suspended.
+ Label resume_frame;
+ __ bind(&push_frame);
+ __ b(&resume_frame, SetLK);
+ __ b(&done);
+ __ bind(&resume_frame);
+ // lr = return address.
+ // fp = caller's frame pointer.
+ // cp = callee's context,
+ // r7 = callee's JS function.
+ __ PushFixedFrame(r7);
+ // Adjust FP to point to saved FP.
+ __ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
+
+ // Load the operand stack size.
+ __ LoadP(r6, FieldMemOperand(r4, JSGeneratorObject::kOperandStackOffset));
+ __ LoadP(r6, FieldMemOperand(r6, FixedArray::kLengthOffset));
+ __ SmiUntag(r6, SetRC);
+
+ // If we are sending a value and there is no operand stack, we can jump back
+ // in directly.
+ Label call_resume;
+ if (resume_mode == JSGeneratorObject::NEXT) {
+ Label slow_resume;
+ __ bne(&slow_resume, cr0);
+ __ LoadP(ip, FieldMemOperand(r7, JSFunction::kCodeEntryOffset));
+#if V8_OOL_CONSTANT_POOL
+ {
+ ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
+ // Load the new code object's constant pool pointer.
+ __ LoadP(kConstantPoolRegister,
+ MemOperand(ip, Code::kConstantPoolOffset - Code::kHeaderSize));
+#endif
+ __ LoadP(r5, FieldMemOperand(r4, JSGeneratorObject::kContinuationOffset));
+ __ SmiUntag(r5);
+ __ add(ip, ip, r5);
+ __ LoadSmiLiteral(r5,
+ Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
+ __ StoreP(r5, FieldMemOperand(r4, JSGeneratorObject::kContinuationOffset),
+ r0);
+ __ Jump(ip);
+ __ bind(&slow_resume);
+#if V8_OOL_CONSTANT_POOL
+ }
+#endif
+ } else {
+ __ beq(&call_resume, cr0);
+ }
+
+ // Otherwise, we push holes for the operand stack and call the runtime to fix
+ // up the stack and the handlers.
+ Label operand_loop;
+ __ mtctr(r6);
+ __ bind(&operand_loop);
+ __ push(r5);
+ __ bdnz(&operand_loop);
+
+ __ bind(&call_resume);
+ DCHECK(!result_register().is(r4));
+ __ Push(r4, result_register());
+ __ Push(Smi::FromInt(resume_mode));
+ __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3);
+ // Not reached: the runtime call returns elsewhere.
+ __ stop("not-reached");
+
+ // Reach here when generator is closed.
+ __ bind(&closed_state);
+ if (resume_mode == JSGeneratorObject::NEXT) {
+ // Return completed iterator result when generator is closed.
+ __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
+ __ push(r5);
+ // Pop value from top-of-stack slot; box result into result register.
+ EmitCreateIteratorResult(true);
+ } else {
+ // Throw the provided value.
+ __ push(r3);
+ __ CallRuntime(Runtime::kThrow, 1);
+ }
+ __ b(&done);
+
+ // Throw error if we attempt to operate on a running generator.
+ __ bind(&wrong_state);
+ __ push(r4);
+ __ CallRuntime(Runtime::kThrowGeneratorStateError, 1);
+
+ __ bind(&done);
+ context()->Plug(result_register());
+}
+
+
+void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
+ Label gc_required;
+ Label allocated;
+
+ const int instance_size = 5 * kPointerSize;
+ DCHECK_EQ(isolate()->native_context()->iterator_result_map()->instance_size(),
+ instance_size);
+
+ __ Allocate(instance_size, r3, r5, r6, &gc_required, TAG_OBJECT);
+ __ b(&allocated);
+
+ __ bind(&gc_required);
+ __ Push(Smi::FromInt(instance_size));
+ __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
+ __ LoadP(context_register(),
+ MemOperand(fp, StandardFrameConstants::kContextOffset));
+
+ __ bind(&allocated);
+ __ LoadP(r4, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
+ __ LoadP(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
+ __ LoadP(r4, ContextOperand(r4, Context::ITERATOR_RESULT_MAP_INDEX));
+ __ pop(r5);
+ __ mov(r6, Operand(isolate()->factory()->ToBoolean(done)));
+ __ mov(r7, Operand(isolate()->factory()->empty_fixed_array()));
+ __ StoreP(r4, FieldMemOperand(r3, HeapObject::kMapOffset), r0);
+ __ StoreP(r7, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
+ __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
+ __ StoreP(r5,
+ FieldMemOperand(r3, JSGeneratorObject::kResultValuePropertyOffset),
+ r0);
+ __ StoreP(r6,
+ FieldMemOperand(r3, JSGeneratorObject::kResultDonePropertyOffset),
+ r0);
+
+ // Only the value field needs a write barrier, as the other values are in the
+ // root set.
+ __ RecordWriteField(r3, JSGeneratorObject::kResultValuePropertyOffset, r5, r6,
+ kLRHasBeenSaved, kDontSaveFPRegs);
+}
+
+
+void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
+ SetSourcePosition(prop->position());
+ Literal* key = prop->key()->AsLiteral();
+ DCHECK(!prop->IsSuperAccess());
+
+ __ mov(LoadDescriptor::NameRegister(), Operand(key->value()));
+ if (FLAG_vector_ics) {
+ __ mov(VectorLoadICDescriptor::SlotRegister(),
+ Operand(SmiFromSlot(prop->PropertyFeedbackSlot())));
+ CallLoadIC(NOT_CONTEXTUAL);
+ } else {
+ CallLoadIC(NOT_CONTEXTUAL, prop->PropertyFeedbackId());
+ }
+}
+
+
+void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
+ // Stack: receiver, home_object.
+ SetSourcePosition(prop->position());
+ Literal* key = prop->key()->AsLiteral();
+ DCHECK(!key->value()->IsSmi());
+ DCHECK(prop->IsSuperAccess());
+
+ __ Push(key->value());
+ __ CallRuntime(Runtime::kLoadFromSuper, 3);
+}
+
+
+void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
+ SetSourcePosition(prop->position());
+ Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
+ if (FLAG_vector_ics) {
+ __ mov(VectorLoadICDescriptor::SlotRegister(),
+ Operand(SmiFromSlot(prop->PropertyFeedbackSlot())));
+ CallIC(ic);
+ } else {
+ CallIC(ic, prop->PropertyFeedbackId());
+ }
+}
+
+
+void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) {
+ // Stack: receiver, home_object, key.
+ SetSourcePosition(prop->position());
+
+ __ CallRuntime(Runtime::kLoadKeyedFromSuper, 3);
+}
+
+
+void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
+ Token::Value op,
+ OverwriteMode mode,
+ Expression* left_expr,
+ Expression* right_expr) {
+ Label done, smi_case, stub_call;
+
+ Register scratch1 = r5;
+ Register scratch2 = r6;
+
+ // Get the arguments.
+ Register left = r4;
+ Register right = r3;
+ __ pop(left);
+
+ // Perform combined smi check on both operands.
+ __ orx(scratch1, left, right);
+ STATIC_ASSERT(kSmiTag == 0);
+ JumpPatchSite patch_site(masm_);
+ patch_site.EmitJumpIfSmi(scratch1, &smi_case);
+
+ __ bind(&stub_call);
+ Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op, mode).code();
+ CallIC(code, expr->BinaryOperationFeedbackId());
+ patch_site.EmitPatchInfo();
+ __ b(&done);
+
+ __ bind(&smi_case);
+ // Smi case. This code works the same way as the smi-smi case in the type
+ // recording binary operation stub.
+ switch (op) {
+ case Token::SAR:
+ __ GetLeastBitsFromSmi(scratch1, right, 5);
+ __ ShiftRightArith(right, left, scratch1);
+ __ ClearRightImm(right, right, Operand(kSmiTagSize + kSmiShiftSize));
+ break;
+ case Token::SHL: {
+ __ GetLeastBitsFromSmi(scratch2, right, 5);
+#if V8_TARGET_ARCH_PPC64
+ __ ShiftLeft_(right, left, scratch2);
+#else
+ __ SmiUntag(scratch1, left);
+ __ ShiftLeft_(scratch1, scratch1, scratch2);
+ // Check that the *signed* result fits in a smi
+ __ JumpIfNotSmiCandidate(scratch1, scratch2, &stub_call);
+ __ SmiTag(right, scratch1);
+#endif
+ break;
+ }
+ case Token::SHR: {
+ __ SmiUntag(scratch1, left);
+ __ GetLeastBitsFromSmi(scratch2, right, 5);
+ __ srw(scratch1, scratch1, scratch2);
+ // Unsigned shift is not allowed to produce a negative number.
+ __ JumpIfNotUnsignedSmiCandidate(scratch1, r0, &stub_call);
+ __ SmiTag(right, scratch1);
+ break;
+ }
+ case Token::ADD: {
+ __ AddAndCheckForOverflow(scratch1, left, right, scratch2, r0);
+ __ bne(&stub_call, cr0);
+ __ mr(right, scratch1);
+ break;
+ }
+ case Token::SUB: {
+ __ SubAndCheckForOverflow(scratch1, left, right, scratch2, r0);
+ __ bne(&stub_call, cr0);
+ __ mr(right, scratch1);
+ break;
+ }
+ case Token::MUL: {
+ Label mul_zero;
+#if V8_TARGET_ARCH_PPC64
+ // Remove tag from both operands.
+ __ SmiUntag(ip, right);
+ __ SmiUntag(r0, left);
+ __ Mul(scratch1, r0, ip);
+ // Check for overflowing the smi range - no overflow if higher 33 bits of
+ // the result are identical.
+ __ TestIfInt32(scratch1, scratch2, ip);
+ __ bne(&stub_call);
+#else
+ __ SmiUntag(ip, right);
+ __ mullw(scratch1, left, ip);
+ __ mulhw(scratch2, left, ip);
+ // Check for overflowing the smi range - no overflow if higher 33 bits of
+ // the result are identical.
+ __ TestIfInt32(scratch2, scratch1, ip);
+ __ bne(&stub_call);
+#endif
+ // Go slow on zero result to handle -0.
+ __ cmpi(scratch1, Operand::Zero());
+ __ beq(&mul_zero);
+#if V8_TARGET_ARCH_PPC64
+ __ SmiTag(right, scratch1);
+#else
+ __ mr(right, scratch1);
+#endif
+ __ b(&done);
+ // We need -0 if we were multiplying a negative number with 0 to get 0.
+ // We know one of them was zero.
+ __ bind(&mul_zero);
+ __ add(scratch2, right, left);
+ __ cmpi(scratch2, Operand::Zero());
+ __ blt(&stub_call);
+ __ LoadSmiLiteral(right, Smi::FromInt(0));
+ break;
+ }
+ case Token::BIT_OR:
+ __ orx(right, left, right);
+ break;
+ case Token::BIT_AND:
+ __ and_(right, left, right);
+ break;
+ case Token::BIT_XOR:
+ __ xor_(right, left, right);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ __ bind(&done);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) {
+ // Constructor is in r3.
+ DCHECK(lit != NULL);
+ __ push(r3);
+
+ // No access check is needed here since the constructor is created by the
+ // class literal.
