1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
|
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
#define V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
#include <vector>
#include "src/bailout-reason.h"
#include "src/globals.h"
#include "src/arm64/assembler-arm64-inl.h"
#include "src/base/bits.h"
// Simulator specific helpers.
#if USE_SIMULATOR
// TODO(all): If possible automatically prepend an indicator like
// UNIMPLEMENTED or LOCATION.
#define ASM_UNIMPLEMENTED(message) \
__ Debug(message, __LINE__, NO_PARAM)
#define ASM_UNIMPLEMENTED_BREAK(message) \
__ Debug(message, __LINE__, \
FLAG_ignore_asm_unimplemented_break ? NO_PARAM : BREAK)
#define ASM_LOCATION(message) \
__ Debug("LOCATION: " message, __LINE__, NO_PARAM)
#else
#define ASM_UNIMPLEMENTED(message)
#define ASM_UNIMPLEMENTED_BREAK(message)
#define ASM_LOCATION(message)
#endif
namespace v8 {
namespace internal {
#define LS_MACRO_LIST(V) \
V(Ldrb, Register&, rt, LDRB_w) \
V(Strb, Register&, rt, STRB_w) \
V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \
V(Ldrh, Register&, rt, LDRH_w) \
V(Strh, Register&, rt, STRH_w) \
V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \
V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \
V(Str, CPURegister&, rt, StoreOpFor(rt)) \
V(Ldrsw, Register&, rt, LDRSW_x)
#define LSPAIR_MACRO_LIST(V) \
V(Ldp, CPURegister&, rt, rt2, LoadPairOpFor(rt, rt2)) \
V(Stp, CPURegister&, rt, rt2, StorePairOpFor(rt, rt2)) \
V(Ldpsw, CPURegister&, rt, rt2, LDPSW_x)
// ----------------------------------------------------------------------------
// Static helper functions
// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset);
inline MemOperand UntagSmiFieldMemOperand(Register object, int offset);
// Generate a MemOperand for loading a SMI from memory.
inline MemOperand UntagSmiMemOperand(Register object, int offset);
// ----------------------------------------------------------------------------
// MacroAssembler
enum BranchType {
// Copies of architectural conditions.
// The associated conditions can be used in place of those, the code will
// take care of reinterpreting them with the correct type.
integer_eq = eq,
integer_ne = ne,
integer_hs = hs,
integer_lo = lo,
integer_mi = mi,
integer_pl = pl,
integer_vs = vs,
integer_vc = vc,
integer_hi = hi,
integer_ls = ls,
integer_ge = ge,
integer_lt = lt,
integer_gt = gt,
integer_le = le,
integer_al = al,
integer_nv = nv,
// These two are *different* from the architectural codes al and nv.
// 'always' is used to generate unconditional branches.
// 'never' is used to not generate a branch (generally as the inverse
// branch type of 'always).
always, never,
// cbz and cbnz
reg_zero, reg_not_zero,
// tbz and tbnz
reg_bit_clear, reg_bit_set,
// Aliases.
kBranchTypeFirstCondition = eq,
kBranchTypeLastCondition = nv,
kBranchTypeFirstUsingReg = reg_zero,
kBranchTypeFirstUsingBit = reg_bit_clear
};
inline BranchType InvertBranchType(BranchType type) {
if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
return static_cast<BranchType>(
NegateCondition(static_cast<Condition>(type)));
} else {
return static_cast<BranchType>(type ^ 1);
}
}
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum PointersToHereCheck {
kPointersToHereMaybeInteresting,
kPointersToHereAreAlwaysInteresting
};
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
enum TargetAddressStorageMode {
CAN_INLINE_TARGET_ADDRESS,
NEVER_INLINE_TARGET_ADDRESS
};
enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag };
enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles };
enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong };
enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };
enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 };
class MacroAssembler : public Assembler {
public:
MacroAssembler(Isolate* isolate, byte * buffer, unsigned buffer_size);
inline Handle<Object> CodeObject();
// Instruction set functions ------------------------------------------------
// Logical macros.
inline void And(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Ands(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Bic(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Bics(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Orr(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Orn(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Eor(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Eon(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Tst(const Register& rn, const Operand& operand);
void LogicalMacro(const Register& rd,
const Register& rn,
const Operand& operand,
LogicalOp op);
// Add and sub macros.
inline void Add(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Adds(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Sub(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Subs(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Cmn(const Register& rn, const Operand& operand);
inline void Cmp(const Register& rn, const Operand& operand);
inline void Neg(const Register& rd,
const Operand& operand);
inline void Negs(const Register& rd,
const Operand& operand);
void AddSubMacro(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubOp op);
// Add/sub with carry macros.
inline void Adc(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Adcs(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Sbc(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Sbcs(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Ngc(const Register& rd,
const Operand& operand);
inline void Ngcs(const Register& rd,
const Operand& operand);
void AddSubWithCarryMacro(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubWithCarryOp op);
// Move macros.
void Mov(const Register& rd,
const Operand& operand,
DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
void Mov(const Register& rd, uint64_t imm);
inline void Mvn(const Register& rd, uint64_t imm);
void Mvn(const Register& rd, const Operand& operand);
static bool IsImmMovn(uint64_t imm, unsigned reg_size);
static bool IsImmMovz(uint64_t imm, unsigned reg_size);
static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
// Try to move an immediate into the destination register in a single
// instruction. Returns true for success, and updates the contents of dst.
// Returns false, otherwise.
bool TryOneInstrMoveImmediate(const Register& dst, int64_t imm);
// Move an immediate into register dst, and return an Operand object for use
// with a subsequent instruction that accepts a shift. The value moved into
// dst is not necessarily equal to imm; it may have had a shifting operation
// applied to it that will be subsequently undone by the shift applied in the
// Operand.
Operand MoveImmediateForShiftedOp(const Register& dst, int64_t imm);
// Conditional macros.
inline void Ccmp(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond);
inline void Ccmn(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond);
void ConditionalCompareMacro(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond,
ConditionalCompareOp op);
void Csel(const Register& rd,
const Register& rn,
const Operand& operand,
Condition cond);
// Load/store macros.
#define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
inline void FN(const REGTYPE REG, const MemOperand& addr);
LS_MACRO_LIST(DECLARE_FUNCTION)
#undef DECLARE_FUNCTION
void LoadStoreMacro(const CPURegister& rt,
const MemOperand& addr,
LoadStoreOp op);
#define DECLARE_FUNCTION(FN, REGTYPE, REG, REG2, OP) \
inline void FN(const REGTYPE REG, const REGTYPE REG2, const MemOperand& addr);
LSPAIR_MACRO_LIST(DECLARE_FUNCTION)
#undef DECLARE_FUNCTION
void LoadStorePairMacro(const CPURegister& rt, const CPURegister& rt2,
const MemOperand& addr, LoadStorePairOp op);
// V8-specific load/store helpers.
void Load(const Register& rt, const MemOperand& addr, Representation r);
void Store(const Register& rt, const MemOperand& addr, Representation r);
enum AdrHint {
// The target must be within the immediate range of adr.
kAdrNear,
// The target may be outside of the immediate range of adr. Additional
// instructions may be emitted.
kAdrFar
};
void Adr(const Register& rd, Label* label, AdrHint = kAdrNear);
// Remaining instructions are simple pass-through calls to the assembler.
inline void Asr(const Register& rd, const Register& rn, unsigned shift);
inline void Asr(const Register& rd, const Register& rn, const Register& rm);
// Branch type inversion relies on these relations.
