summaryrefslogtreecommitdiff
path: root/deps/v8/src/arm/assembler-arm.cc
blob: d9247288ca0c210730767a1cc5da85069c969035 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been modified
// significantly by Google Inc.
// Copyright 2006-2008 the V8 project authors. All rights reserved.

#include "v8.h"

#include "arm/assembler-arm-inl.h"
#include "serialize.h"

namespace v8 {
namespace internal {

// Safe default is no features.
unsigned CpuFeatures::supported_ = 0;
unsigned CpuFeatures::enabled_ = 0;
unsigned CpuFeatures::found_by_runtime_probing_ = 0;

void CpuFeatures::Probe() {
  // If the compiler is allowed to use vfp then we can use vfp too in our
  // code generation.
#if !defined(__arm__)
  // For the simulator=arm build, always use VFP since the arm simulator has
  // VFP support.
  supported_ |= 1u << VFP3;
#else
  if (Serializer::enabled()) {
    supported_ |= OS::CpuFeaturesImpliedByPlatform();
    return;  // No features if we might serialize.
  }

  if (OS::ArmCpuHasFeature(VFP3)) {
    // This implementation also sets the VFP flags if
    // runtime detection of VFP returns true.
    supported_ |= 1u << VFP3;
    found_by_runtime_probing_ |= 1u << VFP3;
  }
#endif
}


// -----------------------------------------------------------------------------
// Implementation of Register and CRegister

Register no_reg = { -1 };

Register r0  = {  0 };
Register r1  = {  1 };
Register r2  = {  2 };
Register r3  = {  3 };
Register r4  = {  4 };
Register r5  = {  5 };
Register r6  = {  6 };
Register r7  = {  7 };
Register r8  = {  8 };
Register r9  = {  9 };
Register r10 = { 10 };
Register fp  = { 11 };
Register ip  = { 12 };
Register sp  = { 13 };
Register lr  = { 14 };
Register pc  = { 15 };


CRegister no_creg = { -1 };

CRegister cr0  = {  0 };
CRegister cr1  = {  1 };
CRegister cr2  = {  2 };
CRegister cr3  = {  3 };
CRegister cr4  = {  4 };
CRegister cr5  = {  5 };
CRegister cr6  = {  6 };
CRegister cr7  = {  7 };
CRegister cr8  = {  8 };
CRegister cr9  = {  9 };
CRegister cr10 = { 10 };
CRegister cr11 = { 11 };
CRegister cr12 = { 12 };
CRegister cr13 = { 13 };
CRegister cr14 = { 14 };
CRegister cr15 = { 15 };

// Support for the VFP registers s0 to s31 (d0 to d15).
// Note that "sN:sM" is the same as "dN/2".
Register s0  = {  0 };
Register s1  = {  1 };
Register s2  = {  2 };
Register s3  = {  3 };
Register s4  = {  4 };
Register s5  = {  5 };
Register s6  = {  6 };
Register s7  = {  7 };
Register s8  = {  8 };
Register s9  = {  9 };
Register s10 = { 10 };
Register s11 = { 11 };
Register s12 = { 12 };
Register s13 = { 13 };
Register s14 = { 14 };
Register s15 = { 15 };
Register s16 = { 16 };
Register s17 = { 17 };
Register s18 = { 18 };
Register s19 = { 19 };
Register s20 = { 20 };
Register s21 = { 21 };
Register s22 = { 22 };
Register s23 = { 23 };
Register s24 = { 24 };
Register s25 = { 25 };
Register s26 = { 26 };
Register s27 = { 27 };
Register s28 = { 28 };
Register s29 = { 29 };
Register s30 = { 30 };
Register s31 = { 31 };

Register d0  = {  0 };
Register d1  = {  1 };
Register d2  = {  2 };
Register d3  = {  3 };
Register d4  = {  4 };
Register d5  = {  5 };
Register d6  = {  6 };
Register d7  = {  7 };
Register d8  = {  8 };
Register d9  = {  9 };
Register d10 = { 10 };
Register d11 = { 11 };
Register d12 = { 12 };
Register d13 = { 13 };
Register d14 = { 14 };
Register d15 = { 15 };

// -----------------------------------------------------------------------------
// Implementation of RelocInfo

const int RelocInfo::kApplyMask = 0;


void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
  // Patch the code at the current address with the supplied instructions.
  Instr* pc = reinterpret_cast<Instr*>(pc_);
  Instr* instr = reinterpret_cast<Instr*>(instructions);
  for (int i = 0; i < instruction_count; i++) {
    *(pc + i) = *(instr + i);
  }

  // Indicate that code has changed.
  CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
}


// Patch the code at the current PC with a call to the target address.
// Additional guard instructions can be added if required.
void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
  // Patch the code at the current address with a call to the target.
  UNIMPLEMENTED();
}


// -----------------------------------------------------------------------------
// Implementation of Operand and MemOperand
// See assembler-arm-inl.h for inlined constructors

Operand::Operand(Handle<Object> handle) {
  rm_ = no_reg;
  // Verify all Objects referred by code are NOT in new space.
  Object* obj = *handle;
  ASSERT(!Heap::InNewSpace(obj));
  if (obj->IsHeapObject()) {
    imm32_ = reinterpret_cast<intptr_t>(handle.location());
    rmode_ = RelocInfo::EMBEDDED_OBJECT;
  } else {
    // no relocation needed
    imm32_ =  reinterpret_cast<intptr_t>(obj);
    rmode_ = RelocInfo::NONE;
  }
}


Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
  ASSERT(is_uint5(shift_imm));
  ASSERT(shift_op != ROR || shift_imm != 0);  // use RRX if you mean it
  rm_ = rm;
  rs_ = no_reg;
  shift_op_ = shift_op;
  shift_imm_ = shift_imm & 31;
  if (shift_op == RRX) {
    // encoded as ROR with shift_imm == 0
    ASSERT(shift_imm == 0);
    shift_op_ = ROR;
    shift_imm_ = 0;
  }
}


Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
  ASSERT(shift_op != RRX);
  rm_ = rm;
  rs_ = no_reg;
  shift_op_ = shift_op;
  rs_ = rs;
}


MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
  rn_ = rn;
  rm_ = no_reg;
  offset_ = offset;
  am_ = am;
}

MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
  rn_ = rn;
  rm_ = rm;
  shift_op_ = LSL;
  shift_imm_ = 0;
  am_ = am;
}


MemOperand::MemOperand(Register rn, Register rm,
                       ShiftOp shift_op, int shift_imm, AddrMode am) {
  ASSERT(is_uint5(shift_imm));
  rn_ = rn;
  rm_ = rm;
  shift_op_ = shift_op;
  shift_imm_ = shift_imm & 31;
  am_ = am;
}