+ Register scratch = r4;
+ __ LoadP(scratch,
+ FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
+ __ push(scratch);
+
+ for (int i = 0; i < lit->properties()->length(); i++) {
+ ObjectLiteral::Property* property = lit->properties()->at(i);
+ Literal* key = property->key()->AsLiteral();
+ Expression* value = property->value();
+ DCHECK(key != NULL);
+
+ if (property->is_static()) {
+ __ LoadP(scratch, MemOperand(sp, kPointerSize)); // constructor
+ } else {
+ __ LoadP(scratch, MemOperand(sp, 0)); // prototype
+ }
+ __ push(scratch);
+ VisitForStackValue(key);
+ VisitForStackValue(value);
+
+ switch (property->kind()) {
+ case ObjectLiteral::Property::CONSTANT:
+ case ObjectLiteral::Property::MATERIALIZED_LITERAL:
+ case ObjectLiteral::Property::COMPUTED:
+ case ObjectLiteral::Property::PROTOTYPE:
+ __ CallRuntime(Runtime::kDefineClassMethod, 3);
+ break;
+
+ case ObjectLiteral::Property::GETTER:
+ __ CallRuntime(Runtime::kDefineClassGetter, 3);
+ break;
+
+ case ObjectLiteral::Property::SETTER:
+ __ CallRuntime(Runtime::kDefineClassSetter, 3);
+ break;
+
+ default:
+ UNREACHABLE();
+ }
+ }
+
+ // prototype
+ __ CallRuntime(Runtime::kToFastProperties, 1);
+
+ // constructor
+ __ CallRuntime(Runtime::kToFastProperties, 1);
+}
+
+
+void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op,
+ OverwriteMode mode) {
+ __ pop(r4);
+ Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op, mode).code();
+ JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code.
+ CallIC(code, expr->BinaryOperationFeedbackId());
+ patch_site.EmitPatchInfo();
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitAssignment(Expression* expr) {
+ DCHECK(expr->IsValidReferenceExpression());
+
+ Property* prop = expr->AsProperty();
+ LhsKind assign_type = GetAssignType(prop);
+
+ switch (assign_type) {
+ case VARIABLE: {
+ Variable* var = expr->AsVariableProxy()->var();
+ EffectContext context(this);
+ EmitVariableAssignment(var, Token::ASSIGN);
+ break;
+ }
+ case NAMED_PROPERTY: {
+ __ push(r3); // Preserve value.
+ VisitForAccumulatorValue(prop->obj());
+ __ Move(StoreDescriptor::ReceiverRegister(), r3);
+ __ pop(StoreDescriptor::ValueRegister()); // Restore value.
+ __ mov(StoreDescriptor::NameRegister(),
+ Operand(prop->key()->AsLiteral()->value()));
+ CallStoreIC();
+ break;
+ }
+ case NAMED_SUPER_PROPERTY: {
+ __ Push(r3);
+ VisitForStackValue(prop->obj()->AsSuperReference()->this_var());
+ EmitLoadHomeObject(prop->obj()->AsSuperReference());
+ // stack: value, this; r3: home_object
+ Register scratch = r5;
+ Register scratch2 = r6;
+ __ mr(scratch, result_register()); // home_object
+ __ LoadP(r3, MemOperand(sp, kPointerSize)); // value
+ __ LoadP(scratch2, MemOperand(sp, 0)); // this
+ __ StoreP(scratch2, MemOperand(sp, kPointerSize)); // this
+ __ StoreP(scratch, MemOperand(sp, 0)); // home_object
+ // stack: this, home_object; r3: value
+ EmitNamedSuperPropertyStore(prop);
+ break;
+ }
+ case KEYED_SUPER_PROPERTY: {
+ __ Push(r3);
+ VisitForStackValue(prop->obj()->AsSuperReference()->this_var());
+ EmitLoadHomeObject(prop->obj()->AsSuperReference());
+ __ Push(result_register());
+ VisitForAccumulatorValue(prop->key());
+ Register scratch = r5;
+ Register scratch2 = r6;
+ __ LoadP(scratch2, MemOperand(sp, 2 * kPointerSize)); // value
+ // stack: value, this, home_object; r3: key, r6: value
+ __ LoadP(scratch, MemOperand(sp, kPointerSize)); // this
+ __ StoreP(scratch, MemOperand(sp, 2 * kPointerSize));
+ __ LoadP(scratch, MemOperand(sp, 0)); // home_object
+ __ StoreP(scratch, MemOperand(sp, kPointerSize));
+ __ StoreP(r3, MemOperand(sp, 0));
+ __ Move(r3, scratch2);
+ // stack: this, home_object, key; r3: value.
+ EmitKeyedSuperPropertyStore(prop);
+ break;
+ }
+ case KEYED_PROPERTY: {
+ __ push(r3); // Preserve value.
+ VisitForStackValue(prop->obj());
+ VisitForAccumulatorValue(prop->key());
+ __ Move(StoreDescriptor::NameRegister(), r3);
+ __ Pop(StoreDescriptor::ValueRegister(),
+ StoreDescriptor::ReceiverRegister());
+ Handle<Code> ic =
+ CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
+ CallIC(ic);
+ break;
+ }
+ }
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
+ Variable* var, MemOperand location) {
+ __ StoreP(result_register(), location, r0);
+ if (var->IsContextSlot()) {
+ // RecordWrite may destroy all its register arguments.
+ __ mr(r6, result_register());
+ int offset = Context::SlotOffset(var->index());
+ __ RecordWriteContextSlot(r4, offset, r6, r5, kLRHasBeenSaved,
+ kDontSaveFPRegs);
+ }
+}
+
+
+void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op) {
+ if (var->IsUnallocated()) {
+ // Global var, const, or let.
+ __ mov(StoreDescriptor::NameRegister(), Operand(var->name()));
+ __ LoadP(StoreDescriptor::ReceiverRegister(), GlobalObjectOperand());
+ CallStoreIC();
+
+ } else if (op == Token::INIT_CONST_LEGACY) {
+ // Const initializers need a write barrier.
+ DCHECK(!var->IsParameter()); // No const parameters.
+ if (var->IsLookupSlot()) {
+ __ push(r3);
+ __ mov(r3, Operand(var->name()));
+ __ Push(cp, r3); // Context and name.
+ __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3);
+ } else {
+ DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+ Label skip;
+ MemOperand location = VarOperand(var, r4);
+ __ LoadP(r5, location);
+ __ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
+ __ bne(&skip);
+ EmitStoreToStackLocalOrContextSlot(var, location);
+ __ bind(&skip);
+ }
+
+ } else if (var->mode() == LET && op != Token::INIT_LET) {
+ // Non-initializing assignment to let variable needs a write barrier.
+ DCHECK(!var->IsLookupSlot());
+ DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+ Label assign;
+ MemOperand location = VarOperand(var, r4);
+ __ LoadP(r6, location);
+ __ CompareRoot(r6, Heap::kTheHoleValueRootIndex);
+ __ bne(&assign);
+ __ mov(r6, Operand(var->name()));
+ __ push(r6);
+ __ CallRuntime(Runtime::kThrowReferenceError, 1);
+ // Perform the assignment.
+ __ bind(&assign);
+ EmitStoreToStackLocalOrContextSlot(var, location);
+
+ } else if (!var->is_const_mode() || op == Token::INIT_CONST) {
+ if (var->IsLookupSlot()) {
+ // Assignment to var.
+ __ push(r3); // Value.
+ __ mov(r4, Operand(var->name()));
+ __ mov(r3, Operand(Smi::FromInt(strict_mode())));
+ __ Push(cp, r4, r3); // Context, name, strict mode.
+ __ CallRuntime(Runtime::kStoreLookupSlot, 4);
+ } else {
+ // Assignment to var or initializing assignment to let/const in harmony
+ // mode.
+ DCHECK((var->IsStackAllocated() || var->IsContextSlot()));
+ MemOperand location = VarOperand(var, r4);
+ if (generate_debug_code_ && op == Token::INIT_LET) {
+ // Check for an uninitialized let binding.
+ __ LoadP(r5, location);
+ __ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
+ __ Check(eq, kLetBindingReInitialization);
+ }
+ EmitStoreToStackLocalOrContextSlot(var, location);
+ }
+ }
+ // Non-initializing assignments to consts are ignored.
+}
+
+
+void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
+ // Assignment to a property, using a named store IC.
+ Property* prop = expr->target()->AsProperty();
+ DCHECK(prop != NULL);
+ DCHECK(prop->key()->IsLiteral());
+
+ // Record source code position before IC call.
+ SetSourcePosition(expr->position());
+ __ mov(StoreDescriptor::NameRegister(),
+ Operand(prop->key()->AsLiteral()->value()));
+ __ pop(StoreDescriptor::ReceiverRegister());
+ CallStoreIC(expr->AssignmentFeedbackId());
+
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) {
+ // Assignment to named property of super.
+ // r3 : value
+ // stack : receiver ('this'), home_object
+ DCHECK(prop != NULL);
+ Literal* key = prop->key()->AsLiteral();
+ DCHECK(key != NULL);
+
+ __ Push(key->value());
+ __ Push(r3);
+ __ CallRuntime((strict_mode() == STRICT ? Runtime::kStoreToSuper_Strict
+ : Runtime::kStoreToSuper_Sloppy),
+ 4);
+}
+
+
+void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) {
+ // Assignment to named property of super.
+ // r3 : value
+ // stack : receiver ('this'), home_object, key
+ DCHECK(prop != NULL);
+
+ __ Push(r3);
+ __ CallRuntime((strict_mode() == STRICT ? Runtime::kStoreKeyedToSuper_Strict
+ : Runtime::kStoreKeyedToSuper_Sloppy),
+ 4);
+}
+
+
+void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
+ // Assignment to a property, using a keyed store IC.
+
+ // Record source code position before IC call.
+ SetSourcePosition(expr->position());
+ __ Pop(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister());
+ DCHECK(StoreDescriptor::ValueRegister().is(r3));
+
+ Handle<Code> ic = CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
+ CallIC(ic, expr->AssignmentFeedbackId());
+
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::VisitProperty(Property* expr) {
+ Comment cmnt(masm_, "[ Property");
+ Expression* key = expr->key();
+
+ if (key->IsPropertyName()) {
+ if (!expr->IsSuperAccess()) {
+ VisitForAccumulatorValue(expr->obj());
+ __ Move(LoadDescriptor::ReceiverRegister(), r3);
+ EmitNamedPropertyLoad(expr);
+ } else {
+ VisitForStackValue(expr->obj()->AsSuperReference()->this_var());
+ EmitLoadHomeObject(expr->obj()->AsSuperReference());
+ __ Push(result_register());
+ EmitNamedSuperPropertyLoad(expr);
+ }
+ PrepareForBailoutForId(expr->LoadId(), TOS_REG);
+ context()->Plug(r3);
+ } else {
+ if (!expr->IsSuperAccess()) {
+ VisitForStackValue(expr->obj());
+ VisitForAccumulatorValue(expr->key());
+ __ Move(LoadDescriptor::NameRegister(), r3);
+ __ pop(LoadDescriptor::ReceiverRegister());
+ EmitKeyedPropertyLoad(expr);
+ } else {
+ VisitForStackValue(expr->obj()->AsSuperReference()->this_var());
+ EmitLoadHomeObject(expr->obj()->AsSuperReference());
+ __ Push(result_register());
+ VisitForStackValue(expr->key());
+ EmitKeyedSuperPropertyLoad(expr);
+ }
+ context()->Plug(r3);
+ }
+}
+
+
+void FullCodeGenerator::CallIC(Handle<Code> code, TypeFeedbackId ast_id) {
+ ic_total_count_++;
+ __ Call(code, RelocInfo::CODE_TARGET, ast_id);
+}
+
+
+// Code common for calls using the IC.
+void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
+ Expression* callee = expr->expression();
+
+ CallICState::CallType call_type =
+ callee->IsVariableProxy() ? CallICState::FUNCTION : CallICState::METHOD;
+
+ // Get the target function.
+ if (call_type == CallICState::FUNCTION) {
+ {
+ StackValueContext context(this);
+ EmitVariableLoad(callee->AsVariableProxy());
+ PrepareForBailout(callee, NO_REGISTERS);
+ }
+ // Push undefined as receiver. This is patched in the method prologue if it
+ // is a sloppy mode method.
+ __ Push(isolate()->factory()->undefined_value());
+ } else {
+ // Load the function from the receiver.
+ DCHECK(callee->IsProperty());
+ DCHECK(!callee->AsProperty()->IsSuperAccess());
+ __ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
+ EmitNamedPropertyLoad(callee->AsProperty());
+ PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
+ // Push the target function under the receiver.
