1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
|
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_AST_AST_H_
#define V8_AST_AST_H_
#include "src/assembler.h"
#include "src/ast/ast-types.h"
#include "src/ast/ast-value-factory.h"
#include "src/ast/modules.h"
#include "src/ast/variables.h"
#include "src/bailout-reason.h"
#include "src/base/flags.h"
#include "src/factory.h"
#include "src/globals.h"
#include "src/isolate.h"
#include "src/list.h"
#include "src/parsing/token.h"
#include "src/runtime/runtime.h"
#include "src/small-pointer-list.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
// The abstract syntax tree is an intermediate, light-weight
// representation of the parsed JavaScript code suitable for
// compilation to native code.
// Nodes are allocated in a separate zone, which allows faster
// allocation and constant-time deallocation of the entire syntax
// tree.
// ----------------------------------------------------------------------------
// Nodes of the abstract syntax tree. Only concrete classes are
// enumerated here.
#define DECLARATION_NODE_LIST(V) \
V(VariableDeclaration) \
V(FunctionDeclaration)
#define ITERATION_NODE_LIST(V) \
V(DoWhileStatement) \
V(WhileStatement) \
V(ForStatement) \
V(ForInStatement) \
V(ForOfStatement)
#define BREAKABLE_NODE_LIST(V) \
V(Block) \
V(SwitchStatement)
#define STATEMENT_NODE_LIST(V) \
ITERATION_NODE_LIST(V) \
BREAKABLE_NODE_LIST(V) \
V(ExpressionStatement) \
V(EmptyStatement) \
V(SloppyBlockFunctionStatement) \
V(IfStatement) \
V(ContinueStatement) \
V(BreakStatement) \
V(ReturnStatement) \
V(WithStatement) \
V(TryCatchStatement) \
V(TryFinallyStatement) \
V(DebuggerStatement)
#define LITERAL_NODE_LIST(V) \
V(RegExpLiteral) \
V(ObjectLiteral) \
V(ArrayLiteral)
#define PROPERTY_NODE_LIST(V) \
V(Assignment) \
V(CountOperation) \
V(Property)
#define CALL_NODE_LIST(V) \
V(Call) \
V(CallNew)
#define EXPRESSION_NODE_LIST(V) \
LITERAL_NODE_LIST(V) \
PROPERTY_NODE_LIST(V) \
CALL_NODE_LIST(V) \
V(FunctionLiteral) \
V(ClassLiteral) \
V(NativeFunctionLiteral) \
V(Conditional) \
V(VariableProxy) \
V(Literal) \
V(Yield) \
V(Throw) \
V(CallRuntime) \
V(UnaryOperation) \
V(BinaryOperation) \
V(CompareOperation) \
V(Spread) \
V(ThisFunction) \
V(SuperPropertyReference) \
V(SuperCallReference) \
V(CaseClause) \
V(EmptyParentheses) \
V(GetIterator) \
V(DoExpression) \
V(RewritableExpression)
#define AST_NODE_LIST(V) \
DECLARATION_NODE_LIST(V) \
STATEMENT_NODE_LIST(V) \
EXPRESSION_NODE_LIST(V)
// Forward declarations
class AstNodeFactory;
class Declaration;
class Module;
class BreakableStatement;
class Expression;
class IterationStatement;
class MaterializedLiteral;
class Statement;
class TypeFeedbackOracle;
#define DEF_FORWARD_DECLARATION(type) class type;
AST_NODE_LIST(DEF_FORWARD_DECLARATION)
#undef DEF_FORWARD_DECLARATION
class FeedbackVectorSlotCache {
public:
explicit FeedbackVectorSlotCache(Zone* zone)
: zone_(zone),
hash_map_(ZoneHashMap::kDefaultHashMapCapacity,
ZoneAllocationPolicy(zone)) {}
void Put(Variable* variable, FeedbackVectorSlot slot) {
ZoneHashMap::Entry* entry = hash_map_.LookupOrInsert(
variable, ComputePointerHash(variable), ZoneAllocationPolicy(zone_));
entry->value = reinterpret_cast<void*>(slot.ToInt());
}
ZoneHashMap::Entry* Get(Variable* variable) const {
return hash_map_.Lookup(variable, ComputePointerHash(variable));
}
private:
Zone* zone_;
ZoneHashMap hash_map_;
};
class AstProperties final BASE_EMBEDDED {
public:
enum Flag {
kNoFlags = 0,
kDontSelfOptimize = 1 << 0,
kMustUseIgnitionTurbo = 1 << 1
};
typedef base::Flags<Flag> Flags;
explicit AstProperties(Zone* zone) : node_count_(0), spec_(zone) {}
Flags& flags() { return flags_; }
Flags flags() const { return flags_; }
int node_count() { return node_count_; }
void add_node_count(int count) { node_count_ += count; }
const FeedbackVectorSpec* get_spec() const { return &spec_; }
FeedbackVectorSpec* get_spec() { return &spec_; }
private:
Flags flags_;
int node_count_;
FeedbackVectorSpec spec_;
};
DEFINE_OPERATORS_FOR_FLAGS(AstProperties::Flags)
class AstNode: public ZoneObject {
public:
#define DECLARE_TYPE_ENUM(type) k##type,
enum NodeType : uint8_t { AST_NODE_LIST(DECLARE_TYPE_ENUM) };
#undef DECLARE_TYPE_ENUM
void* operator new(size_t size, Zone* zone) { return zone->New(size); }
NodeType node_type() const { return NodeTypeField::decode(bit_field_); }
int position() const { return position_; }
#ifdef DEBUG
void Print();
void Print(Isolate* isolate);
#endif // DEBUG
// Type testing & conversion functions overridden by concrete subclasses.
#define DECLARE_NODE_FUNCTIONS(type) \
V8_INLINE bool Is##type() const; \
V8_INLINE type* As##type(); \
V8_INLINE const type* As##type() const;
AST_NODE_LIST(DECLARE_NODE_FUNCTIONS)
#undef DECLARE_NODE_FUNCTIONS
BreakableStatement* AsBreakableStatement();
IterationStatement* AsIterationStatement();
MaterializedLiteral* AsMaterializedLiteral();
private:
// Hidden to prevent accidental usage. It would have to load the
// current zone from the TLS.
void* operator new(size_t size);
int position_;
class NodeTypeField : public BitField<NodeType, 0, 6> {};
protected:
uint32_t bit_field_;
static const uint8_t kNextBitFieldIndex = NodeTypeField::kNext;
AstNode(int position, NodeType type)
: position_(position), bit_field_(NodeTypeField::encode(type)) {}
};
class Statement : public AstNode {
public:
bool IsEmpty() { return AsEmptyStatement() != NULL; }
bool IsJump() const;
protected:
Statement(int position, NodeType type) : AstNode(position, type) {}
static const uint8_t kNextBitFieldIndex = AstNode::kNextBitFieldIndex;
};
class SmallMapList final {
public:
SmallMapList() {}
SmallMapList(int capacity, Zone* zone) : list_(capacity, zone) {}
void Reserve(int capacity, Zone* zone) { list_.Reserve(capacity, zone); }
void Clear() { list_.Clear(); }
void Sort() { list_.Sort(); }
bool is_empty() const { return list_.is_empty(); }
int length() const { return list_.length(); }
void AddMapIfMissing(Handle<Map> map, Zone* zone) {
if (!Map::TryUpdate(map).ToHandle(&map)) return;
for (int i = 0; i < length(); ++i) {
if (at(i).is_identical_to(map)) return;
}
Add(map, zone);
}
void FilterForPossibleTransitions(Map* root_map) {
for (int i = list_.length() - 1; i >= 0; i--) {
if (at(i)->FindRootMap() != root_map) {
list_.RemoveElement(list_.at(i));
}
}
}
void Add(Handle<Map> handle, Zone* zone) {
list_.Add(handle.location(), zone);
}
Handle<Map> at(int i) const {
return Handle<Map>(list_.at(i));
}
Handle<Map> first() const { return at(0); }
Handle<Map> last() const { return at(length() - 1); }
private:
// The list stores pointers to Map*, that is Map**, so it's GC safe.
SmallPointerList<Map*> list_;
DISALLOW_COPY_AND_ASSIGN(SmallMapList);
};
class Expression : public AstNode {
public:
enum Context {
// Not assigned a context yet, or else will not be visited during
// code generation.
kUninitialized,
// Evaluated for its side effects.
kEffect,
// Evaluated for its value (and side effects).
kValue,
// Evaluated for control flow (and side effects).
kTest
};
// Mark this expression as being in tail position.
void MarkTail();
// True iff the expression is a valid reference expression.
bool IsValidReferenceExpression() const;
// Helpers for ToBoolean conversion.
bool ToBooleanIsTrue() const;
bool ToBooleanIsFalse() const;
// Symbols that cannot be parsed as array indices are considered property
// names. We do not treat symbols that can be array indexes as property
// names because [] for string objects is handled only by keyed ICs.
bool IsPropertyName() const;
// True iff the expression is a class or function expression without
// a syntactic name.
bool IsAnonymousFunctionDefinition() const;
// True iff the expression is a literal represented as a smi.
bool IsSmiLiteral() const;
// True iff the expression is a literal represented as a number.
bool IsNumberLiteral() const;
// True iff the expression is a string literal.
bool IsStringLiteral() const;
// True iff the expression is the null literal.
bool IsNullLiteral() const;
// True if we can prove that the expression is the undefined literal. Note
// that this also checks for loads of the global "undefined" variable.
bool IsUndefinedLiteral() const;
// True iff the expression is a valid target for an assignment.
bool IsValidReferenceExpressionOrThis() const;
// TODO(rossberg): this should move to its own AST node eventually.
void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle);
uint16_t to_boolean_types() const {
return ToBooleanTypesField::decode(bit_field_);
}
SmallMapList* GetReceiverTypes();
KeyedAccessStoreMode GetStoreMode() const;
IcCheckType GetKeyType() const;
bool IsMonomorphic() const;
void set_base_id(int id) { base_id_ = id; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId id() const { return BailoutId(local_id(0)); }
TypeFeedbackId test_id() const { return TypeFeedbackId(local_id(1)); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int base_id_;
class ToBooleanTypesField
: public BitField<uint16_t, AstNode::kNextBitFieldIndex, 9> {};
protected:
Expression(int pos, NodeType type)
: AstNode(pos, type), base_id_(BailoutId::None().ToInt()) {
bit_field_ = ToBooleanTypesField::update(bit_field_, 0);
}
static int parent_num_ids() { return 0; }
void set_to_boolean_types(uint16_t types) {
bit_field_ = ToBooleanTypesField::update(bit_field_, types);
}
int base_id() const {
DCHECK(!BailoutId(base_id_).IsNone());
return base_id_;
}
static const uint8_t kNextBitFieldIndex = ToBooleanTypesField::kNext;
};
class BreakableStatement : public Statement {
public:
enum BreakableType {
TARGET_FOR_ANONYMOUS,
TARGET_FOR_NAMED_ONLY
};
// The labels associated with this statement. May be NULL;
// if it is != NULL, guaranteed to contain at least one entry.
ZoneList<const AstRawString*>* labels() const { return labels_; }
// Code generation
Label* break_target() { return &break_target_; }
// Testers.
bool is_target_for_anonymous() const {
return BreakableTypeField::decode(bit_field_) == TARGET_FOR_ANONYMOUS;
}
void set_base_id(int id) { base_id_ = id; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId EntryId() const { return BailoutId(local_id(0)); }
BailoutId ExitId() const { return BailoutId(local_id(1)); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
BreakableType breakableType() const {
return BreakableTypeField::decode(bit_field_);
}
int base_id_;
Label break_target_;
ZoneList<const AstRawString*>* labels_;
class BreakableTypeField
: public BitField<BreakableType, Statement::kNextBitFieldIndex, 1> {};
protected:
BreakableStatement(ZoneList<const AstRawString*>* labels,
BreakableType breakable_type, int position, NodeType type)
: Statement(position, type),
base_id_(BailoutId::None().ToInt()),
labels_(labels) {
DCHECK(labels == NULL || labels->length() > 0);
bit_field_ |= BreakableTypeField::encode(breakable_type);
}
static int parent_num_ids() { return 0; }
int base_id() const {
DCHECK(!BailoutId(base_id_).IsNone());
return base_id_;
}
static const uint8_t kNextBitFieldIndex = BreakableTypeField::kNext;
};
class Block final : public BreakableStatement {
public:
ZoneList<Statement*>* statements() { return &statements_; }
bool ignore_completion_value() const {
return IgnoreCompletionField::decode(bit_field_);
}
static int num_ids() { return parent_num_ids() + 1; }
BailoutId DeclsId() const { return BailoutId(local_id(0)); }
bool IsJump() const {
return !statements_.is_empty() && statements_.last()->IsJump()
&& labels() == NULL; // Good enough as an approximation...