// -----------------------------------------------------------------------------
// Implementation of Assembler

// Instruction encoding bits
enum {
  H   = 1 << 5,   // halfword (or byte)
  S6  = 1 << 6,   // signed (or unsigned)
  L   = 1 << 20,  // load (or store)
  S   = 1 << 20,  // set condition code (or leave unchanged)
  W   = 1 << 21,  // writeback base register (or leave unchanged)
  A   = 1 << 21,  // accumulate in multiply instruction (or not)
  B   = 1 << 22,  // unsigned byte (or word)
  N   = 1 << 22,  // long (or short)
  U   = 1 << 23,  // positive (or negative) offset/index
  P   = 1 << 24,  // offset/pre-indexed addressing (or post-indexed addressing)
  I   = 1 << 25,  // immediate shifter operand (or not)

  B4  = 1 << 4,
  B5  = 1 << 5,
  B6  = 1 << 6,
  B7  = 1 << 7,
  B8  = 1 << 8,
  B9  = 1 << 9,
  B12 = 1 << 12,
  B16 = 1 << 16,
  B18 = 1 << 18,
  B19 = 1 << 19,
  B20 = 1 << 20,
  B21 = 1 << 21,
  B22 = 1 << 22,
  B23 = 1 << 23,
  B24 = 1 << 24,
  B25 = 1 << 25,
  B26 = 1 << 26,
  B27 = 1 << 27,

  // Instruction bit masks
  RdMask     = 15 << 12,  // in str instruction
  CondMask   = 15 << 28,
  CoprocessorMask = 15 << 8,
  OpCodeMask = 15 << 21,  // in data-processing instructions
  Imm24Mask  = (1 << 24) - 1,
  Off12Mask  = (1 << 12) - 1,
  // Reserved condition
  nv = 15 << 28
};


// add(sp, sp, 4) instruction (aka Pop())
static const Instr kPopInstruction =
    al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12;
// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
// register r is not encoded.
static const Instr kPushRegPattern =
    al | B26 | 4 | NegPreIndex | sp.code() * B16;
// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
// register r is not encoded.
static const Instr kPopRegPattern =
    al | B26 | L | 4 | PostIndex | sp.code() * B16;
// mov lr, pc
const Instr kMovLrPc = al | 13*B21 | pc.code() | lr.code() * B12;
// ldr pc, [pc, #XXX]
const Instr kLdrPCPattern = al | B26 | L | pc.code() * B16;

// spare_buffer_
static const int kMinimalBufferSize = 4*KB;
static byte* spare_buffer_ = NULL;

Assembler::Assembler(void* buffer, int buffer_size) {
  if (buffer == NULL) {
    // do our own buffer management
    if (buffer_size <= kMinimalBufferSize) {
      buffer_size = kMinimalBufferSize;

      if (spare_buffer_ != NULL) {
        buffer = spare_buffer_;
        spare_buffer_ = NULL;
      }
    }
    if (buffer == NULL) {
      buffer_ = NewArray<byte>(buffer_size);
    } else {
      buffer_ = static_cast<byte*>(buffer);
    }
    buffer_size_ = buffer_size;
    own_buffer_ = true;

  } else {
    // use externally provided buffer instead
    ASSERT(buffer_size > 0);
    buffer_ = static_cast<byte*>(buffer);
    buffer_size_ = buffer_size;
    own_buffer_ = false;
  }

  // setup buffer pointers
  ASSERT(buffer_ != NULL);
  pc_ = buffer_;
  reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
  num_prinfo_ = 0;
  next_buffer_check_ = 0;
  no_const_pool_before_ = 0;
  last_const_pool_end_ = 0;
  last_bound_pos_ = 0;
  current_statement_position_ = RelocInfo::kNoPosition;
  current_position_ = RelocInfo::kNoPosition;
  written_statement_position_ = current_statement_position_;
  written_position_ = current_position_;
}


Assembler::~Assembler() {
  if (own_buffer_) {
    if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
      spare_buffer_ = buffer_;
    } else {
      DeleteArray(buffer_);
    }
  }
}


void Assembler::GetCode(CodeDesc* desc) {
  // emit constant pool if necessary
  CheckConstPool(true, false);
  ASSERT(num_prinfo_ == 0);

  // setup desc
  desc->buffer = buffer_;
  desc->buffer_size = buffer_size_;
  desc->instr_size = pc_offset();
  desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
}


void Assembler::Align(int m) {
  ASSERT(m >= 4 && IsPowerOf2(m));
  while ((pc_offset() & (m - 1)) != 0) {
    nop();
  }
}


// Labels refer to positions in the (to be) generated code.
// There are bound, linked, and unused labels.
//
// Bound labels refer to known positions in the already
// generated code. pos() is the position the label refers to.
//
// Linked labels refer to unknown positions in the code
// to be generated; pos() is the position of the last
// instruction using the label.


// The link chain is terminated by a negative code position (must be aligned)
const int kEndOfChain = -4;


int Assembler::target_at(int pos)  {
  Instr instr = instr_at(pos);
  if ((instr & ~Imm24Mask) == 0) {
    // Emitted label constant, not part of a branch.
    return instr - (Code::kHeaderSize - kHeapObjectTag);
  }
  ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
  int imm26 = ((instr & Imm24Mask) << 8) >> 6;
  if ((instr & CondMask) == nv && (instr & B24) != 0)
    // blx uses bit 24 to encode bit 2 of imm26
    imm26 += 2;

  return pos + kPcLoadDelta + imm26;
}


void Assembler::target_at_put(int pos, int target_pos) {
  Instr instr = instr_at(pos);
  if ((instr & ~Imm24Mask) == 0) {
    ASSERT(target_pos == kEndOfChain || target_pos >= 0);
    // Emitted label constant, not part of a branch.
    // Make label relative to Code* of generated Code object.
    instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
    return;
  }
  int imm26 = target_pos - (pos + kPcLoadDelta);
  ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
  if ((instr & CondMask) == nv) {
    // blx uses bit 24 to encode bit 2 of imm26
    ASSERT((imm26 & 1) == 0);
    instr = (instr & ~(B24 | Imm24Mask)) | ((imm26 & 2) >> 1)*B24;
  } else {
    ASSERT((imm26 & 3) == 0);
    instr &= ~Imm24Mask;
  }
  int imm24 = imm26 >> 2;
  ASSERT(is_int24(imm24));
  instr_at_put(pos, instr | (imm24 & Imm24Mask));
}