+ __ LoadP(ip, MemOperand(sp, 0));
+ __ push(ip);
+ __ StoreP(r3, MemOperand(sp, kPointerSize));
+ }
+
+ EmitCall(expr, call_type);
+}
+
+
+void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
+ Expression* callee = expr->expression();
+ DCHECK(callee->IsProperty());
+ Property* prop = callee->AsProperty();
+ DCHECK(prop->IsSuperAccess());
+
+ SetSourcePosition(prop->position());
+ Literal* key = prop->key()->AsLiteral();
+ DCHECK(!key->value()->IsSmi());
+ // Load the function from the receiver.
+ const Register scratch = r4;
+ SuperReference* super_ref = prop->obj()->AsSuperReference();
+ EmitLoadHomeObject(super_ref);
+ __ mr(scratch, r3);
+ VisitForAccumulatorValue(super_ref->this_var());
+ __ Push(scratch, r3, r3, scratch);
+ __ Push(key->value());
+
+ // Stack here:
+ // - home_object
+ // - this (receiver)
+ // - this (receiver) <-- LoadFromSuper will pop here and below.
+ // - home_object
+ // - key
+ __ CallRuntime(Runtime::kLoadFromSuper, 3);
+
+ // Replace home_object with target function.
+ __ StoreP(r3, MemOperand(sp, kPointerSize));
+
+ // Stack here:
+ // - target function
+ // - this (receiver)
+ EmitCall(expr, CallICState::METHOD);
+}
+
+
+// Code common for calls using the IC.
+void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr, Expression* key) {
+ // Load the key.
+ VisitForAccumulatorValue(key);
+
+ Expression* callee = expr->expression();
+
+ // Load the function from the receiver.
+ DCHECK(callee->IsProperty());
+ __ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
+ __ Move(LoadDescriptor::NameRegister(), r3);
+ EmitKeyedPropertyLoad(callee->AsProperty());
+ PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
+
+ // Push the target function under the receiver.
+ __ LoadP(ip, MemOperand(sp, 0));
+ __ push(ip);
+ __ StoreP(r3, MemOperand(sp, kPointerSize));
+
+ EmitCall(expr, CallICState::METHOD);
+}
+
+
+void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) {
+ Expression* callee = expr->expression();
+ DCHECK(callee->IsProperty());
+ Property* prop = callee->AsProperty();
+ DCHECK(prop->IsSuperAccess());
+
+ SetSourcePosition(prop->position());
+ // Load the function from the receiver.
+ const Register scratch = r4;
+ SuperReference* super_ref = prop->obj()->AsSuperReference();
+ EmitLoadHomeObject(super_ref);
+ __ Push(r3);
+ VisitForAccumulatorValue(super_ref->this_var());
+ __ Push(r3);
+ __ Push(r3);
+ __ LoadP(scratch, MemOperand(sp, kPointerSize * 2));
+ __ Push(scratch);
+ VisitForStackValue(prop->key());
+
+ // Stack here:
+ // - home_object
+ // - this (receiver)
+ // - this (receiver) <-- LoadKeyedFromSuper will pop here and below.
+ // - home_object
+ // - key
+ __ CallRuntime(Runtime::kLoadKeyedFromSuper, 3);
+
+ // Replace home_object with target function.
+ __ StoreP(r3, MemOperand(sp, kPointerSize));
+
+ // Stack here:
+ // - target function
+ // - this (receiver)
+ EmitCall(expr, CallICState::METHOD);
+}
+
+
+void FullCodeGenerator::EmitCall(Call* expr, CallICState::CallType call_type) {
+ // Load the arguments.
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+ {
+ PreservePositionScope scope(masm()->positions_recorder());
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+ }
+
+ // Record source position of the IC call.
+ SetSourcePosition(expr->position());
+ Handle<Code> ic = CallIC::initialize_stub(isolate(), arg_count, call_type);
+ __ LoadSmiLiteral(r6, SmiFromSlot(expr->CallFeedbackSlot()));
+ __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
+ // Don't assign a type feedback id to the IC, since type feedback is provided
+ // by the vector above.
+ CallIC(ic);
+
+ RecordJSReturnSite(expr);
+ // Restore context register.
+ __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ context()->DropAndPlug(1, r3);
+}
+
+
+void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
+ // r8: copy of the first argument or undefined if it doesn't exist.
+ if (arg_count > 0) {
+ __ LoadP(r8, MemOperand(sp, arg_count * kPointerSize), r0);
+ } else {
+ __ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
+ }
+
+ // r7: the receiver of the enclosing function.
+ __ LoadP(r7, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+
+ // r6: the receiver of the enclosing function.
+ int receiver_offset = 2 + info_->scope()->num_parameters();
+ __ LoadP(r6, MemOperand(fp, receiver_offset * kPointerSize), r0);
+
+ // r5: strict mode.
+ __ LoadSmiLiteral(r5, Smi::FromInt(strict_mode()));
+
+ // r4: the start position of the scope the calls resides in.
+ __ LoadSmiLiteral(r4, Smi::FromInt(scope()->start_position()));
+
+ // Do the runtime call.
+ __ Push(r8, r7, r6, r5, r4);
+ __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 6);
+}
+
+
+void FullCodeGenerator::EmitLoadSuperConstructor(SuperReference* super_ref) {
+ DCHECK(super_ref != NULL);
+ __ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ Push(r3);
+ __ CallRuntime(Runtime::kGetPrototype, 1);
+}
+
+
+void FullCodeGenerator::VisitCall(Call* expr) {
+#ifdef DEBUG
+ // We want to verify that RecordJSReturnSite gets called on all paths
+ // through this function. Avoid early returns.
+ expr->return_is_recorded_ = false;
+#endif
+
+ Comment cmnt(masm_, "[ Call");
+ Expression* callee = expr->expression();
+ Call::CallType call_type = expr->GetCallType(isolate());
+
+ if (call_type == Call::POSSIBLY_EVAL_CALL) {
+ // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
+ // to resolve the function we need to call and the receiver of the
+ // call. Then we call the resolved function using the given
+ // arguments.
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+
+ {
+ PreservePositionScope pos_scope(masm()->positions_recorder());
+ VisitForStackValue(callee);
+ __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
+ __ push(r5); // Reserved receiver slot.
+
+ // Push the arguments.
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+
+ // Push a copy of the function (found below the arguments) and
+ // resolve eval.
+ __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
+ __ push(r4);
+ EmitResolvePossiblyDirectEval(arg_count);
+
+ // The runtime call returns a pair of values in r3 (function) and
+ // r4 (receiver). Touch up the stack with the right values.
+ __ StoreP(r3, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
+ __ StoreP(r4, MemOperand(sp, arg_count * kPointerSize), r0);
+
+ PrepareForBailoutForId(expr->EvalOrLookupId(), NO_REGISTERS);
+ }
+
+ // Record source position for debugger.
+ SetSourcePosition(expr->position());
+ CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
+ __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
+ __ CallStub(&stub);
+ RecordJSReturnSite(expr);
+ // Restore context register.
+ __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ context()->DropAndPlug(1, r3);
+ } else if (call_type == Call::GLOBAL_CALL) {
+ EmitCallWithLoadIC(expr);
+
+ } else if (call_type == Call::LOOKUP_SLOT_CALL) {
+ // Call to a lookup slot (dynamically introduced variable).
+ VariableProxy* proxy = callee->AsVariableProxy();
+ Label slow, done;
+
+ {
+ PreservePositionScope scope(masm()->positions_recorder());
+ // Generate code for loading from variables potentially shadowed
+ // by eval-introduced variables.
+ EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
+ }
+
+ __ bind(&slow);
+ // Call the runtime to find the function to call (returned in r3)
+ // and the object holding it (returned in edx).
+ DCHECK(!context_register().is(r5));
+ __ mov(r5, Operand(proxy->name()));
+ __ Push(context_register(), r5);
+ __ CallRuntime(Runtime::kLoadLookupSlot, 2);
+ __ Push(r3, r4); // Function, receiver.
+ PrepareForBailoutForId(expr->EvalOrLookupId(), NO_REGISTERS);
+
+ // If fast case code has been generated, emit code to push the
+ // function and receiver and have the slow path jump around this
+ // code.
+ if (done.is_linked()) {
+ Label call;
+ __ b(&call);
+ __ bind(&done);
+ // Push function.
+ __ push(r3);
+ // The receiver is implicitly the global receiver. Indicate this
+ // by passing the hole to the call function stub.
+ __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
+ __ push(r4);
+ __ bind(&call);
+ }
+
+ // The receiver is either the global receiver or an object found
+ // by LoadContextSlot.
+ EmitCall(expr);
+ } else if (call_type == Call::PROPERTY_CALL) {
+ Property* property = callee->AsProperty();
+ bool is_named_call = property->key()->IsPropertyName();
+ if (property->IsSuperAccess()) {
+ if (is_named_call) {
+ EmitSuperCallWithLoadIC(expr);
+ } else {
+ EmitKeyedSuperCallWithLoadIC(expr);
+ }
+ } else {
+ {
+ PreservePositionScope scope(masm()->positions_recorder());
+ VisitForStackValue(property->obj());
+ }
+ if (is_named_call) {
+ EmitCallWithLoadIC(expr);
+ } else {
+ EmitKeyedCallWithLoadIC(expr, property->key());
+ }
+ }
+ } else if (call_type == Call::SUPER_CALL) {
+ SuperReference* super_ref = callee->AsSuperReference();
+ EmitLoadSuperConstructor(super_ref);
+ __ Push(result_register());
+ VisitForStackValue(super_ref->this_var());
+ EmitCall(expr, CallICState::METHOD);
+ } else {
+ DCHECK(call_type == Call::OTHER_CALL);
+ // Call to an arbitrary expression not handled specially above.
+ {
+ PreservePositionScope scope(masm()->positions_recorder());
+ VisitForStackValue(callee);
+ }
+ __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
+ __ push(r4);
+ // Emit function call.
+ EmitCall(expr);
+ }
+
+#ifdef DEBUG
+ // RecordJSReturnSite should have been called.
+ DCHECK(expr->return_is_recorded_);
+#endif
+}
+
+
+void FullCodeGenerator::VisitCallNew(CallNew* expr) {
+ Comment cmnt(masm_, "[ CallNew");
+ // According to ECMA-262, section 11.2.2, page 44, the function
+ // expression in new calls must be evaluated before the
+ // arguments.
+
+ // Push constructor on the stack. If it's not a function it's used as
+ // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
+ // ignored.
+ if (expr->expression()->IsSuperReference()) {
+ EmitLoadSuperConstructor(expr->expression()->AsSuperReference());
+ __ Push(result_register());
+ } else {
+ VisitForStackValue(expr->expression());
+ }
+
+ // Push the arguments ("left-to-right") on the stack.
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+
+ // Call the construct call builtin that handles allocation and
+ // constructor invocation.
+ SetSourcePosition(expr->position());
+
+ // Load function and argument count into r4 and r3.
+ __ mov(r3, Operand(arg_count));
+ __ LoadP(r4, MemOperand(sp, arg_count * kPointerSize), r0);
+
+ // Record call targets in unoptimized code.
+ if (FLAG_pretenuring_call_new) {
+ EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot());
+ DCHECK(expr->AllocationSiteFeedbackSlot().ToInt() ==
+ expr->CallNewFeedbackSlot().ToInt() + 1);
+ }
+
+ __ Move(r5, FeedbackVector());
+ __ LoadSmiLiteral(r6, SmiFromSlot(expr->CallNewFeedbackSlot()));
+
+ CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET);
+ __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
+ PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ __ TestIfSmi(r3, r0);
+ Split(eq, if_true, if_false, fall_through, cr0);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ __ TestIfPositiveSmi(r3, r0);
+ Split(eq, if_true, if_false, fall_through, cr0);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ __ JumpIfSmi(r3, if_false);
+ __ LoadRoot(ip, Heap::kNullValueRootIndex);
+ __ cmp(r3, ip);
+ __ beq(if_true);
+ __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
+ // Undetectable objects behave like undefined when tested with typeof.
