1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
|
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/ast/ast.h"
#include <cmath> // For isfinite.
#include "src/ast/compile-time-value.h"
#include "src/ast/prettyprinter.h"
#include "src/ast/scopes.h"
#include "src/base/hashmap.h"
#include "src/builtins/builtins-constructor.h"
#include "src/builtins/builtins.h"
#include "src/code-stubs.h"
#include "src/contexts.h"
#include "src/conversions.h"
#include "src/elements.h"
#include "src/property-details.h"
#include "src/property.h"
#include "src/string-stream.h"
#include "src/type-info.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Implementation of other node functionality.
#ifdef DEBUG
void AstNode::Print() { Print(Isolate::Current()); }
void AstNode::Print(Isolate* isolate) {
AstPrinter::PrintOut(isolate, this);
}
#endif // DEBUG
#define RETURN_NODE(Node) \
case k##Node: \
return static_cast<Node*>(this);
IterationStatement* AstNode::AsIterationStatement() {
switch (node_type()) {
ITERATION_NODE_LIST(RETURN_NODE);
default:
return nullptr;
}
}
BreakableStatement* AstNode::AsBreakableStatement() {
switch (node_type()) {
BREAKABLE_NODE_LIST(RETURN_NODE);
ITERATION_NODE_LIST(RETURN_NODE);
default:
return nullptr;
}
}
MaterializedLiteral* AstNode::AsMaterializedLiteral() {
switch (node_type()) {
LITERAL_NODE_LIST(RETURN_NODE);
default:
return nullptr;
}
}
#undef RETURN_NODE
bool Expression::IsSmiLiteral() const {
return IsLiteral() && AsLiteral()->raw_value()->IsSmi();
}
bool Expression::IsNumberLiteral() const {
return IsLiteral() && AsLiteral()->raw_value()->IsNumber();
}
bool Expression::IsStringLiteral() const {
return IsLiteral() && AsLiteral()->raw_value()->IsString();
}
bool Expression::IsPropertyName() const {
return IsLiteral() && AsLiteral()->IsPropertyName();
}
bool Expression::IsNullLiteral() const {
if (!IsLiteral()) return false;
return AsLiteral()->raw_value()->IsNull();
}
bool Expression::IsUndefinedLiteral() const {
if (IsLiteral() && AsLiteral()->raw_value()->IsUndefined()) return true;
const VariableProxy* var_proxy = AsVariableProxy();
if (var_proxy == nullptr) return false;
Variable* var = var_proxy->var();
// The global identifier "undefined" is immutable. Everything
// else could be reassigned.
return var != NULL && var->IsUnallocated() &&
var_proxy->raw_name()->IsOneByteEqualTo("undefined");
}
bool Expression::ToBooleanIsTrue() const {
return IsLiteral() && AsLiteral()->ToBooleanIsTrue();
}
bool Expression::ToBooleanIsFalse() const {
return IsLiteral() && AsLiteral()->ToBooleanIsFalse();
}
bool Expression::IsValidReferenceExpression() const {
// We don't want expressions wrapped inside RewritableExpression to be
// considered as valid reference expressions, as they will be rewritten
// to something (most probably involving a do expression).
if (IsRewritableExpression()) return false;
return IsProperty() ||
(IsVariableProxy() && AsVariableProxy()->IsValidReferenceExpression());
}
bool Expression::IsValidReferenceExpressionOrThis() const {
return IsValidReferenceExpression() ||
(IsVariableProxy() && AsVariableProxy()->is_this());
}
bool Expression::IsAnonymousFunctionDefinition() const {
return (IsFunctionLiteral() &&
AsFunctionLiteral()->IsAnonymousFunctionDefinition()) ||
(IsDoExpression() &&
AsDoExpression()->IsAnonymousFunctionDefinition());
}
void Expression::MarkTail() {
if (IsConditional()) {
AsConditional()->MarkTail();
} else if (IsCall()) {
AsCall()->MarkTail();
} else if (IsBinaryOperation()) {
AsBinaryOperation()->MarkTail();
}
}
bool DoExpression::IsAnonymousFunctionDefinition() const {
// This is specifically to allow DoExpressions to represent ClassLiterals.
