summaryrefslogtreecommitdiff
path: root/deps/v8/src/utils/utils.h
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/utils/utils.h')
-rw-r--r--deps/v8/src/utils/utils.h1085
1 files changed, 1085 insertions, 0 deletions
diff --git a/deps/v8/src/utils/utils.h b/deps/v8/src/utils/utils.h
new file mode 100644
index 0000000000..17e07d3042
--- /dev/null
+++ b/deps/v8/src/utils/utils.h
@@ -0,0 +1,1085 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_UTILS_UTILS_H_
+#define V8_UTILS_UTILS_H_
+
+#include <limits.h>
+#include <stdlib.h>
+#include <string.h>
+#include <cmath>
+#include <string>
+#include <type_traits>
+
+#include "include/v8.h"
+#include "src/base/bits.h"
+#include "src/base/compiler-specific.h"
+#include "src/base/logging.h"
+#include "src/base/macros.h"
+#include "src/base/platform/platform.h"
+#include "src/base/v8-fallthrough.h"
+#include "src/common/globals.h"
+#include "src/third_party/siphash/halfsiphash.h"
+#include "src/utils/allocation.h"
+#include "src/utils/vector.h"
+
+#if defined(V8_OS_AIX)
+#include <fenv.h> // NOLINT(build/c++11)
+#endif
+
+namespace v8 {
+namespace internal {
+
+// ----------------------------------------------------------------------------
+// General helper functions
+
+// Returns the value (0 .. 15) of a hexadecimal character c.
+// If c is not a legal hexadecimal character, returns a value < 0.
+inline int HexValue(uc32 c) {
+ c -= '0';
+ if (static_cast<unsigned>(c) <= 9) return c;
+ c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36.
+ if (static_cast<unsigned>(c) <= 5) return c + 10;
+ return -1;
+}
+
+inline char HexCharOfValue(int value) {
+ DCHECK(0 <= value && value <= 16);
+ if (value < 10) return value + '0';
+ return value - 10 + 'A';
+}
+
+inline int BoolToInt(bool b) { return b ? 1 : 0; }
+
+// Checks if value is in range [lower_limit, higher_limit] using a single
+// branch.
+template <typename T, typename U>
+inline constexpr bool IsInRange(T value, U lower_limit, U higher_limit) {
+#if V8_CAN_HAVE_DCHECK_IN_CONSTEXPR
+ DCHECK(lower_limit <= higher_limit);
+#endif
+ STATIC_ASSERT(sizeof(U) <= sizeof(T));
+ using unsigned_T = typename std::make_unsigned<T>::type;
+ // Use static_cast to support enum classes.
+ return static_cast<unsigned_T>(static_cast<unsigned_T>(value) -
+ static_cast<unsigned_T>(lower_limit)) <=
+ static_cast<unsigned_T>(static_cast<unsigned_T>(higher_limit) -
+ static_cast<unsigned_T>(lower_limit));
+}
+
+// Checks if [index, index+length) is in range [0, max). Note that this check
+// works even if {index+length} would wrap around.
+inline constexpr bool IsInBounds(size_t index, size_t length, size_t max) {
+ return length <= max && index <= (max - length);
+}
+
+// Checks if [index, index+length) is in range [0, max). If not, {length} is
+// clamped to its valid range. Note that this check works even if
+// {index+length} would wrap around.
+template <typename T>
+inline bool ClampToBounds(T index, T* length, T max) {
+ if (index > max) {
+ *length = 0;
+ return false;
+ }
+ T avail = max - index;
+ bool oob = *length > avail;
+ if (oob) *length = avail;
+ return !oob;
+}
+
+// X must be a power of 2. Returns the number of trailing zeros.
+template <typename T,
+ typename = typename std::enable_if<std::is_integral<T>::value>::type>
+inline int WhichPowerOf2(T x) {
+ DCHECK(base::bits::IsPowerOfTwo(x));
+ int bits = 0;
+#ifdef DEBUG
+ const T original_x = x;
+#endif
+ constexpr int max_bits = sizeof(T) * 8;
+ static_assert(max_bits <= 64, "integral types are not bigger than 64 bits");
+// Avoid shifting by more than the bit width of x to avoid compiler warnings.
+#define CHECK_BIGGER(s) \
+ if (max_bits > s && x >= T{1} << (max_bits > s ? s : 0)) { \
+ bits += s; \
+ x >>= max_bits > s ? s : 0; \
+ }
+ CHECK_BIGGER(32)
+ CHECK_BIGGER(16)
+ CHECK_BIGGER(8)
+ CHECK_BIGGER(4)
+#undef CHECK_BIGGER
+ switch (x) {
+ default:
+ UNREACHABLE();
+ case 8:
+ bits++;
+ V8_FALLTHROUGH;
+ case 4:
+ bits++;
+ V8_FALLTHROUGH;
+ case 2:
+ bits++;
+ V8_FALLTHROUGH;
+ case 1:
+ break;
+ }
+ DCHECK_EQ(T{1} << bits, original_x);
+ return bits;
+}
+
+inline int MostSignificantBit(uint32_t x) {
+ static const int msb4[] = {0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4};
+ int nibble = 0;
+ if (x & 0xffff0000) {
+ nibble += 16;
+ x >>= 16;
+ }
+ if (x & 0xff00) {
+ nibble += 8;
+ x >>= 8;
+ }
+ if (x & 0xf0) {
+ nibble += 4;
+ x >>= 4;
+ }
+ return nibble + msb4[x];
+}
+
+template <typename T>
+static T ArithmeticShiftRight(T x, int shift) {
+ DCHECK_LE(0, shift);
+ if (x < 0) {
+ // Right shift of signed values is implementation defined. Simulate a
+ // true arithmetic right shift by adding leading sign bits.