}
Scope* scope() const { return scope_; }
void set_scope(Scope* scope) { scope_ = scope; }
private:
friend class AstNodeFactory;
Block(Zone* zone, ZoneList<const AstRawString*>* labels, int capacity,
bool ignore_completion_value, int pos)
: BreakableStatement(labels, TARGET_FOR_NAMED_ONLY, pos, kBlock),
statements_(capacity, zone),
scope_(NULL) {
bit_field_ |= IgnoreCompletionField::encode(ignore_completion_value);
}
static int parent_num_ids() { return BreakableStatement::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
ZoneList<Statement*> statements_;
Scope* scope_;
class IgnoreCompletionField
: public BitField<bool, BreakableStatement::kNextBitFieldIndex, 1> {};
};
class DoExpression final : public Expression {
public:
Block* block() { return block_; }
void set_block(Block* b) { block_ = b; }
VariableProxy* result() { return result_; }
void set_result(VariableProxy* v) { result_ = v; }
FunctionLiteral* represented_function() { return represented_function_; }
void set_represented_function(FunctionLiteral* f) {
represented_function_ = f;
}
bool IsAnonymousFunctionDefinition() const;
private:
friend class AstNodeFactory;
DoExpression(Block* block, VariableProxy* result, int pos)
: Expression(pos, kDoExpression),
block_(block),
result_(result),
represented_function_(nullptr) {
DCHECK_NOT_NULL(block_);
DCHECK_NOT_NULL(result_);
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Block* block_;
VariableProxy* result_;
FunctionLiteral* represented_function_;
};
class Declaration : public AstNode {
public:
typedef ThreadedList<Declaration> List;
VariableProxy* proxy() const { return proxy_; }
Scope* scope() const { return scope_; }
protected:
Declaration(VariableProxy* proxy, Scope* scope, int pos, NodeType type)
: AstNode(pos, type), proxy_(proxy), scope_(scope), next_(nullptr) {}
private:
VariableProxy* proxy_;
// Nested scope from which the declaration originated.
Scope* scope_;
// Declarations list threaded through the declarations.
Declaration** next() { return &next_; }
Declaration* next_;
friend List;
};
class VariableDeclaration final : public Declaration {
private:
friend class AstNodeFactory;
VariableDeclaration(VariableProxy* proxy, Scope* scope, int pos)
: Declaration(proxy, scope, pos, kVariableDeclaration) {}
};
class FunctionDeclaration final : public Declaration {
public:
FunctionLiteral* fun() const { return fun_; }
void set_fun(FunctionLiteral* f) { fun_ = f; }
private:
friend class AstNodeFactory;
FunctionDeclaration(VariableProxy* proxy, FunctionLiteral* fun, Scope* scope,
int pos)
: Declaration(proxy, scope, pos, kFunctionDeclaration), fun_(fun) {
DCHECK(fun != NULL);
}
FunctionLiteral* fun_;
};
class IterationStatement : public BreakableStatement {
public:
Statement* body() const { return body_; }
void set_body(Statement* s) { body_ = s; }
int yield_count() const { return yield_count_; }
int first_yield_id() const { return first_yield_id_; }
void set_yield_count(int yield_count) { yield_count_ = yield_count; }
void set_first_yield_id(int first_yield_id) {
first_yield_id_ = first_yield_id;
}
static int num_ids() { return parent_num_ids() + 1; }
BailoutId OsrEntryId() const { return BailoutId(local_id(0)); }
// Code generation
Label* continue_target() { return &continue_target_; }
protected:
IterationStatement(ZoneList<const AstRawString*>* labels, int pos,
NodeType type)
: BreakableStatement(labels, TARGET_FOR_ANONYMOUS, pos, type),
body_(NULL),
yield_count_(0),
first_yield_id_(0) {}
static int parent_num_ids() { return BreakableStatement::num_ids(); }
void Initialize(Statement* body) { body_ = body; }
static const uint8_t kNextBitFieldIndex =
BreakableStatement::kNextBitFieldIndex;
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Statement* body_;
Label continue_target_;
int yield_count_;
int first_yield_id_;
};
class DoWhileStatement final : public IterationStatement {
public:
void Initialize(Expression* cond, Statement* body) {
IterationStatement::Initialize(body);
cond_ = cond;
}
Expression* cond() const { return cond_; }
void set_cond(Expression* e) { cond_ = e; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId ContinueId() const { return BailoutId(local_id(0)); }
BailoutId StackCheckId() const { return BackEdgeId(); }
BailoutId BackEdgeId() const { return BailoutId(local_id(1)); }
private:
friend class AstNodeFactory;
DoWhileStatement(ZoneList<const AstRawString*>* labels, int pos)
: IterationStatement(labels, pos, kDoWhileStatement), cond_(NULL) {}
static int parent_num_ids() { return IterationStatement::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* cond_;
};
class WhileStatement final : public IterationStatement {
public:
void Initialize(Expression* cond, Statement* body) {
IterationStatement::Initialize(body);
cond_ = cond;
}
Expression* cond() const { return cond_; }
void set_cond(Expression* e) { cond_ = e; }
static int num_ids() { return parent_num_ids() + 1; }
BailoutId ContinueId() const { return EntryId(); }
BailoutId StackCheckId() const { return BodyId(); }
BailoutId BodyId() const { return BailoutId(local_id(0)); }
private:
friend class AstNodeFactory;
WhileStatement(ZoneList<const AstRawString*>* labels, int pos)
: IterationStatement(labels, pos, kWhileStatement), cond_(NULL) {}
static int parent_num_ids() { return IterationStatement::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* cond_;
};
class ForStatement final : public IterationStatement {
public:
void Initialize(Statement* init,
Expression* cond,
Statement* next,
Statement* body) {
IterationStatement::Initialize(body);
init_ = init;
cond_ = cond;
next_ = next;
}
Statement* init() const { return init_; }
Expression* cond() const { return cond_; }
Statement* next() const { return next_; }
void set_init(Statement* s) { init_ = s; }
void set_cond(Expression* e) { cond_ = e; }
void set_next(Statement* s) { next_ = s; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId ContinueId() const { return BailoutId(local_id(0)); }
BailoutId StackCheckId() const { return BodyId(); }
BailoutId BodyId() const { return BailoutId(local_id(1)); }
private:
friend class AstNodeFactory;
ForStatement(ZoneList<const AstRawString*>* labels, int pos)
: IterationStatement(labels, pos, kForStatement),
init_(NULL),
cond_(NULL),
next_(NULL) {}
static int parent_num_ids() { return IterationStatement::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Statement* init_;
Expression* cond_;
Statement* next_;
};
class ForEachStatement : public IterationStatement {
public:
enum VisitMode {
ENUMERATE, // for (each in subject) body;
ITERATE // for (each of subject) body;
};
using IterationStatement::Initialize;
static const char* VisitModeString(VisitMode mode) {
return mode == ITERATE ? "for-of" : "for-in";
}
protected:
ForEachStatement(ZoneList<const AstRawString*>* labels, int pos,
NodeType type)
: IterationStatement(labels, pos, type) {}
};
class ForInStatement final : public ForEachStatement {
public:
void Initialize(Expression* each, Expression* subject, Statement* body) {
ForEachStatement::Initialize(body);
each_ = each;
subject_ = subject;
}
Expression* enumerable() const {
return subject();
}
Expression* each() const { return each_; }
Expression* subject() const { return subject_; }
void set_each(Expression* e) { each_ = e; }
void set_subject(Expression* e) { subject_ = e; }
// Type feedback information.
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot EachFeedbackSlot() const { return each_slot_; }
FeedbackVectorSlot ForInFeedbackSlot() {
DCHECK(!for_in_feedback_slot_.IsInvalid());
return for_in_feedback_slot_;
}
enum ForInType { FAST_FOR_IN, SLOW_FOR_IN };
ForInType for_in_type() const { return ForInTypeField::decode(bit_field_); }
void set_for_in_type(ForInType type) {
bit_field_ = ForInTypeField::update(bit_field_, type);
}
static int num_ids() { return parent_num_ids() + 7; }
BailoutId BodyId() const { return BailoutId(local_id(0)); }
BailoutId EnumId() const { return BailoutId(local_id(1)); }
BailoutId ToObjectId() const { return BailoutId(local_id(2)); }
BailoutId PrepareId() const { return BailoutId(local_id(3)); }
BailoutId FilterId() const { return BailoutId(local_id(4)); }
BailoutId AssignmentId() const { return BailoutId(local_id(5)); }
BailoutId IncrementId() const { return BailoutId(local_id(6)); }
BailoutId StackCheckId() const { return BodyId(); }
private:
friend class AstNodeFactory;
ForInStatement(ZoneList<const AstRawString*>* labels, int pos)
: ForEachStatement(labels, pos, kForInStatement),
each_(nullptr),
subject_(nullptr) {
bit_field_ = ForInTypeField::update(bit_field_, SLOW_FOR_IN);
}
static int parent_num_ids() { return ForEachStatement::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* each_;
Expression* subject_;
FeedbackVectorSlot each_slot_;
FeedbackVectorSlot for_in_feedback_slot_;
class ForInTypeField
: public BitField<ForInType, ForEachStatement::kNextBitFieldIndex, 1> {};
};
class ForOfStatement final : public ForEachStatement {
public:
void Initialize(Statement* body, Variable* iterator,
Expression* assign_iterator, Expression* next_result,
Expression* result_done, Expression* assign_each) {
ForEachStatement::Initialize(body);
iterator_ = iterator;
assign_iterator_ = assign_iterator;
next_result_ = next_result;
result_done_ = result_done;
assign_each_ = assign_each;
}
Variable* iterator() const {
return iterator_;
}
// iterator = subject[Symbol.iterator]()
Expression* assign_iterator() const {
return assign_iterator_;
}
// result = iterator.next() // with type check
Expression* next_result() const {
return next_result_;
}
// result.done
Expression* result_done() const {
return result_done_;
}
// each = result.value
Expression* assign_each() const {
return assign_each_;
}
void set_assign_iterator(Expression* e) { assign_iterator_ = e; }
void set_next_result(Expression* e) { next_result_ = e; }
void set_result_done(Expression* e) { result_done_ = e; }
void set_assign_each(Expression* e) { assign_each_ = e; }
private:
friend class AstNodeFactory;
ForOfStatement(ZoneList<const AstRawString*>* labels, int pos)
: ForEachStatement(labels, pos, kForOfStatement),
iterator_(NULL),
assign_iterator_(NULL),
next_result_(NULL),
result_done_(NULL),
assign_each_(NULL) {}
Variable* iterator_;
Expression* assign_iterator_;
Expression* next_result_;
Expression* result_done_;
Expression* assign_each_;
};
class ExpressionStatement final : public Statement {
public:
void set_expression(Expression* e) { expression_ = e; }
Expression* expression() const { return expression_; }
bool IsJump() const { return expression_->IsThrow(); }
private:
friend class AstNodeFactory;
ExpressionStatement(Expression* expression, int pos)
: Statement(pos, kExpressionStatement), expression_(expression) {}
Expression* expression_;
};
class JumpStatement : public Statement {
public:
bool IsJump() const { return true; }
protected:
JumpStatement(int pos, NodeType type) : Statement(pos, type) {}
};
class ContinueStatement final : public JumpStatement {
public:
IterationStatement* target() const { return target_; }
private:
friend class AstNodeFactory;
ContinueStatement(IterationStatement* target, int pos)
: JumpStatement(pos, kContinueStatement), target_(target) {}
IterationStatement* target_;
};
class BreakStatement final : public JumpStatement {
public:
BreakableStatement* target() const { return target_; }
private:
friend class AstNodeFactory;
BreakStatement(BreakableStatement* target, int pos)
: JumpStatement(pos, kBreakStatement), target_(target) {}
BreakableStatement* target_;
};
class ReturnStatement final : public JumpStatement {
public:
Expression* expression() const { return expression_; }
void set_expression(Expression* e) { expression_ = e; }
private:
friend class AstNodeFactory;
ReturnStatement(Expression* expression, int pos)
: JumpStatement(pos, kReturnStatement), expression_(expression) {}
Expression* expression_;
};
class WithStatement final : public Statement {
public:
Scope* scope() { return scope_; }
Expression* expression() const { return expression_; }
void set_expression(Expression* e) { expression_ = e; }
Statement* statement() const { return statement_; }
void set_statement(Statement* s) { statement_ = s; }
private:
friend class AstNodeFactory;
WithStatement(Scope* scope, Expression* expression, Statement* statement,
int pos)
: Statement(pos, kWithStatement),
scope_(scope),
expression_(expression),
statement_(statement) {}
Scope* scope_;
Expression* expression_;
Statement* statement_;
};
class CaseClause final : public Expression {
public:
bool is_default() const { return label_ == NULL; }
Expression* label() const {
CHECK(!is_default());
return label_;
}
void set_label(Expression* e) { label_ = e; }
Label* body_target() { return &body_target_; }
ZoneList<Statement*>* statements() const { return statements_; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId EntryId() const { return BailoutId(local_id(0)); }
TypeFeedbackId CompareId() { return TypeFeedbackId(local_id(1)); }
AstType* compare_type() { return compare_type_; }
void set_compare_type(AstType* type) { compare_type_ = type; }
// CaseClause will have both a slot in the feedback vector and the
// TypeFeedbackId to record the type information. TypeFeedbackId is used by
// full codegen and the feedback vector slot is used by interpreter.
