summaryrefslogtreecommitdiff
path: root/deps/v8/src/assembler.h
blob: 66811777fad6a93e98239c3172e462aea33e0e79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2006-2009 the V8 project authors. All rights reserved.

#ifndef V8_ASSEMBLER_H_
#define V8_ASSEMBLER_H_

#include "runtime.h"
#include "top.h"
#include "token.h"
#include "objects.h"

namespace v8 {
namespace internal {


// -----------------------------------------------------------------------------
// Labels represent pc locations; they are typically jump or call targets.
// After declaration, a label can be freely used to denote known or (yet)
// unknown pc location. Assembler::bind() is used to bind a label to the
// current pc. A label can be bound only once.

class Label BASE_EMBEDDED {
 public:
  INLINE(Label())                 { Unuse(); }
  INLINE(~Label())                { ASSERT(!is_linked()); }

  INLINE(void Unuse())            { pos_ = 0; }

  INLINE(bool is_bound() const)  { return pos_ <  0; }
  INLINE(bool is_unused() const)  { return pos_ == 0; }
  INLINE(bool is_linked() const)  { return pos_ >  0; }

  // Returns the position of bound or linked labels. Cannot be used
  // for unused labels.
  int pos() const;

 private:
  // pos_ encodes both the binding state (via its sign)
  // and the binding position (via its value) of a label.
  //
  // pos_ <  0  bound label, pos() returns the jump target position
  // pos_ == 0  unused label
  // pos_ >  0  linked label, pos() returns the last reference position
  int pos_;

  void bind_to(int pos)  {
    pos_ = -pos - 1;
    ASSERT(is_bound());
  }
  void link_to(int pos)  {
    pos_ =  pos + 1;
    ASSERT(is_linked());
  }

  friend class Assembler;
  friend class RegexpAssembler;
  friend class Displacement;
  friend class ShadowTarget;
  friend class RegExpMacroAssemblerIrregexp;
};


// -----------------------------------------------------------------------------
// NearLabels are labels used for short jumps (in Intel jargon).
// NearLabels should be used if it can be guaranteed that the jump range is
// within -128 to +127. We already use short jumps when jumping backwards,
// so using a NearLabel will only have performance impact if used for forward
// jumps.
class NearLabel BASE_EMBEDDED {
 public:
  NearLabel() { Unuse(); }
  ~NearLabel() { ASSERT(!is_linked()); }

  void Unuse() {
    pos_ = -1;
    unresolved_branches_ = 0;
#ifdef DEBUG
    for (int i = 0; i < kMaxUnresolvedBranches; i++) {
      unresolved_positions_[i] = -1;
    }
#endif
  }

  int pos() {
    ASSERT(is_bound());
    return pos_;
  }

  bool is_bound() { return pos_ >= 0; }
  bool is_linked() { return !is_bound() && unresolved_branches_ > 0; }
  bool is_unused() { return !is_bound() && unresolved_branches_ == 0; }

  void bind_to(int position) {
    ASSERT(!is_bound());
    pos_ = position;
  }

  void link_to(int position) {
    ASSERT(!is_bound());
    ASSERT(unresolved_branches_ < kMaxUnresolvedBranches);
    unresolved_positions_[unresolved_branches_++] = position;
  }

 private:
  static const int kMaxUnresolvedBranches = 8;
  int pos_;
  int unresolved_branches_;
  int unresolved_positions_[kMaxUnresolvedBranches];

  friend class Assembler;
};


// -----------------------------------------------------------------------------
// Relocation information


// Relocation information consists of the address (pc) of the datum
// to which the relocation information applies, the relocation mode
// (rmode), and an optional data field. The relocation mode may be
// "descriptive" and not indicate a need for relocation, but simply
// describe a property of the datum. Such rmodes are useful for GC
// and nice disassembly output.