STATIC_ASSERT((reg_zero == (reg_not_zero ^ 1)) &&
(reg_bit_clear == (reg_bit_set ^ 1)) &&
(always == (never ^ 1)));
void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1);
inline void B(Label* label);
inline void B(Condition cond, Label* label);
void B(Label* label, Condition cond);
inline void Bfi(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width);
inline void Bfxil(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width);
inline void Bind(Label* label);
inline void Bl(Label* label);
inline void Blr(const Register& xn);
inline void Br(const Register& xn);
inline void Brk(int code);
void Cbnz(const Register& rt, Label* label);
void Cbz(const Register& rt, Label* label);
inline void Cinc(const Register& rd, const Register& rn, Condition cond);
inline void Cinv(const Register& rd, const Register& rn, Condition cond);
inline void Cls(const Register& rd, const Register& rn);
inline void Clz(const Register& rd, const Register& rn);
inline void Cneg(const Register& rd, const Register& rn, Condition cond);
inline void CzeroX(const Register& rd, Condition cond);
inline void CmovX(const Register& rd, const Register& rn, Condition cond);
inline void Cset(const Register& rd, Condition cond);
inline void Csetm(const Register& rd, Condition cond);
inline void Csinc(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
inline void Csinv(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
inline void Csneg(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
inline void Dmb(BarrierDomain domain, BarrierType type);
inline void Dsb(BarrierDomain domain, BarrierType type);
inline void Debug(const char* message, uint32_t code, Instr params = BREAK);
inline void Extr(const Register& rd,
const Register& rn,
const Register& rm,
unsigned lsb);
inline void Fabs(const FPRegister& fd, const FPRegister& fn);
inline void Fadd(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Fccmp(const FPRegister& fn,
const FPRegister& fm,
StatusFlags nzcv,
Condition cond);
inline void Fcmp(const FPRegister& fn, const FPRegister& fm);
inline void Fcmp(const FPRegister& fn, double value);
inline void Fcsel(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
Condition cond);
inline void Fcvt(const FPRegister& fd, const FPRegister& fn);
inline void Fcvtas(const Register& rd, const FPRegister& fn);
inline void Fcvtau(const Register& rd, const FPRegister& fn);
inline void Fcvtms(const Register& rd, const FPRegister& fn);
inline void Fcvtmu(const Register& rd, const FPRegister& fn);
inline void Fcvtns(const Register& rd, const FPRegister& fn);
inline void Fcvtnu(const Register& rd, const FPRegister& fn);
inline void Fcvtzs(const Register& rd, const FPRegister& fn);
inline void Fcvtzu(const Register& rd, const FPRegister& fn);
inline void Fdiv(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Fmadd(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa);
inline void Fmax(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Fmaxnm(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Fmin(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Fminnm(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Fmov(FPRegister fd, FPRegister fn);
inline void Fmov(FPRegister fd, Register rn);
// Provide explicit double and float interfaces for FP immediate moves, rather
// than relying on implicit C++ casts. This allows signalling NaNs to be
// preserved when the immediate matches the format of fd. Most systems convert
// signalling NaNs to quiet NaNs when converting between float and double.
inline void Fmov(FPRegister fd, double imm);
inline void Fmov(FPRegister fd, float imm);
// Provide a template to allow other types to be converted automatically.
template<typename T>
void Fmov(FPRegister fd, T imm) {
DCHECK(allow_macro_instructions_);
Fmov(fd, static_cast<double>(imm));
}
inline void Fmov(Register rd, FPRegister fn);
inline void Fmsub(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa);
inline void Fmul(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Fneg(const FPRegister& fd, const FPRegister& fn);
inline void Fnmadd(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa);
inline void Fnmsub(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa);
inline void Frinta(const FPRegister& fd, const FPRegister& fn);
inline void Frintm(const FPRegister& fd, const FPRegister& fn);
inline void Frintn(const FPRegister& fd, const FPRegister& fn);
inline void Frintp(const FPRegister& fd, const FPRegister& fn);
inline void Frintz(const FPRegister& fd, const FPRegister& fn);
inline void Fsqrt(const FPRegister& fd, const FPRegister& fn);
inline void Fsub(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Hint(SystemHint code);
inline void Hlt(int code);
inline void Isb();
inline void Ldnp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& src);
// Load a literal from the inline constant pool.
inline void Ldr(const CPURegister& rt, const Immediate& imm);
// Helper function for double immediate.
inline void Ldr(const CPURegister& rt, double imm);
inline void Lsl(const Register& rd, const Register& rn, unsigned shift);
inline void Lsl(const Register& rd, const Register& rn, const Register& rm);
inline void Lsr(const Register& rd, const Register& rn, unsigned shift);
inline void Lsr(const Register& rd, const Register& rn, const Register& rm);
inline void Madd(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
inline void Mneg(const Register& rd, const Register& rn, const Register& rm);
inline void Mov(const Register& rd, const Register& rm);
inline void Movk(const Register& rd, uint64_t imm, int shift = -1);
inline void Mrs(const Register& rt, SystemRegister sysreg);
inline void Msr(SystemRegister sysreg, const Register& rt);
inline void Msub(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
inline void Mul(const Register& rd, const Register& rn, const Register& rm);
inline void Nop() { nop(); }
inline void Rbit(const Register& rd, const Register& rn);
inline void Ret(const Register& xn = lr);
inline void Rev(const Register& rd, const Register& rn);
inline void Rev16(const Register& rd, const Register& rn);
inline void Rev32(const Register& rd, const Register& rn);
inline void Ror(const Register& rd, const Register& rs, unsigned shift);
inline void Ror(const Register& rd, const Register& rn, const Register& rm);
inline void Sbfiz(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width);
inline void Sbfx(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width);
inline void Scvtf(const FPRegister& fd,
const Register& rn,
unsigned fbits = 0);
inline void Sdiv(const Register& rd, const Register& rn, const Register& rm);
inline void Smaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
inline void Smsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
inline void Smull(const Register& rd,
const Register& rn,
const Register& rm);
inline void Smulh(const Register& rd,
const Register& rn,
const Register& rm);
inline void Umull(const Register& rd, const Register& rn, const Register& rm);
inline void Stnp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& dst);
inline void Sxtb(const Register& rd, const Register& rn);
inline void Sxth(const Register& rd, const Register& rn);
inline void Sxtw(const Register& rd, const Register& rn);
void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
void Tbz(const Register& rt, unsigned bit_pos, Label* label);
inline void Ubfiz(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width);
inline void Ubfx(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width);
inline void Ucvtf(const FPRegister& fd,
const Register& rn,
unsigned fbits = 0);
inline void Udiv(const Register& rd, const Register& rn, const Register& rm);
inline void Umaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
inline void Umsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
inline void Uxtb(const Register& rd, const Register& rn);
inline void Uxth(const Register& rd, const Register& rn);
inline void Uxtw(const Register& rd, const Register& rn);
// Pseudo-instructions ------------------------------------------------------
// Compute rd = abs(rm).
// This function clobbers the condition flags. On output the overflow flag is
// set iff the negation overflowed.
//
// If rm is the minimum representable value, the result is not representable.
// Handlers for each case can be specified using the relevant labels.
void Abs(const Register& rd, const Register& rm,
Label * is_not_representable = NULL,
Label * is_representable = NULL);
// Push or pop up to 4 registers of the same width to or from the stack,
// using the current stack pointer as set by SetStackPointer.
//
// If an argument register is 'NoReg', all further arguments are also assumed
// to be 'NoReg', and are thus not pushed or popped.
//
// Arguments are ordered such that "Push(a, b);" is functionally equivalent
// to "Push(a); Push(b);".
//
// It is valid to push the same register more than once, and there is no
// restriction on the order in which registers are specified.
//
// It is not valid to pop into the same register more than once in one
// operation, not even into the zero register.
//
// If the current stack pointer (as set by SetStackPointer) is csp, then it
// must be aligned to 16 bytes on entry and the total size of the specified
// registers must also be a multiple of 16 bytes.
//
// Even if the current stack pointer is not the system stack pointer (csp),
// Push (and derived methods) will still modify the system stack pointer in
// order to comply with ABI rules about accessing memory below the system
// stack pointer.
//
// Other than the registers passed into Pop, the stack pointer and (possibly)
// the system stack pointer, these methods do not modify any other registers.
void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
void Push(const CPURegister& src0, const CPURegister& src1,
const CPURegister& src2, const CPURegister& src3,
const CPURegister& src4, const CPURegister& src5 = NoReg,
const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg);
void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
void Push(const Register& src0, const FPRegister& src1);
// Alternative forms of Push and Pop, taking a RegList or CPURegList that
// specifies the registers that are to be pushed or popped. Higher-numbered
// registers are associated with higher memory addresses (as in the A32 push
// and pop instructions).
//
// (Push|Pop)SizeRegList allow you to specify the register size as a
// parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and
// kSRegSizeInBits are supported.