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot CompareOperationFeedbackSlot() {
return type_feedback_slot_;
}
private:
friend class AstNodeFactory;
static int parent_num_ids() { return Expression::num_ids(); }
CaseClause(Expression* label, ZoneList<Statement*>* statements, int pos);
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* label_;
Label body_target_;
ZoneList<Statement*>* statements_;
AstType* compare_type_;
FeedbackVectorSlot type_feedback_slot_;
};
class SwitchStatement final : public BreakableStatement {
public:
void Initialize(Expression* tag, ZoneList<CaseClause*>* cases) {
tag_ = tag;
cases_ = cases;
}
Expression* tag() const { return tag_; }
ZoneList<CaseClause*>* cases() const { return cases_; }
void set_tag(Expression* t) { tag_ = t; }
private:
friend class AstNodeFactory;
SwitchStatement(ZoneList<const AstRawString*>* labels, int pos)
: BreakableStatement(labels, TARGET_FOR_ANONYMOUS, pos, kSwitchStatement),
tag_(NULL),
cases_(NULL) {}
Expression* tag_;
ZoneList<CaseClause*>* cases_;
};
// If-statements always have non-null references to their then- and
// else-parts. When parsing if-statements with no explicit else-part,
// the parser implicitly creates an empty statement. Use the
// HasThenStatement() and HasElseStatement() functions to check if a
// given if-statement has a then- or an else-part containing code.
class IfStatement final : public Statement {
public:
bool HasThenStatement() const { return !then_statement()->IsEmpty(); }
bool HasElseStatement() const { return !else_statement()->IsEmpty(); }
Expression* condition() const { return condition_; }
Statement* then_statement() const { return then_statement_; }
Statement* else_statement() const { return else_statement_; }
void set_condition(Expression* e) { condition_ = e; }
void set_then_statement(Statement* s) { then_statement_ = s; }
void set_else_statement(Statement* s) { else_statement_ = s; }
bool IsJump() const {
return HasThenStatement() && then_statement()->IsJump()
&& HasElseStatement() && else_statement()->IsJump();
}
void set_base_id(int id) { base_id_ = id; }
static int num_ids() { return parent_num_ids() + 3; }
BailoutId IfId() const { return BailoutId(local_id(0)); }
BailoutId ThenId() const { return BailoutId(local_id(1)); }
BailoutId ElseId() const { return BailoutId(local_id(2)); }
private:
friend class AstNodeFactory;
IfStatement(Expression* condition, Statement* then_statement,
Statement* else_statement, int pos)
: Statement(pos, kIfStatement),
base_id_(BailoutId::None().ToInt()),
condition_(condition),
then_statement_(then_statement),
else_statement_(else_statement) {}
static int parent_num_ids() { return 0; }
int base_id() const {
DCHECK(!BailoutId(base_id_).IsNone());
return base_id_;
}
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int base_id_;
Expression* condition_;
Statement* then_statement_;
Statement* else_statement_;
};
class TryStatement : public Statement {
public:
Block* try_block() const { return try_block_; }
void set_try_block(Block* b) { try_block_ = b; }
// Prediction of whether exceptions thrown into the handler for this try block
// will be caught.
//
// This is set in ast-numbering and later compiled into the code's handler
// table. The runtime uses this information to implement a feature that
// notifies the debugger when an uncaught exception is thrown, _before_ the
// exception propagates to the top.
//
// Since it's generally undecidable whether an exception will be caught, our
// prediction is only an approximation.
HandlerTable::CatchPrediction catch_prediction() const {
return catch_prediction_;
}
void set_catch_prediction(HandlerTable::CatchPrediction prediction) {
catch_prediction_ = prediction;
}
protected:
TryStatement(Block* try_block, int pos, NodeType type)
: Statement(pos, type),
catch_prediction_(HandlerTable::UNCAUGHT),
try_block_(try_block) {}
HandlerTable::CatchPrediction catch_prediction_;
private:
Block* try_block_;
};
class TryCatchStatement final : public TryStatement {
public:
Scope* scope() { return scope_; }
Variable* variable() { return variable_; }
Block* catch_block() const { return catch_block_; }
void set_catch_block(Block* b) { catch_block_ = b; }
// The clear_pending_message flag indicates whether or not to clear the
// isolate's pending exception message before executing the catch_block. In
// the normal use case, this flag is always on because the message object
// is not needed anymore when entering the catch block and should not be kept
// alive.
// The use case where the flag is off is when the catch block is guaranteed to
// rethrow the caught exception (using %ReThrow), which reuses the pending
// message instead of generating a new one.
// (When the catch block doesn't rethrow but is guaranteed to perform an
// ordinary throw, not clearing the old message is safe but not very useful.)
bool clear_pending_message() const {
return catch_prediction_ != HandlerTable::UNCAUGHT;
}
private:
friend class AstNodeFactory;
TryCatchStatement(Block* try_block, Scope* scope, Variable* variable,
Block* catch_block,
HandlerTable::CatchPrediction catch_prediction, int pos)
: TryStatement(try_block, pos, kTryCatchStatement),
scope_(scope),
variable_(variable),
catch_block_(catch_block) {
catch_prediction_ = catch_prediction;
}
Scope* scope_;
Variable* variable_;
Block* catch_block_;
};
class TryFinallyStatement final : public TryStatement {
public:
Block* finally_block() const { return finally_block_; }
void set_finally_block(Block* b) { finally_block_ = b; }
private:
friend class AstNodeFactory;
TryFinallyStatement(Block* try_block, Block* finally_block, int pos)
: TryStatement(try_block, pos, kTryFinallyStatement),
finally_block_(finally_block) {}
Block* finally_block_;
};
class DebuggerStatement final : public Statement {
public:
void set_base_id(int id) { base_id_ = id; }
static int num_ids() { return parent_num_ids() + 1; }
BailoutId DebugBreakId() const { return BailoutId(local_id(0)); }
private:
friend class AstNodeFactory;
explicit DebuggerStatement(int pos)
: Statement(pos, kDebuggerStatement),
base_id_(BailoutId::None().ToInt()) {}
static int parent_num_ids() { return 0; }
int base_id() const {
DCHECK(!BailoutId(base_id_).IsNone());
return base_id_;
}
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int base_id_;
};
class EmptyStatement final : public Statement {
private:
friend class AstNodeFactory;
explicit EmptyStatement(int pos) : Statement(pos, kEmptyStatement) {}
};
// Delegates to another statement, which may be overwritten.
// This was introduced to implement ES2015 Annex B3.3 for conditionally making
// sloppy-mode block-scoped functions have a var binding, which is changed
// from one statement to another during parsing.
class SloppyBlockFunctionStatement final : public Statement {
public:
Statement* statement() const { return statement_; }
void set_statement(Statement* statement) { statement_ = statement; }
private:
friend class AstNodeFactory;
explicit SloppyBlockFunctionStatement(Statement* statement)
: Statement(kNoSourcePosition, kSloppyBlockFunctionStatement),
statement_(statement) {}
Statement* statement_;
};
class Literal final : public Expression {
public:
// Returns true if literal represents a property name (i.e. cannot be parsed
// as array indices).
bool IsPropertyName() const { return value_->IsPropertyName(); }
Handle<String> AsPropertyName() {
DCHECK(IsPropertyName());
return Handle<String>::cast(value());
}
const AstRawString* AsRawPropertyName() {
DCHECK(IsPropertyName());
return value_->AsString();
}
bool ToBooleanIsTrue() const { return raw_value()->BooleanValue(); }
bool ToBooleanIsFalse() const { return !raw_value()->BooleanValue(); }
Handle<Object> value() const { return value_->value(); }
const AstValue* raw_value() const { return value_; }
// Support for using Literal as a HashMap key. NOTE: Currently, this works
// only for string and number literals!
uint32_t Hash();
static bool Match(void* literal1, void* literal2);
static int num_ids() { return parent_num_ids() + 1; }
TypeFeedbackId LiteralFeedbackId() const {
return TypeFeedbackId(local_id(0));
}
private:
friend class AstNodeFactory;
Literal(const AstValue* value, int position)
: Expression(position, kLiteral), value_(value) {}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
const AstValue* value_;
};
class AstLiteralReindexer;
// Base class for literals that needs space in the corresponding JSFunction.
class MaterializedLiteral : public Expression {
public:
int literal_index() { return literal_index_; }
int depth() const {
// only callable after initialization.
DCHECK(depth_ >= 1);
return depth_;
}
private:
int depth_ : 31;
int literal_index_;
friend class AstLiteralReindexer;
class IsSimpleField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
protected:
MaterializedLiteral(int literal_index, int pos, NodeType type)
: Expression(pos, type), depth_(0), literal_index_(literal_index) {
bit_field_ |= IsSimpleField::encode(false);
}
// A materialized literal is simple if the values consist of only
// constants and simple object and array literals.
bool is_simple() const { return IsSimpleField::decode(bit_field_); }
void set_is_simple(bool is_simple) {
bit_field_ = IsSimpleField::update(bit_field_, is_simple);
}
friend class CompileTimeValue;
void set_depth(int depth) {
DCHECK_LE(1, depth);
depth_ = depth;
}
// Populate the depth field and any flags the literal has.
void InitDepthAndFlags();
// Populate the constant properties/elements fixed array.
void BuildConstants(Isolate* isolate);
friend class ArrayLiteral;
friend class ObjectLiteral;
// If the expression is a literal, return the literal value;
// if the expression is a materialized literal and is simple return a
// compile time value as encoded by CompileTimeValue::GetValue().
// Otherwise, return undefined literal as the placeholder
// in the object literal boilerplate.
Handle<Object> GetBoilerplateValue(Expression* expression, Isolate* isolate);
static const uint8_t kNextBitFieldIndex = IsSimpleField::kNext;
};
// Common supertype for ObjectLiteralProperty and ClassLiteralProperty
class LiteralProperty : public ZoneObject {
public:
Expression* key() const { return key_; }
Expression* value() const { return value_; }
void set_key(Expression* e) { key_ = e; }
void set_value(Expression* e) { value_ = e; }
bool is_computed_name() const { return is_computed_name_; }
FeedbackVectorSlot GetSlot(int offset = 0) const {
DCHECK_LT(offset, static_cast<int>(arraysize(slots_)));
return slots_[offset];
}
FeedbackVectorSlot GetStoreDataPropertySlot() const;
void SetSlot(FeedbackVectorSlot slot, int offset = 0) {
DCHECK_LT(offset, static_cast<int>(arraysize(slots_)));
slots_[offset] = slot;
}
void SetStoreDataPropertySlot(FeedbackVectorSlot slot);
bool NeedsSetFunctionName() const;
protected:
LiteralProperty(Expression* key, Expression* value, bool is_computed_name)
: key_(key), value_(value), is_computed_name_(is_computed_name) {}
Expression* key_;
Expression* value_;
FeedbackVectorSlot slots_[2];
bool is_computed_name_;
};
// Property is used for passing information
// about an object literal's properties from the parser
// to the code generator.
class ObjectLiteralProperty final : public LiteralProperty {
public:
enum Kind : uint8_t {
CONSTANT, // Property with constant value (compile time).
COMPUTED, // Property with computed value (execution time).
MATERIALIZED_LITERAL, // Property value is a materialized literal.
GETTER,
SETTER, // Property is an accessor function.
PROTOTYPE, // Property is __proto__.
SPREAD
};
Kind kind() const { return kind_; }
// Type feedback information.
bool IsMonomorphic() const { return !receiver_type_.is_null(); }
Handle<Map> GetReceiverType() const { return receiver_type_; }
bool IsCompileTimeValue() const;
void set_emit_store(bool emit_store);
bool emit_store() const;
void set_receiver_type(Handle<Map> map) { receiver_type_ = map; }
private:
friend class AstNodeFactory;
ObjectLiteralProperty(Expression* key, Expression* value, Kind kind,
bool is_computed_name);
ObjectLiteralProperty(AstValueFactory* ast_value_factory, Expression* key,
Expression* value, bool is_computed_name);
Kind kind_;
bool emit_store_;
Handle<Map> receiver_type_;
};
// An object literal has a boilerplate object that is used
// for minimizing the work when constructing it at runtime.
class ObjectLiteral final : public MaterializedLiteral {
public:
typedef ObjectLiteralProperty Property;
Handle<FixedArray> constant_properties() const {
DCHECK(!constant_properties_.is_null());
return constant_properties_;
}
int properties_count() const { return boilerplate_properties_; }
ZoneList<Property*>* properties() const { return properties_; }
bool fast_elements() const { return FastElementsField::decode(bit_field_); }
bool may_store_doubles() const {
return MayStoreDoublesField::decode(bit_field_);
}
bool has_elements() const { return HasElementsField::decode(bit_field_); }
bool has_shallow_properties() const {
return depth() == 1 && !has_elements() && !may_store_doubles();
}
// Decide if a property should be in the object boilerplate.
static bool IsBoilerplateProperty(Property* property);
// Populate the depth field and flags.
void InitDepthAndFlags();
// Get the constant properties fixed array, populating it if necessary.
Handle<FixedArray> GetOrBuildConstantProperties(Isolate* isolate) {
if (constant_properties_.is_null()) {
BuildConstantProperties(isolate);
}
return constant_properties();
}
// Populate the constant properties fixed array.
void BuildConstantProperties(Isolate* isolate);
// Mark all computed expressions that are bound to a key that
// is shadowed by a later occurrence of the same key. For the
// marked expressions, no store code is emitted.
void CalculateEmitStore(Zone* zone);
// Determines whether the {FastCloneShallowObject} builtin can be used.
bool IsFastCloningSupported() const;
// Assemble bitfield of flags for the CreateObjectLiteral helper.
int ComputeFlags(bool disable_mementos = false) const {
int flags = fast_elements() ? kFastElements : kNoFlags;
if (has_shallow_properties()) {
flags |= kShallowProperties;
}
if (disable_mementos) {
flags |= kDisableMementos;
}
return flags;
}
enum Flags {
kNoFlags = 0,
kFastElements = 1,
kShallowProperties = 1 << 1,
kDisableMementos = 1 << 2
};
struct Accessors: public ZoneObject {
Accessors() : getter(NULL), setter(NULL), bailout_id(BailoutId::None()) {}
ObjectLiteralProperty* getter;
ObjectLiteralProperty* setter;
BailoutId bailout_id;
};
BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); }
// Return an AST id for a property that is used in simulate instructions.