return represented_function_ != nullptr &&
represented_function_->raw_name()->length() == 0;
}
bool Statement::IsJump() const {
switch (node_type()) {
#define JUMP_NODE_LIST(V) \
V(Block) \
V(ExpressionStatement) \
V(ContinueStatement) \
V(BreakStatement) \
V(ReturnStatement) \
V(IfStatement)
#define GENERATE_CASE(Node) \
case k##Node: \
return static_cast<const Node*>(this)->IsJump();
JUMP_NODE_LIST(GENERATE_CASE)
#undef GENERATE_CASE
#undef JUMP_NODE_LIST
default:
return false;
}
}
VariableProxy::VariableProxy(Variable* var, int start_position)
: Expression(start_position, kVariableProxy),
raw_name_(var->raw_name()),
next_unresolved_(nullptr) {
bit_field_ |= IsThisField::encode(var->is_this()) |
IsAssignedField::encode(false) |
IsResolvedField::encode(false) |
HoleCheckModeField::encode(HoleCheckMode::kElided);
BindTo(var);
}
VariableProxy::VariableProxy(const AstRawString* name,
VariableKind variable_kind, int start_position)
: Expression(start_position, kVariableProxy),
raw_name_(name),
next_unresolved_(nullptr) {
bit_field_ |= IsThisField::encode(variable_kind == THIS_VARIABLE) |
IsAssignedField::encode(false) |
IsResolvedField::encode(false) |
HoleCheckModeField::encode(HoleCheckMode::kElided);
}
VariableProxy::VariableProxy(const VariableProxy* copy_from)
: Expression(copy_from->position(), kVariableProxy),
next_unresolved_(nullptr) {
bit_field_ = copy_from->bit_field_;
DCHECK(!copy_from->is_resolved());
raw_name_ = copy_from->raw_name_;
}
void VariableProxy::BindTo(Variable* var) {
DCHECK((is_this() && var->is_this()) || raw_name() == var->raw_name());
set_var(var);
set_is_resolved();
var->set_is_used();
}
void VariableProxy::AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
if (UsesVariableFeedbackSlot()) {
// VariableProxies that point to the same Variable within a function can
// make their loads from the same IC slot.
if (var()->IsUnallocated() || var()->mode() == DYNAMIC_GLOBAL) {
ZoneHashMap::Entry* entry = cache->Get(var());
if (entry != NULL) {
variable_feedback_slot_ = FeedbackVectorSlot(
static_cast<int>(reinterpret_cast<intptr_t>(entry->value)));
return;
}
variable_feedback_slot_ = spec->AddLoadGlobalICSlot();
cache->Put(var(), variable_feedback_slot_);
} else {
variable_feedback_slot_ = spec->AddLoadICSlot();
}
}
}
static void AssignVectorSlots(Expression* expr, FeedbackVectorSpec* spec,
FeedbackVectorSlot* out_slot) {
Property* property = expr->AsProperty();
LhsKind assign_type = Property::GetAssignType(property);
if ((assign_type == VARIABLE &&
expr->AsVariableProxy()->var()->IsUnallocated()) ||
assign_type == NAMED_PROPERTY || assign_type == KEYED_PROPERTY) {
// TODO(ishell): consider using ICSlotCache for variables here.
FeedbackVectorSlotKind kind = assign_type == KEYED_PROPERTY
? FeedbackVectorSlotKind::KEYED_STORE_IC
: FeedbackVectorSlotKind::STORE_IC;
*out_slot = spec->AddSlot(kind);
}
}
void ForInStatement::AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
AssignVectorSlots(each(), spec, &each_slot_);
for_in_feedback_slot_ = spec->AddGeneralSlot();
}
Assignment::Assignment(Token::Value op, Expression* target, Expression* value,
int pos)
: Expression(pos, kAssignment),
target_(target),
value_(value),
binary_operation_(NULL) {
bit_field_ |= IsUninitializedField::encode(false) |
KeyTypeField::encode(ELEMENT) |
StoreModeField::encode(STANDARD_STORE) | TokenField::encode(op);
}
void Assignment::AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
AssignVectorSlots(target(), spec, &slot_);
}
void CountOperation::AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
AssignVectorSlots(expression(), spec, &slot_);
// Assign a slot to collect feedback about binary operations. Used only in
// ignition. Fullcodegen uses AstId to record type feedback.