//
// Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
void PushCPURegList(CPURegList registers);
void PopCPURegList(CPURegList registers);
inline void PushSizeRegList(RegList registers, unsigned reg_size,
CPURegister::RegisterType type = CPURegister::kRegister) {
PushCPURegList(CPURegList(type, reg_size, registers));
}
inline void PopSizeRegList(RegList registers, unsigned reg_size,
CPURegister::RegisterType type = CPURegister::kRegister) {
PopCPURegList(CPURegList(type, reg_size, registers));
}
inline void PushXRegList(RegList regs) {
PushSizeRegList(regs, kXRegSizeInBits);
}
inline void PopXRegList(RegList regs) {
PopSizeRegList(regs, kXRegSizeInBits);
}
inline void PushWRegList(RegList regs) {
PushSizeRegList(regs, kWRegSizeInBits);
}
inline void PopWRegList(RegList regs) {
PopSizeRegList(regs, kWRegSizeInBits);
}
inline void PushDRegList(RegList regs) {
PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
}
inline void PopDRegList(RegList regs) {
PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
}
inline void PushSRegList(RegList regs) {
PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
}
inline void PopSRegList(RegList regs) {
PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
}
// Push the specified register 'count' times.
void PushMultipleTimes(CPURegister src, Register count);
void PushMultipleTimes(CPURegister src, int count);
// This is a convenience method for pushing a single Handle<Object>.
inline void Push(Handle<Object> handle);
void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
// Aliases of Push and Pop, required for V8 compatibility.
inline void push(Register src) {
Push(src);
}
inline void pop(Register dst) {
Pop(dst);
}
// Sometimes callers need to push or pop multiple registers in a way that is
// difficult to structure efficiently for fixed Push or Pop calls. This scope
// allows push requests to be queued up, then flushed at once. The
// MacroAssembler will try to generate the most efficient sequence required.
//
// Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of
// register sizes and types.
class PushPopQueue {
public:
explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { }
~PushPopQueue() {
DCHECK(queued_.empty());
}
void Queue(const CPURegister& rt) {
size_ += rt.SizeInBytes();
queued_.push_back(rt);
}
enum PreambleDirective {
WITH_PREAMBLE,
SKIP_PREAMBLE
};
void PushQueued(PreambleDirective preamble_directive = WITH_PREAMBLE);
void PopQueued();
private:
MacroAssembler* masm_;
int size_;
std::vector<CPURegister> queued_;
};
// Poke 'src' onto the stack. The offset is in bytes.
//
// If the current stack pointer (according to StackPointer()) is csp, then
// csp must be aligned to 16 bytes.
void Poke(const CPURegister& src, const Operand& offset);
// Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
//
// If the current stack pointer (according to StackPointer()) is csp, then
// csp must be aligned to 16 bytes.
void Peek(const CPURegister& dst, const Operand& offset);
// Poke 'src1' and 'src2' onto the stack. The values written will be adjacent
// with 'src2' at a higher address than 'src1'. The offset is in bytes.
//
// If the current stack pointer (according to StackPointer()) is csp, then
// csp must be aligned to 16 bytes.
void PokePair(const CPURegister& src1, const CPURegister& src2, int offset);
// Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The
// values peeked will be adjacent, with the value in 'dst2' being from a
// higher address than 'dst1'. The offset is in bytes.
//
// If the current stack pointer (according to StackPointer()) is csp, then
// csp must be aligned to 16 bytes.
void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset);
// Claim or drop stack space without actually accessing memory.
//
// In debug mode, both of these will write invalid data into the claimed or
// dropped space.
//
// If the current stack pointer (according to StackPointer()) is csp, then it
// must be aligned to 16 bytes and the size claimed or dropped must be a
// multiple of 16 bytes.
//
// Note that unit_size must be specified in bytes. For variants which take a
// Register count, the unit size must be a power of two.
inline void Claim(uint64_t count, uint64_t unit_size = kXRegSize);
inline void Claim(const Register& count,
uint64_t unit_size = kXRegSize);
inline void Drop(uint64_t count, uint64_t unit_size = kXRegSize);
inline void Drop(const Register& count,
uint64_t unit_size = kXRegSize);
// Variants of Claim and Drop, where the 'count' parameter is a SMI held in a
// register.
inline void ClaimBySMI(const Register& count_smi,
uint64_t unit_size = kXRegSize);
inline void DropBySMI(const Register& count_smi,
uint64_t unit_size = kXRegSize);
// Compare a register with an operand, and branch to label depending on the
// condition. May corrupt the status flags.
inline void CompareAndBranch(const Register& lhs,
const Operand& rhs,
Condition cond,
Label* label);
// Test the bits of register defined by bit_pattern, and branch if ANY of
// those bits are set. May corrupt the status flags.
inline void TestAndBranchIfAnySet(const Register& reg,
const uint64_t bit_pattern,
Label* label);
// Test the bits of register defined by bit_pattern, and branch if ALL of
// those bits are clear (ie. not set.) May corrupt the status flags.
inline void TestAndBranchIfAllClear(const Register& reg,
const uint64_t bit_pattern,
Label* label);
// Insert one or more instructions into the instruction stream that encode
// some caller-defined data. The instructions used will be executable with no
// side effects.
inline void InlineData(uint64_t data);
// Insert an instrumentation enable marker into the instruction stream.
inline void EnableInstrumentation();
// Insert an instrumentation disable marker into the instruction stream.
inline void DisableInstrumentation();
// Insert an instrumentation event marker into the instruction stream. These
// will be picked up by the instrumentation system to annotate an instruction
// profile. The argument marker_name must be a printable two character string;
// it will be encoded in the event marker.
inline void AnnotateInstrumentation(const char* marker_name);
// If emit_debug_code() is true, emit a run-time check to ensure that
// StackPointer() does not point below the system stack pointer.
//
// Whilst it is architecturally legal for StackPointer() to point below csp,
// it can be evidence of a potential bug because the ABI forbids accesses
// below csp.
//
// If StackPointer() is the system stack pointer (csp), then csp will be
// dereferenced to cause the processor (or simulator) to abort if it is not
// properly aligned.
//
// If emit_debug_code() is false, this emits no code.
void AssertStackConsistency();
// Preserve the callee-saved registers (as defined by AAPCS64).
//
// Higher-numbered registers are pushed before lower-numbered registers, and
// thus get higher addresses.
// Floating-point registers are pushed before general-purpose registers, and
// thus get higher addresses.
//
// Note that registers are not checked for invalid values. Use this method
// only if you know that the GC won't try to examine the values on the stack.
//
// This method must not be called unless the current stack pointer (as set by
// SetStackPointer) is the system stack pointer (csp), and is aligned to
// ActivationFrameAlignment().
void PushCalleeSavedRegisters();
// Restore the callee-saved registers (as defined by AAPCS64).
//
// Higher-numbered registers are popped after lower-numbered registers, and
// thus come from higher addresses.
// Floating-point registers are popped after general-purpose registers, and
// thus come from higher addresses.
//
// This method must not be called unless the current stack pointer (as set by
// SetStackPointer) is the system stack pointer (csp), and is aligned to
// ActivationFrameAlignment().
void PopCalleeSavedRegisters();
// Set the current stack pointer, but don't generate any code.
inline void SetStackPointer(const Register& stack_pointer) {
DCHECK(!TmpList()->IncludesAliasOf(stack_pointer));
sp_ = stack_pointer;
}
// Return the current stack pointer, as set by SetStackPointer.
inline const Register& StackPointer() const {
return sp_;
}
// Align csp for a frame, as per ActivationFrameAlignment, and make it the
// current stack pointer.
inline void AlignAndSetCSPForFrame() {
int sp_alignment = ActivationFrameAlignment();
// AAPCS64 mandates at least 16-byte alignment.
DCHECK(sp_alignment >= 16);
DCHECK(base::bits::IsPowerOfTwo32(sp_alignment));
Bic(csp, StackPointer(), sp_alignment - 1);
SetStackPointer(csp);
}
// Push the system stack pointer (csp) down to allow the same to be done to
// the current stack pointer (according to StackPointer()). This must be
// called _before_ accessing the memory.
//
// This is necessary when pushing or otherwise adding things to the stack, to
// satisfy the AAPCS64 constraint that the memory below the system stack
// pointer is not accessed. The amount pushed will be increased as necessary
// to ensure csp remains aligned to 16 bytes.
//
// This method asserts that StackPointer() is not csp, since the call does
// not make sense in that context.
inline void BumpSystemStackPointer(const Operand& space);
// Re-synchronizes the system stack pointer (csp) with the current stack
// pointer (according to StackPointer()).