+ using UnsignedT = typename std::make_unsigned<T>::type;
+ UnsignedT mask = ~(static_cast<UnsignedT>(~0) >> shift);
+ return (static_cast<UnsignedT>(x) >> shift) | mask;
+ } else {
+ return x >> shift;
+ }
+}
+
+template <typename T>
+int Compare(const T& a, const T& b) {
+ if (a == b)
+ return 0;
+ else if (a < b)
+ return -1;
+ else
+ return 1;
+}
+
+// Compare function to compare the object pointer value of two
+// handlified objects. The handles are passed as pointers to the
+// handles.
+template <typename T>
+class Handle; // Forward declaration.
+template <typename T>
+int HandleObjectPointerCompare(const Handle<T>* a, const Handle<T>* b) {
+ return Compare<T*>(*(*a), *(*b));
+}
+
+// Returns the maximum of the two parameters.
+template <typename T>
+constexpr T Max(T a, T b) {
+ return a < b ? b : a;
+}
+
+// Returns the minimum of the two parameters.
+template <typename T>
+constexpr T Min(T a, T b) {
+ return a < b ? a : b;
+}
+
+// Returns the maximum of the two parameters according to JavaScript semantics.
+template <typename T>
+T JSMax(T x, T y) {
+ if (std::isnan(x)) return x;
+ if (std::isnan(y)) return y;
+ if (std::signbit(x) < std::signbit(y)) return x;
+ return x > y ? x : y;
+}
+
+// Returns the maximum of the two parameters according to JavaScript semantics.
+template <typename T>
+T JSMin(T x, T y) {
+ if (std::isnan(x)) return x;
+ if (std::isnan(y)) return y;
+ if (std::signbit(x) < std::signbit(y)) return y;
+ return x > y ? y : x;
+}
+
+// Returns the absolute value of its argument.
+template <typename T,
+ typename = typename std::enable_if<std::is_signed<T>::value>::type>
+typename std::make_unsigned<T>::type Abs(T a) {
+ // This is a branch-free implementation of the absolute value function and is
+ // described in Warren's "Hacker's Delight", chapter 2. It avoids undefined
+ // behavior with the arithmetic negation operation on signed values as well.
+ using unsignedT = typename std::make_unsigned<T>::type;
+ unsignedT x = static_cast<unsignedT>(a);
+ unsignedT y = static_cast<unsignedT>(a >> (sizeof(T) * 8 - 1));
+ return (x ^ y) - y;
+}
+
+// Returns the negative absolute value of its argument.
+template <typename T,
+ typename = typename std::enable_if<std::is_signed<T>::value>::type>
+T Nabs(T a) {
+ return a < 0 ? a : -a;
+}
+
+inline double Modulo(double x, double y) {
+#if defined(V8_OS_WIN)
+ // Workaround MS fmod bugs. ECMA-262 says:
+ // dividend is finite and divisor is an infinity => result equals dividend
+ // dividend is a zero and divisor is nonzero finite => result equals dividend
+ if (!(std::isfinite(x) && (!std::isfinite(y) && !std::isnan(y))) &&
+ !(x == 0 && (y != 0 && std::isfinite(y)))) {
+ double result = fmod(x, y);
+ // Workaround MS bug in VS CRT in some OS versions, https://crbug.com/915045
+ // fmod(-17, +/-1) should equal -0.0 but now returns 0.0.
+ if (x < 0 && result == 0) result = -0.0;
+ x = result;
+ }
+ return x;
+#elif defined(V8_OS_AIX)
+ // AIX raises an underflow exception for (Number.MIN_VALUE % Number.MAX_VALUE)
+ feclearexcept(FE_ALL_EXCEPT);
+ double result = std::fmod(x, y);
+ int exception = fetestexcept(FE_UNDERFLOW);
+ return (exception ? x : result);
+#else
+ return std::fmod(x, y);
+#endif
+}
+
+template <typename T>
+T SaturateAdd(T a, T b) {
+ if (std::is_signed<T>::value) {
+ if (a > 0 && b > 0) {
+ if (a > std::numeric_limits<T>::max() - b) {
+ return std::numeric_limits<T>::max();
+ }
+ } else if (a < 0 && b < 0) {
+ if (a < std::numeric_limits<T>::min() - b) {
+ return std::numeric_limits<T>::min();
+ }
+ }
+ } else {
+ CHECK(std::is_unsigned<T>::value);
+ if (a > std::numeric_limits<T>::max() - b) {
+ return std::numeric_limits<T>::max();
+ }
+ }
+ return a + b;
+}
+
+template <typename T>
+T SaturateSub(T a, T b) {
+ if (std::is_signed<T>::value) {
+ if (a >= 0 && b < 0) {
+ if (a > std::numeric_limits<T>::max() + b) {
+ return std::numeric_limits<T>::max();
+ }
+ } else if (a < 0 && b > 0) {
+ if (a < std::numeric_limits<T>::min() + b) {
+ return std::numeric_limits<T>::min();
+ }
+ }
+ } else {
+ CHECK(std::is_unsigned<T>::value);
+ if (a < b) {
+ return static_cast<T>(0);
+ }
+ }
+ return a - b;
+}
+
+// ----------------------------------------------------------------------------
+// BitField is a help template for encoding and decode bitfield with
+// unsigned content.
