1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_ARM64
#include "src/codegen.h"
#include "src/debug.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
bool BreakLocationIterator::IsDebugBreakAtReturn() {
return Debug::IsDebugBreakAtReturn(rinfo());
}
void BreakLocationIterator::SetDebugBreakAtReturn() {
// Patch the code emitted by FullCodeGenerator::EmitReturnSequence, changing
// the return from JS function sequence from
// mov sp, fp
// ldp fp, lr, [sp] #16
// lrd ip0, [pc, #(3 * kInstructionSize)]
// add sp, sp, ip0
// ret
// <number of paramters ...
// ... plus one (64 bits)>
// to a call to the debug break return code.
// ldr ip0, [pc, #(3 * kInstructionSize)]
// blr ip0
// hlt kHltBadCode @ code should not return, catch if it does.
// <debug break return code ...
// ... entry point address (64 bits)>
// The patching code must not overflow the space occupied by the return
// sequence.
STATIC_ASSERT(Assembler::kJSRetSequenceInstructions >= 5);
PatchingAssembler patcher(reinterpret_cast<Instruction*>(rinfo()->pc()), 5);
byte* entry =
debug_info_->GetIsolate()->builtins()->Return_DebugBreak()->entry();
// The first instruction of a patched return sequence must be a load literal
// loading the address of the debug break return code.
patcher.ldr_pcrel(ip0, (3 * kInstructionSize) >> kLoadLiteralScaleLog2);
// TODO(all): check the following is correct.
// The debug break return code will push a frame and call statically compiled
// code. By using blr, even though control will not return after the branch,
// this call site will be registered in the frame (lr being saved as the pc
// of the next instruction to execute for this frame). The debugger can now
// iterate on the frames to find call to debug break return code.
patcher.blr(ip0);
patcher.hlt(kHltBadCode);
patcher.dc64(reinterpret_cast<int64_t>(entry));
}
void BreakLocationIterator::ClearDebugBreakAtReturn() {
// Reset the code emitted by EmitReturnSequence to its original state.
rinfo()->PatchCode(original_rinfo()->pc(),
Assembler::kJSRetSequenceInstructions);
}
bool Debug::IsDebugBreakAtReturn(RelocInfo* rinfo) {
DCHECK(RelocInfo::IsJSReturn(rinfo->rmode()));
return rinfo->IsPatchedReturnSequence();
}
bool BreakLocationIterator::IsDebugBreakAtSlot() {
DCHECK(IsDebugBreakSlot());
// Check whether the debug break slot instructions have been patched.
return rinfo()->IsPatchedDebugBreakSlotSequence();
}
void BreakLocationIterator::SetDebugBreakAtSlot() {
// Patch the code emitted by DebugCodegen::GenerateSlots, changing the debug
// break slot code from
// mov x0, x0 @ nop DEBUG_BREAK_NOP
// mov x0, x0 @ nop DEBUG_BREAK_NOP
// mov x0, x0 @ nop DEBUG_BREAK_NOP
// mov x0, x0 @ nop DEBUG_BREAK_NOP
// to a call to the debug slot code.
// ldr ip0, [pc, #(2 * kInstructionSize)]
// blr ip0
// <debug break slot code ...
// ... entry point address (64 bits)>
// TODO(all): consider adding a hlt instruction after the blr as we don't
// expect control to return here. This implies increasing
// kDebugBreakSlotInstructions to 5 instructions.
// The patching code must not overflow the space occupied by the return
// sequence.
STATIC_ASSERT(Assembler::kDebugBreakSlotInstructions >= 4);
PatchingAssembler patcher(reinterpret_cast<Instruction*>(rinfo()->pc()), 4);
byte* entry =
debug_info_->GetIsolate()->builtins()->Slot_DebugBreak()->entry();
// The first instruction of a patched debug break slot must be a load literal
// loading the address of the debug break slot code.
patcher.ldr_pcrel(ip0, (2 * kInstructionSize) >> kLoadLiteralScaleLog2);
// TODO(all): check the following is correct.
// The debug break slot code will push a frame and call statically compiled
// code. By using blr, event hough control will not return after the branch,
// this call site will be registered in the frame (lr being saved as the pc
// of the next instruction to execute for this frame). The debugger can now
// iterate on the frames to find call to debug break slot code.
patcher.blr(ip0);
patcher.dc64(reinterpret_cast<int64_t>(entry));
}
void BreakLocationIterator::ClearDebugBreakAtSlot() {
DCHECK(IsDebugBreakSlot());
rinfo()->PatchCode(original_rinfo()->pc(),
Assembler::kDebugBreakSlotInstructions);
}
static void Generate_DebugBreakCallHelper(MacroAssembler* masm,
RegList object_regs,
RegList non_object_regs,
Register scratch) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Load padding words on stack.