void Assembler::print(Label* L) {
  if (L->is_unused()) {
    PrintF("unused label\n");
  } else if (L->is_bound()) {
    PrintF("bound label to %d\n", L->pos());
  } else if (L->is_linked()) {
    Label l = *L;
    PrintF("unbound label");
    while (l.is_linked()) {
      PrintF("@ %d ", l.pos());
      Instr instr = instr_at(l.pos());
      if ((instr & ~Imm24Mask) == 0) {
        PrintF("value\n");
      } else {
        ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx
        int cond = instr & CondMask;
        const char* b;
        const char* c;
        if (cond == nv) {
          b = "blx";
          c = "";
        } else {
          if ((instr & B24) != 0)
            b = "bl";
          else
            b = "b";

          switch (cond) {
            case eq: c = "eq"; break;
            case ne: c = "ne"; break;
            case hs: c = "hs"; break;
            case lo: c = "lo"; break;
            case mi: c = "mi"; break;
            case pl: c = "pl"; break;
            case vs: c = "vs"; break;
            case vc: c = "vc"; break;
            case hi: c = "hi"; break;
            case ls: c = "ls"; break;
            case ge: c = "ge"; break;
            case lt: c = "lt"; break;
            case gt: c = "gt"; break;
            case le: c = "le"; break;
            case al: c = ""; break;
            default:
              c = "";
              UNREACHABLE();
          }
        }
        PrintF("%s%s\n", b, c);
      }
      next(&l);
    }
  } else {
    PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
  }
}


void Assembler::bind_to(Label* L, int pos) {
  ASSERT(0 <= pos && pos <= pc_offset());  // must have a valid binding position
  while (L->is_linked()) {
    int fixup_pos = L->pos();
    next(L);  // call next before overwriting link with target at fixup_pos
    target_at_put(fixup_pos, pos);
  }
  L->bind_to(pos);

  // Keep track of the last bound label so we don't eliminate any instructions
  // before a bound label.
  if (pos > last_bound_pos_)
    last_bound_pos_ = pos;
}


void Assembler::link_to(Label* L, Label* appendix) {
  if (appendix->is_linked()) {
    if (L->is_linked()) {
      // append appendix to L's list
      int fixup_pos;
      int link = L->pos();
      do {
        fixup_pos = link;
        link = target_at(fixup_pos);
      } while (link > 0);
      ASSERT(link == kEndOfChain);
      target_at_put(fixup_pos, appendix->pos());
    } else {
      // L is empty, simply use appendix
      *L = *appendix;
    }
  }
  appendix->Unuse();  // appendix should not be used anymore
}


void Assembler::bind(Label* L) {
  ASSERT(!L->is_bound());  // label can only be bound once
  bind_to(L, pc_offset());
}


void Assembler::next(Label* L) {
  ASSERT(L->is_linked());
  int link = target_at(L->pos());
  if (link > 0) {
    L->link_to(link);
  } else {
    ASSERT(link == kEndOfChain);
    L->Unuse();
  }
}


// Low-level code emission routines depending on the addressing mode
static bool fits_shifter(uint32_t imm32,
                         uint32_t* rotate_imm,
                         uint32_t* immed_8,
                         Instr* instr) {
  // imm32 must be unsigned
  for (int rot = 0; rot < 16; rot++) {
    uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
    if ((imm8 <= 0xff)) {
      *rotate_imm = rot;
      *immed_8 = imm8;
      return true;
    }
  }
  // if the opcode is mov or mvn and if ~imm32 fits, change the opcode
  if (instr != NULL && (*instr & 0xd*B21) == 0xd*B21) {
    if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
      *instr ^= 0x2*B21;
      return true;
    }
  }
  return false;
}


// We have to use the temporary register for things that can be relocated even
// if they can be encoded in the ARM's 12 bits of immediate-offset instruction
// space.  There is no guarantee that the relocated location can be similarly
// encoded.
static bool MustUseIp(RelocInfo::Mode rmode) {
  if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
#ifdef DEBUG
    if (!Serializer::enabled()) {
      Serializer::TooLateToEnableNow();
    }
#endif
    return Serializer::enabled();
  } else if (rmode == RelocInfo::NONE) {
    return false;
  }
  return true;
}


void Assembler::addrmod1(Instr instr,
                         Register rn,
                         Register rd,
                         const Operand& x) {
  CheckBuffer();
  ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0);
  if (!x.rm_.is_valid()) {
    // immediate
    uint32_t rotate_imm;
    uint32_t immed_8;
    if (MustUseIp(x.rmode_) ||
        !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
      // The immediate operand cannot be encoded as a shifter operand, so load
      // it first to register ip and change the original instruction to use ip.
      // However, if the original instruction is a 'mov rd, x' (not setting the
      // condition code), then replace it with a 'ldr rd, [pc]'
      RecordRelocInfo(x.rmode_, x.imm32_);
      CHECK(!rn.is(ip));  // rn should never be ip, or will be trashed
      Condition cond = static_cast<Condition>(instr & CondMask);
      if ((instr & ~CondMask) == 13*B21) {  // mov, S not set
        ldr(rd, MemOperand(pc, 0), cond);
      } else {
        ldr(ip, MemOperand(pc, 0), cond);
        addrmod1(instr, rn, rd, Operand(ip));
      }
      return;
    }
    instr |= I | rotate_imm*B8 | immed_8;
  } else if (!x.rs_.is_valid()) {
    // immediate shift
    instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
  } else {
    // register shift
    ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
    instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
  }
  emit(instr | rn.code()*B16 | rd.code()*B12);
  if (rn.is(pc) || x.rm_.is(pc))
    // block constant pool emission for one instruction after reading pc
    BlockConstPoolBefore(pc_offset() + kInstrSize);
}


void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
  ASSERT((instr & ~(CondMask | B | L)) == B26);
  int am = x.am_;
  if (!x.rm_.is_valid()) {
    // immediate offset
    int offset_12 = x.offset_;
    if (offset_12 < 0) {
      offset_12 = -offset_12;
      am ^= U;
    }
    if (!is_uint12(offset_12)) {
      // immediate offset cannot be encoded, load it first to register ip
      // rn (and rd in a load) should never be ip, or will be trashed
      ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
      mov(ip, Operand(x.offset_), LeaveCC,
          static_cast<Condition>(instr & CondMask));
      addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
      return;
    }
    ASSERT(offset_12 >= 0);  // no masking needed
    instr |= offset_12;
  } else {
    // register offset (shift_imm_ and shift_op_ are 0) or scaled
    // register offset the constructors make sure than both shift_imm_
    // and shift_op_ are initialized
    ASSERT(!x.rm_.is(pc));
    instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
  }
  ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
  emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
}