binary_operation_slot_ = spec->AddInterpreterBinaryOpICSlot();
}
Token::Value Assignment::binary_op() const {
switch (op()) {
case Token::ASSIGN_BIT_OR: return Token::BIT_OR;
case Token::ASSIGN_BIT_XOR: return Token::BIT_XOR;
case Token::ASSIGN_BIT_AND: return Token::BIT_AND;
case Token::ASSIGN_SHL: return Token::SHL;
case Token::ASSIGN_SAR: return Token::SAR;
case Token::ASSIGN_SHR: return Token::SHR;
case Token::ASSIGN_ADD: return Token::ADD;
case Token::ASSIGN_SUB: return Token::SUB;
case Token::ASSIGN_MUL: return Token::MUL;
case Token::ASSIGN_DIV: return Token::DIV;
case Token::ASSIGN_MOD: return Token::MOD;
default: UNREACHABLE();
}
return Token::ILLEGAL;
}
bool FunctionLiteral::ShouldEagerCompile() const {
return scope()->ShouldEagerCompile();
}
void FunctionLiteral::SetShouldEagerCompile() {
scope()->set_should_eager_compile();
}
bool FunctionLiteral::AllowsLazyCompilation() {
return scope()->AllowsLazyCompilation();
}
int FunctionLiteral::start_position() const {
return scope()->start_position();
}
int FunctionLiteral::end_position() const {
return scope()->end_position();
}
LanguageMode FunctionLiteral::language_mode() const {
return scope()->language_mode();
}
FunctionKind FunctionLiteral::kind() const { return scope()->function_kind(); }
bool FunctionLiteral::NeedsHomeObject(Expression* expr) {
if (expr == nullptr || !expr->IsFunctionLiteral()) return false;
DCHECK_NOT_NULL(expr->AsFunctionLiteral()->scope());
return expr->AsFunctionLiteral()->scope()->NeedsHomeObject();
}
ObjectLiteralProperty::ObjectLiteralProperty(Expression* key, Expression* value,
Kind kind, bool is_computed_name)
: LiteralProperty(key, value, is_computed_name),
kind_(kind),
emit_store_(true) {}
ObjectLiteralProperty::ObjectLiteralProperty(AstValueFactory* ast_value_factory,
Expression* key, Expression* value,
bool is_computed_name)
: LiteralProperty(key, value, is_computed_name), emit_store_(true) {
if (!is_computed_name &&
key->AsLiteral()->raw_value()->EqualsString(
ast_value_factory->proto_string())) {
kind_ = PROTOTYPE;
} else if (value_->AsMaterializedLiteral() != NULL) {
kind_ = MATERIALIZED_LITERAL;
} else if (value_->IsLiteral()) {
kind_ = CONSTANT;
} else {
kind_ = COMPUTED;
}
}
FeedbackVectorSlot LiteralProperty::GetStoreDataPropertySlot() const {
int offset = FunctionLiteral::NeedsHomeObject(value_) ? 1 : 0;
return GetSlot(offset);
}
void LiteralProperty::SetStoreDataPropertySlot(FeedbackVectorSlot slot) {
int offset = FunctionLiteral::NeedsHomeObject(value_) ? 1 : 0;
return SetSlot(slot, offset);
}
bool LiteralProperty::NeedsSetFunctionName() const {
return is_computed_name_ &&
(value_->IsAnonymousFunctionDefinition() ||
(value_->IsFunctionLiteral() &&
IsConciseMethod(value_->AsFunctionLiteral()->kind())));
}
ClassLiteralProperty::ClassLiteralProperty(Expression* key, Expression* value,
Kind kind, bool is_static,
bool is_computed_name)
: LiteralProperty(key, value, is_computed_name),
kind_(kind),
is_static_(is_static) {}
void ClassLiteral::AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
// This logic that computes the number of slots needed for vector store
// ICs must mirror BytecodeGenerator::VisitClassLiteral.