class RelocInfo BASE_EMBEDDED {
 public:
  // The constant kNoPosition is used with the collecting of source positions
  // in the relocation information. Two types of source positions are collected
  // "position" (RelocMode position) and "statement position" (RelocMode
  // statement_position). The "position" is collected at places in the source
  // code which are of interest when making stack traces to pin-point the source
  // location of a stack frame as close as possible. The "statement position" is
  // collected at the beginning at each statement, and is used to indicate
  // possible break locations. kNoPosition is used to indicate an
  // invalid/uninitialized position value.
  static const int kNoPosition = -1;

  enum Mode {
    // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
    CONSTRUCT_CALL,  // code target that is a call to a JavaScript constructor.
    CODE_TARGET_CONTEXT,  // Code target used for contextual loads.
    DEBUG_BREAK,  // Code target for the debugger statement.
    CODE_TARGET,  // Code target which is not any of the above.
    EMBEDDED_OBJECT,

    // Everything after runtime_entry (inclusive) is not GC'ed.
    RUNTIME_ENTRY,
    JS_RETURN,  // Marks start of the ExitJSFrame code.
    COMMENT,
    POSITION,  // See comment for kNoPosition above.
    STATEMENT_POSITION,  // See comment for kNoPosition above.
    DEBUG_BREAK_SLOT,  // Additional code inserted for debug break slot.
    EXTERNAL_REFERENCE,  // The address of an external C++ function.
    INTERNAL_REFERENCE,  // An address inside the same function.

    // add more as needed
    // Pseudo-types
    NUMBER_OF_MODES,  // must be no greater than 14 - see RelocInfoWriter
    NONE,  // never recorded
    LAST_CODE_ENUM = CODE_TARGET,
    LAST_GCED_ENUM = EMBEDDED_OBJECT
  };


  RelocInfo() {}
  RelocInfo(byte* pc, Mode rmode, intptr_t data)
      : pc_(pc), rmode_(rmode), data_(data) {
  }

  static inline bool IsConstructCall(Mode mode) {
    return mode == CONSTRUCT_CALL;
  }
  static inline bool IsCodeTarget(Mode mode) {
    return mode <= LAST_CODE_ENUM;
  }
  // Is the relocation mode affected by GC?
  static inline bool IsGCRelocMode(Mode mode) {
    return mode <= LAST_GCED_ENUM;
  }
  static inline bool IsJSReturn(Mode mode) {
    return mode == JS_RETURN;
  }
  static inline bool IsComment(Mode mode) {
    return mode == COMMENT;
  }
  static inline bool IsPosition(Mode mode) {
    return mode == POSITION || mode == STATEMENT_POSITION;
  }
  static inline bool IsStatementPosition(Mode mode) {
    return mode == STATEMENT_POSITION;
  }
  static inline bool IsExternalReference(Mode mode) {
    return mode == EXTERNAL_REFERENCE;
  }
  static inline bool IsInternalReference(Mode mode) {
    return mode == INTERNAL_REFERENCE;
  }
  static inline bool IsDebugBreakSlot(Mode mode) {
    return mode == DEBUG_BREAK_SLOT;
  }
  static inline int ModeMask(Mode mode) { return 1 << mode; }

  // Accessors
  byte* pc() const { return pc_; }
  void set_pc(byte* pc) { pc_ = pc; }
  Mode rmode() const {  return rmode_; }
  intptr_t data() const { return data_; }

  // Apply a relocation by delta bytes
  INLINE(void apply(intptr_t delta));

  // Is the pointer this relocation info refers to coded like a plain pointer
  // or is it strange in some way (eg relative or patched into a series of
  // instructions).
  bool IsCodedSpecially();

  // Read/modify the code target in the branch/call instruction
  // this relocation applies to;
  // can only be called if IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY
  INLINE(Address target_address());
  INLINE(void set_target_address(Address target));
  INLINE(Object* target_object());
  INLINE(Handle<Object> target_object_handle(Assembler* origin));
  INLINE(Object** target_object_address());
  INLINE(void set_target_object(Object* target));