BailoutId GetIdForPropertySet(int i) { return BailoutId(local_id(i + 1)); }
// Unlike other AST nodes, this number of bailout IDs allocated for an
// ObjectLiteral can vary, so num_ids() is not a static method.
int num_ids() const { return parent_num_ids() + 1 + properties()->length(); }
// Object literals need one feedback slot for each non-trivial value, as well
// as some slots for home objects.
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
private:
friend class AstNodeFactory;
ObjectLiteral(ZoneList<Property*>* properties, int literal_index,
uint32_t boilerplate_properties, int pos)
: MaterializedLiteral(literal_index, pos, kObjectLiteral),
boilerplate_properties_(boilerplate_properties),
properties_(properties) {
bit_field_ |= FastElementsField::encode(false) |
HasElementsField::encode(false) |
MayStoreDoublesField::encode(false);
}
static int parent_num_ids() { return MaterializedLiteral::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
uint32_t boilerplate_properties_;
Handle<FixedArray> constant_properties_;
ZoneList<Property*>* properties_;
class FastElementsField
: public BitField<bool, MaterializedLiteral::kNextBitFieldIndex, 1> {};
class HasElementsField : public BitField<bool, FastElementsField::kNext, 1> {
};
class MayStoreDoublesField
: public BitField<bool, HasElementsField::kNext, 1> {};
};
// A map from property names to getter/setter pairs allocated in the zone.
class AccessorTable
: public base::TemplateHashMap<Literal, ObjectLiteral::Accessors,
bool (*)(void*, void*),
ZoneAllocationPolicy> {
public:
explicit AccessorTable(Zone* zone)
: base::TemplateHashMap<Literal, ObjectLiteral::Accessors,
bool (*)(void*, void*), ZoneAllocationPolicy>(
Literal::Match, ZoneAllocationPolicy(zone)),
zone_(zone) {}
Iterator lookup(Literal* literal) {
Iterator it = find(literal, true, ZoneAllocationPolicy(zone_));
if (it->second == NULL) it->second = new (zone_) ObjectLiteral::Accessors();
return it;
}
private:
Zone* zone_;
};
// Node for capturing a regexp literal.
class RegExpLiteral final : public MaterializedLiteral {
public:
Handle<String> pattern() const { return pattern_->string(); }
int flags() const { return flags_; }
private:
friend class AstNodeFactory;
RegExpLiteral(const AstRawString* pattern, int flags, int literal_index,
int pos)
: MaterializedLiteral(literal_index, pos, kRegExpLiteral),
flags_(flags),
pattern_(pattern) {
set_depth(1);
}
int const flags_;
const AstRawString* const pattern_;
};
// An array literal has a literals object that is used
// for minimizing the work when constructing it at runtime.
class ArrayLiteral final : public MaterializedLiteral {
public:
Handle<ConstantElementsPair> constant_elements() const {
return constant_elements_;
}
ElementsKind constant_elements_kind() const {
return static_cast<ElementsKind>(constant_elements()->elements_kind());
}
ZoneList<Expression*>* values() const { return values_; }
BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); }
// Return an AST id for an element that is used in simulate instructions.
BailoutId GetIdForElement(int i) { return BailoutId(local_id(i + 1)); }
// Unlike other AST nodes, this number of bailout IDs allocated for an
// ArrayLiteral can vary, so num_ids() is not a static method.
int num_ids() const { return parent_num_ids() + 1 + values()->length(); }
// Populate the depth field and flags.
void InitDepthAndFlags();
// Get the constant elements fixed array, populating it if necessary.
Handle<ConstantElementsPair> GetOrBuildConstantElements(Isolate* isolate) {
if (constant_elements_.is_null()) {
BuildConstantElements(isolate);
}
return constant_elements();
}
// Populate the constant elements fixed array.
void BuildConstantElements(Isolate* isolate);
// Determines whether the {FastCloneShallowArray} builtin can be used.
bool IsFastCloningSupported() const;
// Assemble bitfield of flags for the CreateArrayLiteral helper.
int ComputeFlags(bool disable_mementos = false) const {
int flags = depth() == 1 ? kShallowElements : kNoFlags;
if (disable_mementos) {
flags |= kDisableMementos;
}
return flags;
}
// Provide a mechanism for iterating through values to rewrite spreads.
ZoneList<Expression*>::iterator FirstSpread() const {
return (first_spread_index_ >= 0) ? values_->begin() + first_spread_index_
: values_->end();
}
ZoneList<Expression*>::iterator EndValue() const { return values_->end(); }
// Rewind an array literal omitting everything from the first spread on.
void RewindSpreads() {
values_->Rewind(first_spread_index_);
first_spread_index_ = -1;
}
enum Flags {
kNoFlags = 0,
kShallowElements = 1,
kDisableMementos = 1 << 1
};
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot LiteralFeedbackSlot() const { return literal_slot_; }
private:
friend class AstNodeFactory;
ArrayLiteral(ZoneList<Expression*>* values, int first_spread_index,
int literal_index, int pos)
: MaterializedLiteral(literal_index, pos, kArrayLiteral),
first_spread_index_(first_spread_index),
values_(values) {}
static int parent_num_ids() { return MaterializedLiteral::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int first_spread_index_;
FeedbackVectorSlot literal_slot_;
Handle<ConstantElementsPair> constant_elements_;
ZoneList<Expression*>* values_;
};
class VariableProxy final : public Expression {
public:
bool IsValidReferenceExpression() const {
return !is_this() && !is_new_target();
}
Handle<String> name() const { return raw_name()->string(); }
const AstRawString* raw_name() const {
return is_resolved() ? var_->raw_name() : raw_name_;
}
Variable* var() const {
DCHECK(is_resolved());
return var_;
}
void set_var(Variable* v) {
DCHECK(!is_resolved());
DCHECK_NOT_NULL(v);
var_ = v;
}
bool is_this() const { return IsThisField::decode(bit_field_); }
bool is_assigned() const { return IsAssignedField::decode(bit_field_); }
void set_is_assigned() {
bit_field_ = IsAssignedField::update(bit_field_, true);
if (is_resolved()) {
var()->set_maybe_assigned();
}
}
bool is_resolved() const { return IsResolvedField::decode(bit_field_); }
void set_is_resolved() {
bit_field_ = IsResolvedField::update(bit_field_, true);
}
bool is_new_target() const { return IsNewTargetField::decode(bit_field_); }
void set_is_new_target() {
bit_field_ = IsNewTargetField::update(bit_field_, true);
}
HoleCheckMode hole_check_mode() const {
return HoleCheckModeField::decode(bit_field_);
}
void set_needs_hole_check() {
bit_field_ =
HoleCheckModeField::update(bit_field_, HoleCheckMode::kRequired);
}
// Bind this proxy to the variable var.
void BindTo(Variable* var);
bool UsesVariableFeedbackSlot() const {
return var()->IsUnallocated() || var()->IsLookupSlot();
}
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot VariableFeedbackSlot() { return variable_feedback_slot_; }
static int num_ids() { return parent_num_ids() + 1; }
BailoutId BeforeId() const { return BailoutId(local_id(0)); }
void set_next_unresolved(VariableProxy* next) { next_unresolved_ = next; }
VariableProxy* next_unresolved() { return next_unresolved_; }
private:
friend class AstNodeFactory;
VariableProxy(Variable* var, int start_position);
VariableProxy(const AstRawString* name, VariableKind variable_kind,
int start_position);
explicit VariableProxy(const VariableProxy* copy_from);
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
class IsThisField : public BitField<bool, Expression::kNextBitFieldIndex, 1> {
};
class IsAssignedField : public BitField<bool, IsThisField::kNext, 1> {};
class IsResolvedField : public BitField<bool, IsAssignedField::kNext, 1> {};
class IsNewTargetField : public BitField<bool, IsResolvedField::kNext, 1> {};
class HoleCheckModeField
: public BitField<HoleCheckMode, IsNewTargetField::kNext, 1> {};
FeedbackVectorSlot variable_feedback_slot_;
union {
const AstRawString* raw_name_; // if !is_resolved_
Variable* var_; // if is_resolved_
};
VariableProxy* next_unresolved_;
};
// Left-hand side can only be a property, a global or a (parameter or local)
// slot.
enum LhsKind {
VARIABLE,
NAMED_PROPERTY,
KEYED_PROPERTY,
NAMED_SUPER_PROPERTY,
KEYED_SUPER_PROPERTY
};
class Property final : public Expression {
public:
bool IsValidReferenceExpression() const { return true; }
Expression* obj() const { return obj_; }
Expression* key() const { return key_; }
void set_obj(Expression* e) { obj_ = e; }
void set_key(Expression* e) { key_ = e; }
static int num_ids() { return parent_num_ids() + 1; }
BailoutId LoadId() const { return BailoutId(local_id(0)); }
bool IsStringAccess() const {
return IsStringAccessField::decode(bit_field_);
}
// Type feedback information.
bool IsMonomorphic() const { return receiver_types_.length() == 1; }
SmallMapList* GetReceiverTypes() { return &receiver_types_; }
KeyedAccessStoreMode GetStoreMode() const { return STANDARD_STORE; }
IcCheckType GetKeyType() const { return KeyTypeField::decode(bit_field_); }
bool IsUninitialized() const {
return !is_for_call() && HasNoTypeInformation();
}
bool HasNoTypeInformation() const {
return GetInlineCacheState() == UNINITIALIZED;
}
InlineCacheState GetInlineCacheState() const {
return InlineCacheStateField::decode(bit_field_);
}
void set_is_string_access(bool b) {
bit_field_ = IsStringAccessField::update(bit_field_, b);
}
void set_key_type(IcCheckType key_type) {
bit_field_ = KeyTypeField::update(bit_field_, key_type);
}
void set_inline_cache_state(InlineCacheState state) {
bit_field_ = InlineCacheStateField::update(bit_field_, state);
}
void mark_for_call() {
bit_field_ = IsForCallField::update(bit_field_, true);
}
bool is_for_call() const { return IsForCallField::decode(bit_field_); }
bool IsSuperAccess() { return obj()->IsSuperPropertyReference(); }
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
FeedbackVectorSlotKind kind = key()->IsPropertyName()
? FeedbackVectorSlotKind::LOAD_IC
: FeedbackVectorSlotKind::KEYED_LOAD_IC;
property_feedback_slot_ = spec->AddSlot(kind);
}
FeedbackVectorSlot PropertyFeedbackSlot() const {
return property_feedback_slot_;
}
// Returns the properties assign type.
static LhsKind GetAssignType(Property* property) {
if (property == NULL) return VARIABLE;
bool super_access = property->IsSuperAccess();
return (property->key()->IsPropertyName())
? (super_access ? NAMED_SUPER_PROPERTY : NAMED_PROPERTY)
: (super_access ? KEYED_SUPER_PROPERTY : KEYED_PROPERTY);
}
private:
friend class AstNodeFactory;
Property(Expression* obj, Expression* key, int pos)
: Expression(pos, kProperty), obj_(obj), key_(key) {
bit_field_ |= IsForCallField::encode(false) |
IsStringAccessField::encode(false) |
InlineCacheStateField::encode(UNINITIALIZED);
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
class IsForCallField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
class IsStringAccessField : public BitField<bool, IsForCallField::kNext, 1> {
};
class KeyTypeField
: public BitField<IcCheckType, IsStringAccessField::kNext, 1> {};
class InlineCacheStateField
: public BitField<InlineCacheState, KeyTypeField::kNext, 4> {};
FeedbackVectorSlot property_feedback_slot_;
Expression* obj_;
Expression* key_;
SmallMapList receiver_types_;
};
class Call final : public Expression {
public:
Expression* expression() const { return expression_; }
ZoneList<Expression*>* arguments() const { return arguments_; }
void set_expression(Expression* e) { expression_ = e; }
// Type feedback information.
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot CallFeedbackICSlot() const { return ic_slot_; }
SmallMapList* GetReceiverTypes() {
if (expression()->IsProperty()) {
return expression()->AsProperty()->GetReceiverTypes();
}
return nullptr;
}
bool IsMonomorphic() const {
if (expression()->IsProperty()) {
return expression()->AsProperty()->IsMonomorphic();
}
return !target_.is_null();
}
Handle<JSFunction> target() { return target_; }
Handle<AllocationSite> allocation_site() { return allocation_site_; }
void SetKnownGlobalTarget(Handle<JSFunction> target) {
target_ = target;
set_is_uninitialized(false);
}
void set_target(Handle<JSFunction> target) { target_ = target; }
void set_allocation_site(Handle<AllocationSite> site) {
allocation_site_ = site;
}
static int num_ids() { return parent_num_ids() + 2; }
BailoutId ReturnId() const { return BailoutId(local_id(0)); }
BailoutId CallId() const { return BailoutId(local_id(1)); }
bool is_uninitialized() const {
return IsUninitializedField::decode(bit_field_);
}
void set_is_uninitialized(bool b) {
bit_field_ = IsUninitializedField::update(bit_field_, b);
}
bool is_possibly_eval() const {
return IsPossiblyEvalField::decode(bit_field_);
}
TailCallMode tail_call_mode() const {
return IsTailField::decode(bit_field_) ? TailCallMode::kAllow
: TailCallMode::kDisallow;
}
void MarkTail() { bit_field_ = IsTailField::update(bit_field_, true); }
enum CallType {
GLOBAL_CALL,
WITH_CALL,
NAMED_PROPERTY_CALL,
KEYED_PROPERTY_CALL,
NAMED_SUPER_PROPERTY_CALL,
KEYED_SUPER_PROPERTY_CALL,
SUPER_CALL,
OTHER_CALL
};
enum PossiblyEval {
IS_POSSIBLY_EVAL,
NOT_EVAL,
};
// Helpers to determine how to handle the call.