if (FunctionLiteral::NeedsHomeObject(constructor())) {
home_object_slot_ = spec->AddStoreICSlot();
}
if (NeedsProxySlot()) {
proxy_slot_ = spec->AddStoreICSlot();
}
for (int i = 0; i < properties()->length(); i++) {
ClassLiteral::Property* property = properties()->at(i);
Expression* value = property->value();
if (FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot());
}
property->SetStoreDataPropertySlot(
spec->AddStoreDataPropertyInLiteralICSlot());
}
}
bool ObjectLiteral::Property::IsCompileTimeValue() const {
return kind_ == CONSTANT ||
(kind_ == MATERIALIZED_LITERAL &&
CompileTimeValue::IsCompileTimeValue(value_));
}
void ObjectLiteral::Property::set_emit_store(bool emit_store) {
emit_store_ = emit_store;
}
bool ObjectLiteral::Property::emit_store() const { return emit_store_; }
void ObjectLiteral::AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
// This logic that computes the number of slots needed for vector store
// ics must mirror FullCodeGenerator::VisitObjectLiteral.
int property_index = 0;
for (; property_index < properties()->length(); property_index++) {
ObjectLiteral::Property* property = properties()->at(property_index);
if (property->is_computed_name()) break;
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key()->AsLiteral();
Expression* value = property->value();
switch (property->kind()) {
case ObjectLiteral::Property::SPREAD:
case ObjectLiteral::Property::CONSTANT:
UNREACHABLE();
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
// Fall through.
case ObjectLiteral::Property::COMPUTED:
// It is safe to use [[Put]] here because the boilerplate already
// contains computed properties with an uninitialized value.
if (key->IsStringLiteral()) {
if (property->emit_store()) {
property->SetSlot(spec->AddStoreICSlot());
if (FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot(), 1);
}
}
break;
}
if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot());
}
break;
case ObjectLiteral::Property::PROTOTYPE:
break;
case ObjectLiteral::Property::GETTER:
if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot());
}
break;
case ObjectLiteral::Property::SETTER:
if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot());
}
break;
}
}
for (; property_index < properties()->length(); property_index++) {
ObjectLiteral::Property* property = properties()->at(property_index);
Expression* value = property->value();
if (property->kind() != ObjectLiteral::Property::PROTOTYPE) {
if (FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot());
}
}
property->SetStoreDataPropertySlot(
spec->AddStoreDataPropertyInLiteralICSlot());
}
}
void ObjectLiteral::CalculateEmitStore(Zone* zone) {
const auto GETTER = ObjectLiteral::Property::GETTER;
const auto SETTER = ObjectLiteral::Property::SETTER;
ZoneAllocationPolicy allocator(zone);
CustomMatcherZoneHashMap table(
Literal::Match, ZoneHashMap::kDefaultHashMapCapacity, allocator);
for (int i = properties()->length() - 1; i >= 0; i--) {
ObjectLiteral::Property* property = properties()->at(i);
if (property->is_computed_name()) continue;
if (property->kind() == ObjectLiteral::Property::PROTOTYPE) continue;
Literal* literal = property->key()->AsLiteral();
DCHECK(!literal->IsNullLiteral());
// If there is an existing entry do not emit a store unless the previous
// entry was also an accessor.
uint32_t hash = literal->Hash();
ZoneHashMap::Entry* entry = table.LookupOrInsert(literal, hash, allocator);
if (entry->value != NULL) {
auto previous_kind =
static_cast<ObjectLiteral::Property*>(entry->value)->kind();
if (!((property->kind() == GETTER && previous_kind == SETTER) ||
(property->kind() == SETTER && previous_kind == GETTER))) {
property->set_emit_store(false);
}
}
entry->value = property;
}
}
bool ObjectLiteral::IsBoilerplateProperty(ObjectLiteral::Property* property) {
return property != NULL &&
property->kind() != ObjectLiteral::Property::PROTOTYPE;
}
void ObjectLiteral::InitDepthAndFlags() {
if (depth_ > 0) return;
int position = 0;
// Accumulate the value in local variables and store it at the end.
bool is_simple = true;
int depth_acc = 1;
uint32_t max_element_index = 0;
uint32_t elements = 0;
for (int i = 0; i < properties()->length(); i++) {
ObjectLiteral::Property* property = properties()->at(i);
if (!IsBoilerplateProperty(property)) {
is_simple = false;
continue;
}
if (static_cast<uint32_t>(position) == boilerplate_properties_ * 2) {
DCHECK(property->is_computed_name());
is_simple = false;
break;
}
DCHECK(!property->is_computed_name());
MaterializedLiteral* m_literal = property->value()->AsMaterializedLiteral();
if (m_literal != NULL) {
m_literal->InitDepthAndFlags();
if (m_literal->depth() >= depth_acc) depth_acc = m_literal->depth() + 1;
}
const AstValue* key = property->key()->AsLiteral()->raw_value();
Expression* value = property->value();
bool is_compile_time_value = CompileTimeValue::IsCompileTimeValue(value);
// Ensure objects that may, at any point in time, contain fields with double
// representation are always treated as nested objects. This is true for
// computed fields, and smi and double literals.