//
// This method asserts that StackPointer() is not csp, since the call does
// not make sense in that context.
inline void SyncSystemStackPointer();
// Helpers ------------------------------------------------------------------
// Root register.
inline void InitializeRootRegister();
void AssertFPCRState(Register fpcr = NoReg);
void ConfigureFPCR();
void CanonicalizeNaN(const FPRegister& dst, const FPRegister& src);
void CanonicalizeNaN(const FPRegister& reg) {
CanonicalizeNaN(reg, reg);
}
// Load an object from the root table.
void LoadRoot(CPURegister destination,
Heap::RootListIndex index);
// Store an object to the root table.
void StoreRoot(Register source,
Heap::RootListIndex index);
// Load both TrueValue and FalseValue roots.
void LoadTrueFalseRoots(Register true_root, Register false_root);
void LoadHeapObject(Register dst, Handle<HeapObject> object);
void LoadObject(Register result, Handle<Object> object) {
AllowDeferredHandleDereference heap_object_check;
if (object->IsHeapObject()) {
LoadHeapObject(result, Handle<HeapObject>::cast(object));
} else {
DCHECK(object->IsSmi());
Mov(result, Operand(object));
}
}
static int SafepointRegisterStackIndex(int reg_code);
// This is required for compatibility with architecture independant code.
// Remove if not needed.
inline void Move(Register dst, Register src) { Mov(dst, src); }
void LoadInstanceDescriptors(Register map,
Register descriptors);
void EnumLengthUntagged(Register dst, Register map);
void EnumLengthSmi(Register dst, Register map);
void NumberOfOwnDescriptors(Register dst, Register map);
void LoadAccessor(Register dst, Register holder, int accessor_index,
AccessorComponent accessor);
template<typename Field>
void DecodeField(Register dst, Register src) {
static const int shift = Field::kShift;
static const int setbits = CountSetBits(Field::kMask, 32);
Ubfx(dst, src, shift, setbits);
}
template<typename Field>
void DecodeField(Register reg) {
DecodeField<Field>(reg, reg);
}
// ---- SMI and Number Utilities ----
inline void SmiTag(Register dst, Register src);
inline void SmiTag(Register smi);
inline void SmiUntag(Register dst, Register src);
inline void SmiUntag(Register smi);
inline void SmiUntagToDouble(FPRegister dst,
Register src,
UntagMode mode = kNotSpeculativeUntag);
inline void SmiUntagToFloat(FPRegister dst,
Register src,
UntagMode mode = kNotSpeculativeUntag);
// Tag and push in one step.
inline void SmiTagAndPush(Register src);
inline void SmiTagAndPush(Register src1, Register src2);
inline void JumpIfSmi(Register value,
Label* smi_label,
Label* not_smi_label = NULL);
inline void JumpIfNotSmi(Register value, Label* not_smi_label);
inline void JumpIfBothSmi(Register value1,
Register value2,
Label* both_smi_label,
Label* not_smi_label = NULL);
inline void JumpIfEitherSmi(Register value1,
Register value2,
Label* either_smi_label,
Label* not_smi_label = NULL);
inline void JumpIfEitherNotSmi(Register value1,
Register value2,
Label* not_smi_label);
inline void JumpIfBothNotSmi(Register value1,
Register value2,
Label* not_smi_label);
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi);
void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi);
inline void ObjectTag(Register tagged_obj, Register obj);
inline void ObjectUntag(Register untagged_obj, Register obj);
// Abort execution if argument is not a name, enabled via --debug-code.
void AssertName(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object, Register scratch);
// Abort execution if argument is not a string, enabled via --debug-code.
void AssertString(Register object);
void JumpIfHeapNumber(Register object, Label* on_heap_number,
SmiCheckType smi_check_type = DONT_DO_SMI_CHECK);
void JumpIfNotHeapNumber(Register object, Label* on_not_heap_number,
SmiCheckType smi_check_type = DONT_DO_SMI_CHECK);
// Sets the vs flag if the input is -0.0.
void TestForMinusZero(DoubleRegister input);
// Jump to label if the input double register contains -0.0.
void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero);
// Jump to label if the input integer register contains the double precision
// floating point representation of -0.0.
void JumpIfMinusZero(Register input, Label* on_negative_zero);
// Generate code to do a lookup in the number string cache. If the number in
// the register object is found in the cache the generated code falls through
// with the result in the result register. The object and the result register
// can be the same. If the number is not found in the cache the code jumps to
// the label not_found with only the content of register object unchanged.
void LookupNumberStringCache(Register object,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
Label* not_found);
// Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in
// output.
void ClampInt32ToUint8(Register in_out);
void ClampInt32ToUint8(Register output, Register input);
// Saturate a double in input to an unsigned 8-bit integer in output.
void ClampDoubleToUint8(Register output,
DoubleRegister input,
DoubleRegister dbl_scratch);
// Try to represent a double as a signed 32-bit int.
// This succeeds if the result compares equal to the input, so inputs of -0.0
// are represented as 0 and handled as a success.
//
// On output the Z flag is set if the operation was successful.
void TryRepresentDoubleAsInt32(Register as_int,
FPRegister value,
FPRegister scratch_d,
Label* on_successful_conversion = NULL,
Label* on_failed_conversion = NULL) {
DCHECK(as_int.Is32Bits());
TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
on_failed_conversion);
}
// Try to represent a double as a signed 64-bit int.
// This succeeds if the result compares equal to the input, so inputs of -0.0
// are represented as 0 and handled as a success.
//
// On output the Z flag is set if the operation was successful.
void TryRepresentDoubleAsInt64(Register as_int,
FPRegister value,
FPRegister scratch_d,
Label* on_successful_conversion = NULL,
Label* on_failed_conversion = NULL) {
DCHECK(as_int.Is64Bits());
TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
on_failed_conversion);
}
// ---- Object Utilities ----
// Copy fields from 'src' to 'dst', where both are tagged objects.
// The 'temps' list is a list of X registers which can be used for scratch
// values. The temps list must include at least one register.
//
// Currently, CopyFields cannot make use of more than three registers from
// the 'temps' list.
//
// CopyFields expects to be able to take at least two registers from
// MacroAssembler::TmpList().
void CopyFields(Register dst, Register src, CPURegList temps, unsigned count);
// Starting at address in dst, initialize field_count 64-bit fields with
// 64-bit value in register filler. Register dst is corrupted.
void FillFields(Register dst,
Register field_count,
Register filler);
// Copies a number of bytes from src to dst. All passed registers are
// clobbered. On exit src and dst will point to the place just after where the
// last byte was read or written and length will be zero. Hint may be used to
// determine which is the most efficient algorithm to use for copying.
void CopyBytes(Register dst,
Register src,
Register length,
Register scratch,
CopyHint hint = kCopyUnknown);
// ---- String Utilities ----
// Jump to label if either object is not a sequential one-byte string.
// Optionally perform a smi check on the objects first.
void JumpIfEitherIsNotSequentialOneByteStrings(
Register first, Register second, Register scratch1, Register scratch2,
Label* failure, SmiCheckType smi_check = DO_SMI_CHECK);
// Check if instance type is sequential one-byte string and jump to label if
// it is not.
void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
Label* failure);
// Checks if both instance types are sequential one-byte strings and jumps to
// label if either is not.
void JumpIfEitherInstanceTypeIsNotSequentialOneByte(
Register first_object_instance_type, Register second_object_instance_type,
Register scratch1, Register scratch2, Label* failure);
// Checks if both instance types are sequential one-byte strings and jumps to
// label if either is not.
void JumpIfBothInstanceTypesAreNotSequentialOneByte(
Register first_object_instance_type, Register second_object_instance_type,
Register scratch1, Register scratch2, Label* failure);
void JumpIfNotUniqueNameInstanceType(Register type, Label* not_unique_name);
// ---- Calling / Jumping helpers ----
// This is required for compatibility in architecture indepenedant code.
inline void jmp(Label* L) { B(L); }
void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
void TailCallStub(CodeStub* stub);
void CallRuntime(const Runtime::Function* f,
int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
void CallRuntime(Runtime::FunctionId id,
int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
}
void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
const Runtime::Function* function = Runtime::FunctionForId(id);
CallRuntime(function, function->nargs, kSaveFPRegs);
}
void TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size);
int ActivationFrameAlignment();
// Calls a C function.
// The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function,
int num_reg_arguments);
void CallCFunction(ExternalReference function,
int num_reg_arguments,
int num_double_arguments);
void CallCFunction(Register function,
int num_reg_arguments,
int num_double_arguments);
// Jump to a runtime routine.
void JumpToExternalReference(const ExternalReference& builtin);
// Tail call of a runtime routine (jump).
