summaryrefslogtreecommitdiff
path: root/deps/v8/include/v8-fast-api-calls.h
blob: 0fe7cd2489b05e5e19111809d55a871e5ef2683d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

/**
 * This file provides additional API on top of the default one for making
 * API calls, which come from embedder C++ functions. The functions are being
 * called directly from optimized code, doing all the necessary typechecks
 * in the compiler itself, instead of on the embedder side. Hence the "fast"
 * in the name. Example usage might look like:
 *
 * \code
 *    void FastMethod(int param, bool another_param);
 *
 *    v8::FunctionTemplate::New(isolate, SlowCallback, data,
 *                              signature, length, constructor_behavior
 *                              side_effect_type,
 *                              &v8::CFunction::Make(FastMethod));
 * \endcode
 *
 * By design, fast calls are limited by the following requirements, which
 * the embedder should enforce themselves:
 *   - they should not allocate on the JS heap;
 *   - they should not trigger JS execution.
 * To enforce them, the embedder could use the existing
 * v8::Isolate::DisallowJavascriptExecutionScope and a utility similar to
 * Blink's NoAllocationScope:
 * https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/platform/heap/thread_state_scopes.h;l=16
 *
 * Due to these limitations, it's not directly possible to report errors by
 * throwing a JS exception or to otherwise do an allocation. There is an
 * alternative way of creating fast calls that supports falling back to the
 * slow call and then performing the necessary allocation. When one creates
 * the fast method by using CFunction::MakeWithFallbackSupport instead of
 * CFunction::Make, the fast callback gets as last parameter an output variable,
 * through which it can request falling back to the slow call. So one might
 * declare their method like:
 *
 * \code
 *    void FastMethodWithFallback(int param, FastApiCallbackOptions& options);
 * \endcode
 *
 * If the callback wants to signal an error condition or to perform an
 * allocation, it must set options.fallback to true and do an early return from
 * the fast method. Then V8 checks the value of options.fallback and if it's
 * true, falls back to executing the SlowCallback, which is capable of reporting
 * the error (either by throwing a JS exception or logging to the console) or
 * doing the allocation. It's the embedder's responsibility to ensure that the
 * fast callback is idempotent up to the point where error and fallback
 * conditions are checked, because otherwise executing the slow callback might
 * produce visible side-effects twice.
 *
 * An example for custom embedder type support might employ a way to wrap/
 * unwrap various C++ types in JSObject instances, e.g:
 *
 * \code
 *
 *    // Helper method with a check for field count.
 *    template <typename T, int offset>
 *    inline T* GetInternalField(v8::Local<v8::Object> wrapper) {
 *      assert(offset < wrapper->InternalFieldCount());
 *      return reinterpret_cast<T*>(
 *          wrapper->GetAlignedPointerFromInternalField(offset));
 *    }
 *
 *    class CustomEmbedderType {
 *     public:
 *      // Returns the raw C object from a wrapper JS object.
 *      static CustomEmbedderType* Unwrap(v8::Local<v8::Object> wrapper) {
 *        return GetInternalField<CustomEmbedderType,
 *                                kV8EmbedderWrapperObjectIndex>(wrapper);
 *      }
 *      static void FastMethod(v8::Local<v8::Object> receiver_obj, int param) {
 *        CustomEmbedderType* receiver = static_cast<CustomEmbedderType*>(
 *          receiver_obj->GetAlignedPointerFromInternalField(
 *            kV8EmbedderWrapperObjectIndex));
 *
 *        // Type checks are already done by the optimized code.
 *        // Then call some performance-critical method like:
 *        // receiver->Method(param);
 *      }
 *
 *      static void SlowMethod(
 *          const v8::FunctionCallbackInfo<v8::Value>& info) {
 *        v8::Local<v8::Object> instance =
 *          v8::Local<v8::Object>::Cast(info.Holder());
 *        CustomEmbedderType* receiver = Unwrap(instance);
 *        // TODO: Do type checks and extract {param}.
 *        receiver->Method(param);
 *      }
 *    };
 *
 *    // TODO(mslekova): Clean-up these constants
 *    // The constants kV8EmbedderWrapperTypeIndex and
 *    // kV8EmbedderWrapperObjectIndex describe the offsets for the type info
 *    // struct and the native object, when expressed as internal field indices
 *    // within a JSObject. The existance of this helper function assumes that
 *    // all embedder objects have their JSObject-side type info at the same
 *    // offset, but this is not a limitation of the API itself. For a detailed