// TODO(verwaest): Remove once we can store them inline.
if (FLAG_track_double_fields &&
(value->IsNumberLiteral() || !is_compile_time_value)) {
bit_field_ = MayStoreDoublesField::update(bit_field_, true);
}
is_simple = is_simple && is_compile_time_value;
// Keep track of the number of elements in the object literal and
// the largest element index. If the largest element index is
// much larger than the number of elements, creating an object
// literal with fast elements will be a waste of space.
uint32_t element_index = 0;
if (key->IsString() && key->AsString()->AsArrayIndex(&element_index)) {
max_element_index = Max(element_index, max_element_index);
elements++;
} else if (key->ToUint32(&element_index) && element_index != kMaxUInt32) {
max_element_index = Max(element_index, max_element_index);
elements++;
}
// Increment the position for the key and the value.
position += 2;
}
bit_field_ = FastElementsField::update(
bit_field_,
(max_element_index <= 32) || ((2 * elements) >= max_element_index));
bit_field_ = HasElementsField::update(bit_field_, elements > 0);
set_is_simple(is_simple);
set_depth(depth_acc);
}
void ObjectLiteral::BuildConstantProperties(Isolate* isolate) {
if (!constant_properties_.is_null()) return;
// Allocate a fixed array to hold all the constant properties.
Handle<FixedArray> constant_properties =
isolate->factory()->NewFixedArray(boilerplate_properties_ * 2, TENURED);
int position = 0;
for (int i = 0; i < properties()->length(); i++) {
ObjectLiteral::Property* property = properties()->at(i);
if (!IsBoilerplateProperty(property)) {
continue;
}
if (static_cast<uint32_t>(position) == boilerplate_properties_ * 2) {
DCHECK(property->is_computed_name());
break;
}
DCHECK(!property->is_computed_name());
MaterializedLiteral* m_literal = property->value()->AsMaterializedLiteral();
if (m_literal != NULL) {
m_literal->BuildConstants(isolate);
}
// Add CONSTANT and COMPUTED properties to boilerplate. Use undefined
// value for COMPUTED properties, the real value is filled in at
// runtime. The enumeration order is maintained.
Handle<Object> key = property->key()->AsLiteral()->value();
Handle<Object> value = GetBoilerplateValue(property->value(), isolate);
uint32_t element_index = 0;
if (key->IsString() && String::cast(*key)->AsArrayIndex(&element_index)) {
key = isolate->factory()->NewNumberFromUint(element_index);
} else if (key->IsNumber() && !key->ToArrayIndex(&element_index)) {
key = isolate->factory()->NumberToString(key);
}
// Add name, value pair to the fixed array.
constant_properties->set(position++, *key);
constant_properties->set(position++, *value);
}
constant_properties_ = constant_properties;
}
bool ObjectLiteral::IsFastCloningSupported() const {
// The FastCloneShallowObject builtin doesn't copy elements, and object
// literals don't support copy-on-write (COW) elements for now.
// TODO(mvstanton): make object literals support COW elements.
return fast_elements() && has_shallow_properties() &&
properties_count() <= ConstructorBuiltinsAssembler::
kMaximumClonedShallowObjectProperties;
}
void ArrayLiteral::InitDepthAndFlags() {
DCHECK_LT(first_spread_index_, 0);
if (depth_ > 0) return;
int constants_length = values()->length();
// Fill in the literals.