CallType GetCallType() const;
#ifdef DEBUG
// Used to assert that the FullCodeGenerator records the return site.
bool return_is_recorded_;
#endif
private:
friend class AstNodeFactory;
Call(Expression* expression, ZoneList<Expression*>* arguments, int pos,
PossiblyEval possibly_eval)
: Expression(pos, kCall),
expression_(expression),
arguments_(arguments) {
bit_field_ |=
IsUninitializedField::encode(false) |
IsPossiblyEvalField::encode(possibly_eval == IS_POSSIBLY_EVAL);
if (expression->IsProperty()) {
expression->AsProperty()->mark_for_call();
}
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
class IsUninitializedField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
class IsTailField : public BitField<bool, IsUninitializedField::kNext, 1> {};
class IsPossiblyEvalField : public BitField<bool, IsTailField::kNext, 1> {};
FeedbackVectorSlot ic_slot_;
Expression* expression_;
ZoneList<Expression*>* arguments_;
Handle<JSFunction> target_;
Handle<AllocationSite> allocation_site_;
};
class CallNew final : public Expression {
public:
Expression* expression() const { return expression_; }
ZoneList<Expression*>* arguments() const { return arguments_; }
void set_expression(Expression* e) { expression_ = e; }
// Type feedback information.
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
// CallNew stores feedback in the exact same way as Call. We can
// piggyback on the type feedback infrastructure for calls.
callnew_feedback_slot_ = spec->AddCallICSlot();
}
FeedbackVectorSlot CallNewFeedbackSlot() {
DCHECK(!callnew_feedback_slot_.IsInvalid());
return callnew_feedback_slot_;
}
bool IsMonomorphic() const { return IsMonomorphicField::decode(bit_field_); }
Handle<JSFunction> target() const { return target_; }
Handle<AllocationSite> allocation_site() const {
return allocation_site_;
}
static int num_ids() { return parent_num_ids() + 1; }
static int feedback_slots() { return 1; }
BailoutId ReturnId() const { return BailoutId(local_id(0)); }
void set_allocation_site(Handle<AllocationSite> site) {
allocation_site_ = site;
}
void set_is_monomorphic(bool monomorphic) {
bit_field_ = IsMonomorphicField::update(bit_field_, monomorphic);
}
void set_target(Handle<JSFunction> target) { target_ = target; }
void SetKnownGlobalTarget(Handle<JSFunction> target) {
target_ = target;
set_is_monomorphic(true);
}
private:
friend class AstNodeFactory;
CallNew(Expression* expression, ZoneList<Expression*>* arguments, int pos)
: Expression(pos, kCallNew),
expression_(expression),
arguments_(arguments) {
bit_field_ |= IsMonomorphicField::encode(false);
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
FeedbackVectorSlot callnew_feedback_slot_;
Expression* expression_;
ZoneList<Expression*>* arguments_;
Handle<JSFunction> target_;
Handle<AllocationSite> allocation_site_;
class IsMonomorphicField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
};
// The CallRuntime class does not represent any official JavaScript
// language construct. Instead it is used to call a C or JS function
// with a set of arguments. This is used from the builtins that are
// implemented in JavaScript (see "v8natives.js").
class CallRuntime final : public Expression {
public:
ZoneList<Expression*>* arguments() const { return arguments_; }
bool is_jsruntime() const { return function_ == NULL; }
int context_index() const {
DCHECK(is_jsruntime());
return context_index_;
}
void set_context_index(int index) {
DCHECK(is_jsruntime());
context_index_ = index;
}
const Runtime::Function* function() const {
DCHECK(!is_jsruntime());
return function_;
}
static int num_ids() { return parent_num_ids() + 1; }
BailoutId CallId() { return BailoutId(local_id(0)); }
const char* debug_name() {
return is_jsruntime() ? "(context function)" : function_->name;
}
private:
friend class AstNodeFactory;
CallRuntime(const Runtime::Function* function,
ZoneList<Expression*>* arguments, int pos)
: Expression(pos, kCallRuntime),
function_(function),
arguments_(arguments) {}
CallRuntime(int context_index, ZoneList<Expression*>* arguments, int pos)
: Expression(pos, kCallRuntime),
context_index_(context_index),
function_(NULL),
arguments_(arguments) {}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int context_index_;
const Runtime::Function* function_;
ZoneList<Expression*>* arguments_;
};
class UnaryOperation final : public Expression {
public:
Token::Value op() const { return OperatorField::decode(bit_field_); }
Expression* expression() const { return expression_; }
void set_expression(Expression* e) { expression_ = e; }
// For unary not (Token::NOT), the AST ids where true and false will
// actually be materialized, respectively.
static int num_ids() { return parent_num_ids() + 2; }
BailoutId MaterializeTrueId() const { return BailoutId(local_id(0)); }
BailoutId MaterializeFalseId() const { return BailoutId(local_id(1)); }
void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle);
private:
friend class AstNodeFactory;
UnaryOperation(Token::Value op, Expression* expression, int pos)
: Expression(pos, kUnaryOperation), expression_(expression) {
bit_field_ |= OperatorField::encode(op);
DCHECK(Token::IsUnaryOp(op));
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* expression_;
class OperatorField
: public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
};
class BinaryOperation final : public Expression {
public:
Token::Value op() const { return OperatorField::decode(bit_field_); }
Expression* left() const { return left_; }
void set_left(Expression* e) { left_ = e; }
Expression* right() const { return right_; }
void set_right(Expression* e) { right_ = e; }
Handle<AllocationSite> allocation_site() const { return allocation_site_; }
void set_allocation_site(Handle<AllocationSite> allocation_site) {
allocation_site_ = allocation_site;
}
void MarkTail() {
switch (op()) {
case Token::COMMA:
case Token::AND:
case Token::OR:
right_->MarkTail();
default:
break;
}
}
// The short-circuit logical operations need an AST ID for their
// right-hand subexpression.
static int num_ids() { return parent_num_ids() + 2; }
BailoutId RightId() const { return BailoutId(local_id(0)); }
// BinaryOperation will have both a slot in the feedback vector and the
// TypeFeedbackId to record the type information. TypeFeedbackId is used
// by full codegen and the feedback vector slot is used by interpreter.
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot BinaryOperationFeedbackSlot() const {
return type_feedback_slot_;
}
TypeFeedbackId BinaryOperationFeedbackId() const {
return TypeFeedbackId(local_id(1));
}
Maybe<int> fixed_right_arg() const {
return has_fixed_right_arg_ ? Just(fixed_right_arg_value_) : Nothing<int>();
}
void set_fixed_right_arg(Maybe<int> arg) {
has_fixed_right_arg_ = arg.IsJust();
if (arg.IsJust()) fixed_right_arg_value_ = arg.FromJust();
}
void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle);
private:
friend class AstNodeFactory;
BinaryOperation(Token::Value op, Expression* left, Expression* right, int pos)
: Expression(pos, kBinaryOperation),
has_fixed_right_arg_(false),
fixed_right_arg_value_(0),
left_(left),
right_(right) {
bit_field_ |= OperatorField::encode(op);
DCHECK(Token::IsBinaryOp(op));
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
// TODO(rossberg): the fixed arg should probably be represented as a Constant
// type for the RHS. Currenty it's actually a Maybe<int>
bool has_fixed_right_arg_;
int fixed_right_arg_value_;
Expression* left_;
Expression* right_;
Handle<AllocationSite> allocation_site_;
FeedbackVectorSlot type_feedback_slot_;
class OperatorField
: public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
};
class CountOperation final : public Expression {
public:
bool is_prefix() const { return IsPrefixField::decode(bit_field_); }
bool is_postfix() const { return !is_prefix(); }
Token::Value op() const { return TokenField::decode(bit_field_); }
Token::Value binary_op() {
return (op() == Token::INC) ? Token::ADD : Token::SUB;
}
Expression* expression() const { return expression_; }
void set_expression(Expression* e) { expression_ = e; }
bool IsMonomorphic() const { return receiver_types_.length() == 1; }
SmallMapList* GetReceiverTypes() { return &receiver_types_; }
IcCheckType GetKeyType() const { return KeyTypeField::decode(bit_field_); }
KeyedAccessStoreMode GetStoreMode() const {
return StoreModeField::decode(bit_field_);
}
AstType* type() const { return type_; }
void set_key_type(IcCheckType type) {
bit_field_ = KeyTypeField::update(bit_field_, type);
}
void set_store_mode(KeyedAccessStoreMode mode) {
bit_field_ = StoreModeField::update(bit_field_, mode);
}
void set_type(AstType* type) { type_ = type; }
static int num_ids() { return parent_num_ids() + 4; }
BailoutId AssignmentId() const { return BailoutId(local_id(0)); }
BailoutId ToNumberId() const { return BailoutId(local_id(1)); }
TypeFeedbackId CountBinOpFeedbackId() const {
return TypeFeedbackId(local_id(2));
}
TypeFeedbackId CountStoreFeedbackId() const {
return TypeFeedbackId(local_id(3));
}
// Feedback slot for binary operation is only used by ignition.
FeedbackVectorSlot CountBinaryOpFeedbackSlot() const {
return binary_operation_slot_;
}
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot CountSlot() const { return slot_; }
private:
friend class AstNodeFactory;
CountOperation(Token::Value op, bool is_prefix, Expression* expr, int pos)
: Expression(pos, kCountOperation), type_(NULL), expression_(expr) {
bit_field_ |=
IsPrefixField::encode(is_prefix) | KeyTypeField::encode(ELEMENT) |
StoreModeField::encode(STANDARD_STORE) | TokenField::encode(op);
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
class IsPrefixField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
class KeyTypeField : public BitField<IcCheckType, IsPrefixField::kNext, 1> {};
class StoreModeField
: public BitField<KeyedAccessStoreMode, KeyTypeField::kNext, 3> {};
class TokenField : public BitField<Token::Value, StoreModeField::kNext, 7> {};
FeedbackVectorSlot slot_;
FeedbackVectorSlot binary_operation_slot_;
AstType* type_;
Expression* expression_;
SmallMapList receiver_types_;
};
class CompareOperation final : public Expression {
public:
Token::Value op() const { return OperatorField::decode(bit_field_); }
Expression* left() const { return left_; }
Expression* right() const { return right_; }
void set_left(Expression* e) { left_ = e; }
void set_right(Expression* e) { right_ = e; }
// Type feedback information.
static int num_ids() { return parent_num_ids() + 1; }
TypeFeedbackId CompareOperationFeedbackId() const {
return TypeFeedbackId(local_id(0));
}
AstType* combined_type() const { return combined_type_; }
void set_combined_type(AstType* type) { combined_type_ = type; }
// CompareOperation will have both a slot in the feedback vector and the
// TypeFeedbackId to record the type information. TypeFeedbackId is used
// by full codegen and the feedback vector slot is used by interpreter.
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot CompareOperationFeedbackSlot() const {
return type_feedback_slot_;
}
// Match special cases.
bool IsLiteralCompareTypeof(Expression** expr, Handle<String>* check);
bool IsLiteralCompareUndefined(Expression** expr);
bool IsLiteralCompareNull(Expression** expr);
private:
friend class AstNodeFactory;
CompareOperation(Token::Value op, Expression* left, Expression* right,
int pos)
: Expression(pos, kCompareOperation),
left_(left),
right_(right),
combined_type_(AstType::None()) {
bit_field_ |= OperatorField::encode(op);
DCHECK(Token::IsCompareOp(op));
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* left_;
Expression* right_;
AstType* combined_type_;
FeedbackVectorSlot type_feedback_slot_;
class OperatorField
: public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
};
class Spread final : public Expression {
public:
Expression* expression() const { return expression_; }
void set_expression(Expression* e) { expression_ = e; }
int expression_position() const { return expr_pos_; }
static int num_ids() { return parent_num_ids(); }
private:
friend class AstNodeFactory;
Spread(Expression* expression, int pos, int expr_pos)
: Expression(pos, kSpread),
expr_pos_(expr_pos),
expression_(expression) {}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int expr_pos_;
Expression* expression_;
};
class Conditional final : public Expression {
public:
Expression* condition() const { return condition_; }
Expression* then_expression() const { return then_expression_; }
Expression* else_expression() const { return else_expression_; }
void set_condition(Expression* e) { condition_ = e; }
void set_then_expression(Expression* e) { then_expression_ = e; }
void set_else_expression(Expression* e) { else_expression_ = e; }
void MarkTail() {
then_expression_->MarkTail();
else_expression_->MarkTail();
}
static int num_ids() { return parent_num_ids() + 2; }
BailoutId ThenId() const { return BailoutId(local_id(0)); }
BailoutId ElseId() const { return BailoutId(local_id(1)); }
private:
friend class AstNodeFactory;
Conditional(Expression* condition, Expression* then_expression,
Expression* else_expression, int position)
: Expression(position, kConditional),
condition_(condition),
then_expression_(then_expression),
else_expression_(else_expression) {}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* condition_;
Expression* then_expression_;
Expression* else_expression_;
};
class Assignment final : public Expression {
public:
Assignment* AsSimpleAssignment() { return !is_compound() ? this : NULL; }
Token::Value binary_op() const;
Token::Value op() const { return TokenField::decode(bit_field_); }
Expression* target() const { return target_; }
Expression* value() const { return value_; }
void set_target(Expression* e) { target_ = e; }
void set_value(Expression* e) { value_ = e; }
BinaryOperation* binary_operation() const { return binary_operation_; }
// This check relies on the definition order of token in token.h.
bool is_compound() const { return op() > Token::ASSIGN; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId AssignmentId() const { return BailoutId(local_id(0)); }
// Type feedback information.