 *    // use case, see the third example.
 *    static constexpr int kV8EmbedderWrapperTypeIndex = 0;
 *    static constexpr int kV8EmbedderWrapperObjectIndex = 1;
 *
 *    // The following setup function can be templatized based on
 *    // the {embedder_object} argument.
 *    void SetupCustomEmbedderObject(v8::Isolate* isolate,
 *                                   v8::Local<v8::Context> context,
 *                                   CustomEmbedderType* embedder_object) {
 *      isolate->set_embedder_wrapper_type_index(
 *        kV8EmbedderWrapperTypeIndex);
 *      isolate->set_embedder_wrapper_object_index(
 *        kV8EmbedderWrapperObjectIndex);
 *
 *      v8::CFunction c_func =
 *        MakeV8CFunction(CustomEmbedderType::FastMethod);
 *
 *      Local<v8::FunctionTemplate> method_template =
 *        v8::FunctionTemplate::New(
 *          isolate, CustomEmbedderType::SlowMethod, v8::Local<v8::Value>(),
 *          v8::Local<v8::Signature>(), 1, v8::ConstructorBehavior::kAllow,
 *          v8::SideEffectType::kHasSideEffect, &c_func);
 *
 *      v8::Local<v8::ObjectTemplate> object_template =
 *        v8::ObjectTemplate::New(isolate);
 *      object_template->SetInternalFieldCount(
 *        kV8EmbedderWrapperObjectIndex + 1);
 *      object_template->Set(isolate, "method", method_template);
 *
 *      // Instantiate the wrapper JS object.
 *      v8::Local<v8::Object> object =
 *          object_template->NewInstance(context).ToLocalChecked();
 *      object->SetAlignedPointerInInternalField(
 *        kV8EmbedderWrapperObjectIndex,
 *        reinterpret_cast<void*>(embedder_object));
 *
 *      // TODO: Expose {object} where it's necessary.
 *    }
 * \endcode
 *
 * For instance if {object} is exposed via a global "obj" variable,
 * one could write in JS:
 *   function hot_func() {
 *     obj.method(42);
 *   }
 * and once {hot_func} gets optimized, CustomEmbedderType::FastMethod
 * will be called instead of the slow version, with the following arguments:
 *   receiver := the {embedder_object} from above
 *   param := 42
 *
 * Currently supported return types:
 *   - void
 *   - bool
 *   - int32_t
 *   - uint32_t
 *   - float32_t
 *   - float64_t
 * Currently supported argument types:
 *  - pointer to an embedder type
 *  - JavaScript array of primitive types
 *  - bool
 *  - int32_t
 *  - uint32_t
 *  - int64_t
 *  - uint64_t
 *  - float32_t
 *  - float64_t
 *
 * The 64-bit integer types currently have the IDL (unsigned) long long
 * semantics: https://heycam.github.io/webidl/#abstract-opdef-converttoint
 * In the future we'll extend the API to also provide conversions from/to
 * BigInt to preserve full precision.
 * The floating point types currently have the IDL (unrestricted) semantics,
 * which is the only one used by WebGL. We plan to add support also for
 * restricted floats/doubles, similarly to the BigInt conversion policies.
 * We also differ from the specific NaN bit pattern that WebIDL prescribes
 * (https://heycam.github.io/webidl/#es-unrestricted-float) in that Blink
 * passes NaN values as-is, i.e. doesn't normalize them.
 *
 * To be supported types:
 *  - TypedArrays and ArrayBuffers
 *  - arrays of embedder types
 *
 *
 * The API offers a limited support for function overloads:
 *
 * \code
 *    void FastMethod_2Args(int param, bool another_param);
 *    void FastMethod_3Args(int param, bool another_param, int third_param);
 *
 *    v8::CFunction fast_method_2args_c_func =
 *         MakeV8CFunction(FastMethod_2Args);
 *    v8::CFunction fast_method_3args_c_func =
 *         MakeV8CFunction(FastMethod_3Args);
 *    const v8::CFunction fast_method_overloads[] = {fast_method_2args_c_func,
 *                                                   fast_method_3args_c_func};
 *    Local<v8::FunctionTemplate> method_template =
 *        v8::FunctionTemplate::NewWithCFunctionOverloads(
 *            isolate, SlowCallback, data, signature, length,
 *            constructor_behavior, side_effect_type,
 *            {fast_method_overloads, 2});
 * \endcode
 *
 * In this example a single FunctionTemplate is associated to multiple C++
 * functions. The overload resolution is currently only based on the number of
 * arguments passed in a call. For example, if this method_template is
 * registered with a wrapper JS object as described above, a call with two
 * arguments:
 *    obj.method(42, true);
 * will result in a fast call to FastMethod_2Args, while a call with three or
 * more arguments:
 *    obj.method(42, true, 11);
 * will result in a fast call to FastMethod_3Args. Instead a call with less than
 * two arguments, like:
 *    obj.method(42);
 * would not result in a fast call but would fall back to executing the
 * associated SlowCallback.
 */