__ Mov(scratch, Smi::FromInt(LiveEdit::kFramePaddingValue));
__ PushMultipleTimes(scratch, LiveEdit::kFramePaddingInitialSize);
__ Mov(scratch, Smi::FromInt(LiveEdit::kFramePaddingInitialSize));
__ Push(scratch);
// Any live values (object_regs and non_object_regs) in caller-saved
// registers (or lr) need to be stored on the stack so that their values are
// safely preserved for a call into C code.
//
// Also:
// * object_regs may be modified during the C code by the garbage
// collector. Every object register must be a valid tagged pointer or
// SMI.
//
// * non_object_regs will be converted to SMIs so that the garbage
// collector doesn't try to interpret them as pointers.
//
// TODO(jbramley): Why can't this handle callee-saved registers?
DCHECK((~kCallerSaved.list() & object_regs) == 0);
DCHECK((~kCallerSaved.list() & non_object_regs) == 0);
DCHECK((object_regs & non_object_regs) == 0);
DCHECK((scratch.Bit() & object_regs) == 0);
DCHECK((scratch.Bit() & non_object_regs) == 0);
DCHECK((masm->TmpList()->list() & (object_regs | non_object_regs)) == 0);
STATIC_ASSERT(kSmiValueSize == 32);
CPURegList non_object_list =
CPURegList(CPURegister::kRegister, kXRegSizeInBits, non_object_regs);
while (!non_object_list.IsEmpty()) {
// Store each non-object register as two SMIs.
Register reg = Register(non_object_list.PopLowestIndex());
__ Lsr(scratch, reg, 32);
__ SmiTagAndPush(scratch, reg);
// Stack:
// jssp[12]: reg[63:32]
// jssp[8]: 0x00000000 (SMI tag & padding)
// jssp[4]: reg[31:0]
// jssp[0]: 0x00000000 (SMI tag & padding)
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(static_cast<unsigned>(kSmiShift) == kWRegSizeInBits);
}
if (object_regs != 0) {
__ PushXRegList(object_regs);
}
#ifdef DEBUG
__ RecordComment("// Calling from debug break to runtime - come in - over");
#endif
__ Mov(x0, 0); // No arguments.
__ Mov(x1, ExternalReference::debug_break(masm->isolate()));
CEntryStub stub(masm->isolate(), 1);
__ CallStub(&stub);
// Restore the register values from the expression stack.
if (object_regs != 0) {
__ PopXRegList(object_regs);
}
non_object_list =
CPURegList(CPURegister::kRegister, kXRegSizeInBits, non_object_regs);
while (!non_object_list.IsEmpty()) {
// Load each non-object register from two SMIs.
// Stack:
// jssp[12]: reg[63:32]
// jssp[8]: 0x00000000 (SMI tag & padding)
// jssp[4]: reg[31:0]
// jssp[0]: 0x00000000 (SMI tag & padding)
Register reg = Register(non_object_list.PopHighestIndex());
__ Pop(scratch, reg);
__ Bfxil(reg, scratch, 32, 32);
}
// Don't bother removing padding bytes pushed on the stack
// as the frame is going to be restored right away.
// Leave the internal frame.
}
// Now that the break point has been handled, resume normal execution by
// jumping to the target address intended by the caller and that was
// overwritten by the address of DebugBreakXXX.
ExternalReference after_break_target =
ExternalReference::debug_after_break_target_address(masm->isolate());
__ Mov(scratch, after_break_target);
__ Ldr(scratch, MemOperand(scratch));
__ Br(scratch);
}
void DebugCodegen::GenerateCallICStubDebugBreak(MacroAssembler* masm) {
// Register state for CallICStub
// ----------- S t a t e -------------
// -- x1 : function
// -- x3 : slot in feedback array
// -----------------------------------
Generate_DebugBreakCallHelper(masm, x1.Bit() | x3.Bit(), 0, x10);
}
void DebugCodegen::GenerateLoadICDebugBreak(MacroAssembler* masm) {
// Calling convention for IC load (from ic-arm.cc).
Register receiver = LoadDescriptor::ReceiverRegister();
Register name = LoadDescriptor::NameRegister();
Generate_DebugBreakCallHelper(masm, receiver.Bit() | name.Bit(), 0, x10);
}
void DebugCodegen::GenerateStoreICDebugBreak(MacroAssembler* masm) {
// Calling convention for IC store (from ic-arm64.cc).