TypeFeedbackId AssignmentFeedbackId() { return TypeFeedbackId(local_id(1)); }
bool IsUninitialized() const {
return IsUninitializedField::decode(bit_field_);
}
bool HasNoTypeInformation() {
return IsUninitializedField::decode(bit_field_);
}
bool IsMonomorphic() const { return receiver_types_.length() == 1; }
SmallMapList* GetReceiverTypes() { return &receiver_types_; }
IcCheckType GetKeyType() const { return KeyTypeField::decode(bit_field_); }
KeyedAccessStoreMode GetStoreMode() const {
return StoreModeField::decode(bit_field_);
}
void set_is_uninitialized(bool b) {
bit_field_ = IsUninitializedField::update(bit_field_, b);
}
void set_key_type(IcCheckType key_type) {
bit_field_ = KeyTypeField::update(bit_field_, key_type);
}
void set_store_mode(KeyedAccessStoreMode mode) {
bit_field_ = StoreModeField::update(bit_field_, mode);
}
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot AssignmentSlot() const { return slot_; }
private:
friend class AstNodeFactory;
Assignment(Token::Value op, Expression* target, Expression* value, int pos);
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
class IsUninitializedField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
class KeyTypeField
: public BitField<IcCheckType, IsUninitializedField::kNext, 1> {};
class StoreModeField
: public BitField<KeyedAccessStoreMode, KeyTypeField::kNext, 3> {};
class TokenField : public BitField<Token::Value, StoreModeField::kNext, 7> {};
FeedbackVectorSlot slot_;
Expression* target_;
Expression* value_;
BinaryOperation* binary_operation_;
SmallMapList receiver_types_;
};
// The RewritableExpression class is a wrapper for AST nodes that wait
// for some potential rewriting. However, even if such nodes are indeed
// rewritten, the RewritableExpression wrapper nodes will survive in the
// final AST and should be just ignored, i.e., they should be treated as
// equivalent to the wrapped nodes. For this reason and to simplify later
// phases, RewritableExpressions are considered as exceptions of AST nodes
// in the following sense:
//
// 1. IsRewritableExpression and AsRewritableExpression behave as usual.
// 2. All other Is* and As* methods are practically delegated to the
// wrapped node, i.e. IsArrayLiteral() will return true iff the
// wrapped node is an array literal.
//
// Furthermore, an invariant that should be respected is that the wrapped
// node is not a RewritableExpression.
class RewritableExpression final : public Expression {
public:
Expression* expression() const { return expr_; }
bool is_rewritten() const { return IsRewrittenField::decode(bit_field_); }
void Rewrite(Expression* new_expression) {
DCHECK(!is_rewritten());
DCHECK_NOT_NULL(new_expression);
DCHECK(!new_expression->IsRewritableExpression());
expr_ = new_expression;
bit_field_ = IsRewrittenField::update(bit_field_, true);
}
static int num_ids() { return parent_num_ids(); }
private:
friend class AstNodeFactory;
explicit RewritableExpression(Expression* expression)
: Expression(expression->position(), kRewritableExpression),
expr_(expression) {
bit_field_ |= IsRewrittenField::encode(false);
DCHECK(!expression->IsRewritableExpression());
}
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* expr_;
class IsRewrittenField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
};
// Our Yield is different from the JS yield in that it "returns" its argument as
// is, without wrapping it in an iterator result object. Such wrapping, if
// desired, must be done beforehand (see the parser).
class Yield final : public Expression {
public:
enum OnException { kOnExceptionThrow, kOnExceptionRethrow };
Expression* generator_object() const { return generator_object_; }
Expression* expression() const { return expression_; }
OnException on_exception() const {
return OnExceptionField::decode(bit_field_);
}
bool rethrow_on_exception() const {
return on_exception() == kOnExceptionRethrow;
}
int yield_id() const { return yield_id_; }
void set_generator_object(Expression* e) { generator_object_ = e; }
void set_expression(Expression* e) { expression_ = e; }
void set_yield_id(int yield_id) { yield_id_ = yield_id; }
private:
friend class AstNodeFactory;
Yield(Expression* generator_object, Expression* expression, int pos,
OnException on_exception)
: Expression(pos, kYield),
yield_id_(-1),
generator_object_(generator_object),
expression_(expression) {
bit_field_ |= OnExceptionField::encode(on_exception);
}
int yield_id_;
Expression* generator_object_;
Expression* expression_;
class OnExceptionField
: public BitField<OnException, Expression::kNextBitFieldIndex, 1> {};
};
class Throw final : public Expression {
public:
Expression* exception() const { return exception_; }
void set_exception(Expression* e) { exception_ = e; }
private:
friend class AstNodeFactory;
Throw(Expression* exception, int pos)
: Expression(pos, kThrow), exception_(exception) {}
Expression* exception_;
};
class FunctionLiteral final : public Expression {
public:
enum FunctionType {
kAnonymousExpression,
kNamedExpression,
kDeclaration,
kAccessorOrMethod
};
enum IdType { kIdTypeInvalid = -1, kIdTypeTopLevel = 0 };
enum ParameterFlag { kNoDuplicateParameters, kHasDuplicateParameters };
enum EagerCompileHint { kShouldEagerCompile, kShouldLazyCompile };
Handle<String> name() const { return raw_name_->string(); }
const AstString* raw_name() const { return raw_name_; }
void set_raw_name(const AstString* name) { raw_name_ = name; }
DeclarationScope* scope() const { return scope_; }
ZoneList<Statement*>* body() const { return body_; }
void set_function_token_position(int pos) { function_token_position_ = pos; }
int function_token_position() const { return function_token_position_; }
int start_position() const;
int end_position() const;
int SourceSize() const { return end_position() - start_position(); }
bool is_declaration() const { return function_type() == kDeclaration; }
bool is_named_expression() const {
return function_type() == kNamedExpression;
}
bool is_anonymous_expression() const {
return function_type() == kAnonymousExpression;
}
LanguageMode language_mode() const;
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
// The + 1 is because we need an array with room for the literals
// as well as the feedback vector.
literal_feedback_slot_ =
spec->AddCreateClosureSlot(materialized_literal_count_ + 1);
}
FeedbackVectorSlot LiteralFeedbackSlot() const {
return literal_feedback_slot_;
}
static bool NeedsHomeObject(Expression* expr);
int materialized_literal_count() { return materialized_literal_count_; }
int expected_property_count() { return expected_property_count_; }
int parameter_count() { return parameter_count_; }
int function_length() { return function_length_; }
bool AllowsLazyCompilation();
Handle<String> debug_name() const {
if (raw_name_ != NULL && !raw_name_->IsEmpty()) {
return raw_name_->string();
}
return inferred_name();
}
Handle<String> inferred_name() const {
if (!inferred_name_.is_null()) {
DCHECK(raw_inferred_name_ == NULL);
return inferred_name_;
}
if (raw_inferred_name_ != NULL) {
return raw_inferred_name_->string();
}
UNREACHABLE();
return Handle<String>();
}
// Only one of {set_inferred_name, set_raw_inferred_name} should be called.
void set_inferred_name(Handle<String> inferred_name) {
DCHECK(!inferred_name.is_null());
inferred_name_ = inferred_name;
DCHECK(raw_inferred_name_== NULL || raw_inferred_name_->IsEmpty());
raw_inferred_name_ = NULL;
}
void set_raw_inferred_name(const AstString* raw_inferred_name) {
DCHECK(raw_inferred_name != NULL);
raw_inferred_name_ = raw_inferred_name;
DCHECK(inferred_name_.is_null());
inferred_name_ = Handle<String>();
}
bool pretenure() const { return Pretenure::decode(bit_field_); }
void set_pretenure() { bit_field_ = Pretenure::update(bit_field_, true); }
bool has_duplicate_parameters() const {
return HasDuplicateParameters::decode(bit_field_);
}
// This is used as a heuristic on when to eagerly compile a function
// literal. We consider the following constructs as hints that the
// function will be called immediately:
// - (function() { ... })();
// - var x = function() { ... }();
bool ShouldEagerCompile() const;
void SetShouldEagerCompile();
// A hint that we expect this function to be called (exactly) once,
// i.e. we suspect it's an initialization function.
bool should_be_used_once_hint() const {
return ShouldNotBeUsedOnceHintField::decode(bit_field_);
}
void set_should_be_used_once_hint() {
bit_field_ = ShouldNotBeUsedOnceHintField::update(bit_field_, true);
}
FunctionType function_type() const {
return FunctionTypeBits::decode(bit_field_);
}
FunctionKind kind() const;
int ast_node_count() { return ast_properties_.node_count(); }
AstProperties::Flags flags() const { return ast_properties_.flags(); }
void set_ast_properties(AstProperties* ast_properties) {
ast_properties_ = *ast_properties;
}
const FeedbackVectorSpec* feedback_vector_spec() const {
return ast_properties_.get_spec();
}
bool dont_optimize() { return dont_optimize_reason() != kNoReason; }
BailoutReason dont_optimize_reason() {
return DontOptimizeReasonField::decode(bit_field_);
}
void set_dont_optimize_reason(BailoutReason reason) {
bit_field_ = DontOptimizeReasonField::update(bit_field_, reason);
}
bool IsAnonymousFunctionDefinition() const {
return is_anonymous_expression();
}
int yield_count() { return yield_count_; }
void set_yield_count(int yield_count) { yield_count_ = yield_count; }
int return_position() {
return std::max(start_position(), end_position() - (has_braces_ ? 1 : 0));
}
int function_literal_id() const { return function_literal_id_; }
void set_function_literal_id(int function_literal_id) {
function_literal_id_ = function_literal_id;
}
private:
friend class AstNodeFactory;
FunctionLiteral(Zone* zone, const AstString* name,
AstValueFactory* ast_value_factory, DeclarationScope* scope,
ZoneList<Statement*>* body, int materialized_literal_count,
int expected_property_count, int parameter_count,
int function_length, FunctionType function_type,
ParameterFlag has_duplicate_parameters,
EagerCompileHint eager_compile_hint, int position,
bool has_braces, int function_literal_id)
: Expression(position, kFunctionLiteral),
materialized_literal_count_(materialized_literal_count),
expected_property_count_(expected_property_count),
parameter_count_(parameter_count),
function_length_(function_length),
function_token_position_(kNoSourcePosition),
yield_count_(0),
has_braces_(has_braces),
raw_name_(name),
scope_(scope),
body_(body),
raw_inferred_name_(ast_value_factory->empty_string()),
ast_properties_(zone),
function_literal_id_(function_literal_id) {
bit_field_ |= FunctionTypeBits::encode(function_type) |
Pretenure::encode(false) |
HasDuplicateParameters::encode(has_duplicate_parameters ==
kHasDuplicateParameters) |
ShouldNotBeUsedOnceHintField::encode(false) |
DontOptimizeReasonField::encode(kNoReason);
if (eager_compile_hint == kShouldEagerCompile) SetShouldEagerCompile();
}
class FunctionTypeBits
: public BitField<FunctionType, Expression::kNextBitFieldIndex, 2> {};
class Pretenure : public BitField<bool, FunctionTypeBits::kNext, 1> {};
class HasDuplicateParameters : public BitField<bool, Pretenure::kNext, 1> {};
class ShouldNotBeUsedOnceHintField
: public BitField<bool, HasDuplicateParameters::kNext, 1> {};
class DontOptimizeReasonField
: public BitField<BailoutReason, ShouldNotBeUsedOnceHintField::kNext, 8> {
};
int materialized_literal_count_;
int expected_property_count_;
int parameter_count_;
int function_length_;
int function_token_position_;
int yield_count_;
bool has_braces_;
const AstString* raw_name_;
DeclarationScope* scope_;
ZoneList<Statement*>* body_;
const AstString* raw_inferred_name_;
Handle<String> inferred_name_;
AstProperties ast_properties_;
int function_literal_id_;
FeedbackVectorSlot literal_feedback_slot_;
};
// Property is used for passing information
// about a class literal's properties from the parser to the code generator.
class ClassLiteralProperty final : public LiteralProperty {
public:
enum Kind : uint8_t { METHOD, GETTER, SETTER, FIELD };
Kind kind() const { return kind_; }
bool is_static() const { return is_static_; }
private:
friend class AstNodeFactory;
ClassLiteralProperty(Expression* key, Expression* value, Kind kind,
bool is_static, bool is_computed_name);
Kind kind_;
bool is_static_;
};
class ClassLiteral final : public Expression {
public:
typedef ClassLiteralProperty Property;
VariableProxy* class_variable_proxy() const { return class_variable_proxy_; }
Expression* extends() const { return extends_; }
void set_extends(Expression* e) { extends_ = e; }
FunctionLiteral* constructor() const { return constructor_; }
void set_constructor(FunctionLiteral* f) { constructor_ = f; }
ZoneList<Property*>* properties() const { return properties_; }
int start_position() const { return position(); }
int end_position() const { return end_position_; }
bool has_name_static_property() const {
return HasNameStaticProperty::decode(bit_field_);
}
bool has_static_computed_names() const {
return HasStaticComputedNames::decode(bit_field_);
}
// Object literals need one feedback slot for each non-trivial value, as well
// as some slots for home objects.