+
+template <class T, int shift, int size, class U = uint32_t>
+class BitField {
+ public:
+ STATIC_ASSERT(std::is_unsigned<U>::value);
+ STATIC_ASSERT(shift < 8 * sizeof(U)); // Otherwise shifts by {shift} are UB.
+ STATIC_ASSERT(size < 8 * sizeof(U)); // Otherwise shifts by {size} are UB.
+ STATIC_ASSERT(shift + size <= 8 * sizeof(U));
+
+ using FieldType = T;
+
+ // A type U mask of bit field. To use all bits of a type U of x bits
+ // in a bitfield without compiler warnings we have to compute 2^x
+ // without using a shift count of x in the computation.
+ static constexpr U kShift = shift;
+ static constexpr U kSize = size;
+ static constexpr U kMask = ((U{1} << kShift) << kSize) - (U{1} << kShift);
+ static constexpr U kNext = kShift + kSize;
+ static constexpr U kNumValues = U{1} << kSize;
+
+ // Value for the field with all bits set.
+ static constexpr T kMax = static_cast<T>(kNumValues - 1);
+
+ // Tells whether the provided value fits into the bit field.
+ static constexpr bool is_valid(T value) {
+ return (static_cast<U>(value) & ~static_cast<U>(kMax)) == 0;
+ }
+
+ // Returns a type U with the bit field value encoded.
+ static constexpr U encode(T value) {
+#if V8_CAN_HAVE_DCHECK_IN_CONSTEXPR
+ DCHECK(is_valid(value));
+#endif
+ return static_cast<U>(value) << kShift;
+ }
+
+ // Returns a type U with the bit field value updated.
+ static constexpr U update(U previous, T value) {
+ return (previous & ~kMask) | encode(value);
+ }
+
+ // Extracts the bit field from the value.
+ static constexpr T decode(U value) {
+ return static_cast<T>((value & kMask) >> kShift);
+ }
+};
+
+template <class T, int shift, int size>
+using BitField8 = BitField<T, shift, size, uint8_t>;
+
+template <class T, int shift, int size>
+using BitField16 = BitField<T, shift, size, uint16_t>;
+
+template <class T, int shift, int size>
+using BitField64 = BitField<T, shift, size, uint64_t>;
+
+// Helper macros for defining a contiguous sequence of bit fields. Example:
+// (backslashes at the ends of respective lines of this multi-line macro
+// definition are omitted here to please the compiler)
+//
+// #define MAP_BIT_FIELD1(V, _)
+// V(IsAbcBit, bool, 1, _)
+// V(IsBcdBit, bool, 1, _)
+// V(CdeBits, int, 5, _)
+// V(DefBits, MutableMode, 1, _)
+//
+// DEFINE_BIT_FIELDS(MAP_BIT_FIELD1)
+// or
+// DEFINE_BIT_FIELDS_64(MAP_BIT_FIELD1)
+//
+#define DEFINE_BIT_FIELD_RANGE_TYPE(Name, Type, Size, _) \
+ k##Name##Start, k##Name##End = k##Name##Start + Size - 1,
+
+#define DEFINE_BIT_RANGES(LIST_MACRO) \
+ struct LIST_MACRO##_Ranges { \
+ enum { LIST_MACRO(DEFINE_BIT_FIELD_RANGE_TYPE, _) kBitsCount }; \
+ };
+
+#define DEFINE_BIT_FIELD_TYPE(Name, Type, Size, RangesName) \
+ using Name = BitField<Type, RangesName::k##Name##Start, Size>;
+
+#define DEFINE_BIT_FIELD_64_TYPE(Name, Type, Size, RangesName) \
+ using Name = BitField64<Type, RangesName::k##Name##Start, Size>;
+
+#define DEFINE_BIT_FIELDS(LIST_MACRO) \
+ DEFINE_BIT_RANGES(LIST_MACRO) \
+ LIST_MACRO(DEFINE_BIT_FIELD_TYPE, LIST_MACRO##_Ranges)
+
+#define DEFINE_BIT_FIELDS_64(LIST_MACRO) \
+ DEFINE_BIT_RANGES(LIST_MACRO) \
+ LIST_MACRO(DEFINE_BIT_FIELD_64_TYPE, LIST_MACRO##_Ranges)
+
+// ----------------------------------------------------------------------------
+// BitSetComputer is a help template for encoding and decoding information for
+// a variable number of items in an array.