  // Read the address of the word containing the target_address in an
  // instruction stream.  What this means exactly is architecture-independent.
  // The only architecture-independent user of this function is the serializer.
  // The serializer uses it to find out how many raw bytes of instruction to
  // output before the next target.  Architecture-independent code shouldn't
  // dereference the pointer it gets back from this.
  INLINE(Address target_address_address());
  // This indicates how much space a target takes up when deserializing a code
  // stream.  For most architectures this is just the size of a pointer.  For
  // an instruction like movw/movt where the target bits are mixed into the
  // instruction bits the size of the target will be zero, indicating that the
  // serializer should not step forwards in memory after a target is resolved
  // and written.  In this case the target_address_address function above
  // should return the end of the instructions to be patched, allowing the
  // deserializer to deserialize the instructions as raw bytes and put them in
  // place, ready to be patched with the target.
  INLINE(int target_address_size());

  // Read/modify the reference in the instruction this relocation
  // applies to; can only be called if rmode_ is external_reference
  INLINE(Address* target_reference_address());

  // Read/modify the address of a call instruction. This is used to relocate
  // the break points where straight-line code is patched with a call
  // instruction.
  INLINE(Address call_address());
  INLINE(void set_call_address(Address target));
  INLINE(Object* call_object());
  INLINE(void set_call_object(Object* target));
  INLINE(Object** call_object_address());

  template<typename StaticVisitor> inline void Visit();
  inline void Visit(ObjectVisitor* v);

  // Patch the code with some other code.
  void PatchCode(byte* instructions, int instruction_count);

  // Patch the code with a call.
  void PatchCodeWithCall(Address target, int guard_bytes);

  // Check whether this return sequence has been patched
  // with a call to the debugger.
  INLINE(bool IsPatchedReturnSequence());

  // Check whether this debug break slot has been patched with a call to the
  // debugger.
  INLINE(bool IsPatchedDebugBreakSlotSequence());

#ifdef ENABLE_DISASSEMBLER
  // Printing
  static const char* RelocModeName(Mode rmode);
  void Print();
#endif  // ENABLE_DISASSEMBLER
#ifdef DEBUG
  // Debugging
  void Verify();
#endif

  static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
  static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
  static const int kDebugMask = kPositionMask | 1 << COMMENT;
  static const int kApplyMask;  // Modes affected by apply. Depends on arch.

 private:
  // On ARM, note that pc_ is the address of the constant pool entry
  // to be relocated and not the address of the instruction
  // referencing the constant pool entry (except when rmode_ ==
  // comment).
  byte* pc_;
  Mode rmode_;
  intptr_t data_;
  friend class RelocIterator;
};


// RelocInfoWriter serializes a stream of relocation info. It writes towards
// lower addresses.
class RelocInfoWriter BASE_EMBEDDED {
 public:
  RelocInfoWriter() : pos_(NULL), last_pc_(NULL), last_data_(0) {}
  RelocInfoWriter(byte* pos, byte* pc) : pos_(pos), last_pc_(pc),
                                         last_data_(0) {}

  byte* pos() const { return pos_; }
  byte* last_pc() const { return last_pc_; }

  void Write(const RelocInfo* rinfo);

  // Update the state of the stream after reloc info buffer
  // and/or code is moved while the stream is active.
  void Reposition(byte* pos, byte* pc) {
    pos_ = pos;
    last_pc_ = pc;
  }

  // Max size (bytes) of a written RelocInfo. Longest encoding is
  // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta.
  // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12.
  // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16;
  // Here we use the maximum of the two.
  static const int kMaxSize = 16;

 private:
  inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta);
  inline void WriteTaggedPC(uint32_t pc_delta, int tag);
  inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag);
  inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag);
  inline void WriteTaggedData(intptr_t data_delta, int tag);
  inline void WriteExtraTag(int extra_tag, int top_tag);

  byte* pos_;
  byte* last_pc_;
  intptr_t last_data_;
  DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
};


// A RelocIterator iterates over relocation information.
// Typical use:
//
//   for (RelocIterator it(code); !it.done(); it.next()) {
//     // do something with it.rinfo() here
//   }
//
// A mask can be specified to skip unwanted modes.
class RelocIterator: public Malloced {
 public:
  // Create a new iterator positioned at
  // the beginning of the reloc info.
  // Relocation information with mode k is included in the
  // iteration iff bit k of mode_mask is set.
  explicit RelocIterator(Code* code, int mode_mask = -1);
  explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);