#ifndef INCLUDE_V8_FAST_API_CALLS_H_
#define INCLUDE_V8_FAST_API_CALLS_H_

#include <stddef.h>
#include <stdint.h>

#include <tuple>
#include <type_traits>

#include "v8-internal.h"      // NOLINT(build/include_directory)
#include "v8-local-handle.h"  // NOLINT(build/include_directory)
#include "v8-typed-array.h"   // NOLINT(build/include_directory)
#include "v8-value.h"         // NOLINT(build/include_directory)
#include "v8config.h"         // NOLINT(build/include_directory)

namespace v8 {

class Isolate;

class CTypeInfo {
 public:
  enum class Type : uint8_t {
    kVoid,
    kBool,
    kUint8,
    kInt32,
    kUint32,
    kInt64,
    kUint64,
    kFloat32,
    kFloat64,
    kPointer,
    kV8Value,
    kSeqOneByteString,
    kApiObject,  // This will be deprecated once all users have
                 // migrated from v8::ApiObject to v8::Local<v8::Value>.
    kAny,        // This is added to enable untyped representation of fast
                 // call arguments for test purposes. It can represent any of
                 // the other types stored in the same memory as a union (see
                 // the AnyCType struct declared below). This allows for
                 // uniform passing of arguments w.r.t. their location
                 // (in a register or on the stack), independent of their
                 // actual type. It's currently used by the arm64 simulator
                 // and can be added to the other simulators as well when fast
                 // calls having both GP and FP params need to be supported.
  };

  // kCallbackOptionsType is not part of the Type enum
  // because it is only used internally. Use value 255 that is larger
  // than any valid Type enum.
  static constexpr Type kCallbackOptionsType = Type(255);

  enum class SequenceType : uint8_t {
    kScalar,
    kIsSequence,    // sequence<T>
    kIsTypedArray,  // TypedArray of T or any ArrayBufferView if T
                    // is void
    kIsArrayBuffer  // ArrayBuffer
  };

  enum class Flags : uint8_t {
    kNone = 0,
    kAllowSharedBit = 1 << 0,   // Must be an ArrayBuffer or TypedArray
    kEnforceRangeBit = 1 << 1,  // T must be integral
    kClampBit = 1 << 2,         // T must be integral
    kIsRestrictedBit = 1 << 3,  // T must be float or double
  };

  explicit constexpr CTypeInfo(
      Type type, SequenceType sequence_type = SequenceType::kScalar,
      Flags flags = Flags::kNone)
      : type_(type), sequence_type_(sequence_type), flags_(flags) {}

  typedef uint32_t Identifier;
  explicit constexpr CTypeInfo(Identifier identifier)
      : CTypeInfo(static_cast<Type>(identifier >> 16),
                  static_cast<SequenceType>((identifier >> 8) & 255),
                  static_cast<Flags>(identifier & 255)) {}
  constexpr Identifier GetId() const {
    return static_cast<uint8_t>(type_) << 16 |
           static_cast<uint8_t>(sequence_type_) << 8 |
           static_cast<uint8_t>(flags_);
  }

  constexpr Type GetType() const { return type_; }
  constexpr SequenceType GetSequenceType() const { return sequence_type_; }
  constexpr Flags GetFlags() const { return flags_; }

  static constexpr bool IsIntegralType(Type type) {
    return type == Type::kUint8 || type == Type::kInt32 ||
           type == Type::kUint32 || type == Type::kInt64 ||
           type == Type::kUint64;
  }

  static constexpr bool IsFloatingPointType(Type type) {
    return type == Type::kFloat32 || type == Type::kFloat64;
  }

  static constexpr bool IsPrimitive(Type type) {
    return IsIntegralType(type) || IsFloatingPointType(type) ||
           type == Type::kBool;
  }

 private:
  Type type_;
  SequenceType sequence_type_;
  Flags flags_;
};

struct FastApiTypedArrayBase {
 public:
  // Returns the length in number of elements.
  size_t V8_EXPORT length() const { return length_; }
  // Checks whether the given index is within the bounds of the collection.
  void V8_EXPORT ValidateIndex(size_t index) const;

 protected:
  size_t length_ = 0;
};