// Like JumpToExternalReference, but also takes care of passing the number
// of parameters.
void TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size);
void CallExternalReference(const ExternalReference& ext,
int num_arguments);
// Invoke specified builtin JavaScript function. Adds an entry to
// the unresolved list if the name does not resolve.
void InvokeBuiltin(Builtins::JavaScript id,
InvokeFlag flag,
const CallWrapper& call_wrapper = NullCallWrapper());
// Store the code object for the given builtin in the target register and
// setup the function in the function register.
void GetBuiltinEntry(Register target,
Register function,
Builtins::JavaScript id);
// Store the function for the given builtin in the target register.
void GetBuiltinFunction(Register target, Builtins::JavaScript id);
void Jump(Register target);
void Jump(Address target, RelocInfo::Mode rmode);
void Jump(Handle<Code> code, RelocInfo::Mode rmode);
void Jump(intptr_t target, RelocInfo::Mode rmode);
void Call(Register target);
void Call(Label* target);
void Call(Address target, RelocInfo::Mode rmode);
void Call(Handle<Code> code,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
TypeFeedbackId ast_id = TypeFeedbackId::None());
// For every Call variant, there is a matching CallSize function that returns
// the size (in bytes) of the call sequence.
static int CallSize(Register target);
static int CallSize(Label* target);
static int CallSize(Address target, RelocInfo::Mode rmode);
static int CallSize(Handle<Code> code,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
TypeFeedbackId ast_id = TypeFeedbackId::None());
// Registers used through the invocation chain are hard-coded.
// We force passing the parameters to ensure the contracts are correctly
// honoured by the caller.
// 'function' must be x1.
// 'actual' must use an immediate or x0.
// 'expected' must use an immediate or x2.
// 'call_kind' must be x5.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_reg,
Label* done,
InvokeFlag flag,
bool* definitely_mismatches,
const CallWrapper& call_wrapper);
void InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
// Invoke the JavaScript function in the given register.
// Changes the current context to the context in the function before invoking.
void InvokeFunction(Register function,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
void InvokeFunction(Register function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
void InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
// ---- Floating point helpers ----
// Perform a conversion from a double to a signed int64. If the input fits in
// range of the 64-bit result, execution branches to done. Otherwise,
// execution falls through, and the sign of the result can be used to
// determine if overflow was towards positive or negative infinity.
//
// On successful conversion, the least significant 32 bits of the result are
// equivalent to the ECMA-262 operation "ToInt32".
//
// Only public for the test code in test-code-stubs-arm64.cc.
void TryConvertDoubleToInt64(Register result,
DoubleRegister input,
Label* done);
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32.
// Exits with 'result' holding the answer.
void TruncateDoubleToI(Register result, DoubleRegister double_input);
// Performs a truncating conversion of a heap number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
// must be different registers. Exits with 'result' holding the answer.
void TruncateHeapNumberToI(Register result, Register object);
// Converts the smi or heap number in object to an int32 using the rules
// for ToInt32 as described in ECMAScript 9.5.: the value is truncated
// and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
// different registers.
void TruncateNumberToI(Register object,
Register result,
Register heap_number_map,
Label* not_int32);
// ---- Code generation helpers ----
void set_generating_stub(bool value) { generating_stub_ = value; }
bool generating_stub() const { return generating_stub_; }
#if DEBUG
void set_allow_macro_instructions(bool value) {
allow_macro_instructions_ = value;
}
bool allow_macro_instructions() const { return allow_macro_instructions_; }
#endif
bool use_real_aborts() const { return use_real_aborts_; }
void set_has_frame(bool value) { has_frame_ = value; }
bool has_frame() const { return has_frame_; }
bool AllowThisStubCall(CodeStub* stub);
class NoUseRealAbortsScope {
public:
explicit NoUseRealAbortsScope(MacroAssembler* masm) :
saved_(masm->use_real_aborts_), masm_(masm) {
masm_->use_real_aborts_ = false;
}
~NoUseRealAbortsScope() {
masm_->use_real_aborts_ = saved_;
}
private:
bool saved_;
MacroAssembler* masm_;
};
// ---------------------------------------------------------------------------
// Debugger Support
void DebugBreak();
// ---------------------------------------------------------------------------
// Exception handling
// Push a new stack handler and link into stack handler chain.
void PushStackHandler();
// Unlink the stack handler on top of the stack from the stack handler chain.
// Must preserve the result register.
void PopStackHandler();
// ---------------------------------------------------------------------------
// Allocation support
// Allocate an object in new space or old space. The object_size is
// specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
// is passed. The allocated object is returned in result.
//
// If the new space is exhausted control continues at the gc_required label.
// In this case, the result and scratch registers may still be clobbered.
// If flags includes TAG_OBJECT, the result is tagged as as a heap object.
void Allocate(Register object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags);
void Allocate(int object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags);
// Undo allocation in new space. The object passed and objects allocated after
// it will no longer be allocated. The caller must make sure that no pointers
// are left to the object(s) no longer allocated as they would be invalid when
// allocation is undone.
void UndoAllocationInNewSpace(Register object, Register scratch);
void AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateOneByteString(Register result, Register length,
Register scratch1, Register scratch2,
Register scratch3, Label* gc_required);
void AllocateTwoByteConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateOneByteConsString(Register result, Register length,
Register scratch1, Register scratch2,
Label* gc_required);
void AllocateTwoByteSlicedString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateOneByteSlicedString(Register result, Register length,
Register scratch1, Register scratch2,
Label* gc_required);
// Allocates a heap number or jumps to the gc_required label if the young
// space is full and a scavenge is needed.
// All registers are clobbered.
// If no heap_number_map register is provided, the function will take care of
// loading it.
void AllocateHeapNumber(Register result,
Label* gc_required,
Register scratch1,
Register scratch2,
CPURegister value = NoFPReg,
CPURegister heap_number_map = NoReg,
MutableMode mode = IMMUTABLE);
// ---------------------------------------------------------------------------
// Support functions.
// Try to get function prototype of a function and puts the value in the
// result register. Checks that the function really is a function and jumps
// to the miss label if the fast checks fail. The function register will be
// untouched; the other registers may be clobbered.
enum BoundFunctionAction {
kMissOnBoundFunction,
kDontMissOnBoundFunction
};
// Machine code version of Map::GetConstructor().
// |temp| holds |result|'s map when done, and |temp2| its instance type.
void GetMapConstructor(Register result, Register map, Register temp,
Register temp2);
void TryGetFunctionPrototype(Register function,
Register result,
Register scratch,
Label* miss,
BoundFunctionAction action =
kDontMissOnBoundFunction);
// Compare object type for heap object. heap_object contains a non-Smi
// whose object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
// It leaves the map in the map register (unless the type_reg and map register
// are the same register). It leaves the heap object in the heap_object
// register unless the heap_object register is the same register as one of the
// other registers.
void CompareObjectType(Register heap_object,
Register map,
Register type_reg,
InstanceType type);
// Compare object type for heap object, and branch if equal (or not.)
// heap_object contains a non-Smi whose object type should be compared with
// the given type. This both sets the flags and leaves the object type in
// the type_reg register. It leaves the map in the map register (unless the
// type_reg and map register are the same register). It leaves the heap
// object in the heap_object register unless the heap_object register is the
// same register as one of the other registers.
void JumpIfObjectType(Register object,
Register map,
Register type_reg,
InstanceType type,
Label* if_cond_pass,
Condition cond = eq);
void JumpIfNotObjectType(Register object,
Register map,
Register type_reg,
InstanceType type,
Label* if_not_object);
// Compare instance type in a map. map contains a valid map object whose
// object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
void CompareInstanceType(Register map,
Register type_reg,
InstanceType type);
// Compare an object's map with the specified map. Condition flags are set
// with result of map compare.
void CompareObjectMap(Register obj, Heap::RootListIndex index);
// Compare an object's map with the specified map. Condition flags are set
// with result of map compare.
void CompareObjectMap(Register obj, Register scratch, Handle<Map> map);
// As above, but the map of the object is already loaded into the register
// which is preserved by the code generated.
void CompareMap(Register obj_map,
Handle<Map> map);
// Check if the map of an object is equal to a specified map and branch to
// label if not. Skip the smi check if not required (object is known to be a
// heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
// against maps that are ElementsKind transition maps of the specified map.
void CheckMap(Register obj,
Register scratch,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type);
void CheckMap(Register obj,
Register scratch,
Heap::RootListIndex index,
Label* fail,
SmiCheckType smi_check_type);
// As above, but the map of the object is already loaded into obj_map, and is
// preserved.
void CheckMap(Register obj_map,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type);
// Check if the map of an object is equal to a specified weak map and branch
// to a specified target if equal. Skip the smi check if not required
// (object is known to be a heap object)
void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
Handle<WeakCell> cell, Handle<Code> success,
SmiCheckType smi_check_type);
// Compare the given value and the value of weak cell.
void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
void GetWeakValue(Register value, Handle<WeakCell> cell);
// Load the value of the weak cell in the value register. Branch to the given
// miss label if the weak cell was cleared.
void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
// Test the bitfield of the heap object map with mask and set the condition
// flags. The object register is preserved.
void TestMapBitfield(Register object, uint64_t mask);
// Load the elements kind field from a map, and return it in the result
// register.
void LoadElementsKindFromMap(Register result, Register map);
// Compare the object in a register to a value from the root list.
void CompareRoot(const Register& obj, Heap::RootListIndex index);
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(const Register& obj,
Heap::RootListIndex index,
Label* if_equal);
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(const Register& obj,
Heap::RootListIndex index,
Label* if_not_equal);
// Load and check the instance type of an object for being a unique name.