  // Iteration
  bool done() const { return done_; }
  void next();

  // Return pointer valid until next next().
  RelocInfo* rinfo() {
    ASSERT(!done());
    return &rinfo_;
  }

 private:
  // Advance* moves the position before/after reading.
  // *Read* reads from current byte(s) into rinfo_.
  // *Get* just reads and returns info on current byte.
  void Advance(int bytes = 1) { pos_ -= bytes; }
  int AdvanceGetTag();
  int GetExtraTag();
  int GetTopTag();
  void ReadTaggedPC();
  void AdvanceReadPC();
  void AdvanceReadData();
  void AdvanceReadVariableLengthPCJump();
  int GetPositionTypeTag();
  void ReadTaggedData();

  static RelocInfo::Mode DebugInfoModeFromTag(int tag);

  // If the given mode is wanted, set it in rinfo_ and return true.
  // Else return false. Used for efficiently skipping unwanted modes.
  bool SetMode(RelocInfo::Mode mode) {
    return (mode_mask_ & 1 << mode) ? (rinfo_.rmode_ = mode, true) : false;
  }

  byte* pos_;
  byte* end_;
  RelocInfo rinfo_;
  bool done_;
  int mode_mask_;
  DISALLOW_COPY_AND_ASSIGN(RelocIterator);
};


//------------------------------------------------------------------------------
// External function

//----------------------------------------------------------------------------
class IC_Utility;
class SCTableReference;
#ifdef ENABLE_DEBUGGER_SUPPORT
class Debug_Address;
#endif


typedef void* ExternalReferenceRedirector(void* original, bool fp_return);


// An ExternalReference represents a C++ address used in the generated
// code. All references to C++ functions and variables must be encapsulated in
// an ExternalReference instance. This is done in order to track the origin of
// all external references in the code so that they can be bound to the correct
// addresses when deserializing a heap.
class ExternalReference BASE_EMBEDDED {
 public:
  explicit ExternalReference(Builtins::CFunctionId id);

  explicit ExternalReference(ApiFunction* ptr);

  explicit ExternalReference(Builtins::Name name);

  explicit ExternalReference(Runtime::FunctionId id);

  explicit ExternalReference(Runtime::Function* f);

  explicit ExternalReference(const IC_Utility& ic_utility);

#ifdef ENABLE_DEBUGGER_SUPPORT
  explicit ExternalReference(const Debug_Address& debug_address);
#endif

  explicit ExternalReference(StatsCounter* counter);

  explicit ExternalReference(Top::AddressId id);

  explicit ExternalReference(const SCTableReference& table_ref);

  // One-of-a-kind references. These references are not part of a general
  // pattern. This means that they have to be added to the
  // ExternalReferenceTable in serialize.cc manually.

  static ExternalReference perform_gc_function();
  static ExternalReference fill_heap_number_with_random_function();
  static ExternalReference random_uint32_function();
  static ExternalReference transcendental_cache_array_address();
  static ExternalReference delete_handle_scope_extensions();

  // Static data in the keyed lookup cache.
  static ExternalReference keyed_lookup_cache_keys();
  static ExternalReference keyed_lookup_cache_field_offsets();

  // Static variable Factory::the_hole_value.location()
  static ExternalReference the_hole_value_location();

  // Static variable Heap::roots_address()
  static ExternalReference roots_address();

  // Static variable StackGuard::address_of_jslimit()
  static ExternalReference address_of_stack_limit();

  // Static variable StackGuard::address_of_real_jslimit()
  static ExternalReference address_of_real_stack_limit();

  // Static variable RegExpStack::limit_address()
  static ExternalReference address_of_regexp_stack_limit();

  // Static variables for RegExp.
  static ExternalReference address_of_static_offsets_vector();
  static ExternalReference address_of_regexp_stack_memory_address();
  static ExternalReference address_of_regexp_stack_memory_size();