template <typename T>
struct FastApiTypedArray : public FastApiTypedArrayBase {
 public:
  V8_INLINE T get(size_t index) const {
#ifdef DEBUG
    ValidateIndex(index);
#endif  // DEBUG
    T tmp;
    memcpy(&tmp, reinterpret_cast<T*>(data_) + index, sizeof(T));
    return tmp;
  }

  bool getStorageIfAligned(T** elements) const {
    if (reinterpret_cast<uintptr_t>(data_) % alignof(T) != 0) {
      return false;
    }
    *elements = reinterpret_cast<T*>(data_);
    return true;
  }

 private:
  // This pointer should include the typed array offset applied.
  // It's not guaranteed that it's aligned to sizeof(T), it's only
  // guaranteed that it's 4-byte aligned, so for 8-byte types we need to
  // provide a special implementation for reading from it, which hides
  // the possibly unaligned read in the `get` method.
  void* data_;
};

// Any TypedArray. It uses kTypedArrayBit with base type void
// Overloaded args of ArrayBufferView and TypedArray are not supported
// (for now) because the generic “any” ArrayBufferView doesn’t have its
// own instance type. It could be supported if we specify that
// TypedArray<T> always has precedence over the generic ArrayBufferView,
// but this complicates overload resolution.
struct FastApiArrayBufferView {
  void* data;
  size_t byte_length;
};

struct FastApiArrayBuffer {
  void* data;
  size_t byte_length;
};

struct FastOneByteString {
  const char* data;
  uint32_t length;
};

class V8_EXPORT CFunctionInfo {
 public:
  // Construct a struct to hold a CFunction's type information.
  // |return_info| describes the function's return type.
  // |arg_info| is an array of |arg_count| CTypeInfos describing the
  //   arguments. Only the last argument may be of the special type
  //   CTypeInfo::kCallbackOptionsType.
  CFunctionInfo(const CTypeInfo& return_info, unsigned int arg_count,
                const CTypeInfo* arg_info);

  const CTypeInfo& ReturnInfo() const { return return_info_; }

  // The argument count, not including the v8::FastApiCallbackOptions
  // if present.
  unsigned int ArgumentCount() const {
    return HasOptions() ? arg_count_ - 1 : arg_count_;
  }

  // |index| must be less than ArgumentCount().
  //  Note: if the last argument passed on construction of CFunctionInfo
  //  has type CTypeInfo::kCallbackOptionsType, it is not included in
  //  ArgumentCount().
  const CTypeInfo& ArgumentInfo(unsigned int index) const;

  bool HasOptions() const {
    // The options arg is always the last one.
    return arg_count_ > 0 && arg_info_[arg_count_ - 1].GetType() ==
                                 CTypeInfo::kCallbackOptionsType;
  }

 private:
  const CTypeInfo return_info_;
  const unsigned int arg_count_;
  const CTypeInfo* arg_info_;
};

struct FastApiCallbackOptions;

// Provided for testing.
struct AnyCType {
  AnyCType() : int64_value(0) {}

  union {
    bool bool_value;
    int32_t int32_value;
    uint32_t uint32_value;
    int64_t int64_value;
    uint64_t uint64_value;
    float float_value;
    double double_value;
    void* pointer_value;
    Local<Object> object_value;
    Local<Array> sequence_value;
    const FastApiTypedArray<uint8_t>* uint8_ta_value;
    const FastApiTypedArray<int32_t>* int32_ta_value;
    const FastApiTypedArray<uint32_t>* uint32_ta_value;
    const FastApiTypedArray<int64_t>* int64_ta_value;
    const FastApiTypedArray<uint64_t>* uint64_ta_value;
    const FastApiTypedArray<float>* float_ta_value;
    const FastApiTypedArray<double>* double_ta_value;
    const FastOneByteString* string_value;
    FastApiCallbackOptions* options_value;
  };
};

static_assert(
    sizeof(AnyCType) == 8,
    "The AnyCType struct should have size == 64 bits, as this is assumed "
    "by EffectControlLinearizer.");

class V8_EXPORT CFunction {
 public:
  constexpr CFunction() : address_(nullptr), type_info_(nullptr) {}

  const CTypeInfo& ReturnInfo() const { return type_info_->ReturnInfo(); }

  const CTypeInfo& ArgumentInfo(unsigned int index) const {
    return type_info_->ArgumentInfo(index);
  }

  unsigned int ArgumentCount() const { return type_info_->ArgumentCount(); }

  const void* GetAddress() const { return address_; }
  const CFunctionInfo* GetTypeInfo() const { return type_info_; }

  enum class OverloadResolution { kImpossible, kAtRuntime, kAtCompileTime };