// Loads the type into the second argument register.
// The object and type arguments can be the same register; in that case it
// will be overwritten with the type.
// Fall-through if the object was a string and jump on fail otherwise.
inline void IsObjectNameType(Register object, Register type, Label* fail);
inline void IsObjectJSObjectType(Register heap_object,
Register map,
Register scratch,
Label* fail);
// Check the instance type in the given map to see if it corresponds to a
// JS object type. Jump to the fail label if this is not the case and fall
// through otherwise. However if fail label is NULL, no branch will be
// performed and the flag will be updated. You can test the flag for "le"
// condition to test if it is a valid JS object type.
inline void IsInstanceJSObjectType(Register map,
Register scratch,
Label* fail);
// Load and check the instance type of an object for being a string.
// Loads the type into the second argument register.
// The object and type arguments can be the same register; in that case it
// will be overwritten with the type.
// Jumps to not_string or string appropriate. If the appropriate label is
// NULL, fall through.
inline void IsObjectJSStringType(Register object, Register type,
Label* not_string, Label* string = NULL);
// Compare the contents of a register with an operand, and branch to true,
// false or fall through, depending on condition.
void CompareAndSplit(const Register& lhs,
const Operand& rhs,
Condition cond,
Label* if_true,
Label* if_false,
Label* fall_through);
// Test the bits of register defined by bit_pattern, and branch to
// if_any_set, if_all_clear or fall_through accordingly.
void TestAndSplit(const Register& reg,
uint64_t bit_pattern,
Label* if_all_clear,
Label* if_any_set,
Label* fall_through);
// Check if a map for a JSObject indicates that the object has fast elements.
// Jump to the specified label if it does not.
void CheckFastElements(Register map, Register scratch, Label* fail);
// Check if a map for a JSObject indicates that the object can have both smi
// and HeapObject elements. Jump to the specified label if it does not.
void CheckFastObjectElements(Register map, Register scratch, Label* fail);
// Check to see if number can be stored as a double in FastDoubleElements.
// If it can, store it at the index specified by key_reg in the array,
// otherwise jump to fail.
void StoreNumberToDoubleElements(Register value_reg,
Register key_reg,
Register elements_reg,
Register scratch1,
FPRegister fpscratch1,
Label* fail,
int elements_offset = 0);
// Picks out an array index from the hash field.
// Register use:
// hash - holds the index's hash. Clobbered.
// index - holds the overwritten index on exit.
void IndexFromHash(Register hash, Register index);
// ---------------------------------------------------------------------------
// Inline caching support.
void EmitSeqStringSetCharCheck(Register string,
Register index,
SeqStringSetCharCheckIndexType index_type,
Register scratch,
uint32_t encoding_mask);
// Generate code for checking access rights - used for security checks
// on access to global objects across environments. The holder register
// is left untouched, whereas both scratch registers are clobbered.
void CheckAccessGlobalProxy(Register holder_reg,
Register scratch1,
Register scratch2,
Label* miss);
// Hash the interger value in 'key' register.
// It uses the same algorithm as ComputeIntegerHash in utils.h.
void GetNumberHash(Register key, Register scratch);
// Load value from the dictionary.
//
// elements - holds the slow-case elements of the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the same as 'key' or 'result'.
// Unchanged on bailout so 'key' or 'result' can be used
// in further computation.
void LoadFromNumberDictionary(Label* miss,
Register elements,
Register key,
Register result,
Register scratch0,
Register scratch1,
Register scratch2,
Register scratch3);
// ---------------------------------------------------------------------------
// Frames.
// Activation support.
void EnterFrame(StackFrame::Type type);
void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
void LeaveFrame(StackFrame::Type type);
// Returns map with validated enum cache in object register.
void CheckEnumCache(Register object,
Register null_value,
Register scratch0,
Register scratch1,
Register scratch2,
Register scratch3,
Label* call_runtime);
// AllocationMemento support. Arrays may have an associated
// AllocationMemento object that can be checked for in order to pretransition
// to another type.
// On entry, receiver should point to the array object.
// If allocation info is present, the Z flag is set (so that the eq
// condition will pass).
void TestJSArrayForAllocationMemento(Register receiver,
Register scratch1,
Register scratch2,
Label* no_memento_found);
void JumpIfJSArrayHasAllocationMemento(Register receiver,
Register scratch1,
Register scratch2,
Label* memento_found) {
Label no_memento_found;
TestJSArrayForAllocationMemento(receiver, scratch1, scratch2,
&no_memento_found);
B(eq, memento_found);
Bind(&no_memento_found);
}
// The stack pointer has to switch between csp and jssp when setting up and
// destroying the exit frame. Hence preserving/restoring the registers is
// slightly more complicated than simple push/pop operations.
void ExitFramePreserveFPRegs();
void ExitFrameRestoreFPRegs();
// Generates function and stub prologue code.
void StubPrologue();
void Prologue(bool code_pre_aging);
// Enter exit frame. Exit frames are used when calling C code from generated
// (JavaScript) code.
//
// The stack pointer must be jssp on entry, and will be set to csp by this
// function. The frame pointer is also configured, but the only other
// registers modified by this function are the provided scratch register, and
// jssp.
//
// The 'extra_space' argument can be used to allocate some space in the exit
// frame that will be ignored by the GC. This space will be reserved in the
// bottom of the frame immediately above the return address slot.
//
// Set up a stack frame and registers as follows:
// fp[8]: CallerPC (lr)
// fp -> fp[0]: CallerFP (old fp)
// fp[-8]: SPOffset (new csp)
// fp[-16]: CodeObject()
// fp[-16 - fp-size]: Saved doubles, if saved_doubles is true.
// csp[8]: Memory reserved for the caller if extra_space != 0.
// Alignment padding, if necessary.
// csp -> csp[0]: Space reserved for the return address.
//
// This function also stores the new frame information in the top frame, so
// that the new frame becomes the current frame.
void EnterExitFrame(bool save_doubles,
const Register& scratch,
int extra_space = 0);
// Leave the current exit frame, after a C function has returned to generated
// (JavaScript) code.
//
// This effectively unwinds the operation of EnterExitFrame:
// * Preserved doubles are restored (if restore_doubles is true).
// * The frame information is removed from the top frame.
// * The exit frame is dropped.
// * The stack pointer is reset to jssp.
//
// The stack pointer must be csp on entry.
void LeaveExitFrame(bool save_doubles,
const Register& scratch,
bool restore_context);
void LoadContext(Register dst, int context_chain_length);
// Emit code for a truncating division by a constant. The dividend register is
// unchanged. Dividend and result must be different.
void TruncatingDiv(Register result, Register dividend, int32_t divisor);
// ---------------------------------------------------------------------------
// StatsCounter support
void SetCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
// ---------------------------------------------------------------------------
// Garbage collector support (GC).
enum RememberedSetFinalAction {
kReturnAtEnd,
kFallThroughAtEnd
};
// Record in the remembered set the fact that we have a pointer to new space
// at the address pointed to by the addr register. Only works if addr is not
// in new space.
void RememberedSetHelper(Register object, // Used for debug code.