+//
+// To encode boolean data in a smi array you would use:
+// using BoolComputer = BitSetComputer<bool, 1, kSmiValueSize, uint32_t>;
+//
+template <class T, int kBitsPerItem, int kBitsPerWord, class U>
+class BitSetComputer {
+ public:
+ static const int kItemsPerWord = kBitsPerWord / kBitsPerItem;
+ static const int kMask = (1 << kBitsPerItem) - 1;
+
+ // The number of array elements required to embed T information for each item.
+ static int word_count(int items) {
+ if (items == 0) return 0;
+ return (items - 1) / kItemsPerWord + 1;
+ }
+
+ // The array index to look at for item.
+ static int index(int base_index, int item) {
+ return base_index + item / kItemsPerWord;
+ }
+
+ // Extract T data for a given item from data.
+ static T decode(U data, int item) {
+ return static_cast<T>((data >> shift(item)) & kMask);
+ }
+
+ // Return the encoding for a store of value for item in previous.
+ static U encode(U previous, int item, T value) {
+ int shift_value = shift(item);
+ int set_bits = (static_cast<int>(value) << shift_value);
+ return (previous & ~(kMask << shift_value)) | set_bits;
+ }
+
+ static int shift(int item) { return (item % kItemsPerWord) * kBitsPerItem; }
+};
+
+// Helper macros for defining a contiguous sequence of field offset constants.
+// Example: (backslashes at the ends of respective lines of this multi-line
+// macro definition are omitted here to please the compiler)
+//
+// #define MAP_FIELDS(V)
+// V(kField1Offset, kTaggedSize)
+// V(kField2Offset, kIntSize)
+// V(kField3Offset, kIntSize)
+// V(kField4Offset, kSystemPointerSize)
+// V(kSize, 0)
+//
+// DEFINE_FIELD_OFFSET_CONSTANTS(HeapObject::kHeaderSize, MAP_FIELDS)
+//
+#define DEFINE_ONE_FIELD_OFFSET(Name, Size) Name, Name##End = Name + (Size)-1,
+
+#define DEFINE_FIELD_OFFSET_CONSTANTS(StartOffset, LIST_MACRO) \
+ enum { \
+ LIST_MACRO##_StartOffset = StartOffset - 1, \
+ LIST_MACRO(DEFINE_ONE_FIELD_OFFSET) \
+ };
+
+// Size of the field defined by DEFINE_FIELD_OFFSET_CONSTANTS
+#define FIELD_SIZE(Name) (Name##End + 1 - Name)
+
+// Compare two offsets with static cast
+#define STATIC_ASSERT_FIELD_OFFSETS_EQUAL(Offset1, Offset2) \
+ STATIC_ASSERT(static_cast<int>(Offset1) == Offset2)
+// ----------------------------------------------------------------------------
+// Hash function.
+
+static const uint64_t kZeroHashSeed = 0;
+
+// Thomas Wang, Integer Hash Functions.
+// http://www.concentric.net/~Ttwang/tech/inthash.htm`
+inline uint32_t ComputeUnseededHash(uint32_t key) {
+ uint32_t hash = key;
+ hash = ~hash + (hash << 15); // hash = (hash << 15) - hash - 1;
+ hash = hash ^ (hash >> 12);
+ hash = hash + (hash << 2);
+ hash = hash ^ (hash >> 4);
+ hash = hash * 2057; // hash = (hash + (hash << 3)) + (hash << 11);
+ hash = hash ^ (hash >> 16);
+ return hash & 0x3fffffff;
+}
+
+inline uint32_t ComputeLongHash(uint64_t key) {
+ uint64_t hash = key;
+ hash = ~hash + (hash << 18); // hash = (hash << 18) - hash - 1;
+ hash = hash ^ (hash >> 31);
+ hash = hash * 21; // hash = (hash + (hash << 2)) + (hash << 4);
+ hash = hash ^ (hash >> 11);
+ hash = hash + (hash << 6);
+ hash = hash ^ (hash >> 22);
+ return static_cast<uint32_t>(hash & 0x3fffffff);
+}
+
+inline uint32_t ComputeSeededHash(uint32_t key, uint64_t seed) {
+#ifdef V8_USE_SIPHASH
+ return halfsiphash(key, seed);
+#else
+ return ComputeLongHash(static_cast<uint64_t>(key) ^ seed);
+#endif // V8_USE_SIPHASH
+}
+
+inline uint32_t ComputePointerHash(void* ptr) {
+ return ComputeUnseededHash(
+ static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)));
+}
+
+inline uint32_t ComputeAddressHash(Address address) {
+ return ComputeUnseededHash(static_cast<uint32_t>(address & 0xFFFFFFFFul));
+}
+
+// ----------------------------------------------------------------------------
+// Miscellaneous
+
+// Memory offset for lower and higher bits in a 64 bit integer.
+#if defined(V8_TARGET_LITTLE_ENDIAN)
+static const int kInt64LowerHalfMemoryOffset = 0;
+static const int kInt64UpperHalfMemoryOffset = 4;
+#elif defined(V8_TARGET_BIG_ENDIAN)
+static const int kInt64LowerHalfMemoryOffset = 4;
+static const int kInt64UpperHalfMemoryOffset = 0;
+#endif // V8_TARGET_LITTLE_ENDIAN
+
+// A static resource holds a static instance that can be reserved in
+// a local scope using an instance of Access. Attempts to re-reserve
+// the instance will cause an error.