  // Returns whether an overload between this and the given CFunction can
  // be resolved at runtime by the RTTI available for the arguments or at
  // compile time for functions with different number of arguments.
  OverloadResolution GetOverloadResolution(const CFunction* other) {
    // Runtime overload resolution can only deal with functions with the
    // same number of arguments. Functions with different arity are handled
    // by compile time overload resolution though.
    if (ArgumentCount() != other->ArgumentCount()) {
      return OverloadResolution::kAtCompileTime;
    }

    // The functions can only differ by a single argument position.
    int diff_index = -1;
    for (unsigned int i = 0; i < ArgumentCount(); ++i) {
      if (ArgumentInfo(i).GetSequenceType() !=
          other->ArgumentInfo(i).GetSequenceType()) {
        if (diff_index >= 0) {
          return OverloadResolution::kImpossible;
        }
        diff_index = i;

        // We only support overload resolution between sequence types.
        if (ArgumentInfo(i).GetSequenceType() ==
                CTypeInfo::SequenceType::kScalar ||
            other->ArgumentInfo(i).GetSequenceType() ==
                CTypeInfo::SequenceType::kScalar) {
          return OverloadResolution::kImpossible;
        }
      }
    }

    return OverloadResolution::kAtRuntime;
  }

  template <typename F>
  static CFunction Make(F* func) {
    return ArgUnwrap<F*>::Make(func);
  }

  // Provided for testing purposes.
  template <typename R, typename... Args, typename R_Patch,
            typename... Args_Patch>
  static CFunction Make(R (*func)(Args...),
                        R_Patch (*patching_func)(Args_Patch...)) {
    CFunction c_func = ArgUnwrap<R (*)(Args...)>::Make(func);
    static_assert(
        sizeof...(Args_Patch) == sizeof...(Args),
        "The patching function must have the same number of arguments.");
    c_func.address_ = reinterpret_cast<void*>(patching_func);
    return c_func;
  }

  CFunction(const void* address, const CFunctionInfo* type_info);

 private:
  const void* address_;
  const CFunctionInfo* type_info_;

  template <typename F>
  class ArgUnwrap {
    static_assert(sizeof(F) != sizeof(F),
                  "CFunction must be created from a function pointer.");
  };

  template <typename R, typename... Args>
  class ArgUnwrap<R (*)(Args...)> {
   public:
    static CFunction Make(R (*func)(Args...));
  };
};

/**
 * A struct which may be passed to a fast call callback, like so:
 * \code
 *    void FastMethodWithOptions(int param, FastApiCallbackOptions& options);
 * \endcode
 */
struct FastApiCallbackOptions {
  /**
   * Creates a new instance of FastApiCallbackOptions for testing purpose.  The
   * returned instance may be filled with mock data.
   */
  static FastApiCallbackOptions CreateForTesting(Isolate* isolate) {
    return {false, {0}, nullptr};
  }

  /**
   * If the callback wants to signal an error condition or to perform an
   * allocation, it must set options.fallback to true and do an early return
   * from the fast method. Then V8 checks the value of options.fallback and if
   * it's true, falls back to executing the SlowCallback, which is capable of
   * reporting the error (either by throwing a JS exception or logging to the
   * console) or doing the allocation. It's the embedder's responsibility to
   * ensure that the fast callback is idempotent up to the point where error and
   * fallback conditions are checked, because otherwise executing the slow
   * callback might produce visible side-effects twice.
   */
  bool fallback;

  /**
   * The `data` passed to the FunctionTemplate constructor, or `undefined`.
   * `data_ptr` allows for default constructing FastApiCallbackOptions.
   */
  union {
    uintptr_t data_ptr;
    v8::Local<v8::Value> data;
  };

  /**
   * When called from WebAssembly, a view of the calling module's memory.
   */
  FastApiTypedArray<uint8_t>* const wasm_memory;
};

namespace internal {

// Helper to count the number of occurances of `T` in `List`
template <typename T, typename... List>
struct count : std::integral_constant<int, 0> {};
template <typename T, typename... Args>
struct count<T, T, Args...>
    : std::integral_constant<std::size_t, 1 + count<T, Args...>::value> {};
template <typename T, typename U, typename... Args>
struct count<T, U, Args...> : count<T, Args...> {};

template <typename RetBuilder, typename... ArgBuilders>
class CFunctionInfoImpl : public CFunctionInfo {
  static constexpr int kOptionsArgCount =
      count<FastApiCallbackOptions&, ArgBuilders...>();
  static constexpr int kReceiverCount = 1;

  static_assert(kOptionsArgCount == 0 || kOptionsArgCount == 1,
                "Only one options parameter is supported.");