Register addr,
Register scratch1,
SaveFPRegsMode save_fp,
RememberedSetFinalAction and_then);
// Push and pop the registers that can hold pointers, as defined by the
// RegList constant kSafepointSavedRegisters.
void PushSafepointRegisters();
void PopSafepointRegisters();
void PushSafepointRegistersAndDoubles();
void PopSafepointRegistersAndDoubles();
// Store value in register src in the safepoint stack slot for register dst.
void StoreToSafepointRegisterSlot(Register src, Register dst) {
Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
}
// Load the value of the src register from its safepoint stack slot
// into register dst.
void LoadFromSafepointRegisterSlot(Register dst, Register src) {
Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
}
void CheckPageFlagSet(const Register& object,
const Register& scratch,
int mask,
Label* if_any_set);
void CheckPageFlagClear(const Register& object,
const Register& scratch,
int mask,
Label* if_all_clear);
// Check if object is in new space and jump accordingly.
// Register 'object' is preserved.
void JumpIfNotInNewSpace(Register object,
Label* branch) {
InNewSpace(object, ne, branch);
}
void JumpIfInNewSpace(Register object,
Label* branch) {
InNewSpace(object, eq, branch);
}
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldOperand(reg, off).
void RecordWriteField(
Register object,
int offset,
Register value,
Register scratch,
LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
// As above, but the offset has the tag presubtracted. For use with
// MemOperand(reg, off).
inline void RecordWriteContextSlot(
Register context,
int offset,
Register value,
Register scratch,
LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting) {
RecordWriteField(context,
offset + kHeapObjectTag,
value,
scratch,
lr_status,
save_fp,
remembered_set_action,
smi_check,
pointers_to_here_check_for_value);
}
void RecordWriteForMap(
Register object,
Register map,
Register dst,
LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp);
// For a given |object| notify the garbage collector that the slot |address|
// has been written. |value| is the object being stored. The value and
// address registers are clobbered by the operation.
void RecordWrite(
Register object,
Register address,
Register value,
LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
// Checks the color of an object. If the object is already grey or black
// then we just fall through, since it is already live. If it is white and
// we can determine that it doesn't need to be scanned, then we just mark it
// black and fall through. For the rest we jump to the label so the
// incremental marker can fix its assumptions.
void EnsureNotWhite(Register object,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Label* object_is_white_and_not_data);
// Detects conservatively whether an object is data-only, i.e. it does need to
// be scanned by the garbage collector.
void JumpIfDataObject(Register value,
Register scratch,
Label* not_data_object);
// Helper for finding the mark bits for an address.
// Note that the behaviour slightly differs from other architectures.
// On exit:
// - addr_reg is unchanged.
// - The bitmap register points at the word with the mark bits.
// - The shift register contains the index of the first color bit for this
// object in the bitmap.
inline void GetMarkBits(Register addr_reg,
Register bitmap_reg,
Register shift_reg);
// Check if an object has a given incremental marking color.
void HasColor(Register object,
Register scratch0,
Register scratch1,
Label* has_color,
int first_bit,
int second_bit);
void JumpIfBlack(Register object,
Register scratch0,
Register scratch1,
Label* on_black);
// Get the location of a relocated constant (its address in the constant pool)
// from its load site.
void GetRelocatedValueLocation(Register ldr_location,
Register result);
// ---------------------------------------------------------------------------
// Debugging.
// Calls Abort(msg) if the condition cond is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cond, BailoutReason reason);
void AssertRegisterIsClear(Register reg, BailoutReason reason);
void AssertRegisterIsRoot(
Register reg,
Heap::RootListIndex index,
BailoutReason reason = kRegisterDidNotMatchExpectedRoot);
void AssertFastElements(Register elements);
// Abort if the specified register contains the invalid color bit pattern.
// The pattern must be in bits [1:0] of 'reg' register.
//
// If emit_debug_code() is false, this emits no code.
void AssertHasValidColor(const Register& reg);
// Abort if 'object' register doesn't point to a string object.
//
// If emit_debug_code() is false, this emits no code.
void AssertIsString(const Register& object);
// Like Assert(), but always enabled.
void Check(Condition cond, BailoutReason reason);
void CheckRegisterIsClear(Register reg, BailoutReason reason);
// Print a message to stderr and abort execution.
void Abort(BailoutReason reason);
// Conditionally load the cached Array transitioned map of type
// transitioned_kind from the native context if the map in register
// map_in_out is the cached Array map in the native context of
// expected_kind.
void LoadTransitionedArrayMapConditional(
ElementsKind expected_kind,
ElementsKind transitioned_kind,
Register map_in_out,
Register scratch1,
Register scratch2,
Label* no_map_match);
void LoadGlobalFunction(int index, Register function);
// Load the initial map from the global function. The registers function and
// map can be the same, function is then overwritten.
void LoadGlobalFunctionInitialMap(Register function,
Register map,
Register scratch);
CPURegList* TmpList() { return &tmp_list_; }
CPURegList* FPTmpList() { return &fptmp_list_; }
static CPURegList DefaultTmpList();
static CPURegList DefaultFPTmpList();
// Like printf, but print at run-time from generated code.
//
// The caller must ensure that arguments for floating-point placeholders
// (such as %e, %f or %g) are FPRegisters, and that arguments for integer
// placeholders are Registers.
//
// At the moment it is only possible to print the value of csp if it is the
// current stack pointer. Otherwise, the MacroAssembler will automatically
// update csp on every push (using BumpSystemStackPointer), so determining its
// value is difficult.
//
// Format placeholders that refer to more than one argument, or to a specific
// argument, are not supported. This includes formats like "%1$d" or "%.*d".
//
// This function automatically preserves caller-saved registers so that
// calling code can use Printf at any point without having to worry about
// corruption. The preservation mechanism generates a lot of code. If this is
// a problem, preserve the important registers manually and then call
// PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
// implicitly preserved.
void Printf(const char * format,
CPURegister arg0 = NoCPUReg,
CPURegister arg1 = NoCPUReg,
CPURegister arg2 = NoCPUReg,
CPURegister arg3 = NoCPUReg);
// Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
//
// The return code from the system printf call will be returned in x0.
void PrintfNoPreserve(const char * format,
const CPURegister& arg0 = NoCPUReg,
const CPURegister& arg1 = NoCPUReg,
const CPURegister& arg2 = NoCPUReg,
const CPURegister& arg3 = NoCPUReg);
// Code ageing support functions.
// Code ageing on ARM64 works similarly to on ARM. When V8 wants to mark a
// function as old, it replaces some of the function prologue (generated by
// FullCodeGenerator::Generate) with a call to a special stub (ultimately
// generated by GenerateMakeCodeYoungAgainCommon). The stub restores the
// function prologue to its initial young state (indicating that it has been
// recently run) and continues. A young function is therefore one which has a
// normal frame setup sequence, and an old function has a code age sequence
// which calls a code ageing stub.
// Set up a basic stack frame for young code (or code exempt from ageing) with
// type FUNCTION. It may be patched later for code ageing support. This is
// done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence.
//
// This function takes an Assembler so it can be called from either a
// MacroAssembler or a PatchingAssembler context.
static void EmitFrameSetupForCodeAgePatching(Assembler* assm);
// Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context.
void EmitFrameSetupForCodeAgePatching();
// Emit a code age sequence that calls the relevant code age stub. The code
// generated by this sequence is expected to replace the code generated by
// EmitFrameSetupForCodeAgePatching, and represents an old function.
//
// If stub is NULL, this function generates the code age sequence but omits
// the stub address that is normally embedded in the instruction stream. This
// can be used by debug code to verify code age sequences.
static void EmitCodeAgeSequence(Assembler* assm, Code* stub);
// Call EmitCodeAgeSequence from a MacroAssembler context.
void EmitCodeAgeSequence(Code* stub);
// Return true if the sequence is a young sequence geneated by
// EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the
// sequence is a code age sequence (emitted by EmitCodeAgeSequence).
static bool IsYoungSequence(Isolate* isolate, byte* sequence);
// Jumps to found label if a prototype map has dictionary elements.
void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
Register scratch1, Label* found);
// Perform necessary maintenance operations before a push or after a pop.
//
// Note that size is specified in bytes.
void PushPreamble(Operand total_size);
void PopPostamble(Operand total_size);
void PushPreamble(int count, int size) { PushPreamble(count * size); }
void PopPostamble(int count, int size) { PopPostamble(count * size); }
private:
// Helpers for CopyFields.
// These each implement CopyFields in a different way.
void CopyFieldsLoopPairsHelper(Register dst, Register src, unsigned count,
Register scratch1, Register scratch2,
Register scratch3, Register scratch4,
Register scratch5);
void CopyFieldsUnrolledPairsHelper(Register dst, Register src, unsigned count,
Register scratch1, Register scratch2,
Register scratch3, Register scratch4);
void CopyFieldsUnrolledHelper(Register dst, Register src, unsigned count,
Register scratch1, Register scratch2,
Register scratch3);
// The actual Push and Pop implementations. These don't generate any code
// other than that required for the push or pop. This allows
// (Push|Pop)CPURegList to bundle together run-time assertions for a large
// block of registers.