void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
  ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7));
  ASSERT(x.rn_.is_valid());
  int am = x.am_;
  if (!x.rm_.is_valid()) {
    // immediate offset
    int offset_8 = x.offset_;
    if (offset_8 < 0) {
      offset_8 = -offset_8;
      am ^= U;
    }
    if (!is_uint8(offset_8)) {
      // immediate offset cannot be encoded, load it first to register ip
      // rn (and rd in a load) should never be ip, or will be trashed
      ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
      mov(ip, Operand(x.offset_), LeaveCC,
          static_cast<Condition>(instr & CondMask));
      addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
      return;
    }
    ASSERT(offset_8 >= 0);  // no masking needed
    instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
  } else if (x.shift_imm_ != 0) {
    // scaled register offset not supported, load index first
    // rn (and rd in a load) should never be ip, or will be trashed
    ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
    mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
        static_cast<Condition>(instr & CondMask));
    addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
    return;
  } else {
    // register offset
    ASSERT((am & (P|W)) == P || !x.rm_.is(pc));  // no pc index with writeback
    instr |= x.rm_.code();
  }
  ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
  emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
}


void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
  ASSERT((instr & ~(CondMask | P | U | W | L)) == B27);
  ASSERT(rl != 0);
  ASSERT(!rn.is(pc));
  emit(instr | rn.code()*B16 | rl);
}


void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
  // unindexed addressing is not encoded by this function
  ASSERT_EQ((B27 | B26),
            (instr & ~(CondMask | CoprocessorMask | P | U | N | W | L)));
  ASSERT(x.rn_.is_valid() && !x.rm_.is_valid());
  int am = x.am_;
  int offset_8 = x.offset_;
  ASSERT((offset_8 & 3) == 0);  // offset must be an aligned word offset
  offset_8 >>= 2;
  if (offset_8 < 0) {
    offset_8 = -offset_8;
    am ^= U;
  }
  ASSERT(is_uint8(offset_8));  // unsigned word offset must fit in a byte
  ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback

  // post-indexed addressing requires W == 1; different than in addrmod2/3
  if ((am & P) == 0)
    am |= W;

  ASSERT(offset_8 >= 0);  // no masking needed
  emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
}


int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
  int target_pos;
  if (L->is_bound()) {
    target_pos = L->pos();
  } else {
    if (L->is_linked()) {
      target_pos = L->pos();  // L's link
    } else {
      target_pos = kEndOfChain;
    }
    L->link_to(pc_offset());
  }

  // Block the emission of the constant pool, since the branch instruction must
  // be emitted at the pc offset recorded by the label
  BlockConstPoolBefore(pc_offset() + kInstrSize);
  return target_pos - (pc_offset() + kPcLoadDelta);
}


void Assembler::label_at_put(Label* L, int at_offset) {
  int target_pos;
  if (L->is_bound()) {
    target_pos = L->pos();
  } else {
    if (L->is_linked()) {
      target_pos = L->pos();  // L's link
    } else {
      target_pos = kEndOfChain;
    }
    L->link_to(at_offset);
    instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
  }
}


// Branch instructions
void Assembler::b(int branch_offset, Condition cond) {
  ASSERT((branch_offset & 3) == 0);
  int imm24 = branch_offset >> 2;
  ASSERT(is_int24(imm24));
  emit(cond | B27 | B25 | (imm24 & Imm24Mask));

  if (cond == al)
    // dead code is a good location to emit the constant pool
    CheckConstPool(false, false);
}


void Assembler::bl(int branch_offset, Condition cond) {
  ASSERT((branch_offset & 3) == 0);
  int imm24 = branch_offset >> 2;
  ASSERT(is_int24(imm24));
  emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask));
}


void Assembler::blx(int branch_offset) {  // v5 and above
  WriteRecordedPositions();
  ASSERT((branch_offset & 1) == 0);
  int h = ((branch_offset & 2) >> 1)*B24;
  int imm24 = branch_offset >> 2;
  ASSERT(is_int24(imm24));
  emit(15 << 28 | B27 | B25 | h | (imm24 & Imm24Mask));
}


void Assembler::blx(Register target, Condition cond) {  // v5 and above
  WriteRecordedPositions();
  ASSERT(!target.is(pc));
  emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | 3*B4 | target.code());
}


void Assembler::bx(Register target, Condition cond) {  // v5 and above, plus v4t
  WriteRecordedPositions();
  ASSERT(!target.is(pc));  // use of pc is actually allowed, but discouraged
  emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code());
}


// Data-processing instructions
void Assembler::and_(Register dst, Register src1, const Operand& src2,
                     SBit s, Condition cond) {
  addrmod1(cond | 0*B21 | s, src1, dst, src2);
}


void Assembler::eor(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | 1*B21 | s, src1, dst, src2);
}


void Assembler::sub(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | 2*B21 | s, src1, dst, src2);
}


void Assembler::rsb(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | 3*B21 | s, src1, dst, src2);
}


void Assembler::add(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | 4*B21 | s, src1, dst, src2);

  // Eliminate pattern: push(r), pop()
  //   str(src, MemOperand(sp, 4, NegPreIndex), al);
  //   add(sp, sp, Operand(kPointerSize));
  // Both instructions can be eliminated.
  int pattern_size = 2 * kInstrSize;
  if (FLAG_push_pop_elimination &&
      last_bound_pos_ <= (pc_offset() - pattern_size) &&
      reloc_info_writer.last_pc() <= (pc_ - pattern_size) &&
      // pattern
      instr_at(pc_ - 1 * kInstrSize) == kPopInstruction &&
      (instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) {
    pc_ -= 2 * kInstrSize;
    if (FLAG_print_push_pop_elimination) {
      PrintF("%x push(reg)/pop() eliminated\n", pc_offset());
    }
  }
}


void Assembler::adc(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | 5*B21 | s, src1, dst, src2);
}


void Assembler::sbc(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | 6*B21 | s, src1, dst, src2);
}


void Assembler::rsc(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | 7*B21 | s, src1, dst, src2);
}


void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
  addrmod1(cond | 8*B21 | S, src1, r0, src2);
}


void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
  addrmod1(cond | 9*B21 | S, src1, r0, src2);
}


void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
  addrmod1(cond | 10*B21 | S, src1, r0, src2);
}


void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
  addrmod1(cond | 11*B21 | S, src1, r0, src2);
}


void Assembler::orr(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | 12*B21 | s, src1, dst, src2);
}


void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
  if (dst.is(pc)) {
    WriteRecordedPositions();
  }
  addrmod1(cond | 13*B21 | s, r0, dst, src);
}


void Assembler::bic(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | 14*B21 | s, src1, dst, src2);
}


void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
  addrmod1(cond | 15*B21 | s, r0, dst, src);
}