  static_assert(sizeof...(ArgBuilders) >= kOptionsArgCount + kReceiverCount,
                "The receiver or the options argument is missing.");

 public:
  constexpr CFunctionInfoImpl()
      : CFunctionInfo(RetBuilder::Build(), sizeof...(ArgBuilders),
                      arg_info_storage_),
        arg_info_storage_{ArgBuilders::Build()...} {
    constexpr CTypeInfo::Type kReturnType = RetBuilder::Build().GetType();
    static_assert(kReturnType == CTypeInfo::Type::kVoid ||
                      kReturnType == CTypeInfo::Type::kBool ||
                      kReturnType == CTypeInfo::Type::kInt32 ||
                      kReturnType == CTypeInfo::Type::kUint32 ||
                      kReturnType == CTypeInfo::Type::kFloat32 ||
                      kReturnType == CTypeInfo::Type::kFloat64 ||
                      kReturnType == CTypeInfo::Type::kPointer ||
                      kReturnType == CTypeInfo::Type::kAny,
                  "64-bit int, string and api object values are not currently "
                  "supported return types.");
  }

 private:
  const CTypeInfo arg_info_storage_[sizeof...(ArgBuilders)];
};

template <typename T>
struct TypeInfoHelper {
  static_assert(sizeof(T) != sizeof(T), "This type is not supported");
};

#define SPECIALIZE_GET_TYPE_INFO_HELPER_FOR(T, Enum)                          \
  template <>                                                                 \
  struct TypeInfoHelper<T> {                                                  \
    static constexpr CTypeInfo::Flags Flags() {                               \
      return CTypeInfo::Flags::kNone;                                         \
    }                                                                         \
                                                                              \
    static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::Enum; } \
    static constexpr CTypeInfo::SequenceType SequenceType() {                 \
      return CTypeInfo::SequenceType::kScalar;                                \
    }                                                                         \
  };

template <CTypeInfo::Type type>
struct CTypeInfoTraits {};

#define DEFINE_TYPE_INFO_TRAITS(CType, Enum)      \
  template <>                                     \
  struct CTypeInfoTraits<CTypeInfo::Type::Enum> { \
    using ctype = CType;                          \
  };

#define PRIMITIVE_C_TYPES(V) \
  V(bool, kBool)             \
  V(uint8_t, kUint8)         \
  V(int32_t, kInt32)         \
  V(uint32_t, kUint32)       \
  V(int64_t, kInt64)         \
  V(uint64_t, kUint64)       \
  V(float, kFloat32)         \
  V(double, kFloat64)        \
  V(void*, kPointer)

// Same as above, but includes deprecated types for compatibility.
#define ALL_C_TYPES(V)               \
  PRIMITIVE_C_TYPES(V)               \
  V(void, kVoid)                     \
  V(v8::Local<v8::Value>, kV8Value)  \
  V(v8::Local<v8::Object>, kV8Value) \
  V(AnyCType, kAny)

// ApiObject was a temporary solution to wrap the pointer to the v8::Value.
// Please use v8::Local<v8::Value> in new code for the arguments and
// v8::Local<v8::Object> for the receiver, as ApiObject will be deprecated.

ALL_C_TYPES(SPECIALIZE_GET_TYPE_INFO_HELPER_FOR)
PRIMITIVE_C_TYPES(DEFINE_TYPE_INFO_TRAITS)

#undef PRIMITIVE_C_TYPES
#undef ALL_C_TYPES

#define SPECIALIZE_GET_TYPE_INFO_HELPER_FOR_TA(T, Enum)                       \
  template <>                                                                 \
  struct TypeInfoHelper<const FastApiTypedArray<T>&> {                        \
    static constexpr CTypeInfo::Flags Flags() {                               \
      return CTypeInfo::Flags::kNone;                                         \
    }                                                                         \
                                                                              \
    static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::Enum; } \
    static constexpr CTypeInfo::SequenceType SequenceType() {                 \
      return CTypeInfo::SequenceType::kIsTypedArray;                          \
    }                                                                         \
  };

#define TYPED_ARRAY_C_TYPES(V) \
  V(uint8_t, kUint8)           \
  V(int32_t, kInt32)           \
  V(uint32_t, kUint32)         \
  V(int64_t, kInt64)           \
  V(uint64_t, kUint64)         \
  V(float, kFloat32)           \
  V(double, kFloat64)

TYPED_ARRAY_C_TYPES(SPECIALIZE_GET_TYPE_INFO_HELPER_FOR_TA)