+ __ lbz(r4, FieldMemOperand(r5, Map::kBitFieldOffset));
+ __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
+ __ bne(if_false, cr0);
+ __ lbz(r4, FieldMemOperand(r5, Map::kInstanceTypeOffset));
+ __ cmpi(r4, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ __ blt(if_false);
+ __ cmpi(r4, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ Split(le, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ __ JumpIfSmi(r3, if_false);
+ __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ Split(ge, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ __ JumpIfSmi(r3, if_false);
+ __ LoadP(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
+ __ lbz(r4, FieldMemOperand(r4, Map::kBitFieldOffset));
+ __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ Split(ne, if_true, if_false, fall_through, cr0);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
+ CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false, skip_lookup;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ __ AssertNotSmi(r3);
+
+ __ LoadP(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
+ __ lbz(ip, FieldMemOperand(r4, Map::kBitField2Offset));
+ __ andi(r0, ip, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
+ __ bne(&skip_lookup, cr0);
+
+ // Check for fast case object. Generate false result for slow case object.
+ __ LoadP(r5, FieldMemOperand(r3, JSObject::kPropertiesOffset));
+ __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
+ __ LoadRoot(ip, Heap::kHashTableMapRootIndex);
+ __ cmp(r5, ip);
+ __ beq(if_false);
+
+ // Look for valueOf name in the descriptor array, and indicate false if
+ // found. Since we omit an enumeration index check, if it is added via a
+ // transition that shares its descriptor array, this is a false positive.
+ Label entry, loop, done;
+
+ // Skip loop if no descriptors are valid.
+ __ NumberOfOwnDescriptors(r6, r4);
+ __ cmpi(r6, Operand::Zero());
+ __ beq(&done);
+
+ __ LoadInstanceDescriptors(r4, r7);
+ // r7: descriptor array.
+ // r6: valid entries in the descriptor array.
+ __ mov(ip, Operand(DescriptorArray::kDescriptorSize));
+ __ Mul(r6, r6, ip);
+ // Calculate location of the first key name.
+ __ addi(r7, r7, Operand(DescriptorArray::kFirstOffset - kHeapObjectTag));
+ // Calculate the end of the descriptor array.
+ __ mr(r5, r7);
+ __ ShiftLeftImm(ip, r6, Operand(kPointerSizeLog2));
+ __ add(r5, r5, ip);
+
+ // Loop through all the keys in the descriptor array. If one of these is the
+ // string "valueOf" the result is false.
+ // The use of ip to store the valueOf string assumes that it is not otherwise
+ // used in the loop below.
+ __ mov(ip, Operand(isolate()->factory()->value_of_string()));
+ __ b(&entry);
+ __ bind(&loop);
+ __ LoadP(r6, MemOperand(r7, 0));
+ __ cmp(r6, ip);
+ __ beq(if_false);
+ __ addi(r7, r7, Operand(DescriptorArray::kDescriptorSize * kPointerSize));
+ __ bind(&entry);
+ __ cmp(r7, r5);
+ __ bne(&loop);
+
+ __ bind(&done);
+
+ // Set the bit in the map to indicate that there is no local valueOf field.
+ __ lbz(r5, FieldMemOperand(r4, Map::kBitField2Offset));
+ __ ori(r5, r5, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
+ __ stb(r5, FieldMemOperand(r4, Map::kBitField2Offset));
+
+ __ bind(&skip_lookup);
+
+ // If a valueOf property is not found on the object check that its
+ // prototype is the un-modified String prototype. If not result is false.
+ __ LoadP(r5, FieldMemOperand(r4, Map::kPrototypeOffset));
+ __ JumpIfSmi(r5, if_false);
+ __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
+ __ LoadP(r6, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
+ __ LoadP(r6, FieldMemOperand(r6, GlobalObject::kNativeContextOffset));
+ __ LoadP(r6,
+ ContextOperand(r6, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
+ __ cmp(r5, r6);
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ __ JumpIfSmi(r3, if_false);
+ __ CompareObjectType(r3, r4, r5, JS_FUNCTION_TYPE);
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ __ CheckMap(r3, r4, Heap::kHeapNumberMapRootIndex, if_false, DO_SMI_CHECK);
+#if V8_TARGET_ARCH_PPC64
+ __ LoadP(r4, FieldMemOperand(r3, HeapNumber::kValueOffset));
+ __ li(r5, Operand(1));
+ __ rotrdi(r5, r5, 1); // r5 = 0x80000000_00000000
+ __ cmp(r4, r5);
+#else
+ __ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset));
+ __ lwz(r4, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
+ Label skip;
+ __ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
+ __ cmp(r5, r0);
+ __ bne(&skip);
+ __ cmpi(r4, Operand::Zero());
+ __ bind(&skip);
+#endif
+
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ __ JumpIfSmi(r3, if_false);
+ __ CompareObjectType(r3, r4, r4, JS_ARRAY_TYPE);
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ __ JumpIfSmi(r3, if_false);
+ __ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE);
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ __ JumpIfSmi(r3, if_false);
+ Register map = r4;
+ Register type_reg = r5;
+ __ LoadP(map, FieldMemOperand(r3, HeapObject::kMapOffset));
+ __ lbz(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ __ subi(type_reg, type_reg, Operand(FIRST_JS_PROXY_TYPE));
+ __ cmpli(type_reg, Operand(LAST_JS_PROXY_TYPE - FIRST_JS_PROXY_TYPE));
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ Split(le, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
+ DCHECK(expr->arguments()->length() == 0);
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ // Get the frame pointer for the calling frame.
+ __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+
+ // Skip the arguments adaptor frame if it exists.
+ Label check_frame_marker;
+ __ LoadP(r4, MemOperand(r5, StandardFrameConstants::kContextOffset));
+ __ CmpSmiLiteral(r4, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
+ __ bne(&check_frame_marker);
+ __ LoadP(r5, MemOperand(r5, StandardFrameConstants::kCallerFPOffset));
+
+ // Check the marker in the calling frame.
+ __ bind(&check_frame_marker);
+ __ LoadP(r4, MemOperand(r5, StandardFrameConstants::kMarkerOffset));
+ STATIC_ASSERT(StackFrame::CONSTRUCT < 0x4000);
+ __ CmpSmiLiteral(r4, Smi::FromInt(StackFrame::CONSTRUCT), r0);
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 2);
+
+ // Load the two objects into registers and perform the comparison.
+ VisitForStackValue(args->at(0));
+ VisitForAccumulatorValue(args->at(1));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ __ pop(r4);
+ __ cmp(r3, r4);
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ // ArgumentsAccessStub expects the key in edx and the formal
+ // parameter count in r3.
+ VisitForAccumulatorValue(args->at(0));
+ __ mr(r4, r3);
+ __ LoadSmiLiteral(r3, Smi::FromInt(info_->scope()->num_parameters()));
+ ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
+ __ CallStub(&stub);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
+ DCHECK(expr->arguments()->length() == 0);
+ Label exit;
+ // Get the number of formal parameters.
+ __ LoadSmiLiteral(r3, Smi::FromInt(info_->scope()->num_parameters()));
+
+ // Check if the calling frame is an arguments adaptor frame.
+ __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset));
+ __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
+ __ bne(&exit);
+
+ // Arguments adaptor case: Read the arguments length from the
+ // adaptor frame.
+ __ LoadP(r3, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
+
+ __ bind(&exit);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+ Label done, null, function, non_function_constructor;
+
+ VisitForAccumulatorValue(args->at(0));
+
+ // If the object is a smi, we return null.
+ __ JumpIfSmi(r3, &null);
+
+ // Check that the object is a JS object but take special care of JS
+ // functions to make sure they have 'Function' as their class.
+ // Assume that there are only two callable types, and one of them is at
+ // either end of the type range for JS object types. Saves extra comparisons.
+ STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
+ __ CompareObjectType(r3, r3, r4, FIRST_SPEC_OBJECT_TYPE);
+ // Map is now in r3.
+ __ blt(&null);
+ STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
+ FIRST_SPEC_OBJECT_TYPE + 1);
+ __ beq(&function);
+
+ __ cmpi(r4, Operand(LAST_SPEC_OBJECT_TYPE));
+ STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_SPEC_OBJECT_TYPE - 1);
+ __ beq(&function);
+ // Assume that there is no larger type.
+ STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
+
+ // Check if the constructor in the map is a JS function.
+ __ LoadP(r3, FieldMemOperand(r3, Map::kConstructorOffset));
+ __ CompareObjectType(r3, r4, r4, JS_FUNCTION_TYPE);
+ __ bne(&non_function_constructor);
+
+ // r3 now contains the constructor function. Grab the
+ // instance class name from there.
+ __ LoadP(r3, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
+ __ LoadP(r3,
+ FieldMemOperand(r3, SharedFunctionInfo::kInstanceClassNameOffset));
+ __ b(&done);
+
+ // Functions have class 'Function'.
+ __ bind(&function);
+ __ LoadRoot(r3, Heap::kFunction_stringRootIndex);
+ __ b(&done);
+
+ // Objects with a non-function constructor have class 'Object'.
+ __ bind(&non_function_constructor);
+ __ LoadRoot(r3, Heap::kObject_stringRootIndex);
+ __ b(&done);
+
+ // Non-JS objects have class null.
+ __ bind(&null);
+ __ LoadRoot(r3, Heap::kNullValueRootIndex);
+
+ // All done.
+ __ bind(&done);
+
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
+ // Load the arguments on the stack and call the stub.
+ SubStringStub stub(isolate());
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 3);
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+ VisitForStackValue(args->at(2));
+ __ CallStub(&stub);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
+ // Load the arguments on the stack and call the stub.
+ RegExpExecStub stub(isolate());
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 4);
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+ VisitForStackValue(args->at(2));
+ VisitForStackValue(args->at(3));
+ __ CallStub(&stub);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+ VisitForAccumulatorValue(args->at(0)); // Load the object.
+
+ Label done;
+ // If the object is a smi return the object.
+ __ JumpIfSmi(r3, &done);
+ // If the object is not a value type, return the object.
+ __ CompareObjectType(r3, r4, r4, JS_VALUE_TYPE);
+ __ bne(&done);
+ __ LoadP(r3, FieldMemOperand(r3, JSValue::kValueOffset));
+
+ __ bind(&done);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 2);
+ DCHECK_NE(NULL, args->at(1)->AsLiteral());
+ Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
+
+ VisitForAccumulatorValue(args->at(0)); // Load the object.