Register receiver = StoreDescriptor::ReceiverRegister();
Register name = StoreDescriptor::NameRegister();
Register value = StoreDescriptor::ValueRegister();
Generate_DebugBreakCallHelper(
masm, receiver.Bit() | name.Bit() | value.Bit(), 0, x10);
}
void DebugCodegen::GenerateKeyedLoadICDebugBreak(MacroAssembler* masm) {
// Calling convention for keyed IC load (from ic-arm.cc).
GenerateLoadICDebugBreak(masm);
}
void DebugCodegen::GenerateKeyedStoreICDebugBreak(MacroAssembler* masm) {
// Calling convention for IC keyed store call (from ic-arm64.cc).
Register receiver = StoreDescriptor::ReceiverRegister();
Register name = StoreDescriptor::NameRegister();
Register value = StoreDescriptor::ValueRegister();
Generate_DebugBreakCallHelper(
masm, receiver.Bit() | name.Bit() | value.Bit(), 0, x10);
}
void DebugCodegen::GenerateCompareNilICDebugBreak(MacroAssembler* masm) {
// Register state for CompareNil IC
// ----------- S t a t e -------------
// -- r0 : value
// -----------------------------------
Generate_DebugBreakCallHelper(masm, x0.Bit(), 0, x10);
}
void DebugCodegen::GenerateReturnDebugBreak(MacroAssembler* masm) {
// In places other than IC call sites it is expected that r0 is TOS which
// is an object - this is not generally the case so this should be used with
// care.
Generate_DebugBreakCallHelper(masm, x0.Bit(), 0, x10);
}
void DebugCodegen::GenerateCallFunctionStubDebugBreak(MacroAssembler* masm) {
// Register state for CallFunctionStub (from code-stubs-arm64.cc).
// ----------- S t a t e -------------
// -- x1 : function
// -----------------------------------
Generate_DebugBreakCallHelper(masm, x1.Bit(), 0, x10);
}
void DebugCodegen::GenerateCallConstructStubDebugBreak(MacroAssembler* masm) {
// Calling convention for CallConstructStub (from code-stubs-arm64.cc).
// ----------- S t a t e -------------
// -- x0 : number of arguments (not smi)
// -- x1 : constructor function
// -----------------------------------
Generate_DebugBreakCallHelper(masm, x1.Bit(), x0.Bit(), x10);
}
void DebugCodegen::GenerateCallConstructStubRecordDebugBreak(
MacroAssembler* masm) {
// Calling convention for CallConstructStub (from code-stubs-arm64.cc).
// ----------- S t a t e -------------
// -- x0 : number of arguments (not smi)
// -- x1 : constructor function
// -- x2 : feedback array
// -- x3 : feedback slot (smi)
// -----------------------------------
Generate_DebugBreakCallHelper(
masm, x1.Bit() | x2.Bit() | x3.Bit(), x0.Bit(), x10);
}
void DebugCodegen::GenerateSlot(MacroAssembler* masm) {
// Generate enough nop's to make space for a call instruction. Avoid emitting
// the constant pool in the debug break slot code.
InstructionAccurateScope scope(masm, Assembler::kDebugBreakSlotInstructions);
__ RecordDebugBreakSlot();
for (int i = 0; i < Assembler::kDebugBreakSlotInstructions; i++) {
__ nop(Assembler::DEBUG_BREAK_NOP);
}
}
void DebugCodegen::GenerateSlotDebugBreak(MacroAssembler* masm) {
// In the places where a debug break slot is inserted no registers can contain
// object pointers.
Generate_DebugBreakCallHelper(masm, 0, 0, x10);
}
void DebugCodegen::GeneratePlainReturnLiveEdit(MacroAssembler* masm) {
__ Ret();
}
void DebugCodegen::GenerateFrameDropperLiveEdit(MacroAssembler* masm) {
ExternalReference restarter_frame_function_slot =
ExternalReference::debug_restarter_frame_function_pointer_address(
masm->isolate());
UseScratchRegisterScope temps(masm);
Register scratch = temps.AcquireX();
__ Mov(scratch, restarter_frame_function_slot);
__ Str(xzr, MemOperand(scratch));
// We do not know our frame height, but set sp based on fp.
__ Sub(masm->StackPointer(), fp, kPointerSize);
__ AssertStackConsistency();
__ Pop(x1, fp, lr); // Function, Frame, Return address.
// Load context from the function.
__ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
// Get function code.
__ Ldr(scratch, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(scratch, FieldMemOperand(scratch, SharedFunctionInfo::kCodeOffset));
__ Add(scratch, scratch, Code::kHeaderSize - kHeapObjectTag);
// Re-run JSFunction, x1 is function, cp is context.
__ Br(scratch);
}
const bool LiveEdit::kFrameDropperSupported = true;
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM64
|