#undef TYPED_ARRAY_C_TYPES

template <>
struct TypeInfoHelper<v8::Local<v8::Array>> {
  static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }

  static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::kVoid; }
  static constexpr CTypeInfo::SequenceType SequenceType() {
    return CTypeInfo::SequenceType::kIsSequence;
  }
};

template <>
struct TypeInfoHelper<v8::Local<v8::Uint32Array>> {
  static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }

  static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::kUint32; }
  static constexpr CTypeInfo::SequenceType SequenceType() {
    return CTypeInfo::SequenceType::kIsTypedArray;
  }
};

template <>
struct TypeInfoHelper<FastApiCallbackOptions&> {
  static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }

  static constexpr CTypeInfo::Type Type() {
    return CTypeInfo::kCallbackOptionsType;
  }
  static constexpr CTypeInfo::SequenceType SequenceType() {
    return CTypeInfo::SequenceType::kScalar;
  }
};

template <>
struct TypeInfoHelper<const FastOneByteString&> {
  static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }

  static constexpr CTypeInfo::Type Type() {
    return CTypeInfo::Type::kSeqOneByteString;
  }
  static constexpr CTypeInfo::SequenceType SequenceType() {
    return CTypeInfo::SequenceType::kScalar;
  }
};

#define STATIC_ASSERT_IMPLIES(COND, ASSERTION, MSG) \
  static_assert(((COND) == 0) || (ASSERTION), MSG)

}  // namespace internal

template <typename T, CTypeInfo::Flags... Flags>
class V8_EXPORT CTypeInfoBuilder {
 public:
  using BaseType = T;

  static constexpr CTypeInfo Build() {
    constexpr CTypeInfo::Flags kFlags =
        MergeFlags(internal::TypeInfoHelper<T>::Flags(), Flags...);
    constexpr CTypeInfo::Type kType = internal::TypeInfoHelper<T>::Type();
    constexpr CTypeInfo::SequenceType kSequenceType =
        internal::TypeInfoHelper<T>::SequenceType();

    STATIC_ASSERT_IMPLIES(
        uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kAllowSharedBit),
        (kSequenceType == CTypeInfo::SequenceType::kIsTypedArray ||
         kSequenceType == CTypeInfo::SequenceType::kIsArrayBuffer),
        "kAllowSharedBit is only allowed for TypedArrays and ArrayBuffers.");
    STATIC_ASSERT_IMPLIES(
        uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kEnforceRangeBit),
        CTypeInfo::IsIntegralType(kType),
        "kEnforceRangeBit is only allowed for integral types.");
    STATIC_ASSERT_IMPLIES(
        uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kClampBit),
        CTypeInfo::IsIntegralType(kType),
        "kClampBit is only allowed for integral types.");
    STATIC_ASSERT_IMPLIES(
        uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kIsRestrictedBit),
        CTypeInfo::IsFloatingPointType(kType),
        "kIsRestrictedBit is only allowed for floating point types.");
    STATIC_ASSERT_IMPLIES(kSequenceType == CTypeInfo::SequenceType::kIsSequence,
                          kType == CTypeInfo::Type::kVoid,
                          "Sequences are only supported from void type.");
    STATIC_ASSERT_IMPLIES(
        kSequenceType == CTypeInfo::SequenceType::kIsTypedArray,
        CTypeInfo::IsPrimitive(kType) || kType == CTypeInfo::Type::kVoid,
        "TypedArrays are only supported from primitive types or void.");

    // Return the same type with the merged flags.
    return CTypeInfo(internal::TypeInfoHelper<T>::Type(),
                     internal::TypeInfoHelper<T>::SequenceType(), kFlags);
  }

 private:
  template <typename... Rest>
  static constexpr CTypeInfo::Flags MergeFlags(CTypeInfo::Flags flags,
                                               Rest... rest) {
    return CTypeInfo::Flags(uint8_t(flags) | uint8_t(MergeFlags(rest...)));
  }
  static constexpr CTypeInfo::Flags MergeFlags() { return CTypeInfo::Flags(0); }
};

namespace internal {
template <typename RetBuilder, typename... ArgBuilders>
class CFunctionBuilderWithFunction {
 public:
  explicit constexpr CFunctionBuilderWithFunction(const void* fn) : fn_(fn) {}

  template <CTypeInfo::Flags... Flags>
  constexpr auto Ret() {
    return CFunctionBuilderWithFunction<
        CTypeInfoBuilder<typename RetBuilder::BaseType, Flags...>,
        ArgBuilders...>(fn_);
  }

  template <unsigned int N, CTypeInfo::Flags... Flags>
  constexpr auto Arg() {
    // Return a copy of the builder with the Nth arg builder merged with
    // template parameter pack Flags.
    return ArgImpl<N, Flags...>(
        std::make_index_sequence<sizeof...(ArgBuilders)>());
  }