// Multiply instructions
void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
                    SBit s, Condition cond) {
  ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
  emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
       src2.code()*B8 | B7 | B4 | src1.code());
}


void Assembler::mul(Register dst, Register src1, Register src2,
                    SBit s, Condition cond) {
  ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
  // dst goes in bits 16-19 for this instruction!
  emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
}


void Assembler::smlal(Register dstL,
                      Register dstH,
                      Register src1,
                      Register src2,
                      SBit s,
                      Condition cond) {
  ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
  ASSERT(!dstL.is(dstH));
  emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
       src2.code()*B8 | B7 | B4 | src1.code());
}


void Assembler::smull(Register dstL,
                      Register dstH,
                      Register src1,
                      Register src2,
                      SBit s,
                      Condition cond) {
  ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
  ASSERT(!dstL.is(dstH));
  emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
       src2.code()*B8 | B7 | B4 | src1.code());
}


void Assembler::umlal(Register dstL,
                      Register dstH,
                      Register src1,
                      Register src2,
                      SBit s,
                      Condition cond) {
  ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
  ASSERT(!dstL.is(dstH));
  emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
       src2.code()*B8 | B7 | B4 | src1.code());
}


void Assembler::umull(Register dstL,
                      Register dstH,
                      Register src1,
                      Register src2,
                      SBit s,
                      Condition cond) {
  ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
  ASSERT(!dstL.is(dstH));
  emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
       src2.code()*B8 | B7 | B4 | src1.code());
}


// Miscellaneous arithmetic instructions
void Assembler::clz(Register dst, Register src, Condition cond) {
  // v5 and above.
  ASSERT(!dst.is(pc) && !src.is(pc));
  emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
       15*B8 | B4 | src.code());
}


// Status register access instructions
void Assembler::mrs(Register dst, SRegister s, Condition cond) {
  ASSERT(!dst.is(pc));
  emit(cond | B24 | s | 15*B16 | dst.code()*B12);
}


void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
                    Condition cond) {
  ASSERT(fields >= B16 && fields < B20);  // at least one field set
  Instr instr;
  if (!src.rm_.is_valid()) {
    // immediate
    uint32_t rotate_imm;
    uint32_t immed_8;
    if (MustUseIp(src.rmode_) ||
        !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
      // immediate operand cannot be encoded, load it first to register ip
      RecordRelocInfo(src.rmode_, src.imm32_);
      ldr(ip, MemOperand(pc, 0), cond);
      msr(fields, Operand(ip), cond);
      return;
    }
    instr = I | rotate_imm*B8 | immed_8;
  } else {
    ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0);  // only rm allowed
    instr = src.rm_.code();
  }
  emit(cond | instr | B24 | B21 | fields | 15*B12);
}


// Load/Store instructions
void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
  if (dst.is(pc)) {
    WriteRecordedPositions();
  }
  addrmod2(cond | B26 | L, dst, src);

  // Eliminate pattern: push(r), pop(r)
  //   str(r, MemOperand(sp, 4, NegPreIndex), al)
  //   ldr(r, MemOperand(sp, 4, PostIndex), al)
  // Both instructions can be eliminated.
  int pattern_size = 2 * kInstrSize;
  if (FLAG_push_pop_elimination &&
      last_bound_pos_ <= (pc_offset() - pattern_size) &&
      reloc_info_writer.last_pc() <= (pc_ - pattern_size) &&
      // pattern
      instr_at(pc_ - 1 * kInstrSize) == (kPopRegPattern | dst.code() * B12) &&
      instr_at(pc_ - 2 * kInstrSize) == (kPushRegPattern | dst.code() * B12)) {
    pc_ -= 2 * kInstrSize;
    if (FLAG_print_push_pop_elimination) {
      PrintF("%x push/pop (same reg) eliminated\n", pc_offset());
    }
  }
}


void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
  addrmod2(cond | B26, src, dst);

  // Eliminate pattern: pop(), push(r)
  //     add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al
  // ->  str r, [sp, 0], al
  int pattern_size = 2 * kInstrSize;
  if (FLAG_push_pop_elimination &&
     last_bound_pos_ <= (pc_offset() - pattern_size) &&
     reloc_info_writer.last_pc() <= (pc_ - pattern_size) &&
     instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) &&
     instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) {
    pc_ -= 2 * kInstrSize;
    emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12);
    if (FLAG_print_push_pop_elimination) {
      PrintF("%x pop()/push(reg) eliminated\n", pc_offset());
    }
  }
}


void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
  addrmod2(cond | B26 | B | L, dst, src);
}


void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
  addrmod2(cond | B26 | B, src, dst);
}


void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
  addrmod3(cond | L | B7 | H | B4, dst, src);
}


void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
  addrmod3(cond | B7 | H | B4, src, dst);
}


void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
  addrmod3(cond | L | B7 | S6 | B4, dst, src);
}


void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
  addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
}


// Load/Store multiple instructions
void Assembler::ldm(BlockAddrMode am,
                    Register base,
                    RegList dst,
                    Condition cond) {
  // ABI stack constraint: ldmxx base, {..sp..}  base != sp  is not restartable
  ASSERT(base.is(sp) || (dst & sp.bit()) == 0);

  addrmod4(cond | B27 | am | L, base, dst);

  // emit the constant pool after a function return implemented by ldm ..{..pc}
  if (cond == al && (dst & pc.bit()) != 0) {
    // There is a slight chance that the ldm instruction was actually a call,
    // in which case it would be wrong to return into the constant pool; we
    // recognize this case by checking if the emission of the pool was blocked
    // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
    // the case, we emit a jump over the pool.
    CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
  }
}


void Assembler::stm(BlockAddrMode am,
                    Register base,
                    RegList src,
                    Condition cond) {
  addrmod4(cond | B27 | am, base, src);
}


// Semaphore instructions
void Assembler::swp(Register dst, Register src, Register base, Condition cond) {
  ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc));
  ASSERT(!dst.is(base) && !src.is(base));
  emit(cond | P | base.code()*B16 | dst.code()*B12 |
       B7 | B4 | src.code());
}


void Assembler::swpb(Register dst,
                     Register src,
                     Register base,
                     Condition cond) {
  ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc));
  ASSERT(!dst.is(base) && !src.is(base));
  emit(cond | P | B | base.code()*B16 | dst.code()*B12 |
       B7 | B4 | src.code());
}