  // Static variable Heap::NewSpaceStart()
  static ExternalReference new_space_start();
  static ExternalReference new_space_mask();
  static ExternalReference heap_always_allocate_scope_depth();

  // Used for fast allocation in generated code.
  static ExternalReference new_space_allocation_top_address();
  static ExternalReference new_space_allocation_limit_address();

  static ExternalReference double_fp_operation(Token::Value operation);
  static ExternalReference compare_doubles();

  static ExternalReference handle_scope_next_address();
  static ExternalReference handle_scope_limit_address();
  static ExternalReference handle_scope_level_address();

  static ExternalReference scheduled_exception_address();

  Address address() const {return reinterpret_cast<Address>(address_);}

#ifdef ENABLE_DEBUGGER_SUPPORT
  // Function Debug::Break()
  static ExternalReference debug_break();

  // Used to check if single stepping is enabled in generated code.
  static ExternalReference debug_step_in_fp_address();
#endif

#ifndef V8_INTERPRETED_REGEXP
  // C functions called from RegExp generated code.

  // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
  static ExternalReference re_case_insensitive_compare_uc16();

  // Function RegExpMacroAssembler*::CheckStackGuardState()
  static ExternalReference re_check_stack_guard_state();

  // Function NativeRegExpMacroAssembler::GrowStack()
  static ExternalReference re_grow_stack();

  // byte NativeRegExpMacroAssembler::word_character_bitmap
  static ExternalReference re_word_character_map();

#endif

  // This lets you register a function that rewrites all external references.
  // Used by the ARM simulator to catch calls to external references.
  static void set_redirector(ExternalReferenceRedirector* redirector) {
    ASSERT(redirector_ == NULL);  // We can't stack them.
    redirector_ = redirector;
  }

 private:
  explicit ExternalReference(void* address)
      : address_(address) {}

  static ExternalReferenceRedirector* redirector_;

  static void* Redirect(void* address, bool fp_return = false) {
    if (redirector_ == NULL) return address;
    void* answer = (*redirector_)(address, fp_return);
    return answer;
  }

  static void* Redirect(Address address_arg, bool fp_return = false) {
    void* address = reinterpret_cast<void*>(address_arg);
    void* answer = (redirector_ == NULL) ?
                   address :
                   (*redirector_)(address, fp_return);
    return answer;
  }

  void* address_;
};


// -----------------------------------------------------------------------------
// Utility functions

static inline bool is_intn(int x, int n)  {
  return -(1 << (n-1)) <= x && x < (1 << (n-1));
}

static inline bool is_int8(int x)  { return is_intn(x, 8); }
static inline bool is_int16(int x)  { return is_intn(x, 16); }
static inline bool is_int18(int x)  { return is_intn(x, 18); }
static inline bool is_int24(int x)  { return is_intn(x, 24); }

static inline bool is_uintn(int x, int n) {
  return (x & -(1 << n)) == 0;
}

static inline bool is_uint2(int x)  { return is_uintn(x, 2); }
static inline bool is_uint3(int x)  { return is_uintn(x, 3); }
static inline bool is_uint4(int x)  { return is_uintn(x, 4); }
static inline bool is_uint5(int x)  { return is_uintn(x, 5); }
static inline bool is_uint6(int x)  { return is_uintn(x, 6); }
static inline bool is_uint8(int x)  { return is_uintn(x, 8); }
static inline bool is_uint10(int x)  { return is_uintn(x, 10); }
static inline bool is_uint12(int x)  { return is_uintn(x, 12); }
static inline bool is_uint16(int x)  { return is_uintn(x, 16); }
static inline bool is_uint24(int x)  { return is_uintn(x, 24); }
static inline bool is_uint26(int x)  { return is_uintn(x, 26); }
static inline bool is_uint28(int x)  { return is_uintn(x, 28); }

static inline int NumberOfBitsSet(uint32_t x) {
  unsigned int num_bits_set;
  for (num_bits_set = 0; x; x >>= 1) {
    num_bits_set += x & 1;
  }
  return num_bits_set;
}

} }  // namespace v8::internal

#endif  // V8_ASSEMBLER_H_