  // Provided for testing purposes.
  template <typename Ret, typename... Args>
  auto Patch(Ret (*patching_func)(Args...)) {
    static_assert(
        sizeof...(Args) == sizeof...(ArgBuilders),
        "The patching function must have the same number of arguments.");
    fn_ = reinterpret_cast<void*>(patching_func);
    return *this;
  }

  auto Build() {
    static CFunctionInfoImpl<RetBuilder, ArgBuilders...> instance;
    return CFunction(fn_, &instance);
  }

 private:
  template <bool Merge, unsigned int N, CTypeInfo::Flags... Flags>
  struct GetArgBuilder;

  // Returns the same ArgBuilder as the one at index N, including its flags.
  // Flags in the template parameter pack are ignored.
  template <unsigned int N, CTypeInfo::Flags... Flags>
  struct GetArgBuilder<false, N, Flags...> {
    using type =
        typename std::tuple_element<N, std::tuple<ArgBuilders...>>::type;
  };

  // Returns an ArgBuilder with the same base type as the one at index N,
  // but merges the flags with the flags in the template parameter pack.
  template <unsigned int N, CTypeInfo::Flags... Flags>
  struct GetArgBuilder<true, N, Flags...> {
    using type = CTypeInfoBuilder<
        typename std::tuple_element<N,
                                    std::tuple<ArgBuilders...>>::type::BaseType,
        std::tuple_element<N, std::tuple<ArgBuilders...>>::type::Build()
            .GetFlags(),
        Flags...>;
  };

  // Return a copy of the CFunctionBuilder, but merges the Flags on
  // ArgBuilder index N with the new Flags passed in the template parameter
  // pack.
  template <unsigned int N, CTypeInfo::Flags... Flags, size_t... I>
  constexpr auto ArgImpl(std::index_sequence<I...>) {
    return CFunctionBuilderWithFunction<
        RetBuilder, typename GetArgBuilder<N == I, I, Flags...>::type...>(fn_);
  }

  const void* fn_;
};

class CFunctionBuilder {
 public:
  constexpr CFunctionBuilder() {}

  template <typename R, typename... Args>
  constexpr auto Fn(R (*fn)(Args...)) {
    return CFunctionBuilderWithFunction<CTypeInfoBuilder<R>,
                                        CTypeInfoBuilder<Args>...>(
        reinterpret_cast<const void*>(fn));
  }
};

}  // namespace internal

// static
template <typename R, typename... Args>
CFunction CFunction::ArgUnwrap<R (*)(Args...)>::Make(R (*func)(Args...)) {
  return internal::CFunctionBuilder().Fn(func).Build();
}

using CFunctionBuilder = internal::CFunctionBuilder;

static constexpr CTypeInfo kTypeInfoInt32 = CTypeInfo(CTypeInfo::Type::kInt32);
static constexpr CTypeInfo kTypeInfoFloat64 =
    CTypeInfo(CTypeInfo::Type::kFloat64);

/**
 * Copies the contents of this JavaScript array to a C++ buffer with
 * a given max_length. A CTypeInfo is passed as an argument,
 * instructing different rules for conversion (e.g. restricted float/double).
 * The element type T of the destination array must match the C type
 * corresponding to the CTypeInfo (specified by CTypeInfoTraits).
 * If the array length is larger than max_length or the array is of
 * unsupported type, the operation will fail, returning false. Generally, an
 * array which contains objects, undefined, null or anything not convertible
 * to the requested destination type, is considered unsupported. The operation
 * returns true on success. `type_info` will be used for conversions.
 */
template <CTypeInfo::Identifier type_info_id, typename T>
bool V8_EXPORT V8_WARN_UNUSED_RESULT TryToCopyAndConvertArrayToCppBuffer(
    Local<Array> src, T* dst, uint32_t max_length);

template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<int32_t>::Build().GetId(),
                                    int32_t>(Local<Array> src, int32_t* dst,
                                             uint32_t max_length);

template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<uint32_t>::Build().GetId(),
                                    uint32_t>(Local<Array> src, uint32_t* dst,
                                              uint32_t max_length);

template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<float>::Build().GetId(),
                                    float>(Local<Array> src, float* dst,
                                           uint32_t max_length);

template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<double>::Build().GetId(),
                                    double>(Local<Array> src, double* dst,
                                            uint32_t max_length);

}  // namespace v8

#endif  // INCLUDE_V8_FAST_API_CALLS_H_