bool is_simple = true;
int depth_acc = 1;
int array_index = 0;
for (; array_index < constants_length; array_index++) {
Expression* element = values()->at(array_index);
DCHECK(!element->IsSpread());
MaterializedLiteral* m_literal = element->AsMaterializedLiteral();
if (m_literal != NULL) {
m_literal->InitDepthAndFlags();
if (m_literal->depth() + 1 > depth_acc) {
depth_acc = m_literal->depth() + 1;
}
}
if (!CompileTimeValue::IsCompileTimeValue(element)) {
is_simple = false;
}
}
set_is_simple(is_simple);
set_depth(depth_acc);
}
void ArrayLiteral::BuildConstantElements(Isolate* isolate) {
DCHECK_LT(first_spread_index_, 0);
if (!constant_elements_.is_null()) return;
int constants_length = values()->length();
ElementsKind kind = FIRST_FAST_ELEMENTS_KIND;
Handle<FixedArray> fixed_array =
isolate->factory()->NewFixedArrayWithHoles(constants_length);
// Fill in the literals.
bool is_holey = false;
int array_index = 0;
for (; array_index < constants_length; array_index++) {
Expression* element = values()->at(array_index);
DCHECK(!element->IsSpread());
MaterializedLiteral* m_literal = element->AsMaterializedLiteral();
if (m_literal != NULL) {
m_literal->BuildConstants(isolate);
}
// New handle scope here, needs to be after BuildContants().
HandleScope scope(isolate);
Handle<Object> boilerplate_value = GetBoilerplateValue(element, isolate);
if (boilerplate_value->IsTheHole(isolate)) {
is_holey = true;
continue;
}
if (boilerplate_value->IsUninitialized(isolate)) {
boilerplate_value = handle(Smi::kZero, isolate);
}
kind = GetMoreGeneralElementsKind(kind,
boilerplate_value->OptimalElementsKind());
fixed_array->set(array_index, *boilerplate_value);
}
if (is_holey) kind = GetHoleyElementsKind(kind);
// Simple and shallow arrays can be lazily copied, we transform the
// elements array to a copy-on-write array.
if (is_simple() && depth() == 1 && array_index > 0 &&
IsFastSmiOrObjectElementsKind(kind)) {
fixed_array->set_map(isolate->heap()->fixed_cow_array_map());
}
Handle<FixedArrayBase> elements = fixed_array;
if (IsFastDoubleElementsKind(kind)) {
ElementsAccessor* accessor = ElementsAccessor::ForKind(kind);
elements = isolate->factory()->NewFixedDoubleArray(constants_length);
// We are copying from non-fast-double to fast-double.
ElementsKind from_kind = TERMINAL_FAST_ELEMENTS_KIND;
accessor->CopyElements(fixed_array, from_kind, elements, constants_length);
}
// Remember both the literal's constant values as well as the ElementsKind.
Handle<ConstantElementsPair> literals =
isolate->factory()->NewConstantElementsPair(kind, elements);
constant_elements_ = literals;
}
bool ArrayLiteral::IsFastCloningSupported() const {
return depth() <= 1 &&
values()->length() <=
ConstructorBuiltinsAssembler::kMaximumClonedShallowArrayElements;
}
void ArrayLiteral::AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
// This logic that computes the number of slots needed for vector store
// ics must mirror FullCodeGenerator::VisitArrayLiteral.
for (int array_index = 0; array_index < values()->length(); array_index++) {
Expression* subexpr = values()->at(array_index);
DCHECK(!subexpr->IsSpread());
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
// We'll reuse the same literal slot for all of the non-constant
// subexpressions that use a keyed store IC.
literal_slot_ = spec->AddKeyedStoreICSlot();
return;
}
}
Handle<Object> MaterializedLiteral::GetBoilerplateValue(Expression* expression,
Isolate* isolate) {
if (expression->IsLiteral()) {
return expression->AsLiteral()->value();
}
if (CompileTimeValue::IsCompileTimeValue(expression)) {
return CompileTimeValue::GetValue(isolate, expression);
}
return isolate->factory()->uninitialized_value();
}
void MaterializedLiteral::InitDepthAndFlags() {
if (IsArrayLiteral()) {
return AsArrayLiteral()->InitDepthAndFlags();
}
if (IsObjectLiteral()) {
return AsObjectLiteral()->InitDepthAndFlags();
}
DCHECK(IsRegExpLiteral());
DCHECK_LE(1, depth()); // Depth should be initialized.