// Exception-generating instructions and debugging support
void Assembler::stop(const char* msg) {
#if !defined(__arm__)
  // The simulator handles these special instructions and stops execution.
  emit(15 << 28 | ((intptr_t) msg));
#else
  // Just issue a simple break instruction for now. Alternatively we could use
  // the swi(0x9f0001) instruction on Linux.
  bkpt(0);
#endif
}


void Assembler::bkpt(uint32_t imm16) {  // v5 and above
  ASSERT(is_uint16(imm16));
  emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf));
}


void Assembler::swi(uint32_t imm24, Condition cond) {
  ASSERT(is_uint24(imm24));
  emit(cond | 15*B24 | imm24);
}


// Coprocessor instructions
void Assembler::cdp(Coprocessor coproc,
                    int opcode_1,
                    CRegister crd,
                    CRegister crn,
                    CRegister crm,
                    int opcode_2,
                    Condition cond) {
  ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2));
  emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
       crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
}


void Assembler::cdp2(Coprocessor coproc,
                     int opcode_1,
                     CRegister crd,
                     CRegister crn,
                     CRegister crm,
                     int opcode_2) {  // v5 and above
  cdp(coproc, opcode_1, crd, crn, crm, opcode_2, static_cast<Condition>(nv));
}


void Assembler::mcr(Coprocessor coproc,
                    int opcode_1,
                    Register rd,
                    CRegister crn,
                    CRegister crm,
                    int opcode_2,
                    Condition cond) {
  ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
  emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
       rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
}


void Assembler::mcr2(Coprocessor coproc,
                     int opcode_1,
                     Register rd,
                     CRegister crn,
                     CRegister crm,
                     int opcode_2) {  // v5 and above
  mcr(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv));
}


void Assembler::mrc(Coprocessor coproc,
                    int opcode_1,
                    Register rd,
                    CRegister crn,
                    CRegister crm,
                    int opcode_2,
                    Condition cond) {
  ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
  emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
       rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
}


void Assembler::mrc2(Coprocessor coproc,
                     int opcode_1,
                     Register rd,
                     CRegister crn,
                     CRegister crm,
                     int opcode_2) {  // v5 and above
  mrc(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv));
}


void Assembler::ldc(Coprocessor coproc,
                    CRegister crd,
                    const MemOperand& src,
                    LFlag l,
                    Condition cond) {
  addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
}


void Assembler::ldc(Coprocessor coproc,
                    CRegister crd,
                    Register rn,
                    int option,
                    LFlag l,
                    Condition cond) {
  // unindexed addressing
  ASSERT(is_uint8(option));
  emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
       coproc*B8 | (option & 255));
}


void Assembler::ldc2(Coprocessor coproc,
                     CRegister crd,
                     const MemOperand& src,
                     LFlag l) {  // v5 and above
  ldc(coproc, crd, src, l, static_cast<Condition>(nv));
}


void Assembler::ldc2(Coprocessor coproc,
                     CRegister crd,
                     Register rn,
                     int option,
                     LFlag l) {  // v5 and above
  ldc(coproc, crd, rn, option, l, static_cast<Condition>(nv));
}


void Assembler::stc(Coprocessor coproc,
                    CRegister crd,
                    const MemOperand& dst,
                    LFlag l,
                    Condition cond) {
  addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst);
}


void Assembler::stc(Coprocessor coproc,
                    CRegister crd,
                    Register rn,
                    int option,
                    LFlag l,
                    Condition cond) {
  // unindexed addressing
  ASSERT(is_uint8(option));
  emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 |
       coproc*B8 | (option & 255));
}


void Assembler::stc2(Coprocessor
                     coproc, CRegister crd,
                     const MemOperand& dst,
                     LFlag l) {  // v5 and above
  stc(coproc, crd, dst, l, static_cast<Condition>(nv));
}


void Assembler::stc2(Coprocessor coproc,
                     CRegister crd,
                     Register rn,
                     int option,
                     LFlag l) {  // v5 and above
  stc(coproc, crd, rn, option, l, static_cast<Condition>(nv));
}


// Support for VFP.
void Assembler::fmdrr(const Register dst,
                      const Register src1,
                      const Register src2,
                      const SBit s,
                      const Condition cond) {
  // Dm = <Rt,Rt2>.
  // Instruction details available in ARM DDI 0406A, A8-646.
  // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
  // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
  ASSERT(CpuFeatures::IsEnabled(VFP3));
  ASSERT(!src1.is(pc) && !src2.is(pc));
  emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
       src1.code()*B12 | 0xB*B8 | B4 | dst.code());
}


void Assembler::fmrrd(const Register dst1,
                      const Register dst2,
                      const Register src,
                      const SBit s,
                      const Condition cond) {
  // <Rt,Rt2> = Dm.
  // Instruction details available in ARM DDI 0406A, A8-646.
  // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
  // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
  ASSERT(CpuFeatures::IsEnabled(VFP3));
  ASSERT(!dst1.is(pc) && !dst2.is(pc));
  emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
       dst1.code()*B12 | 0xB*B8 | B4 | src.code());
}


void Assembler::fmsr(const Register dst,
                     const Register src,
                     const SBit s,
                     const Condition cond) {
  // Sn = Rt.
  // Instruction details available in ARM DDI 0406A, A8-642.
  // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
  // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
  ASSERT(CpuFeatures::IsEnabled(VFP3));
  ASSERT(!src.is(pc));
  emit(cond | 0xE*B24 | (dst.code() >> 1)*B16 |
       src.code()*B12 | 0xA*B8 | (0x1 & dst.code())*B7 | B4);
}


void Assembler::fmrs(const Register dst,
                     const Register src,
                     const SBit s,
                     const Condition cond) {
  // Rt = Sn.
  // Instruction details available in ARM DDI 0406A, A8-642.
  // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
  // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
  ASSERT(CpuFeatures::IsEnabled(VFP3));
  ASSERT(!dst.is(pc));
  emit(cond | 0xE*B24 | B20 | (src.code() >> 1)*B16 |
       dst.code()*B12 | 0xA*B8 | (0x1 & src.code())*B7 | B4);
}


void Assembler::fsitod(const Register dst,
                       const Register src,
                       const SBit s,
                       const Condition cond) {
  // Dd = Sm (integer in Sm converted to IEEE 64-bit doubles in Dd).
  // Instruction details available in ARM DDI 0406A, A8-576.
  // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) |opc2=000(18-16) |
  // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=1 | 1(6) | M=?(5) | 0(4) | Vm(3-0)
  ASSERT(CpuFeatures::IsEnabled(VFP3));
  emit(cond | 0xE*B24 | B23 | 0x3*B20 | B19 |
       dst.code()*B12 | 0x5*B9 | B8 | B7 | B6 |
       (0x1 & src.code())*B5 | (src.code() >> 1));
}