+template <typename T>
+class StaticResource {
+ public:
+ StaticResource() : is_reserved_(false) {}
+
+ private:
+ template <typename S>
+ friend class Access;
+ T instance_;
+ bool is_reserved_;
+};
+
+// Locally scoped access to a static resource.
+template <typename T>
+class Access {
+ public:
+ explicit Access(StaticResource<T>* resource)
+ : resource_(resource), instance_(&resource->instance_) {
+ DCHECK(!resource->is_reserved_);
+ resource->is_reserved_ = true;
+ }
+
+ ~Access() {
+ resource_->is_reserved_ = false;
+ resource_ = nullptr;
+ instance_ = nullptr;
+ }
+
+ T* value() { return instance_; }
+ T* operator->() { return instance_; }
+
+ private:
+ StaticResource<T>* resource_;
+ T* instance_;
+};
+
+// A pointer that can only be set once and doesn't allow NULL values.
+template <typename T>
+class SetOncePointer {
+ public:
+ SetOncePointer() = default;
+
+ bool is_set() const { return pointer_ != nullptr; }
+
+ T* get() const {
+ DCHECK_NOT_NULL(pointer_);
+ return pointer_;
+ }
+
+ void set(T* value) {
+ DCHECK(pointer_ == nullptr && value != nullptr);
+ pointer_ = value;
+ }
+
+ SetOncePointer& operator=(T* value) {
+ set(value);
+ return *this;
+ }
+
+ bool operator==(std::nullptr_t) const { return pointer_ == nullptr; }
+ bool operator!=(std::nullptr_t) const { return pointer_ != nullptr; }
+
+ private:
+ T* pointer_ = nullptr;
+};
+
+// Compare 8bit/16bit chars to 8bit/16bit chars.
+template <typename lchar, typename rchar>
+inline int CompareCharsUnsigned(const lchar* lhs, const rchar* rhs,
+ size_t chars) {
+ const lchar* limit = lhs + chars;
+ if (sizeof(*lhs) == sizeof(char) && sizeof(*rhs) == sizeof(char)) {
+ // memcmp compares byte-by-byte, yielding wrong results for two-byte
+ // strings on little-endian systems.
+ return memcmp(lhs, rhs, chars);
+ }
+ while (lhs < limit) {
+ int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
+ if (r != 0) return r;
+ ++lhs;
+ ++rhs;
+ }
+ return 0;
+}
+
+template <typename lchar, typename rchar>
+inline int CompareChars(const lchar* lhs, const rchar* rhs, size_t chars) {
+ DCHECK_LE(sizeof(lchar), 2);
+ DCHECK_LE(sizeof(rchar), 2);
+ if (sizeof(lchar) == 1) {
+ if (sizeof(rchar) == 1) {
+ return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs),
+ reinterpret_cast<const uint8_t*>(rhs), chars);
+ } else {
+ return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs),
+ reinterpret_cast<const uint16_t*>(rhs),
+ chars);
+ }
+ } else {
+ if (sizeof(rchar) == 1) {
+ return CompareCharsUnsigned(reinterpret_cast<const uint16_t*>(lhs),
+ reinterpret_cast<const uint8_t*>(rhs), chars);
+ } else {
+ return CompareCharsUnsigned(reinterpret_cast<const uint16_t*>(lhs),
+ reinterpret_cast<const uint16_t*>(rhs),
+ chars);
+ }
+ }
+}
+
+// Calculate 10^exponent.
+inline int TenToThe(int exponent) {
+ DCHECK_LE(exponent, 9);
+ DCHECK_GE(exponent, 1);
+ int answer = 10;
+ for (int i = 1; i < exponent; i++) answer *= 10;
+ return answer;
+}
+
+template <typename ElementType, int NumElements>
+class EmbeddedContainer {
+ public:
+ EmbeddedContainer() : elems_() {}
+
+ int length() const { return NumElements; }
+ const ElementType& operator[](int i) const {
+ DCHECK(i < length());
+ return elems_[i];
+ }
+ ElementType& operator[](int i) {
+ DCHECK(i < length());
+ return elems_[i];
+ }
+
+ private:
+ ElementType elems_[NumElements];
+};
+
+template <typename ElementType>
+class EmbeddedContainer<ElementType, 0> {
+ public:
+ int length() const { return 0; }
+ const ElementType& operator[](int i) const {
+ UNREACHABLE();
+ static ElementType t = 0;
+ return t;
+ }
+ ElementType& operator[](int i) {
+ UNREACHABLE();
+ static ElementType t = 0;
+ return t;
+ }
+};
+
+// Helper class for building result strings in a character buffer. The
+// purpose of the class is to use safe operations that checks the
+// buffer bounds on all operations in debug mode.
+// This simple base class does not allow formatted output.
+class SimpleStringBuilder {
+ public:
+ // Create a string builder with a buffer of the given size. The
+ // buffer is allocated through NewArray<char> and must be
+ // deallocated by the caller of Finalize().