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
bool NeedsProxySlot() const {
return class_variable_proxy() != nullptr &&
class_variable_proxy()->var()->IsUnallocated();
}
FeedbackVectorSlot HomeObjectSlot() const { return home_object_slot_; }
FeedbackVectorSlot ProxySlot() const { return proxy_slot_; }
private:
friend class AstNodeFactory;
ClassLiteral(VariableProxy* class_variable_proxy, Expression* extends,
FunctionLiteral* constructor, ZoneList<Property*>* properties,
int start_position, int end_position,
bool has_name_static_property, bool has_static_computed_names)
: Expression(start_position, kClassLiteral),
end_position_(end_position),
class_variable_proxy_(class_variable_proxy),
extends_(extends),
constructor_(constructor),
properties_(properties) {
bit_field_ |= HasNameStaticProperty::encode(has_name_static_property) |
HasStaticComputedNames::encode(has_static_computed_names);
}
int end_position_;
FeedbackVectorSlot home_object_slot_;
FeedbackVectorSlot proxy_slot_;
VariableProxy* class_variable_proxy_;
Expression* extends_;
FunctionLiteral* constructor_;
ZoneList<Property*>* properties_;
class HasNameStaticProperty
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
class HasStaticComputedNames
: public BitField<bool, HasNameStaticProperty::kNext, 1> {};
};
class NativeFunctionLiteral final : public Expression {
public:
Handle<String> name() const { return name_->string(); }
v8::Extension* extension() const { return extension_; }
FeedbackVectorSlot LiteralFeedbackSlot() const {
return literal_feedback_slot_;
}
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
// 0 is a magic number here. It means we are holding the literals
// array for a native function literal, which needs to be
// the empty literals array.
// TODO(mvstanton): The FeedbackVectorSlotCache can be adapted
// to always return the same slot for this case.
literal_feedback_slot_ = spec->AddCreateClosureSlot(0);
}
private:
friend class AstNodeFactory;
NativeFunctionLiteral(const AstRawString* name, v8::Extension* extension,
int pos)
: Expression(pos, kNativeFunctionLiteral),
name_(name),
extension_(extension) {}
const AstRawString* name_;
v8::Extension* extension_;
FeedbackVectorSlot literal_feedback_slot_;
};
class ThisFunction final : public Expression {
private:
friend class AstNodeFactory;
explicit ThisFunction(int pos) : Expression(pos, kThisFunction) {}
};
class SuperPropertyReference final : public Expression {
public:
VariableProxy* this_var() const { return this_var_; }
void set_this_var(VariableProxy* v) { this_var_ = v; }
Expression* home_object() const { return home_object_; }
void set_home_object(Expression* e) { home_object_ = e; }
private:
friend class AstNodeFactory;
SuperPropertyReference(VariableProxy* this_var, Expression* home_object,
int pos)
: Expression(pos, kSuperPropertyReference),
this_var_(this_var),
home_object_(home_object) {
DCHECK(this_var->is_this());
DCHECK(home_object->IsProperty());
}
VariableProxy* this_var_;
Expression* home_object_;
};
class SuperCallReference final : public Expression {
public:
VariableProxy* this_var() const { return this_var_; }
void set_this_var(VariableProxy* v) { this_var_ = v; }
VariableProxy* new_target_var() const { return new_target_var_; }
void set_new_target_var(VariableProxy* v) { new_target_var_ = v; }
VariableProxy* this_function_var() const { return this_function_var_; }
void set_this_function_var(VariableProxy* v) { this_function_var_ = v; }
private:
friend class AstNodeFactory;
SuperCallReference(VariableProxy* this_var, VariableProxy* new_target_var,
VariableProxy* this_function_var, int pos)
: Expression(pos, kSuperCallReference),
this_var_(this_var),
new_target_var_(new_target_var),
this_function_var_(this_function_var) {
DCHECK(this_var->is_this());
DCHECK(new_target_var->raw_name()->IsOneByteEqualTo(".new.target"));
DCHECK(this_function_var->raw_name()->IsOneByteEqualTo(".this_function"));
}
VariableProxy* this_var_;
VariableProxy* new_target_var_;
VariableProxy* this_function_var_;
};
// This class is produced when parsing the () in arrow functions without any
// arguments and is not actually a valid expression.
class EmptyParentheses final : public Expression {
private:
friend class AstNodeFactory;
explicit EmptyParentheses(int pos) : Expression(pos, kEmptyParentheses) {}
};
// Represents the spec operation `GetIterator()`
// (defined at https://tc39.github.io/ecma262/#sec-getiterator). Ignition
// desugars this into a LoadIC / JSLoadNamed, CallIC, and a type-check to
// validate return value of the Symbol.iterator() call.
class GetIterator final : public Expression {
public:
Expression* iterable() const { return iterable_; }
void set_iterable(Expression* iterable) { iterable_ = iterable; }
static int num_ids() { return parent_num_ids(); }
void AssignFeedbackVectorSlots(FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
iterator_property_feedback_slot_ =
spec->AddSlot(FeedbackVectorSlotKind::LOAD_IC);
iterator_call_feedback_slot_ =
spec->AddSlot(FeedbackVectorSlotKind::CALL_IC);
}
FeedbackVectorSlot IteratorPropertyFeedbackSlot() const {
return iterator_property_feedback_slot_;
}
FeedbackVectorSlot IteratorCallFeedbackSlot() const {
return iterator_call_feedback_slot_;
}
private:
friend class AstNodeFactory;
explicit GetIterator(Expression* iterable, int pos)
: Expression(pos, kGetIterator), iterable_(iterable) {}
Expression* iterable_;
FeedbackVectorSlot iterator_property_feedback_slot_;
FeedbackVectorSlot iterator_call_feedback_slot_;
};
// ----------------------------------------------------------------------------
// Basic visitor
// Sub-class should parametrize AstVisitor with itself, e.g.:
// class SpecificVisitor : public AstVisitor<SpecificVisitor> { ... }
template <class Subclass>
class AstVisitor BASE_EMBEDDED {
public:
void Visit(AstNode* node) { impl()->Visit(node); }
void VisitDeclarations(Declaration::List* declarations) {
for (Declaration* decl : *declarations) Visit(decl);
}
void VisitStatements(ZoneList<Statement*>* statements) {
for (int i = 0; i < statements->length(); i++) {
Statement* stmt = statements->at(i);
Visit(stmt);
if (stmt->IsJump()) break;
}
}
void VisitExpressions(ZoneList<Expression*>* expressions) {
for (int i = 0; i < expressions->length(); i++) {
// The variable statement visiting code may pass NULL expressions
// to this code. Maybe this should be handled by introducing an
// undefined expression or literal? Revisit this code if this
// changes
Expression* expression = expressions->at(i);
if (expression != NULL) Visit(expression);
}
}
protected:
Subclass* impl() { return static_cast<Subclass*>(this); }
};
#define GENERATE_VISIT_CASE(NodeType) \
case AstNode::k##NodeType: \
return this->impl()->Visit##NodeType(static_cast<NodeType*>(node));
#define GENERATE_AST_VISITOR_SWITCH() \
switch (node->node_type()) { \
AST_NODE_LIST(GENERATE_VISIT_CASE) \
}
#define DEFINE_AST_VISITOR_SUBCLASS_MEMBERS() \
public: \
void VisitNoStackOverflowCheck(AstNode* node) { \
GENERATE_AST_VISITOR_SWITCH() \
} \
\
void Visit(AstNode* node) { \
if (CheckStackOverflow()) return; \
VisitNoStackOverflowCheck(node); \
} \
\
void SetStackOverflow() { stack_overflow_ = true; } \
void ClearStackOverflow() { stack_overflow_ = false; } \
bool HasStackOverflow() const { return stack_overflow_; } \
\
bool CheckStackOverflow() { \
if (stack_overflow_) return true; \
if (GetCurrentStackPosition() < stack_limit_) { \
stack_overflow_ = true; \
return true; \
} \
return false; \
} \
\
private: \
void InitializeAstVisitor(Isolate* isolate) { \
stack_limit_ = isolate->stack_guard()->real_climit(); \
stack_overflow_ = false; \
} \
\
void InitializeAstVisitor(uintptr_t stack_limit) { \
stack_limit_ = stack_limit; \
stack_overflow_ = false; \
} \
\
uintptr_t stack_limit_; \
bool stack_overflow_
#define DEFINE_AST_VISITOR_MEMBERS_WITHOUT_STACKOVERFLOW() \
public: \
void Visit(AstNode* node) { GENERATE_AST_VISITOR_SWITCH() } \
\
private:
#define DEFINE_AST_REWRITER_SUBCLASS_MEMBERS() \
public: \
AstNode* Rewrite(AstNode* node) { \
DCHECK_NULL(replacement_); \
DCHECK_NOT_NULL(node); \
Visit(node); \
if (HasStackOverflow()) return node; \
if (replacement_ == nullptr) return node; \
AstNode* result = replacement_; \
replacement_ = nullptr; \
return result; \
} \
\
private: \
void InitializeAstRewriter(Isolate* isolate) { \
InitializeAstVisitor(isolate); \
replacement_ = nullptr; \
} \
\
void InitializeAstRewriter(uintptr_t stack_limit) { \
InitializeAstVisitor(stack_limit); \
replacement_ = nullptr; \
} \
\
DEFINE_AST_VISITOR_SUBCLASS_MEMBERS(); \
\
protected: \
AstNode* replacement_
// Generic macro for rewriting things; `GET` is the expression to be
// rewritten; `SET` is a command that should do the rewriting, i.e.
// something sensible with the variable called `replacement`.
#define AST_REWRITE(Type, GET, SET) \
do { \
DCHECK(!HasStackOverflow()); \
DCHECK_NULL(replacement_); \
Visit(GET); \
if (HasStackOverflow()) return; \
if (replacement_ == nullptr) break; \
Type* replacement = reinterpret_cast<Type*>(replacement_); \
do { \
SET; \
} while (false); \
replacement_ = nullptr; \
} while (false)
// Macro for rewriting object properties; it assumes that `object` has
// `property` with a public getter and setter.
#define AST_REWRITE_PROPERTY(Type, object, property) \
do { \
auto _obj = (object); \
AST_REWRITE(Type, _obj->property(), _obj->set_##property(replacement)); \
} while (false)
// Macro for rewriting list elements; it assumes that `list` has methods
// `at` and `Set`.
#define AST_REWRITE_LIST_ELEMENT(Type, list, index) \
do { \
auto _list = (list); \
auto _index = (index); \
AST_REWRITE(Type, _list->at(_index), _list->Set(_index, replacement)); \
} while (false)
// ----------------------------------------------------------------------------
// AstNode factory
class AstNodeFactory final BASE_EMBEDDED {
public:
explicit AstNodeFactory(AstValueFactory* ast_value_factory)
: zone_(nullptr), ast_value_factory_(ast_value_factory) {
if (ast_value_factory != nullptr) {
zone_ = ast_value_factory->zone();
}
}
AstValueFactory* ast_value_factory() const { return ast_value_factory_; }
void set_ast_value_factory(AstValueFactory* ast_value_factory) {
ast_value_factory_ = ast_value_factory;
zone_ = ast_value_factory->zone();
}
VariableDeclaration* NewVariableDeclaration(VariableProxy* proxy,
Scope* scope, int pos) {
return new (zone_) VariableDeclaration(proxy, scope, pos);
}
FunctionDeclaration* NewFunctionDeclaration(VariableProxy* proxy,
FunctionLiteral* fun,
Scope* scope, int pos) {
return new (zone_) FunctionDeclaration(proxy, fun, scope, pos);
}
Block* NewBlock(ZoneList<const AstRawString*>* labels, int capacity,
bool ignore_completion_value, int pos) {
return new (zone_)
Block(zone_, labels, capacity, ignore_completion_value, pos);
}
#define STATEMENT_WITH_LABELS(NodeType) \
NodeType* New##NodeType(ZoneList<const AstRawString*>* labels, int pos) { \
return new (zone_) NodeType(labels, pos); \
}
STATEMENT_WITH_LABELS(DoWhileStatement)
STATEMENT_WITH_LABELS(WhileStatement)
STATEMENT_WITH_LABELS(ForStatement)
STATEMENT_WITH_LABELS(SwitchStatement)
#undef STATEMENT_WITH_LABELS
ForEachStatement* NewForEachStatement(ForEachStatement::VisitMode visit_mode,
ZoneList<const AstRawString*>* labels,
int pos) {
switch (visit_mode) {
case ForEachStatement::ENUMERATE: {
return new (zone_) ForInStatement(labels, pos);
}
case ForEachStatement::ITERATE: {
return new (zone_) ForOfStatement(labels, pos);
}
}
UNREACHABLE();
return NULL;
}
ExpressionStatement* NewExpressionStatement(Expression* expression, int pos) {
return new (zone_) ExpressionStatement(expression, pos);
}
ContinueStatement* NewContinueStatement(IterationStatement* target, int pos) {
return new (zone_) ContinueStatement(target, pos);
}
BreakStatement* NewBreakStatement(BreakableStatement* target, int pos) {
return new (zone_) BreakStatement(target, pos);
}
ReturnStatement* NewReturnStatement(Expression* expression, int pos) {
return new (zone_) ReturnStatement(expression, pos);
}
WithStatement* NewWithStatement(Scope* scope,
Expression* expression,
Statement* statement,
int pos) {
return new (zone_) WithStatement(scope, expression, statement, pos);
}
IfStatement* NewIfStatement(Expression* condition,
Statement* then_statement,
Statement* else_statement,
int pos) {
return new (zone_)
IfStatement(condition, then_statement, else_statement, pos);
}
TryCatchStatement* NewTryCatchStatement(Block* try_block, Scope* scope,
Variable* variable,
Block* catch_block, int pos) {
return new (zone_) TryCatchStatement(
try_block, scope, variable, catch_block, HandlerTable::CAUGHT, pos);
}
TryCatchStatement* NewTryCatchStatementForReThrow(Block* try_block,
Scope* scope,
Variable* variable,
Block* catch_block,
int pos) {
return new (zone_) TryCatchStatement(
try_block, scope, variable, catch_block, HandlerTable::UNCAUGHT, pos);
}
TryCatchStatement* NewTryCatchStatementForDesugaring(Block* try_block,
Scope* scope,
Variable* variable,
Block* catch_block,
int pos) {
return new (zone_) TryCatchStatement(
try_block, scope, variable, catch_block, HandlerTable::DESUGARING, pos);
}
TryCatchStatement* NewTryCatchStatementForAsyncAwait(Block* try_block,
Scope* scope,
Variable* variable,
Block* catch_block,
int pos) {
return new (zone_)
TryCatchStatement(try_block, scope, variable, catch_block,
HandlerTable::ASYNC_AWAIT, pos);
}
TryFinallyStatement* NewTryFinallyStatement(Block* try_block,
Block* finally_block, int pos) {
return new (zone_) TryFinallyStatement(try_block, finally_block, pos);
}
DebuggerStatement* NewDebuggerStatement(int pos) {
return new (zone_) DebuggerStatement(pos);
}
EmptyStatement* NewEmptyStatement(int pos) {
return new (zone_) EmptyStatement(pos);
}
SloppyBlockFunctionStatement* NewSloppyBlockFunctionStatement() {
return new (zone_)
SloppyBlockFunctionStatement(NewEmptyStatement(kNoSourcePosition));
}
CaseClause* NewCaseClause(
Expression* label, ZoneList<Statement*>* statements, int pos) {
return new (zone_) CaseClause(label, statements, pos);
}
Literal* NewStringLiteral(const AstRawString* string, int pos) {
return new (zone_) Literal(ast_value_factory_->NewString(string), pos);
}
// A JavaScript symbol (ECMA-262 edition 6).