//
// Note that size is per register, and is specified in bytes.
void PushHelper(int count, int size,
const CPURegister& src0, const CPURegister& src1,
const CPURegister& src2, const CPURegister& src3);
void PopHelper(int count, int size,
const CPURegister& dst0, const CPURegister& dst1,
const CPURegister& dst2, const CPURegister& dst3);
// Call Printf. On a native build, a simple call will be generated, but if the
// simulator is being used then a suitable pseudo-instruction is used. The
// arguments and stack (csp) must be prepared by the caller as for a normal
// AAPCS64 call to 'printf'.
//
// The 'args' argument should point to an array of variable arguments in their
// proper PCS registers (and in calling order). The argument registers can
// have mixed types. The format string (x0) should not be included.
void CallPrintf(int arg_count = 0, const CPURegister * args = NULL);
// Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
void InNewSpace(Register object,
Condition cond, // eq for new space, ne otherwise.
Label* branch);
// Try to represent a double as an int so that integer fast-paths may be
// used. Not every valid integer value is guaranteed to be caught.
// It supports both 32-bit and 64-bit integers depending whether 'as_int'
// is a W or X register.
//
// This does not distinguish between +0 and -0, so if this distinction is
// important it must be checked separately.
//
// On output the Z flag is set if the operation was successful.
void TryRepresentDoubleAsInt(Register as_int,
FPRegister value,
FPRegister scratch_d,
Label* on_successful_conversion = NULL,
Label* on_failed_conversion = NULL);
bool generating_stub_;
#if DEBUG
// Tell whether any of the macro instruction can be used. When false the
// MacroAssembler will assert if a method which can emit a variable number
// of instructions is called.
bool allow_macro_instructions_;
#endif
bool has_frame_;
// The Abort method should call a V8 runtime function, but the CallRuntime
// mechanism depends on CEntryStub. If use_real_aborts is false, Abort will
// use a simpler abort mechanism that doesn't depend on CEntryStub.
//
// The purpose of this is to allow Aborts to be compiled whilst CEntryStub is
// being generated.
bool use_real_aborts_;
// This handle will be patched with the code object on installation.
Handle<Object> code_object_;
// The register to use as a stack pointer for stack operations.
Register sp_;
// Scratch registers available for use by the MacroAssembler.
CPURegList tmp_list_;
CPURegList fptmp_list_;
void InitializeNewString(Register string,
Register length,
Heap::RootListIndex map_index,
Register scratch1,
Register scratch2);
public:
// Far branches resolving.
//
// The various classes of branch instructions with immediate offsets have
// different ranges. While the Assembler will fail to assemble a branch
// exceeding its range, the MacroAssembler offers a mechanism to resolve
// branches to too distant targets, either by tweaking the generated code to
// use branch instructions with wider ranges or generating veneers.
//
// Currently branches to distant targets are resolved using unconditional
// branch isntructions with a range of +-128MB. If that becomes too little
// (!), the mechanism can be extended to generate special veneers for really
// far targets.
// Helps resolve branching to labels potentially out of range.
// If the label is not bound, it registers the information necessary to later
// be able to emit a veneer for this branch if necessary.
// If the label is bound, it returns true if the label (or the previous link
// in the label chain) is out of range. In that case the caller is responsible
// for generating appropriate code.
// Otherwise it returns false.
// This function also checks wether veneers need to be emitted.
bool NeedExtraInstructionsOrRegisterBranch(Label *label,
ImmBranchType branch_type);
};
// Use this scope when you need a one-to-one mapping bewteen methods and
// instructions. This scope prevents the MacroAssembler from being called and
// literal pools from being emitted. It also asserts the number of instructions
// emitted is what you specified when creating the scope.
class InstructionAccurateScope BASE_EMBEDDED {
public:
explicit InstructionAccurateScope(MacroAssembler* masm, size_t count = 0)
: masm_(masm)
#ifdef DEBUG
,
size_(count * kInstructionSize)
#endif
{
// Before blocking the const pool, see if it needs to be emitted.
masm_->CheckConstPool(false, true);
masm_->CheckVeneerPool(false, true);
masm_->StartBlockPools();
#ifdef DEBUG
if (count != 0) {
masm_->bind(&start_);
}
previous_allow_macro_instructions_ = masm_->allow_macro_instructions();
masm_->set_allow_macro_instructions(false);
#endif
}
~InstructionAccurateScope() {
masm_->EndBlockPools();
#ifdef DEBUG
if (start_.is_bound()) {
DCHECK(masm_->SizeOfCodeGeneratedSince(&start_) == size_);
}
masm_->set_allow_macro_instructions(previous_allow_macro_instructions_);
#endif
}
private:
MacroAssembler* masm_;
#ifdef DEBUG
size_t size_;
Label start_;
bool previous_allow_macro_instructions_;
#endif
};
// This scope utility allows scratch registers to be managed safely. The
// MacroAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch
// registers. These registers can be allocated on demand, and will be returned
// at the end of the scope.
//
// When the scope ends, the MacroAssembler's lists will be restored to their
// original state, even if the lists were modified by some other means.
class UseScratchRegisterScope {
public:
explicit UseScratchRegisterScope(MacroAssembler* masm)
: available_(masm->TmpList()),
availablefp_(masm->FPTmpList()),
old_available_(available_->list()),
old_availablefp_(availablefp_->list()) {
DCHECK(available_->type() == CPURegister::kRegister);
DCHECK(availablefp_->type() == CPURegister::kFPRegister);
}
~UseScratchRegisterScope();
// Take a register from the appropriate temps list. It will be returned
// automatically when the scope ends.
Register AcquireW() { return AcquireNextAvailable(available_).W(); }
Register AcquireX() { return AcquireNextAvailable(available_).X(); }
FPRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); }
FPRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); }
Register UnsafeAcquire(const Register& reg) {
return Register(UnsafeAcquire(available_, reg));
}
Register AcquireSameSizeAs(const Register& reg);
FPRegister AcquireSameSizeAs(const FPRegister& reg);
private:
static CPURegister AcquireNextAvailable(CPURegList* available);
static CPURegister UnsafeAcquire(CPURegList* available,
const CPURegister& reg);
// Available scratch registers.
CPURegList* available_; // kRegister
CPURegList* availablefp_; // kFPRegister
// The state of the available lists at the start of this scope.
RegList old_available_; // kRegister
RegList old_availablefp_; // kFPRegister
};
inline MemOperand ContextMemOperand(Register context, int index) {
return MemOperand(context, Context::SlotOffset(index));
}
inline MemOperand GlobalObjectMemOperand() {
return ContextMemOperand(cp, Context::GLOBAL_OBJECT_INDEX);
}
// Encode and decode information about patchable inline SMI checks.
class InlineSmiCheckInfo {
public:
explicit InlineSmiCheckInfo(Address info);
bool HasSmiCheck() const {
return smi_check_ != NULL;
}
const Register& SmiRegister() const {
return reg_;
}
Instruction* SmiCheck() const {
return smi_check_;
}
// Use MacroAssembler::InlineData to emit information about patchable inline
// SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to
// indicate that there is no inline SMI check. Note that 'reg' cannot be csp.
//
// The generated patch information can be read using the InlineSMICheckInfo
// class.
static void Emit(MacroAssembler* masm, const Register& reg,
const Label* smi_check);
// Emit information to indicate that there is no inline SMI check.
static void EmitNotInlined(MacroAssembler* masm) {
Label unbound;
Emit(masm, NoReg, &unbound);
}
private:
Register reg_;
Instruction* smi_check_;
// Fields in the data encoded by InlineData.
// A width of 5 (Rd_width) for the SMI register preclues the use of csp,
// since kSPRegInternalCode is 63. However, csp should never hold a SMI or be
// used in a patchable check. The Emit() method checks this.
//
// Note that the total size of the fields is restricted by the underlying
// storage size handled by the BitField class, which is a uint32_t.
class RegisterBits : public BitField<unsigned, 0, 5> {};
class DeltaBits : public BitField<uint32_t, 5, 32-5> {};
};
} } // namespace v8::internal
#ifdef GENERATED_CODE_COVERAGE
#error "Unsupported option"
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
#else
#define ACCESS_MASM(masm) masm->
#endif
#endif // V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
|