+ explicit SimpleStringBuilder(int size);
+
+ SimpleStringBuilder(char* buffer, int size)
+ : buffer_(buffer, size), position_(0) {}
+
+ ~SimpleStringBuilder() {
+ if (!is_finalized()) Finalize();
+ }
+
+ int size() const { return buffer_.length(); }
+
+ // Get the current position in the builder.
+ int position() const {
+ DCHECK(!is_finalized());
+ return position_;
+ }
+
+ // Reset the position.
+ void Reset() { position_ = 0; }
+
+ // Add a single character to the builder. It is not allowed to add
+ // 0-characters; use the Finalize() method to terminate the string
+ // instead.
+ void AddCharacter(char c) {
+ DCHECK_NE(c, '\0');
+ DCHECK(!is_finalized() && position_ < buffer_.length());
+ buffer_[position_++] = c;
+ }
+
+ // Add an entire string to the builder. Uses strlen() internally to
+ // compute the length of the input string.
+ void AddString(const char* s);
+
+ // Add the first 'n' characters of the given 0-terminated string 's' to the
+ // builder. The input string must have enough characters.
+ void AddSubstring(const char* s, int n);
+
+ // Add character padding to the builder. If count is non-positive,
+ // nothing is added to the builder.
+ void AddPadding(char c, int count);
+
+ // Add the decimal representation of the value.
+ void AddDecimalInteger(int value);
+
+ // Finalize the string by 0-terminating it and returning the buffer.
+ char* Finalize();
+
+ protected:
+ Vector<char> buffer_;
+ int position_;
+
+ bool is_finalized() const { return position_ < 0; }
+
+ private:
+ DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder);
+};
+
+// Bit field extraction.
+inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) {
+ return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1);
+}
+
+inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) {
+ return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
+}
+
+inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) {
+ return (x << (31 - msb)) >> (lsb + 31 - msb);
+}
+
+inline int signed_bitextract_64(int msb, int lsb, int x) {
+ // TODO(jbramley): This is broken for big bitfields.
+ return (x << (63 - msb)) >> (lsb + 63 - msb);
+}
+
+// Check number width.
+inline bool is_intn(int64_t x, unsigned n) {
+ DCHECK((0 < n) && (n < 64));
+ int64_t limit = static_cast<int64_t>(1) << (n - 1);
+ return (-limit <= x) && (x < limit);
+}
+
+inline bool is_uintn(int64_t x, unsigned n) {
+ DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte)));
+ return !(x >> n);
+}
+
+template <class T>
+inline T truncate_to_intn(T x, unsigned n) {
+ DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte)));
+ return (x & ((static_cast<T>(1) << n) - 1));
+}
+
+#define INT_1_TO_63_LIST(V) \
+ V(1) \
+ V(2) \
+ V(3) \
+ V(4) \
+ V(5) \
+ V(6) \
+ V(7) \
+ V(8) \
+ V(9) \
+ V(10) \
+ V(11) \
+ V(12) \
+ V(13) \
+ V(14) \
+ V(15) \
+ V(16) \
+ V(17) \
+ V(18) \
+ V(19) \
+ V(20) \
+ V(21) \
+ V(22) \
+ V(23) \
+ V(24) \
+ V(25) \
+ V(26) V(27) V(28) V(29) V(30) V(31) V(32) V(33) V(34) V(35) V(36) V(37) \
+ V(38) V(39) V(40) V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) V(49) \
+ V(50) V(51) V(52) V(53) V(54) V(55) V(56) V(57) V(58) V(59) V(60) \
+ V(61) V(62) V(63)
+
+#define DECLARE_IS_INT_N(N) \
+ inline bool is_int##N(int64_t x) { return is_intn(x, N); }
+#define DECLARE_IS_UINT_N(N) \
+ template <class T> \
+ inline bool is_uint##N(T x) { \
+ return is_uintn(x, N); \
+ }
+#define DECLARE_TRUNCATE_TO_INT_N(N) \
+ template <class T> \
+ inline T truncate_to_int##N(T x) { \
+ return truncate_to_intn(x, N); \
+ }
+INT_1_TO_63_LIST(DECLARE_IS_INT_N)
+INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
+INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
+#undef DECLARE_IS_INT_N
+#undef DECLARE_IS_UINT_N
+#undef DECLARE_TRUNCATE_TO_INT_N
+
+// clang-format off
+#define INT_0_TO_127_LIST(V) \
+V(0) V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) V(9) \
+V(10) V(11) V(12) V(13) V(14) V(15) V(16) V(17) V(18) V(19) \
+V(20) V(21) V(22) V(23) V(24) V(25) V(26) V(27) V(28) V(29) \
+V(30) V(31) V(32) V(33) V(34) V(35) V(36) V(37) V(38) V(39) \
+V(40) V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) V(49) \
+V(50) V(51) V(52) V(53) V(54) V(55) V(56) V(57) V(58) V(59) \
+V(60) V(61) V(62) V(63) V(64) V(65) V(66) V(67) V(68) V(69) \
+V(70) V(71) V(72) V(73) V(74) V(75) V(76) V(77) V(78) V(79) \
+V(80) V(81) V(82) V(83) V(84) V(85) V(86) V(87) V(88) V(89) \
+V(90) V(91) V(92) V(93) V(94) V(95) V(96) V(97) V(98) V(99) \
+V(100) V(101) V(102) V(103) V(104) V(105) V(106) V(107) V(108) V(109) \