+
+ Label runtime, done, not_date_object;
+ Register object = r3;
+ Register result = r3;
+ Register scratch0 = r11;
+ Register scratch1 = r4;
+
+ __ JumpIfSmi(object, &not_date_object);
+ __ CompareObjectType(object, scratch1, scratch1, JS_DATE_TYPE);
+ __ bne(&not_date_object);
+
+ if (index->value() == 0) {
+ __ LoadP(result, FieldMemOperand(object, JSDate::kValueOffset));
+ __ b(&done);
+ } else {
+ if (index->value() < JSDate::kFirstUncachedField) {
+ ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
+ __ mov(scratch1, Operand(stamp));
+ __ LoadP(scratch1, MemOperand(scratch1));
+ __ LoadP(scratch0, FieldMemOperand(object, JSDate::kCacheStampOffset));
+ __ cmp(scratch1, scratch0);
+ __ bne(&runtime);
+ __ LoadP(result,
+ FieldMemOperand(object, JSDate::kValueOffset +
+ kPointerSize * index->value()),
+ scratch0);
+ __ b(&done);
+ }
+ __ bind(&runtime);
+ __ PrepareCallCFunction(2, scratch1);
+ __ LoadSmiLiteral(r4, index);
+ __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
+ __ b(&done);
+ }
+
+ __ bind(&not_date_object);
+ __ CallRuntime(Runtime::kThrowNotDateError, 0);
+ __ bind(&done);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK_EQ(3, args->length());
+
+ Register string = r3;
+ Register index = r4;
+ Register value = r5;
+
+ VisitForStackValue(args->at(0)); // index
+ VisitForStackValue(args->at(1)); // value
+ VisitForAccumulatorValue(args->at(2)); // string
+ __ Pop(index, value);
+
+ if (FLAG_debug_code) {
+ __ TestIfSmi(value, r0);
+ __ Check(eq, kNonSmiValue, cr0);
+ __ TestIfSmi(index, r0);
+ __ Check(eq, kNonSmiIndex, cr0);
+ __ SmiUntag(index, index);
+ static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+ __ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type);
+ __ SmiTag(index, index);
+ }
+
+ __ SmiUntag(value);
+ __ addi(ip, string, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+ __ SmiToByteArrayOffset(r0, index);
+ __ stbx(value, MemOperand(ip, r0));
+ context()->Plug(string);
+}
+
+
+void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK_EQ(3, args->length());
+
+ Register string = r3;
+ Register index = r4;
+ Register value = r5;
+
+ VisitForStackValue(args->at(0)); // index
+ VisitForStackValue(args->at(1)); // value
+ VisitForAccumulatorValue(args->at(2)); // string
+ __ Pop(index, value);
+
+ if (FLAG_debug_code) {
+ __ TestIfSmi(value, r0);
+ __ Check(eq, kNonSmiValue, cr0);
+ __ TestIfSmi(index, r0);
+ __ Check(eq, kNonSmiIndex, cr0);
+ __ SmiUntag(index, index);
+ static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+ __ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type);
+ __ SmiTag(index, index);
+ }
+
+ __ SmiUntag(value);
+ __ addi(ip, string, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+ __ SmiToShortArrayOffset(r0, index);
+ __ sthx(value, MemOperand(ip, r0));
+ context()->Plug(string);
+}
+
+
+void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
+ // Load the arguments on the stack and call the runtime function.
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 2);
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+ MathPowStub stub(isolate(), MathPowStub::ON_STACK);
+ __ CallStub(&stub);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 2);
+ VisitForStackValue(args->at(0)); // Load the object.
+ VisitForAccumulatorValue(args->at(1)); // Load the value.
+ __ pop(r4); // r3 = value. r4 = object.
+
+ Label done;
+ // If the object is a smi, return the value.
+ __ JumpIfSmi(r4, &done);
+
+ // If the object is not a value type, return the value.
+ __ CompareObjectType(r4, r5, r5, JS_VALUE_TYPE);
+ __ bne(&done);
+
+ // Store the value.
+ __ StoreP(r3, FieldMemOperand(r4, JSValue::kValueOffset), r0);
+ // Update the write barrier. Save the value as it will be
+ // overwritten by the write barrier code and is needed afterward.
+ __ mr(r5, r3);
+ __ RecordWriteField(r4, JSValue::kValueOffset, r5, r6, kLRHasBeenSaved,
+ kDontSaveFPRegs);
+
+ __ bind(&done);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK_EQ(args->length(), 1);
+ // Load the argument into r3 and call the stub.
+ VisitForAccumulatorValue(args->at(0));
+
+ NumberToStringStub stub(isolate());
+ __ CallStub(&stub);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+ VisitForAccumulatorValue(args->at(0));
+
+ Label done;
+ StringCharFromCodeGenerator generator(r3, r4);
+ generator.GenerateFast(masm_);
+ __ b(&done);
+
+ NopRuntimeCallHelper call_helper;
+ generator.GenerateSlow(masm_, call_helper);
+
+ __ bind(&done);
+ context()->Plug(r4);
+}
+
+
+void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 2);
+ VisitForStackValue(args->at(0));
+ VisitForAccumulatorValue(args->at(1));
+
+ Register object = r4;
+ Register index = r3;
+ Register result = r6;
+
+ __ pop(object);
+
+ Label need_conversion;
+ Label index_out_of_range;
+ Label done;
+ StringCharCodeAtGenerator generator(object, index, result, &need_conversion,
+ &need_conversion, &index_out_of_range,
+ STRING_INDEX_IS_NUMBER);
+ generator.GenerateFast(masm_);
+ __ b(&done);
+
+ __ bind(&index_out_of_range);
+ // When the index is out of range, the spec requires us to return
+ // NaN.
+ __ LoadRoot(result, Heap::kNanValueRootIndex);
+ __ b(&done);
+
+ __ bind(&need_conversion);
+ // Load the undefined value into the result register, which will
+ // trigger conversion.
+ __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
+ __ b(&done);
+
+ NopRuntimeCallHelper call_helper;
+ generator.GenerateSlow(masm_, call_helper);
+
+ __ bind(&done);
+ context()->Plug(result);
+}
+
+
+void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 2);
+ VisitForStackValue(args->at(0));
+ VisitForAccumulatorValue(args->at(1));
+
+ Register object = r4;
+ Register index = r3;
+ Register scratch = r6;
+ Register result = r3;
+
+ __ pop(object);
+
+ Label need_conversion;
+ Label index_out_of_range;
+ Label done;
+ StringCharAtGenerator generator(object, index, scratch, result,
+ &need_conversion, &need_conversion,
+ &index_out_of_range, STRING_INDEX_IS_NUMBER);
+ generator.GenerateFast(masm_);
+ __ b(&done);
+
+ __ bind(&index_out_of_range);
+ // When the index is out of range, the spec requires us to return
+ // the empty string.
+ __ LoadRoot(result, Heap::kempty_stringRootIndex);
+ __ b(&done);
+
+ __ bind(&need_conversion);
+ // Move smi zero into the result register, which will trigger
+ // conversion.
+ __ LoadSmiLiteral(result, Smi::FromInt(0));
+ __ b(&done);
+
+ NopRuntimeCallHelper call_helper;
+ generator.GenerateSlow(masm_, call_helper);
+
+ __ bind(&done);
+ context()->Plug(result);
+}
+
+
+void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK_EQ(2, args->length());
+ VisitForStackValue(args->at(0));
+ VisitForAccumulatorValue(args->at(1));
+
+ __ pop(r4);
+ StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED);
+ __ CallStub(&stub);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK_EQ(2, args->length());
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+
+ StringCompareStub stub(isolate());
+ __ CallStub(&stub);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() >= 2);
+
+ int arg_count = args->length() - 2; // 2 ~ receiver and function.
+ for (int i = 0; i < arg_count + 1; i++) {
+ VisitForStackValue(args->at(i));
+ }
+ VisitForAccumulatorValue(args->last()); // Function.
+
+ Label runtime, done;
+ // Check for non-function argument (including proxy).
+ __ JumpIfSmi(r3, &runtime);
+ __ CompareObjectType(r3, r4, r4, JS_FUNCTION_TYPE);
+ __ bne(&runtime);
+
+ // InvokeFunction requires the function in r4. Move it in there.
+ __ mr(r4, result_register());
+ ParameterCount count(arg_count);
+ __ InvokeFunction(r4, count, CALL_FUNCTION, NullCallWrapper());
+ __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ __ b(&done);
+
+ __ bind(&runtime);
+ __ push(r3);
+ __ CallRuntime(Runtime::kCall, args->length());
+ __ bind(&done);
+
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
+ RegExpConstructResultStub stub(isolate());
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 3);
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+ VisitForAccumulatorValue(args->at(2));
+ __ Pop(r5, r4);
+ __ CallStub(&stub);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK_EQ(2, args->length());
+ DCHECK_NE(NULL, args->at(0)->AsLiteral());
+ int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value();
+
+ Handle<FixedArray> jsfunction_result_caches(
+ isolate()->native_context()->jsfunction_result_caches());
+ if (jsfunction_result_caches->length() <= cache_id) {
+ __ Abort(kAttemptToUseUndefinedCache);
+ __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
+ context()->Plug(r3);
+ return;
+ }
+
+ VisitForAccumulatorValue(args->at(1));
+
+ Register key = r3;
+ Register cache = r4;
+ __ LoadP(cache, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
+ __ LoadP(cache, FieldMemOperand(cache, GlobalObject::kNativeContextOffset));
+ __ LoadP(cache,
+ ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
+ __ LoadP(cache,
+ FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)), r0);
+
+ Label done, not_found;
+ __ LoadP(r5, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset));
+ // r5 now holds finger offset as a smi.
+ __ addi(r6, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ // r6 now points to the start of fixed array elements.
+ __ SmiToPtrArrayOffset(r5, r5);
+ __ LoadPUX(r5, MemOperand(r6, r5));
+ // r6 now points to the key of the pair.
+ __ cmp(key, r5);
+ __ bne(&not_found);
+
+ __ LoadP(r3, MemOperand(r6, kPointerSize));
+ __ b(&done);
+
+ __ bind(&not_found);
+ // Call runtime to perform the lookup.
+ __ Push(cache, key);
+ __ CallRuntime(Runtime::kGetFromCache, 2);
+
+ __ bind(&done);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ __ lwz(r3, FieldMemOperand(r3, String::kHashFieldOffset));
+ // PPC - assume ip is free
+ __ mov(ip, Operand(String::kContainsCachedArrayIndexMask));
+ __ and_(r0, r3, ip);
+ __ cmpi(r0, Operand::Zero());
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+ VisitForAccumulatorValue(args->at(0));
+
+ __ AssertString(r3);
+
+ __ lwz(r3, FieldMemOperand(r3, String::kHashFieldOffset));
+ __ IndexFromHash(r3, r3);
+
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
+ Label bailout, done, one_char_separator, long_separator, non_trivial_array,
+ not_size_one_array, loop, empty_separator_loop, one_char_separator_loop,
+ one_char_separator_loop_entry, long_separator_loop;
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 2);
+ VisitForStackValue(args->at(1));
+ VisitForAccumulatorValue(args->at(0));
+
+ // All aliases of the same register have disjoint lifetimes.
+ Register array = r3;
+ Register elements = no_reg; // Will be r3.
+ Register result = no_reg; // Will be r3.
+ Register separator = r4;
+ Register array_length = r5;
+ Register result_pos = no_reg; // Will be r5
+ Register string_length = r6;
+ Register string = r7;
+ Register element = r8;
+ Register elements_end = r9;
+ Register scratch1 = r10;
+ Register scratch2 = r11;
+
+ // Separator operand is on the stack.
+ __ pop(separator);
+
+ // Check that the array is a JSArray.
+ __ JumpIfSmi(array, &bailout);
+ __ CompareObjectType(array, scratch1, scratch2, JS_ARRAY_TYPE);
+ __ bne(&bailout);
+
+ // Check that the array has fast elements.
+ __ CheckFastElements(scratch1, scratch2, &bailout);
+
+ // If the array has length zero, return the empty string.
+ __ LoadP(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
+ __ SmiUntag(array_length);
+ __ cmpi(array_length, Operand::Zero());
+ __ bne(&non_trivial_array);
+ __ LoadRoot(r3, Heap::kempty_stringRootIndex);
+ __ b(&done);
+
+ __ bind(&non_trivial_array);
+
+ // Get the FixedArray containing array's elements.
+ elements = array;
+ __ LoadP(elements, FieldMemOperand(array, JSArray::kElementsOffset));
+ array = no_reg; // End of array's live range.
+
+ // Check that all array elements are sequential one-byte strings, and
+ // accumulate the sum of their lengths, as a smi-encoded value.
+ __ li(string_length, Operand::Zero());
+ __ addi(element, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ ShiftLeftImm(elements_end, array_length, Operand(kPointerSizeLog2));
+ __ add(elements_end, element, elements_end);
+ // Loop condition: while (element < elements_end).
+ // Live values in registers:
+ // elements: Fixed array of strings.
+ // array_length: Length of the fixed array of strings (not smi)
+ // separator: Separator string
+ // string_length: Accumulated sum of string lengths (smi).
+ // element: Current array element.
+ // elements_end: Array end.