void Assembler::ftosid(const Register dst,
                       const Register src,
                       const SBit s,
                       const Condition cond) {
  // Sd = Dm (IEEE 64-bit doubles in Dm converted to 32 bit integer in Sd).
  // Instruction details available in ARM DDI 0406A, A8-576.
  // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) | opc2=101(18-16)|
  // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=? | 1(6) | M=?(5) | 0(4) | Vm(3-0)
  ASSERT(CpuFeatures::IsEnabled(VFP3));
  emit(cond | 0xE*B24 | B23 |(0x1 & dst.code())*B22 |
       0x3*B20 | B19 | 0x5*B16 | (dst.code() >> 1)*B12 |
       0x5*B9 | B8 | B7 | B6 | src.code());
}


void Assembler::faddd(const Register dst,
                      const  Register src1,
                      const  Register src2,
                      const  SBit s,
                      const  Condition cond) {
  // Dd = faddd(Dn, Dm) double precision floating point addition.
  // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
  // Instruction details available in ARM DDI 0406A, A8-536.
  // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
  // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
  ASSERT(CpuFeatures::IsEnabled(VFP3));
  emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
       dst.code()*B12 | 0x5*B9 | B8 | src2.code());
}


void Assembler::fsubd(const Register dst,
                      const  Register src1,
                      const  Register src2,
                      const  SBit s,
                      const  Condition cond) {
  // Dd = fsubd(Dn, Dm) double precision floating point subtraction.
  // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
  // Instruction details available in ARM DDI 0406A, A8-784.
  // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
  // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 1(6) | M=?(5) | 0(4) | Vm(3-0)
  ASSERT(CpuFeatures::IsEnabled(VFP3));
  emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
       dst.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
}


void Assembler::fmuld(const Register dst,
                      const  Register src1,
                      const  Register src2,
                      const  SBit s,
                      const  Condition cond) {
  // Dd = fmuld(Dn, Dm) double precision floating point multiplication.
  // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
  // Instruction details available in ARM DDI 0406A, A8-784.
  // cond(31-28) | 11100(27-23)| D=?(22) | 10(21-20) | Vn(19-16) |
  // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
  ASSERT(CpuFeatures::IsEnabled(VFP3));
  emit(cond | 0xE*B24 | 0x2*B20 | src1.code()*B16 |
       dst.code()*B12 | 0x5*B9 | B8 | src2.code());
}


void Assembler::fdivd(const Register dst,
                      const  Register src1,
                      const  Register src2,
                      const  SBit s,
                      const  Condition cond) {
  // Dd = fdivd(Dn, Dm) double precision floating point division.
  // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
  // Instruction details available in ARM DDI 0406A, A8-584.
  // cond(31-28) | 11101(27-23)| D=?(22) | 00(21-20) | Vn(19-16) |
  // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=? | 0(6) | M=?(5) | 0(4) | Vm(3-0)
  ASSERT(CpuFeatures::IsEnabled(VFP3));
  emit(cond | 0xE*B24 | B23 | src1.code()*B16 |
       dst.code()*B12 | 0x5*B9 | B8 | src2.code());
}


void Assembler::fcmp(const Register src1,
                     const Register src2,
                     const SBit s,
                     const Condition cond) {
  // vcmp(Dd, Dm) double precision floating point comparison.
  // Instruction details available in ARM DDI 0406A, A8-570.
  // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0100 (19-16) |
  // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=? | 1(6) | M(5)=? | 0(4) | Vm(3-0)
  ASSERT(CpuFeatures::IsEnabled(VFP3));
  emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 |
       src1.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
}


void Assembler::vmrs(Register dst, Condition cond) {
  // Instruction details available in ARM DDI 0406A, A8-652.
  // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
  // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
  ASSERT(CpuFeatures::IsEnabled(VFP3));
  emit(cond | 0xE*B24 | 0xF*B20 |  B16 |
       dst.code()*B12 | 0xA*B8 | B4);
}


// Pseudo instructions
void Assembler::lea(Register dst,
                    const MemOperand& x,
                    SBit s,
                    Condition cond) {
  int am = x.am_;
  if (!x.rm_.is_valid()) {
    // immediate offset
    if ((am & P) == 0)  // post indexing
      mov(dst, Operand(x.rn_), s, cond);
    else if ((am & U) == 0)  // negative indexing
      sub(dst, x.rn_, Operand(x.offset_), s, cond);
    else
      add(dst, x.rn_, Operand(x.offset_), s, cond);
  } else {
    // Register offset (shift_imm_ and shift_op_ are 0) or scaled
    // register offset the constructors make sure than both shift_imm_
    // and shift_op_ are initialized.
    ASSERT(!x.rm_.is(pc));
    if ((am & P) == 0)  // post indexing
      mov(dst, Operand(x.rn_), s, cond);
    else if ((am & U) == 0)  // negative indexing
      sub(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond);
    else
      add(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond);
  }
}


bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
  uint32_t dummy1;
  uint32_t dummy2;
  return fits_shifter(imm32, &dummy1, &dummy2, NULL);
}


void Assembler::BlockConstPoolFor(int instructions) {
  BlockConstPoolBefore(pc_offset() + instructions * kInstrSize);
}


// Debugging
void Assembler::RecordJSReturn() {
  WriteRecordedPositions();
  CheckBuffer();
  RecordRelocInfo(RelocInfo::JS_RETURN);
}


void Assembler::RecordComment(const char* msg) {
  if (FLAG_debug_code) {
    CheckBuffer();
    RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
  }
}


void Assembler::RecordPosition(int pos) {
  if (pos == RelocInfo::kNoPosition) return;
  ASSERT(pos >= 0);
  current_position_ = pos;
}


void Assembler::RecordStatementPosition(int pos) {
  if (pos == RelocInfo::kNoPosition) return;
  ASSERT(pos >= 0);
  current_statement_position_ = pos;
}


void Assembler::WriteRecordedPositions() {
  // Write the statement position if it is different from what was written last
  // time.
  if (current_statement_position_ != written_statement_position_) {
    CheckBuffer();
    RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_);
    written_statement_position_ = current_statement_position_;
  }

  // Write the position if it is different from what was written last time and
  // also different from the written statement position.
  if (current_position_ != written_position_ &&
      current_position_ != written_statement_position_) {
    CheckBuffer();
    RecordRelocInfo(RelocInfo::POSITION, current_position_);
    written_position_ = current_position_;
  }
}


void Assembler::GrowBuffer() {
  if (!own_buffer_) FATAL("external code buffer is too small");