}
void MaterializedLiteral::BuildConstants(Isolate* isolate) {
if (IsArrayLiteral()) {
return AsArrayLiteral()->BuildConstantElements(isolate);
}
if (IsObjectLiteral()) {
return AsObjectLiteral()->BuildConstantProperties(isolate);
}
DCHECK(IsRegExpLiteral());
}
void UnaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
// TODO(olivf) If this Operation is used in a test context, then the
// expression has a ToBoolean stub and we want to collect the type
// information. However the GraphBuilder expects it to be on the instruction
// corresponding to the TestContext, therefore we have to store it here and
// not on the operand.
set_to_boolean_types(oracle->ToBooleanTypes(expression()->test_id()));
}
void BinaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
// TODO(olivf) If this Operation is used in a test context, then the right
// hand side has a ToBoolean stub and we want to collect the type information.
// However the GraphBuilder expects it to be on the instruction corresponding
// to the TestContext, therefore we have to store it here and not on the
// right hand operand.
set_to_boolean_types(oracle->ToBooleanTypes(right()->test_id()));
}
void BinaryOperation::AssignFeedbackVectorSlots(
FeedbackVectorSpec* spec, FeedbackVectorSlotCache* cache) {
// Feedback vector slot is only used by interpreter for binary operations.
// Full-codegen uses AstId to record type feedback.
switch (op()) {
// Comma, logical_or and logical_and do not collect type feedback.
case Token::COMMA:
case Token::AND:
case Token::OR:
return;
default:
type_feedback_slot_ = spec->AddInterpreterBinaryOpICSlot();
return;
}
}
static bool IsTypeof(Expression* expr) {
UnaryOperation* maybe_unary = expr->AsUnaryOperation();
return maybe_unary != NULL && maybe_unary->op() == Token::TYPEOF;
}
void CompareOperation::AssignFeedbackVectorSlots(
FeedbackVectorSpec* spec, FeedbackVectorSlotCache* cache_) {
// Feedback vector slot is only used by interpreter for binary operations.
// Full-codegen uses AstId to record type feedback.
switch (op()) {
// instanceof and in do not collect type feedback.
case Token::INSTANCEOF:
case Token::IN:
return;
default:
type_feedback_slot_ = spec->AddInterpreterCompareICSlot();
}
}
// Check for the pattern: typeof <expression> equals <string literal>.
static bool MatchLiteralCompareTypeof(Expression* left,
Token::Value op,
Expression* right,
Expression** expr,
Handle<String>* check) {
if (IsTypeof(left) && right->IsStringLiteral() && Token::IsEqualityOp(op)) {
*expr = left->AsUnaryOperation()->expression();
*check = Handle<String>::cast(right->AsLiteral()->value());
return true;
}
return false;
}
bool CompareOperation::IsLiteralCompareTypeof(Expression** expr,
Handle<String>* check) {
return MatchLiteralCompareTypeof(left_, op(), right_, expr, check) ||
MatchLiteralCompareTypeof(right_, op(), left_, expr, check);
}
static bool IsVoidOfLiteral(Expression* expr) {
UnaryOperation* maybe_unary = expr->AsUnaryOperation();
return maybe_unary != NULL &&
maybe_unary->op() == Token::VOID &&
maybe_unary->expression()->IsLiteral();
}
// Check for the pattern: void <literal> equals <expression> or
// undefined equals <expression>
static bool MatchLiteralCompareUndefined(Expression* left,
Token::Value op,
Expression* right,
Expression** expr) {
if (IsVoidOfLiteral(left) && Token::IsEqualityOp(op)) {
*expr = right;
return true;
}
if (left->IsUndefinedLiteral() && Token::IsEqualityOp(op)) {
*expr = right;
return true;
}
return false;
}
bool CompareOperation::IsLiteralCompareUndefined(Expression** expr) {
return MatchLiteralCompareUndefined(left_, op(), right_, expr) ||
MatchLiteralCompareUndefined(right_, op(), left_, expr);
}
// Check for the pattern: null equals <expression>
static bool MatchLiteralCompareNull(Expression* left,
Token::Value op,
Expression* right,
Expression** expr) {
if (left->IsNullLiteral() && Token::IsEqualityOp(op)) {
*expr = right;
return true;
}
return false;
}
bool CompareOperation::IsLiteralCompareNull(Expression** expr) {
return MatchLiteralCompareNull(left_, op(), right_, expr) ||
MatchLiteralCompareNull(right_, op(), left_, expr);
}
// ----------------------------------------------------------------------------
// Recording of type feedback
// TODO(rossberg): all RecordTypeFeedback functions should disappear
// once we use the common type field in the AST consistently.