Literal* NewSymbolLiteral(const char* name, int pos) {
return new (zone_) Literal(ast_value_factory_->NewSymbol(name), pos);
}
Literal* NewNumberLiteral(double number, int pos, bool with_dot = false) {
return new (zone_)
Literal(ast_value_factory_->NewNumber(number, with_dot), pos);
}
Literal* NewSmiLiteral(uint32_t number, int pos) {
return new (zone_) Literal(ast_value_factory_->NewSmi(number), pos);
}
Literal* NewBooleanLiteral(bool b, int pos) {
return new (zone_) Literal(ast_value_factory_->NewBoolean(b), pos);
}
Literal* NewNullLiteral(int pos) {
return new (zone_) Literal(ast_value_factory_->NewNull(), pos);
}
Literal* NewUndefinedLiteral(int pos) {
return new (zone_) Literal(ast_value_factory_->NewUndefined(), pos);
}
Literal* NewTheHoleLiteral(int pos) {
return new (zone_) Literal(ast_value_factory_->NewTheHole(), pos);
}
ObjectLiteral* NewObjectLiteral(
ZoneList<ObjectLiteral::Property*>* properties, int literal_index,
uint32_t boilerplate_properties, int pos) {
return new (zone_)
ObjectLiteral(properties, literal_index, boilerplate_properties, pos);
}
ObjectLiteral::Property* NewObjectLiteralProperty(
Expression* key, Expression* value, ObjectLiteralProperty::Kind kind,
bool is_computed_name) {
return new (zone_)
ObjectLiteral::Property(key, value, kind, is_computed_name);
}
ObjectLiteral::Property* NewObjectLiteralProperty(Expression* key,
Expression* value,
bool is_computed_name) {
return new (zone_) ObjectLiteral::Property(ast_value_factory_, key, value,
is_computed_name);
}
RegExpLiteral* NewRegExpLiteral(const AstRawString* pattern, int flags,
int literal_index, int pos) {
return new (zone_) RegExpLiteral(pattern, flags, literal_index, pos);
}
ArrayLiteral* NewArrayLiteral(ZoneList<Expression*>* values,
int literal_index,
int pos) {
return new (zone_) ArrayLiteral(values, -1, literal_index, pos);
}
ArrayLiteral* NewArrayLiteral(ZoneList<Expression*>* values,
int first_spread_index, int literal_index,
int pos) {
return new (zone_)
ArrayLiteral(values, first_spread_index, literal_index, pos);
}
VariableProxy* NewVariableProxy(Variable* var,
int start_position = kNoSourcePosition) {
return new (zone_) VariableProxy(var, start_position);
}
VariableProxy* NewVariableProxy(const AstRawString* name,
VariableKind variable_kind,
int start_position = kNoSourcePosition) {
DCHECK_NOT_NULL(name);
return new (zone_) VariableProxy(name, variable_kind, start_position);
}
// Recreates the VariableProxy in this Zone.
VariableProxy* CopyVariableProxy(VariableProxy* proxy) {
return new (zone_) VariableProxy(proxy);
}
Property* NewProperty(Expression* obj, Expression* key, int pos) {
return new (zone_) Property(obj, key, pos);
}
Call* NewCall(Expression* expression, ZoneList<Expression*>* arguments,
int pos, Call::PossiblyEval possibly_eval = Call::NOT_EVAL) {
return new (zone_) Call(expression, arguments, pos, possibly_eval);
}
CallNew* NewCallNew(Expression* expression,
ZoneList<Expression*>* arguments,
int pos) {
return new (zone_) CallNew(expression, arguments, pos);
}
CallRuntime* NewCallRuntime(Runtime::FunctionId id,
ZoneList<Expression*>* arguments, int pos) {
return new (zone_) CallRuntime(Runtime::FunctionForId(id), arguments, pos);
}
CallRuntime* NewCallRuntime(const Runtime::Function* function,
ZoneList<Expression*>* arguments, int pos) {
return new (zone_) CallRuntime(function, arguments, pos);
}
CallRuntime* NewCallRuntime(int context_index,
ZoneList<Expression*>* arguments, int pos) {
return new (zone_) CallRuntime(context_index, arguments, pos);
}
UnaryOperation* NewUnaryOperation(Token::Value op,
Expression* expression,
int pos) {
return new (zone_) UnaryOperation(op, expression, pos);
}
BinaryOperation* NewBinaryOperation(Token::Value op,
Expression* left,
Expression* right,
int pos) {
return new (zone_) BinaryOperation(op, left, right, pos);
}
CountOperation* NewCountOperation(Token::Value op,
bool is_prefix,
Expression* expr,
int pos) {
return new (zone_) CountOperation(op, is_prefix, expr, pos);
}
CompareOperation* NewCompareOperation(Token::Value op,
Expression* left,
Expression* right,
int pos) {
return new (zone_) CompareOperation(op, left, right, pos);
}
Spread* NewSpread(Expression* expression, int pos, int expr_pos) {
return new (zone_) Spread(expression, pos, expr_pos);
}
Conditional* NewConditional(Expression* condition,
Expression* then_expression,
Expression* else_expression,
int position) {
return new (zone_)
Conditional(condition, then_expression, else_expression, position);
}
RewritableExpression* NewRewritableExpression(Expression* expression) {
DCHECK_NOT_NULL(expression);
return new (zone_) RewritableExpression(expression);
}
Assignment* NewAssignment(Token::Value op,
Expression* target,
Expression* value,
int pos) {
DCHECK(Token::IsAssignmentOp(op));
if (op != Token::INIT && target->IsVariableProxy()) {
target->AsVariableProxy()->set_is_assigned();
}
Assignment* assign = new (zone_) Assignment(op, target, value, pos);
if (assign->is_compound()) {
assign->binary_operation_ =
NewBinaryOperation(assign->binary_op(), target, value, pos + 1);
}
return assign;
}
Yield* NewYield(Expression* generator_object, Expression* expression, int pos,
Yield::OnException on_exception) {
if (!expression) expression = NewUndefinedLiteral(pos);
return new (zone_) Yield(generator_object, expression, pos, on_exception);
}
Throw* NewThrow(Expression* exception, int pos) {
return new (zone_) Throw(exception, pos);
}
FunctionLiteral* NewFunctionLiteral(
const AstRawString* name, DeclarationScope* scope,
ZoneList<Statement*>* body, int materialized_literal_count,
int expected_property_count, int parameter_count, int function_length,
FunctionLiteral::ParameterFlag has_duplicate_parameters,
FunctionLiteral::FunctionType function_type,
FunctionLiteral::EagerCompileHint eager_compile_hint, int position,
bool has_braces, int function_literal_id) {
return new (zone_) FunctionLiteral(
zone_, name, ast_value_factory_, scope, body,
materialized_literal_count, expected_property_count, parameter_count,
function_length, function_type, has_duplicate_parameters,
eager_compile_hint, position, has_braces, function_literal_id);
}
// Creates a FunctionLiteral representing a top-level script, the
// result of an eval (top-level or otherwise), or the result of calling
// the Function constructor.
FunctionLiteral* NewScriptOrEvalFunctionLiteral(
DeclarationScope* scope, ZoneList<Statement*>* body,
int materialized_literal_count, int expected_property_count,
int parameter_count) {
return new (zone_) FunctionLiteral(
zone_, ast_value_factory_->empty_string(), ast_value_factory_, scope,
body, materialized_literal_count, expected_property_count,
parameter_count, parameter_count, FunctionLiteral::kAnonymousExpression,
FunctionLiteral::kNoDuplicateParameters,
FunctionLiteral::kShouldLazyCompile, 0, true,
FunctionLiteral::kIdTypeTopLevel);
}
ClassLiteral::Property* NewClassLiteralProperty(
Expression* key, Expression* value, ClassLiteralProperty::Kind kind,
bool is_static, bool is_computed_name) {
return new (zone_)
ClassLiteral::Property(key, value, kind, is_static, is_computed_name);
}
ClassLiteral* NewClassLiteral(VariableProxy* proxy, Expression* extends,
FunctionLiteral* constructor,
ZoneList<ClassLiteral::Property*>* properties,
int start_position, int end_position,
bool has_name_static_property,
bool has_static_computed_names) {
return new (zone_) ClassLiteral(
proxy, extends, constructor, properties, start_position, end_position,
has_name_static_property, has_static_computed_names);
}
NativeFunctionLiteral* NewNativeFunctionLiteral(const AstRawString* name,
v8::Extension* extension,
int pos) {
return new (zone_) NativeFunctionLiteral(name, extension, pos);
}
DoExpression* NewDoExpression(Block* block, Variable* result_var, int pos) {
VariableProxy* result = NewVariableProxy(result_var, pos);
return new (zone_) DoExpression(block, result, pos);
}
ThisFunction* NewThisFunction(int pos) {
return new (zone_) ThisFunction(pos);
}
SuperPropertyReference* NewSuperPropertyReference(VariableProxy* this_var,
Expression* home_object,
int pos) {
return new (zone_) SuperPropertyReference(this_var, home_object, pos);
}
SuperCallReference* NewSuperCallReference(VariableProxy* this_var,
VariableProxy* new_target_var,
VariableProxy* this_function_var,
int pos) {
return new (zone_)
SuperCallReference(this_var, new_target_var, this_function_var, pos);
}
EmptyParentheses* NewEmptyParentheses(int pos) {
return new (zone_) EmptyParentheses(pos);
}
GetIterator* NewGetIterator(Expression* iterable, int pos) {
return new (zone_) GetIterator(iterable, pos);
}
Zone* zone() const { return zone_; }
void set_zone(Zone* zone) { zone_ = zone; }
// Handles use of temporary zones when parsing inner function bodies.
class BodyScope {
public:
BodyScope(AstNodeFactory* factory, Zone* temp_zone, bool use_temp_zone)
: factory_(factory), prev_zone_(factory->zone_) {
if (use_temp_zone) {
factory->zone_ = temp_zone;
}
}
void Reset() { factory_->zone_ = prev_zone_; }
~BodyScope() { Reset(); }
private:
AstNodeFactory* factory_;
Zone* prev_zone_;
};
private:
// This zone may be deallocated upon returning from parsing a function body
// which we can guarantee is not going to be compiled or have its AST
// inspected.
// See ParseFunctionLiteral in parser.cc for preconditions.
Zone* zone_;
AstValueFactory* ast_value_factory_;
};
// Type testing & conversion functions overridden by concrete subclasses.
// Inline functions for AstNode.
#define DECLARE_NODE_FUNCTIONS(type) \
bool AstNode::Is##type() const { \
NodeType mine = node_type(); \
if (mine == AstNode::kRewritableExpression && \
AstNode::k##type != AstNode::kRewritableExpression) \
mine = reinterpret_cast<const RewritableExpression*>(this) \
->expression() \
->node_type(); \
return mine == AstNode::k##type; \
} \
type* AstNode::As##type() { \
NodeType mine = node_type(); \
AstNode* result = this; \
if (mine == AstNode::kRewritableExpression && \
AstNode::k##type != AstNode::kRewritableExpression) { \
result = \
reinterpret_cast<const RewritableExpression*>(this)->expression(); \
mine = result->node_type(); \
} \
return mine == AstNode::k##type ? reinterpret_cast<type*>(result) : NULL; \
} \
const type* AstNode::As##type() const { \
NodeType mine = node_type(); \
const AstNode* result = this; \
if (mine == AstNode::kRewritableExpression && \
AstNode::k##type != AstNode::kRewritableExpression) { \
result = \
reinterpret_cast<const RewritableExpression*>(this)->expression(); \
mine = result->node_type(); \
} \
return mine == AstNode::k##type ? reinterpret_cast<const type*>(result) \
: NULL; \
}
AST_NODE_LIST(DECLARE_NODE_FUNCTIONS)
#undef DECLARE_NODE_FUNCTIONS
} // namespace internal
} // namespace v8
#endif // V8_AST_AST_H_
|