  // compute new buffer size
  CodeDesc desc;  // the new buffer
  if (buffer_size_ < 4*KB) {
    desc.buffer_size = 4*KB;
  } else if (buffer_size_ < 1*MB) {
    desc.buffer_size = 2*buffer_size_;
  } else {
    desc.buffer_size = buffer_size_ + 1*MB;
  }
  CHECK_GT(desc.buffer_size, 0);  // no overflow

  // setup new buffer
  desc.buffer = NewArray<byte>(desc.buffer_size);

  desc.instr_size = pc_offset();
  desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();

  // copy the data
  int pc_delta = desc.buffer - buffer_;
  int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
  memmove(desc.buffer, buffer_, desc.instr_size);
  memmove(reloc_info_writer.pos() + rc_delta,
          reloc_info_writer.pos(), desc.reloc_size);

  // switch buffers
  DeleteArray(buffer_);
  buffer_ = desc.buffer;
  buffer_size_ = desc.buffer_size;
  pc_ += pc_delta;
  reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
                               reloc_info_writer.last_pc() + pc_delta);

  // none of our relocation types are pc relative pointing outside the code
  // buffer nor pc absolute pointing inside the code buffer, so there is no need
  // to relocate any emitted relocation entries

  // relocate pending relocation entries
  for (int i = 0; i < num_prinfo_; i++) {
    RelocInfo& rinfo = prinfo_[i];
    ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
           rinfo.rmode() != RelocInfo::POSITION);
    if (rinfo.rmode() != RelocInfo::JS_RETURN) {
      rinfo.set_pc(rinfo.pc() + pc_delta);
    }
  }
}


void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
  RelocInfo rinfo(pc_, rmode, data);  // we do not try to reuse pool constants
  if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) {
    // Adjust code for new modes
    ASSERT(RelocInfo::IsJSReturn(rmode)
           || RelocInfo::IsComment(rmode)
           || RelocInfo::IsPosition(rmode));
    // these modes do not need an entry in the constant pool
  } else {
    ASSERT(num_prinfo_ < kMaxNumPRInfo);
    prinfo_[num_prinfo_++] = rinfo;
    // Make sure the constant pool is not emitted in place of the next
    // instruction for which we just recorded relocation info
    BlockConstPoolBefore(pc_offset() + kInstrSize);
  }
  if (rinfo.rmode() != RelocInfo::NONE) {
    // Don't record external references unless the heap will be serialized.
    if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
#ifdef DEBUG
      if (!Serializer::enabled()) {
        Serializer::TooLateToEnableNow();
      }
#endif
      if (!Serializer::enabled() && !FLAG_debug_code) {
        return;
      }
    }
    ASSERT(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
    reloc_info_writer.Write(&rinfo);
  }
}


void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
  // Calculate the offset of the next check. It will be overwritten
  // when a const pool is generated or when const pools are being
  // blocked for a specific range.
  next_buffer_check_ = pc_offset() + kCheckConstInterval;

  // There is nothing to do if there are no pending relocation info entries
  if (num_prinfo_ == 0) return;

  // We emit a constant pool at regular intervals of about kDistBetweenPools
  // or when requested by parameter force_emit (e.g. after each function).
  // We prefer not to emit a jump unless the max distance is reached or if we
  // are running low on slots, which can happen if a lot of constants are being
  // emitted (e.g. --debug-code and many static references).
  int dist = pc_offset() - last_const_pool_end_;
  if (!force_emit && dist < kMaxDistBetweenPools &&
      (require_jump || dist < kDistBetweenPools) &&
      // TODO(1236125): Cleanup the "magic" number below. We know that
      // the code generation will test every kCheckConstIntervalInst.
      // Thus we are safe as long as we generate less than 7 constant
      // entries per instruction.
      (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) {
    return;
  }

  // If we did not return by now, we need to emit the constant pool soon.

  // However, some small sequences of instructions must not be broken up by the
  // insertion of a constant pool; such sequences are protected by setting
  // no_const_pool_before_, which is checked here. Also, recursive calls to
  // CheckConstPool are blocked by no_const_pool_before_.
  if (pc_offset() < no_const_pool_before_) {
    // Emission is currently blocked; make sure we try again as soon as possible
    next_buffer_check_ = no_const_pool_before_;

    // Something is wrong if emission is forced and blocked at the same time
    ASSERT(!force_emit);
    return;
  }

  int jump_instr = require_jump ? kInstrSize : 0;

  // Check that the code buffer is large enough before emitting the constant
  // pool and relocation information (include the jump over the pool and the
  // constant pool marker).
  int max_needed_space =
      jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize);
  while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer();

  // Block recursive calls to CheckConstPool
  BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize +
                       num_prinfo_*kInstrSize);
  // Don't bother to check for the emit calls below.
  next_buffer_check_ = no_const_pool_before_;

  // Emit jump over constant pool if necessary
  Label after_pool;
  if (require_jump) b(&after_pool);

  RecordComment("[ Constant Pool");

  // Put down constant pool marker
  // "Undefined instruction" as specified by A3.1 Instruction set encoding
  emit(0x03000000 | num_prinfo_);

  // Emit constant pool entries
  for (int i = 0; i < num_prinfo_; i++) {
    RelocInfo& rinfo = prinfo_[i];
    ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
           rinfo.rmode() != RelocInfo::POSITION &&
           rinfo.rmode() != RelocInfo::STATEMENT_POSITION);
    Instr instr = instr_at(rinfo.pc());

    // Instruction to patch must be a ldr/str [pc, #offset]
    // P and U set, B and W clear, Rn == pc, offset12 still 0
    ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) ==
           (2*B25 | P | U | pc.code()*B16));
    int delta = pc_ - rinfo.pc() - 8;
    ASSERT(delta >= -4);  // instr could be ldr pc, [pc, #-4] followed by targ32
    if (delta < 0) {
      instr &= ~U;
      delta = -delta;
    }
    ASSERT(is_uint12(delta));
    instr_at_put(rinfo.pc(), instr + delta);
    emit(rinfo.data());
  }
  num_prinfo_ = 0;
  last_const_pool_end_ = pc_offset();

  RecordComment("]");

  if (after_pool.is_linked()) {
    bind(&after_pool);
  }

  // Since a constant pool was just emitted, move the check offset forward by
  // the standard interval.
  next_buffer_check_ = pc_offset() + kCheckConstInterval;
}


} }  // namespace v8::internal