+ if (generate_debug_code_) {
+ __ cmpi(array_length, Operand::Zero());
+ __ Assert(gt, kNoEmptyArraysHereInEmitFastOneByteArrayJoin);
+ }
+ __ bind(&loop);
+ __ LoadP(string, MemOperand(element));
+ __ addi(element, element, Operand(kPointerSize));
+ __ JumpIfSmi(string, &bailout);
+ __ LoadP(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
+ __ lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+ __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
+ __ LoadP(scratch1, FieldMemOperand(string, SeqOneByteString::kLengthOffset));
+
+ __ AddAndCheckForOverflow(string_length, string_length, scratch1, scratch2,
+ r0);
+ __ BranchOnOverflow(&bailout);
+
+ __ cmp(element, elements_end);
+ __ blt(&loop);
+
+ // If array_length is 1, return elements[0], a string.
+ __ cmpi(array_length, Operand(1));
+ __ bne(&not_size_one_array);
+ __ LoadP(r3, FieldMemOperand(elements, FixedArray::kHeaderSize));
+ __ b(&done);
+
+ __ bind(&not_size_one_array);
+
+ // Live values in registers:
+ // separator: Separator string
+ // array_length: Length of the array.
+ // string_length: Sum of string lengths (smi).
+ // elements: FixedArray of strings.
+
+ // Check that the separator is a flat one-byte string.
+ __ JumpIfSmi(separator, &bailout);
+ __ LoadP(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
+ __ lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+ __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
+
+ // Add (separator length times array_length) - separator length to the
+ // string_length to get the length of the result string.
+ __ LoadP(scratch1,
+ FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
+ __ sub(string_length, string_length, scratch1);
+#if V8_TARGET_ARCH_PPC64
+ __ SmiUntag(scratch1, scratch1);
+ __ Mul(scratch2, array_length, scratch1);
+ // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
+ // zero.
+ __ ShiftRightImm(ip, scratch2, Operand(31), SetRC);
+ __ bne(&bailout, cr0);
+ __ SmiTag(scratch2, scratch2);
+#else
+ // array_length is not smi but the other values are, so the result is a smi
+ __ mullw(scratch2, array_length, scratch1);
+ __ mulhw(ip, array_length, scratch1);
+ // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
+ // zero.
+ __ cmpi(ip, Operand::Zero());
+ __ bne(&bailout);
+ __ cmpwi(scratch2, Operand::Zero());
+ __ blt(&bailout);
+#endif
+
+ __ AddAndCheckForOverflow(string_length, string_length, scratch2, scratch1,
+ r0);
+ __ BranchOnOverflow(&bailout);
+ __ SmiUntag(string_length);
+
+ // Get first element in the array to free up the elements register to be used
+ // for the result.
+ __ addi(element, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ result = elements; // End of live range for elements.
+ elements = no_reg;
+ // Live values in registers:
+ // element: First array element
+ // separator: Separator string
+ // string_length: Length of result string (not smi)
+ // array_length: Length of the array.
+ __ AllocateOneByteString(result, string_length, scratch1, scratch2,
+ elements_end, &bailout);
+ // Prepare for looping. Set up elements_end to end of the array. Set
+ // result_pos to the position of the result where to write the first
+ // character.
+ __ ShiftLeftImm(elements_end, array_length, Operand(kPointerSizeLog2));
+ __ add(elements_end, element, elements_end);
+ result_pos = array_length; // End of live range for array_length.
+ array_length = no_reg;
+ __ addi(result_pos, result,
+ Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+
+ // Check the length of the separator.
+ __ LoadP(scratch1,
+ FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
+ __ CmpSmiLiteral(scratch1, Smi::FromInt(1), r0);
+ __ beq(&one_char_separator);
+ __ bgt(&long_separator);
+
+ // Empty separator case
+ __ bind(&empty_separator_loop);
+ // Live values in registers:
+ // result_pos: the position to which we are currently copying characters.
+ // element: Current array element.
+ // elements_end: Array end.
+
+ // Copy next array element to the result.
+ __ LoadP(string, MemOperand(element));
+ __ addi(element, element, Operand(kPointerSize));
+ __ LoadP(string_length, FieldMemOperand(string, String::kLengthOffset));
+ __ SmiUntag(string_length);
+ __ addi(string, string,
+ Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+ __ CopyBytes(string, result_pos, string_length, scratch1);
+ __ cmp(element, elements_end);
+ __ blt(&empty_separator_loop); // End while (element < elements_end).
+ DCHECK(result.is(r3));
+ __ b(&done);
+
+ // One-character separator case
+ __ bind(&one_char_separator);
+ // Replace separator with its one-byte character value.
+ __ lbz(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
+ // Jump into the loop after the code that copies the separator, so the first
+ // element is not preceded by a separator
+ __ b(&one_char_separator_loop_entry);
+
+ __ bind(&one_char_separator_loop);
+ // Live values in registers:
+ // result_pos: the position to which we are currently copying characters.
+ // element: Current array element.
+ // elements_end: Array end.
+ // separator: Single separator one-byte char (in lower byte).
+
+ // Copy the separator character to the result.
+ __ stb(separator, MemOperand(result_pos));
+ __ addi(result_pos, result_pos, Operand(1));
+
+ // Copy next array element to the result.
+ __ bind(&one_char_separator_loop_entry);
+ __ LoadP(string, MemOperand(element));
+ __ addi(element, element, Operand(kPointerSize));
+ __ LoadP(string_length, FieldMemOperand(string, String::kLengthOffset));
+ __ SmiUntag(string_length);
+ __ addi(string, string,
+ Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+ __ CopyBytes(string, result_pos, string_length, scratch1);
+ __ cmpl(element, elements_end);
+ __ blt(&one_char_separator_loop); // End while (element < elements_end).
+ DCHECK(result.is(r3));
+ __ b(&done);
+
+ // Long separator case (separator is more than one character). Entry is at the
+ // label long_separator below.
+ __ bind(&long_separator_loop);
+ // Live values in registers:
+ // result_pos: the position to which we are currently copying characters.
+ // element: Current array element.
+ // elements_end: Array end.
+ // separator: Separator string.
+
+ // Copy the separator to the result.
+ __ LoadP(string_length, FieldMemOperand(separator, String::kLengthOffset));
+ __ SmiUntag(string_length);
+ __ addi(string, separator,
+ Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+ __ CopyBytes(string, result_pos, string_length, scratch1);
+
+ __ bind(&long_separator);
+ __ LoadP(string, MemOperand(element));
+ __ addi(element, element, Operand(kPointerSize));
+ __ LoadP(string_length, FieldMemOperand(string, String::kLengthOffset));
+ __ SmiUntag(string_length);
+ __ addi(string, string,
+ Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+ __ CopyBytes(string, result_pos, string_length, scratch1);
+ __ cmpl(element, elements_end);
+ __ blt(&long_separator_loop); // End while (element < elements_end).
+ DCHECK(result.is(r3));
+ __ b(&done);
+
+ __ bind(&bailout);
+ __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
+ __ bind(&done);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
+ DCHECK(expr->arguments()->length() == 0);
+ ExternalReference debug_is_active =
+ ExternalReference::debug_is_active_address(isolate());
+ __ mov(ip, Operand(debug_is_active));
+ __ lbz(r3, MemOperand(ip));
+ __ SmiTag(r3);
+ context()->Plug(r3);
+}
+
+
+void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
+ if (expr->function() != NULL &&
+ expr->function()->intrinsic_type == Runtime::INLINE) {
+ Comment cmnt(masm_, "[ InlineRuntimeCall");
+ EmitInlineRuntimeCall(expr);
+ return;
+ }
+
+ Comment cmnt(masm_, "[ CallRuntime");
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+
+ if (expr->is_jsruntime()) {
+ // Push the builtins object as the receiver.
+ Register receiver = LoadDescriptor::ReceiverRegister();
+ __ LoadP(receiver, GlobalObjectOperand());
+ __ LoadP(receiver,
+ FieldMemOperand(receiver, GlobalObject::kBuiltinsOffset));
+ __ push(receiver);
+
+ // Load the function from the receiver.
+ __ mov(LoadDescriptor::NameRegister(), Operand(expr->name()));
+ if (FLAG_vector_ics) {
+ __ mov(VectorLoadICDescriptor::SlotRegister(),
+ Operand(SmiFromSlot(expr->CallRuntimeFeedbackSlot())));
+ CallLoadIC(NOT_CONTEXTUAL);
+ } else {
+ CallLoadIC(NOT_CONTEXTUAL, expr->CallRuntimeFeedbackId());
+ }
+
+ // Push the target function under the receiver.
+ __ LoadP(ip, MemOperand(sp, 0));
+ __ push(ip);
+ __ StoreP(r3, MemOperand(sp, kPointerSize));
+
+ // Push the arguments ("left-to-right").
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+
+ // Record source position of the IC call.
+ SetSourcePosition(expr->position());
+ CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
+ __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
+ __ CallStub(&stub);
+
+ // Restore context register.
+ __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+
+ context()->DropAndPlug(1, r3);
+ } else {
+ // Push the arguments ("left-to-right").
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+
+ // Call the C runtime function.
+ __ CallRuntime(expr->function(), arg_count);
+ context()->Plug(r3);
+ }
+}
+
+
+void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
+ switch (expr->op()) {
+ case Token::DELETE: {
+ Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
+ Property* property = expr->expression()->AsProperty();
+ VariableProxy* proxy = expr->expression()->AsVariableProxy();
+
+ if (property != NULL) {
+ VisitForStackValue(property->obj());
+ VisitForStackValue(property->key());
+ __ LoadSmiLiteral(r4, Smi::FromInt(strict_mode()));
+ __ push(r4);
+ __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
+ context()->Plug(r3);
+ } else if (proxy != NULL) {
+ Variable* var = proxy->var();
+ // Delete of an unqualified identifier is disallowed in strict mode
+ // but "delete this" is allowed.
+ DCHECK(strict_mode() == SLOPPY || var->is_this());
+ if (var->IsUnallocated()) {
+ __ LoadP(r5, GlobalObjectOperand());
+ __ mov(r4, Operand(var->name()));
+ __ LoadSmiLiteral(r3, Smi::FromInt(SLOPPY));
+ __ Push(r5, r4, r3);
+ __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
+ context()->Plug(r3);
+ } else if (var->IsStackAllocated() || var->IsContextSlot()) {
+ // Result of deleting non-global, non-dynamic variables is false.
+ // The subexpression does not have side effects.
+ context()->Plug(var->is_this());
+ } else {
+ // Non-global variable. Call the runtime to try to delete from the
+ // context where the variable was introduced.
+ DCHECK(!context_register().is(r5));
+ __ mov(r5, Operand(var->name()));
+ __ Push(context_register(), r5);
+ __ CallRuntime(Runtime::kDeleteLookupSlot, 2);
+ context()->Plug(r3);
+ }
+ } else {
+ // Result of deleting non-property, non-variable reference is true.
+ // The subexpression may have side effects.
+ VisitForEffect(expr->expression());
+ context()->Plug(true);
+ }
+ break;
+ }
+
+ case Token::VOID: {
+ Comment cmnt(masm_, "[ UnaryOperation (VOID)");
+ VisitForEffect(expr->expression());
+ context()->Plug(Heap::kUndefinedValueRootIndex);
+ break;
+ }
+
+ case Token::NOT: {
+ Comment cmnt(masm_, "[ UnaryOperation (NOT)");
+ if (context()->IsEffect()) {
+ // Unary NOT has no side effects so it's only necessary to visit the
+ // subexpression. Match the optimizing compiler by not branching.
+ VisitForEffect(expr->expression());
+ } else if (context()->IsTest()) {
+ const TestContext* test = TestContext::cast(context());
+ // The labels are swapped for the recursive call.
+ VisitForControl(expr->expression(), test->false_label(),
+ test->true_label(), test->fall_through());
+ context()->Plug(test->true_label(), test->false_label());
+ } else {
+ // We handle value contexts explicitly rather than simply visiting
+ // for control and plugging the control flow into the context,
+ // because we need to prepare a pair of extra administrative AST ids
+ // for the optimizing compiler.
+ DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
+ Label materialize_true, materialize_false, done;
+ VisitForControl(expr->expression(), &materialize_false,
+ &materialize_true, &materialize_true);
+ __ bind(&materialize_true);
+ PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
+ __ LoadRoot(r3, Heap::kTrueValueRootIndex);
+ if (context()->IsStackValue()) __ push(r3);
+ __ b(&done);
+ __ bind(&materialize_false);
+ PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
+ __ LoadRoot(r3, Heap::kFalseValueRootIndex);
+ if (context()->IsStackValue()) __ push(r3);
+ __ bind(&done);
+ }
+ break;
+ }
+
+ case Token::TYPEOF: {
+ Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
+ {
+ StackValueContext context(this);
+ VisitForTypeofValue(expr->expression());
+ }
+ __ CallRuntime(Runtime::kTypeof, 1);
+ context()->Plug(r3);
+ break;
+ }
+
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
+ DCHECK(expr->expression()->IsValidReferenceExpression());
+
+ Comment cmnt(masm_, "[ CountOperation");
+ SetSourcePosition(expr->position());
+
+ Property* prop = expr->expression()->AsProperty();
+ LhsKind assign_type = GetAssignType(prop);
+
+ // Evaluate expression and get value.
+ if (assign_type == VARIABLE) {
+ DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
+ AccumulatorValueContext context(this);
+ EmitVariableLoad(expr->expression()->AsVariableProxy());
+ } else {
+ // Reserve space for result of postfix operation.
+ if (expr->is_postfix() && !context()->IsEffect()) {
+ __ LoadSmiLiteral(ip, Smi::FromInt(0));
+ __ push(ip);
+ }
+ switch (assign_type) {
+ case NAMED_PROPERTY: {
+ // Put the object both on the stack and in the register.
+ VisitForStackValue(prop->obj());
+ __ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
+ EmitNamedPropertyLoad(prop);
+ break;
+ }
+
+ case NAMED_SUPER_PROPERTY: {
+ VisitForStackValue(prop->obj()->AsSuperReference()->this_var());
+ EmitLoadHomeObject(prop->obj()->AsSuperReference());
+ __ Push(result_register());
+ const Register scratch = r4;
+ __ LoadP(scratch, MemOperand(sp, kPointerSize));
+ __ Push(scratch, result_register());
+ EmitNamedSuperPropertyLoad(prop);
+ break;
+ }
+
+ case KEYED_SUPER_PROPERTY: {
+ VisitForStackValue(prop->obj()->AsSuperReference()->this_var());
+ EmitLoadHomeObject(prop->obj()->AsSuperReference());
+ const Register scratch = r4;
+ const Register scratch1 = r5;
+ __ Move(scratch, result_register());
+ VisitForAccumulatorValue(prop->key());
+ __ Push(scratch, result_register());
+ __ LoadP(scratch1, MemOperand(sp, 2 * kPointerSize));
+ __ Push(scratch1, scratch, result_register());
+ EmitKeyedSuperPropertyLoad(prop);
+ break;
+ }
+
+ case KEYED_PROPERTY: {
+ VisitForStackValue(prop->obj());
+ VisitForStackValue(prop->key());
+ __ LoadP(LoadDescriptor::ReceiverRegister(),
+ MemOperand(sp, 1 * kPointerSize));
+ __ LoadP(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
+ EmitKeyedPropertyLoad(prop);
+ break;
+ }
+
+ case VARIABLE:
+ UNREACHABLE();
+ }
+ }
+
+ // We need a second deoptimization point after loading the value
+ // in case evaluating the property load my have a side effect.
+ if (assign_type == VARIABLE) {
+ PrepareForBailout(expr->expression(), TOS_REG);
+ } else {
+ PrepareForBailoutForId(prop->LoadId(), TOS_REG);
+ }
+
+ // Inline smi case if we are in a loop.
+ Label stub_call, done;
+ JumpPatchSite patch_site(masm_);
+
+ int count_value = expr->op() == Token::INC ? 1 : -1;
+ if (ShouldInlineSmiCase(expr->op())) {
+ Label slow;
+ patch_site.EmitJumpIfNotSmi(r3, &slow);
+
+ // Save result for postfix expressions.
+ if (expr->is_postfix()) {
+ if (!context()->IsEffect()) {
+ // Save the result on the stack. If we have a named or keyed property
+ // we store the result under the receiver that is currently on top
+ // of the stack.
+ switch (assign_type) {
+ case VARIABLE:
+ __ push(r3);
+ break;
+ case NAMED_PROPERTY:
+ __ StoreP(r3, MemOperand(sp, kPointerSize));
+ break;
+ case NAMED_SUPER_PROPERTY:
+ __ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
+ break;
+ case KEYED_PROPERTY:
+ __ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
+ break;
+ case KEYED_SUPER_PROPERTY:
+ __ StoreP(r3, MemOperand(sp, 3 * kPointerSize));
+ break;
+ }
+ }
+ }
+
+ Register scratch1 = r4;
+ Register scratch2 = r5;
+ __ LoadSmiLiteral(scratch1, Smi::FromInt(count_value));
+ __ AddAndCheckForOverflow(r3, r3, scratch1, scratch2, r0);
+ __ BranchOnNoOverflow(&done);
+ // Call stub. Undo operation first.
+ __ sub(r3, r3, scratch1);
+ __ b(&stub_call);
+ __ bind(&slow);
+ }
+ ToNumberStub convert_stub(isolate());
+ __ CallStub(&convert_stub);
+
+ // Save result for postfix expressions.
+ if (expr->is_postfix()) {
+ if (!context()->IsEffect()) {
+ // Save the result on the stack. If we have a named or keyed property
+ // we store the result under the receiver that is currently on top
+ // of the stack.
+ switch (assign_type) {
+ case VARIABLE:
+ __ push(r3);
+ break;
+ case NAMED_PROPERTY:
+ __ StoreP(r3, MemOperand(sp, kPointerSize));
+ break;
+ case NAMED_SUPER_PROPERTY:
+ __ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
+ break;
+ case KEYED_PROPERTY:
+ __ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
+ break;
+ case KEYED_SUPER_PROPERTY:
+ __ StoreP(r3, MemOperand(sp, 3 * kPointerSize));
+ break;
+ }
+ }
+ }
+
+ __ bind(&stub_call);
+ __ mr(r4, r3);
+ __ LoadSmiLiteral(r3, Smi::FromInt(count_value));
+
+ // Record position before stub call.
+ SetSourcePosition(expr->position());
+
+ Handle<Code> code =
+ CodeFactory::BinaryOpIC(isolate(), Token::ADD, NO_OVERWRITE).code();
+ CallIC(code, expr->CountBinOpFeedbackId());
+ patch_site.EmitPatchInfo();
+ __ bind(&done);
+
+ // Store the value returned in r3.
+ switch (assign_type) {
+ case VARIABLE:
+ if (expr->is_postfix()) {
+ {
+ EffectContext context(this);
+ EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
+ Token::ASSIGN);
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ context.Plug(r3);
+ }
+ // For all contexts except EffectConstant We have the result on
+ // top of the stack.
+ if (!context()->IsEffect()) {
+ context()->PlugTOS();
+ }
+ } else {
+ EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
+ Token::ASSIGN);
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ context()->Plug(r3);
+ }
+ break;
+ case NAMED_PROPERTY: {
+ __ mov(StoreDescriptor::NameRegister(),
+ Operand(prop->key()->AsLiteral()->value()));
+ __ pop(StoreDescriptor::ReceiverRegister());
+ CallStoreIC(expr->CountStoreFeedbackId());
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ if (expr->is_postfix()) {
+ if (!context()->IsEffect()) {
+ context()->PlugTOS();
+ }
+ } else {
+ context()->Plug(r3);
+ }
+ break;
+ }
+ case NAMED_SUPER_PROPERTY: {
+ EmitNamedSuperPropertyStore(prop);
+ if (expr->is_postfix()) {
+ if (!context()->IsEffect()) {
+ context()->PlugTOS();
+ }
+ } else {
+ context()->Plug(r3);
+ }
+ break;
+ }
+ case KEYED_SUPER_PROPERTY: {
+ EmitKeyedSuperPropertyStore(prop);
+ if (expr->is_postfix()) {
+ if (!context()->IsEffect()) {
+ context()->PlugTOS();
+ }
+ } else {
+ context()->Plug(r3);
+ }
+ break;
+ }
+ case KEYED_PROPERTY: {
+ __ Pop(StoreDescriptor::ReceiverRegister(),
+ StoreDescriptor::NameRegister());
+ Handle<Code> ic =
+ CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
+ CallIC(ic, expr->CountStoreFeedbackId());
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ if (expr->is_postfix()) {
+ if (!context()->IsEffect()) {
+ context()->PlugTOS();
+ }
+ } else {
+ context()->Plug(r3);
+ }
+ break;
+ }
+ }
+}
+
+
+void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
+ DCHECK(!context()->IsEffect());
+ DCHECK(!context()->IsTest());
+ VariableProxy* proxy = expr->AsVariableProxy();
+ if (proxy != NULL && proxy->var()->IsUnallocated()) {
+ Comment cmnt(masm_, "[ Global variable");
+ __ LoadP(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
+ __ mov(LoadDescriptor::NameRegister(), Operand(proxy->name()));
+ if (FLAG_vector_ics) {
+ __ mov(VectorLoadICDescriptor::SlotRegister(),
+ Operand(SmiFromSlot(proxy->VariableFeedbackSlot())));
+ }
+ // Use a regular load, not a contextual load, to avoid a reference
+ // error.
+ CallLoadIC(NOT_CONTEXTUAL);
+ PrepareForBailout(expr, TOS_REG);
+ context()->Plug(r3);
+ } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
+ Comment cmnt(masm_, "[ Lookup slot");
+ Label done, slow;
+
+ // Generate code for loading from variables potentially shadowed
+ // by eval-introduced variables.
+ EmitDynamicLookupFastCase(proxy, INSIDE_TYPEOF, &slow, &done);
+
+ __ bind(&slow);
+ __ mov(r3, Operand(proxy->name()));
+ __ Push(cp, r3);
+ __ CallRuntime(Runtime::kLoadLookupSlotNoReferenceError, 2);
+ PrepareForBailout(expr, TOS_REG);
+ __ bind(&done);
+
+ context()->Plug(r3);
+ } else {
+ // This expression cannot throw a reference error at the top level.
+ VisitInDuplicateContext(expr);
+ }
+}
+
+
+void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
+ Expression* sub_expr,
+ Handle<String> check) {
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ {
+ AccumulatorValueContext context(this);
+ VisitForTypeofValue(sub_expr);
+ }
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+
+ Factory* factory = isolate()->factory();
+ if (String::Equals(check, factory->number_string())) {
+ __ JumpIfSmi(r3, if_true);
+ __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
+ __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
+ __ cmp(r3, ip);
+ Split(eq, if_true, if_false, fall_through);
+ } else if (String::Equals(check, factory->string_string())) {
+ __ JumpIfSmi(r3, if_false);
+ // Check for undetectable objects => false.
+ __ CompareObjectType(r3, r3, r4, FIRST_NONSTRING_TYPE);
+ __ bge(if_false);
+ __ lbz(r4, FieldMemOperand(r3, Map::kBitFieldOffset));
+ STATIC_ASSERT((1 << Map::kIsUndetectable) < 0x8000);
+ __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
+ Split(eq, if_true, if_false, fall_through, cr0);
+ } else if (String::Equals(check, factory->symbol_string())) {
+ __ JumpIfSmi(r3, if_false);
+ __ CompareObjectType(r3, r3, r4, SYMBOL_TYPE);
+ Split(eq, if_true, if_false, fall_through);
+ } else if (String::Equals(check, factory->boolean_string())) {
+ __ CompareRoot(r3, Heap::kTrueValueRootIndex);
+ __ beq(if_true);
+ __ CompareRoot(r3, Heap::kFalseValueRootIndex);
+ Split(eq, if_true, if_false, fall_through);
+ } else if (String::Equals(check, factory->undefined_string())) {
+ __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
+ __ beq(if_true);
+ __ JumpIfSmi(r3, if_false);
+ // Check for undetectable objects => true.