void Expression::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
if (IsUnaryOperation()) {
AsUnaryOperation()->RecordToBooleanTypeFeedback(oracle);
} else if (IsBinaryOperation()) {
AsBinaryOperation()->RecordToBooleanTypeFeedback(oracle);
} else {
set_to_boolean_types(oracle->ToBooleanTypes(test_id()));
}
}
SmallMapList* Expression::GetReceiverTypes() {
switch (node_type()) {
#define NODE_LIST(V) \
PROPERTY_NODE_LIST(V) \
V(Call)
#define GENERATE_CASE(Node) \
case k##Node: \
return static_cast<Node*>(this)->GetReceiverTypes();
NODE_LIST(GENERATE_CASE)
#undef NODE_LIST
#undef GENERATE_CASE
default:
UNREACHABLE();
return nullptr;
}
}
KeyedAccessStoreMode Expression::GetStoreMode() const {
switch (node_type()) {
#define GENERATE_CASE(Node) \
case k##Node: \
return static_cast<const Node*>(this)->GetStoreMode();
PROPERTY_NODE_LIST(GENERATE_CASE)
#undef GENERATE_CASE
default:
UNREACHABLE();
return STANDARD_STORE;
}
}
IcCheckType Expression::GetKeyType() const {
switch (node_type()) {
#define GENERATE_CASE(Node) \
case k##Node: \
return static_cast<const Node*>(this)->GetKeyType();
PROPERTY_NODE_LIST(GENERATE_CASE)
#undef GENERATE_CASE
default:
UNREACHABLE();
return PROPERTY;
}
}
bool Expression::IsMonomorphic() const {
switch (node_type()) {
#define GENERATE_CASE(Node) \
case k##Node: \
return static_cast<const Node*>(this)->IsMonomorphic();
PROPERTY_NODE_LIST(GENERATE_CASE)
CALL_NODE_LIST(GENERATE_CASE)
#undef GENERATE_CASE
default:
UNREACHABLE();
return false;
}
}
void Call::AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
ic_slot_ = spec->AddCallICSlot();
}
Call::CallType Call::GetCallType() const {
VariableProxy* proxy = expression()->AsVariableProxy();
if (proxy != NULL) {
if (proxy->var()->IsUnallocated()) {
return GLOBAL_CALL;
} else if (proxy->var()->IsLookupSlot()) {
// Calls going through 'with' always use DYNAMIC rather than DYNAMIC_LOCAL
// or DYNAMIC_GLOBAL.
return proxy->var()->mode() == DYNAMIC ? WITH_CALL : OTHER_CALL;
}
}
if (expression()->IsSuperCallReference()) return SUPER_CALL;
Property* property = expression()->AsProperty();
if (property != nullptr) {
bool is_super = property->IsSuperAccess();
if (property->key()->IsPropertyName()) {
return is_super ? NAMED_SUPER_PROPERTY_CALL : NAMED_PROPERTY_CALL;
} else {
return is_super ? KEYED_SUPER_PROPERTY_CALL : KEYED_PROPERTY_CALL;
}
}
return OTHER_CALL;
}
CaseClause::CaseClause(Expression* label, ZoneList<Statement*>* statements,
int pos)
: Expression(pos, kCaseClause),
label_(label),
statements_(statements),
compare_type_(AstType::None()) {}
void CaseClause::AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
type_feedback_slot_ = spec->AddInterpreterCompareICSlot();
}
uint32_t Literal::Hash() {
return raw_value()->IsString()
? raw_value()->AsString()->hash()
: ComputeLongHash(double_to_uint64(raw_value()->AsNumber()));
}
// static
bool Literal::Match(void* literal1, void* literal2) {
const AstValue* x = static_cast<Literal*>(literal1)->raw_value();
const AstValue* y = static_cast<Literal*>(literal2)->raw_value();
return (x->IsString() && y->IsString() && x->AsString() == y->AsString()) ||
(x->IsNumber() && y->IsNumber() && x->AsNumber() == y->AsNumber());
}
} // namespace internal
} // namespace v8
|