+V(110) V(111) V(112) V(113) V(114) V(115) V(116) V(117) V(118) V(119) \
+V(120) V(121) V(122) V(123) V(124) V(125) V(126) V(127)
+// clang-format on
+
+class FeedbackSlot {
+ public:
+ FeedbackSlot() : id_(kInvalidSlot) {}
+ explicit FeedbackSlot(int id) : id_(id) {}
+
+ int ToInt() const { return id_; }
+
+ static FeedbackSlot Invalid() { return FeedbackSlot(); }
+ bool IsInvalid() const { return id_ == kInvalidSlot; }
+
+ bool operator==(FeedbackSlot that) const { return this->id_ == that.id_; }
+ bool operator!=(FeedbackSlot that) const { return !(*this == that); }
+
+ friend size_t hash_value(FeedbackSlot slot) { return slot.ToInt(); }
+ V8_EXPORT_PRIVATE friend std::ostream& operator<<(std::ostream& os,
+ FeedbackSlot);
+
+ private:
+ static const int kInvalidSlot = -1;
+
+ int id_;
+};
+
+V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, FeedbackSlot);
+
+class BailoutId {
+ public:
+ explicit BailoutId(int id) : id_(id) {}
+ int ToInt() const { return id_; }
+
+ static BailoutId None() { return BailoutId(kNoneId); }
+ static BailoutId ScriptContext() { return BailoutId(kScriptContextId); }
+ static BailoutId FunctionContext() { return BailoutId(kFunctionContextId); }
+ static BailoutId FunctionEntry() { return BailoutId(kFunctionEntryId); }
+ static BailoutId Declarations() { return BailoutId(kDeclarationsId); }
+ static BailoutId FirstUsable() { return BailoutId(kFirstUsableId); }
+ static BailoutId StubEntry() { return BailoutId(kStubEntryId); }
+
+ // Special bailout id support for deopting into the {JSConstructStub} stub.
+ // The following hard-coded deoptimization points are supported by the stub:
+ // - {ConstructStubCreate} maps to {construct_stub_create_deopt_pc_offset}.
+ // - {ConstructStubInvoke} maps to {construct_stub_invoke_deopt_pc_offset}.
+ static BailoutId ConstructStubCreate() { return BailoutId(1); }
+ static BailoutId ConstructStubInvoke() { return BailoutId(2); }
+ bool IsValidForConstructStub() const {
+ return id_ == ConstructStubCreate().ToInt() ||
+ id_ == ConstructStubInvoke().ToInt();
+ }
+
+ bool IsNone() const { return id_ == kNoneId; }
+ bool operator==(const BailoutId& other) const { return id_ == other.id_; }
+ bool operator!=(const BailoutId& other) const { return id_ != other.id_; }
+ friend size_t hash_value(BailoutId);
+ V8_EXPORT_PRIVATE friend std::ostream& operator<<(std::ostream&, BailoutId);
+
+ private:
+ friend class Builtins;
+
+ static const int kNoneId = -1;
+
+ // Using 0 could disguise errors.
+ static const int kScriptContextId = 1;
+ static const int kFunctionContextId = 2;
+ static const int kFunctionEntryId = 3;
+
+ // This AST id identifies the point after the declarations have been visited.
+ // We need it to capture the environment effects of declarations that emit
+ // code (function declarations).
+ static const int kDeclarationsId = 4;
+
+ // Every FunctionState starts with this id.
+ static const int kFirstUsableId = 5;
+
+ // Every compiled stub starts with this id.
+ static const int kStubEntryId = 6;
+
+ // Builtin continuations bailout ids start here. If you need to add a
+ // non-builtin BailoutId, add it before this id so that this Id has the
+ // highest number.
+ static const int kFirstBuiltinContinuationId = 7;
+
+ int id_;
+};
+
+// ----------------------------------------------------------------------------
+// I/O support.
+
+// Our version of printf().
+V8_EXPORT_PRIVATE void PRINTF_FORMAT(1, 2) PrintF(const char* format, ...);
+void PRINTF_FORMAT(2, 3) PrintF(FILE* out, const char* format, ...);
+
+// Prepends the current process ID to the output.
+void PRINTF_FORMAT(1, 2) PrintPID(const char* format, ...);
+
+// Prepends the current process ID and given isolate pointer to the output.
+void PRINTF_FORMAT(2, 3) PrintIsolate(void* isolate, const char* format, ...);
+
+// Safe formatting print. Ensures that str is always null-terminated.
+// Returns the number of chars written, or -1 if output was truncated.
+V8_EXPORT_PRIVATE int PRINTF_FORMAT(2, 3)
+ SNPrintF(Vector<char> str, const char* format, ...);
+V8_EXPORT_PRIVATE int PRINTF_FORMAT(2, 0)
+ VSNPrintF(Vector<char> str, const char* format, va_list args);
+
+void StrNCpy(Vector<char> dest, const char* src, size_t n);
+
+// Our version of fflush.
+void Flush(FILE* out);
+
+inline void Flush() { Flush(stdout); }
+
+// Read a line of characters after printing the prompt to stdout. The resulting
+// char* needs to be disposed off with DeleteArray by the caller.