+ __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
+ __ lbz(r4, FieldMemOperand(r3, Map::kBitFieldOffset));
+ __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
+ Split(ne, if_true, if_false, fall_through, cr0);
+
+ } else if (String::Equals(check, factory->function_string())) {
+ __ JumpIfSmi(r3, if_false);
+ STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
+ __ CompareObjectType(r3, r3, r4, JS_FUNCTION_TYPE);
+ __ beq(if_true);
+ __ cmpi(r4, Operand(JS_FUNCTION_PROXY_TYPE));
+ Split(eq, if_true, if_false, fall_through);
+ } else if (String::Equals(check, factory->object_string())) {
+ __ JumpIfSmi(r3, if_false);
+ __ CompareRoot(r3, Heap::kNullValueRootIndex);
+ __ beq(if_true);
+ // Check for JS objects => true.
+ __ CompareObjectType(r3, r3, r4, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
+ __ blt(if_false);
+ __ CompareInstanceType(r3, r4, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
+ __ bgt(if_false);
+ // Check for undetectable objects => false.
+ __ lbz(r4, FieldMemOperand(r3, Map::kBitFieldOffset));
+ __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
+ Split(eq, if_true, if_false, fall_through, cr0);
+ } else {
+ if (if_false != fall_through) __ b(if_false);
+ }
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
+ Comment cmnt(masm_, "[ CompareOperation");
+ SetSourcePosition(expr->position());
+
+ // First we try a fast inlined version of the compare when one of
+ // the operands is a literal.
+ if (TryLiteralCompare(expr)) return;
+
+ // Always perform the comparison for its control flow. Pack the result
+ // into the expression's context after the comparison is performed.
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ Token::Value op = expr->op();
+ VisitForStackValue(expr->left());
+ switch (op) {
+ case Token::IN:
+ VisitForStackValue(expr->right());
+ __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
+ PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
+ __ LoadRoot(ip, Heap::kTrueValueRootIndex);
+ __ cmp(r3, ip);
+ Split(eq, if_true, if_false, fall_through);
+ break;
+
+ case Token::INSTANCEOF: {
+ VisitForStackValue(expr->right());
+ InstanceofStub stub(isolate(), InstanceofStub::kNoFlags);
+ __ CallStub(&stub);
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ // The stub returns 0 for true.
+ __ cmpi(r3, Operand::Zero());
+ Split(eq, if_true, if_false, fall_through);
+ break;
+ }
+
+ default: {
+ VisitForAccumulatorValue(expr->right());
+ Condition cond = CompareIC::ComputeCondition(op);
+ __ pop(r4);
+
+ bool inline_smi_code = ShouldInlineSmiCase(op);
+ JumpPatchSite patch_site(masm_);
+ if (inline_smi_code) {
+ Label slow_case;
+ __ orx(r5, r3, r4);
+ patch_site.EmitJumpIfNotSmi(r5, &slow_case);
+ __ cmp(r4, r3);
+ Split(cond, if_true, if_false, NULL);
+ __ bind(&slow_case);
+ }
+
+ // Record position and call the compare IC.
+ SetSourcePosition(expr->position());
+ Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
+ CallIC(ic, expr->CompareOperationFeedbackId());
+ patch_site.EmitPatchInfo();
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ __ cmpi(r3, Operand::Zero());
+ Split(cond, if_true, if_false, fall_through);
+ }
+ }
+
+ // Convert the result of the comparison into one expected for this
+ // expression's context.
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
+ Expression* sub_expr,
+ NilValue nil) {
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ VisitForAccumulatorValue(sub_expr);
+ PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
+ if (expr->op() == Token::EQ_STRICT) {
+ Heap::RootListIndex nil_value = nil == kNullValue
+ ? Heap::kNullValueRootIndex
+ : Heap::kUndefinedValueRootIndex;
+ __ LoadRoot(r4, nil_value);
+ __ cmp(r3, r4);
+ Split(eq, if_true, if_false, fall_through);
+ } else {
+ Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
+ CallIC(ic, expr->CompareOperationFeedbackId());
+ __ cmpi(r3, Operand::Zero());
+ Split(ne, if_true, if_false, fall_through);
+ }
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
+ __ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ context()->Plug(r3);
+}
+
+
+Register FullCodeGenerator::result_register() { return r3; }
+
+
+Register FullCodeGenerator::context_register() { return cp; }
+
+
+void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
+ DCHECK_EQ(static_cast<int>(POINTER_SIZE_ALIGN(frame_offset)), frame_offset);
+ __ StoreP(value, MemOperand(fp, frame_offset), r0);
+}
+
+
+void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
+ __ LoadP(dst, ContextOperand(cp, context_index), r0);
+}
+
+
+void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
+ Scope* declaration_scope = scope()->DeclarationScope();
+ if (declaration_scope->is_script_scope() ||
+ declaration_scope->is_module_scope()) {
+ // Contexts nested in the native context have a canonical empty function
+ // as their closure, not the anonymous closure containing the global
+ // code. Pass a smi sentinel and let the runtime look up the empty
+ // function.
+ __ LoadSmiLiteral(ip, Smi::FromInt(0));
+ } else if (declaration_scope->is_eval_scope()) {
+ // Contexts created by a call to eval have the same closure as the
+ // context calling eval, not the anonymous closure containing the eval
+ // code. Fetch it from the context.
+ __ LoadP(ip, ContextOperand(cp, Context::CLOSURE_INDEX));
+ } else {
+ DCHECK(declaration_scope->is_function_scope());
+ __ LoadP(ip, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ }
+ __ push(ip);
+}
+
+
+// ----------------------------------------------------------------------------
+// Non-local control flow support.
+
+void FullCodeGenerator::EnterFinallyBlock() {
+ DCHECK(!result_register().is(r4));
+ // Store result register while executing finally block.
+ __ push(result_register());
+ // Cook return address in link register to stack (smi encoded Code* delta)
+ __ mflr(r4);
+ __ mov(ip, Operand(masm_->CodeObject()));
+ __ sub(r4, r4, ip);
+ __ SmiTag(r4);
+
+ // Store result register while executing finally block.
+ __ push(r4);
+
+ // Store pending message while executing finally block.
+ ExternalReference pending_message_obj =
+ ExternalReference::address_of_pending_message_obj(isolate());
+ __ mov(ip, Operand(pending_message_obj));
+ __ LoadP(r4, MemOperand(ip));
+ __ push(r4);
+
+ ExternalReference has_pending_message =
+ ExternalReference::address_of_has_pending_message(isolate());
+ __ mov(ip, Operand(has_pending_message));
+ __ lbz(r4, MemOperand(ip));
+ __ SmiTag(r4);
+ __ push(r4);
+
+ ExternalReference pending_message_script =
+ ExternalReference::address_of_pending_message_script(isolate());
+ __ mov(ip, Operand(pending_message_script));
+ __ LoadP(r4, MemOperand(ip));
+ __ push(r4);
+}
+
+
+void FullCodeGenerator::ExitFinallyBlock() {
+ DCHECK(!result_register().is(r4));
+ // Restore pending message from stack.
+ __ pop(r4);
+ ExternalReference pending_message_script =
+ ExternalReference::address_of_pending_message_script(isolate());
+ __ mov(ip, Operand(pending_message_script));
+ __ StoreP(r4, MemOperand(ip));
+
+ __ pop(r4);
+ __ SmiUntag(r4);
+ ExternalReference has_pending_message =
+ ExternalReference::address_of_has_pending_message(isolate());
+ __ mov(ip, Operand(has_pending_message));
+ __ stb(r4, MemOperand(ip));
+
+ __ pop(r4);
+ ExternalReference pending_message_obj =
+ ExternalReference::address_of_pending_message_obj(isolate());
+ __ mov(ip, Operand(pending_message_obj));
+ __ StoreP(r4, MemOperand(ip));
+
+ // Restore result register from stack.
+ __ pop(r4);
+
+ // Uncook return address and return.
+ __ pop(result_register());
+ __ SmiUntag(r4);
+ __ mov(ip, Operand(masm_->CodeObject()));
+ __ add(ip, ip, r4);
+ __ mtctr(ip);
+ __ bctr();
+}
+
+
+#undef __
+
+#define __ ACCESS_MASM(masm())
+
+FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
+ int* stack_depth, int* context_length) {
+ // The macros used here must preserve the result register.
+
+ // Because the handler block contains the context of the finally
+ // code, we can restore it directly from there for the finally code
+ // rather than iteratively unwinding contexts via their previous
+ // links.
+ __ Drop(*stack_depth); // Down to the handler block.
+ if (*context_length > 0) {
+ // Restore the context to its dedicated register and the stack.
+ __ LoadP(cp, MemOperand(sp, StackHandlerConstants::kContextOffset));
+ __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ }
+ __ PopTryHandler();
+ __ b(finally_entry_, SetLK);
+
+ *stack_depth = 0;
+ *context_length = 0;
+ return previous_;
+}
+
+#undef __
+
+
+void BackEdgeTable::PatchAt(Code* unoptimized_code, Address pc,
+ BackEdgeState target_state,
+ Code* replacement_code) {
+ Address mov_address = Assembler::target_address_from_return_address(pc);
+ Address cmp_address = mov_address - 2 * Assembler::kInstrSize;
+ CodePatcher patcher(cmp_address, 1);
+
+ switch (target_state) {
+ case INTERRUPT: {
+ // <decrement profiling counter>
+ // cmpi r6, 0
+ // bge <ok> ;; not changed
+ // mov r12, <interrupt stub address>
+ // mtlr r12
+ // blrl
+ // <reset profiling counter>
+ // ok-label
+ patcher.masm()->cmpi(r6, Operand::Zero());
+ break;
+ }
+ case ON_STACK_REPLACEMENT:
+ case OSR_AFTER_STACK_CHECK:
+ // <decrement profiling counter>
+ // crset
+ // bge <ok> ;; not changed
+ // mov r12, <on-stack replacement address>
+ // mtlr r12
+ // blrl
+ // <reset profiling counter>
+ // ok-label ----- pc_after points here
+
+ // Set the LT bit such that bge is a NOP
+ patcher.masm()->crset(Assembler::encode_crbit(cr7, CR_LT));
+ break;
+ }
+
+ // Replace the stack check address in the mov sequence with the
+ // entry address of the replacement code.
+ Assembler::set_target_address_at(mov_address, unoptimized_code,
+ replacement_code->entry());
+
+ unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
+ unoptimized_code, mov_address, replacement_code);
+}
+
+
+BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
+ Isolate* isolate, Code* unoptimized_code, Address pc) {
+ Address mov_address = Assembler::target_address_from_return_address(pc);
+ Address cmp_address = mov_address - 2 * Assembler::kInstrSize;
+ Address interrupt_address =
+ Assembler::target_address_at(mov_address, unoptimized_code);
+
+ if (Assembler::IsCmpImmediate(Assembler::instr_at(cmp_address))) {
+ DCHECK(interrupt_address == isolate->builtins()->InterruptCheck()->entry());
+ return INTERRUPT;
+ }
+
+ DCHECK(Assembler::IsCrSet(Assembler::instr_at(cmp_address)));
+
+ if (interrupt_address == isolate->builtins()->OnStackReplacement()->entry()) {
+ return ON_STACK_REPLACEMENT;
+ }
+
+ DCHECK(interrupt_address ==
+ isolate->builtins()->OsrAfterStackCheck()->entry());
+ return OSR_AFTER_STACK_CHECK;
+}
+}
+} // namespace v8::internal
+#endif // V8_TARGET_ARCH_PPC