+char* ReadLine(const char* prompt);
+
+// Append size chars from str to the file given by filename.
+// The file is overwritten. Returns the number of chars written.
+int AppendChars(const char* filename, const char* str, int size,
+ bool verbose = true);
+
+// Write size chars from str to the file given by filename.
+// The file is overwritten. Returns the number of chars written.
+int WriteChars(const char* filename, const char* str, int size,
+ bool verbose = true);
+
+// Write size bytes to the file given by filename.
+// The file is overwritten. Returns the number of bytes written.
+int WriteBytes(const char* filename, const byte* bytes, int size,
+ bool verbose = true);
+
+// Write the C code
+// const char* <varname> = "<str>";
+// const int <varname>_len = <len>;
+// to the file given by filename. Only the first len chars are written.
+int WriteAsCFile(const char* filename, const char* varname, const char* str,
+ int size, bool verbose = true);
+
+// Simple support to read a file into std::string.
+// On return, *exits tells whether the file existed.
+V8_EXPORT_PRIVATE std::string ReadFile(const char* filename, bool* exists,
+ bool verbose = true);
+V8_EXPORT_PRIVATE std::string ReadFile(FILE* file, bool* exists,
+ bool verbose = true);
+
+class StringBuilder : public SimpleStringBuilder {
+ public:
+ explicit StringBuilder(int size) : SimpleStringBuilder(size) {}
+ StringBuilder(char* buffer, int size) : SimpleStringBuilder(buffer, size) {}
+
+ // Add formatted contents to the builder just like printf().
+ void PRINTF_FORMAT(2, 3) AddFormatted(const char* format, ...);
+
+ // Add formatted contents like printf based on a va_list.
+ void PRINTF_FORMAT(2, 0) AddFormattedList(const char* format, va_list list);
+
+ private:
+ DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
+};
+
+bool DoubleToBoolean(double d);
+
+template <typename Char>
+bool TryAddIndexChar(uint32_t* index, Char c);
+
+template <typename Stream>
+bool StringToArrayIndex(Stream* stream, uint32_t* index);
+
+// Returns the current stack top. Works correctly with ASAN and SafeStack.
+// GetCurrentStackPosition() should not be inlined, because it works on stack
+// frames if it were inlined into a function with a huge stack frame it would
+// return an address significantly above the actual current stack position.
+V8_EXPORT_PRIVATE V8_NOINLINE uintptr_t GetCurrentStackPosition();
+
+static inline uint16_t ByteReverse16(uint16_t value) {
+#if V8_HAS_BUILTIN_BSWAP16
+ return __builtin_bswap16(value);
+#else
+ return value << 8 | (value >> 8 & 0x00FF);
+#endif
+}
+
+static inline uint32_t ByteReverse32(uint32_t value) {
+#if V8_HAS_BUILTIN_BSWAP32
+ return __builtin_bswap32(value);
+#else
+ return value << 24 | ((value << 8) & 0x00FF0000) |
+ ((value >> 8) & 0x0000FF00) | ((value >> 24) & 0x00000FF);
+#endif
+}
+
+static inline uint64_t ByteReverse64(uint64_t value) {
+#if V8_HAS_BUILTIN_BSWAP64
+ return __builtin_bswap64(value);
+#else
+ size_t bits_of_v = sizeof(value) * kBitsPerByte;
+ return value << (bits_of_v - 8) |
+ ((value << (bits_of_v - 24)) & 0x00FF000000000000) |
+ ((value << (bits_of_v - 40)) & 0x0000FF0000000000) |
+ ((value << (bits_of_v - 56)) & 0x000000FF00000000) |
+ ((value >> (bits_of_v - 56)) & 0x00000000FF000000) |
+ ((value >> (bits_of_v - 40)) & 0x0000000000FF0000) |
+ ((value >> (bits_of_v - 24)) & 0x000000000000FF00) |
+ ((value >> (bits_of_v - 8)) & 0x00000000000000FF);
+#endif
+}
+
+template <typename V>
+static inline V ByteReverse(V value) {
+ size_t size_of_v = sizeof(value);
+ switch (size_of_v) {
+ case 1:
+ return value;
+ case 2:
+ return static_cast<V>(ByteReverse16(static_cast<uint16_t>(value)));
+ case 4:
+ return static_cast<V>(ByteReverse32(static_cast<uint32_t>(value)));
+ case 8:
+ return static_cast<V>(ByteReverse64(static_cast<uint64_t>(value)));
+ default:
+ UNREACHABLE();
+ }
+}
+
+V8_EXPORT_PRIVATE bool PassesFilter(Vector<const char> name,
+ Vector<const char> filter);
+
+// Zap the specified area with a specific byte pattern. This currently defaults
+// to int3 on x64 and ia32. On other architectures this will produce unspecified
+// instruction sequences.
+// TODO(jgruber): Better support for other architectures.
+V8_INLINE void ZapCode(Address addr, size_t size_in_bytes) {
+ static constexpr int kZapByte = 0xCC;
+ std::memset(reinterpret_cast<void*>(addr), kZapByte, size_in_bytes);
+}
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_UTILS_UTILS_H_