summaryrefslogtreecommitdiff
path: root/deps/v8/src/ast/scopes.cc
blob: b61bcdab556680547248aa2e7b454cfd9b3c39d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/ast/scopes.h"

#include <set>

#include "src/accessors.h"
#include "src/ast/ast.h"
#include "src/bootstrapper.h"
#include "src/counters.h"
#include "src/messages.h"
#include "src/objects-inl.h"
#include "src/objects/module-info.h"
#include "src/parsing/parse-info.h"

namespace v8 {
namespace internal {

namespace {
void* kDummyPreParserVariable = reinterpret_cast<void*>(0x1);
void* kDummyPreParserLexicalVariable = reinterpret_cast<void*>(0x2);

bool IsLexical(Variable* variable) {
  if (variable == kDummyPreParserLexicalVariable) return true;
  if (variable == kDummyPreParserVariable) return false;
  return IsLexicalVariableMode(variable->mode());
}

}  // namespace

// ----------------------------------------------------------------------------
// Implementation of LocalsMap
//
// Note: We are storing the handle locations as key values in the hash map.
//       When inserting a new variable via Declare(), we rely on the fact that
//       the handle location remains alive for the duration of that variable
//       use. Because a Variable holding a handle with the same location exists
//       this is ensured.

VariableMap::VariableMap(Zone* zone)
    : ZoneHashMap(8, ZoneAllocationPolicy(zone)) {}

Variable* VariableMap::Declare(Zone* zone, Scope* scope,
                               const AstRawString* name, VariableMode mode,
                               VariableKind kind,
                               InitializationFlag initialization_flag,
                               MaybeAssignedFlag maybe_assigned_flag,
                               bool* added) {
  // AstRawStrings are unambiguous, i.e., the same string is always represented
  // by the same AstRawString*.
  // FIXME(marja): fix the type of Lookup.
  Entry* p =
      ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(),
                                  ZoneAllocationPolicy(zone));
  if (added) *added = p->value == nullptr;
  if (p->value == nullptr) {
    // The variable has not been declared yet -> insert it.
    DCHECK_EQ(name, p->key);
    p->value = new (zone) Variable(scope, name, mode, kind, initialization_flag,
                                   maybe_assigned_flag);
  }
  return reinterpret_cast<Variable*>(p->value);
}

void VariableMap::DeclareName(Zone* zone, const AstRawString* name,
                              VariableMode mode) {
  Entry* p =
      ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(),
                                  ZoneAllocationPolicy(zone));
  if (p->value == nullptr) {
    // The variable has not been declared yet -> insert it.
    DCHECK_EQ(name, p->key);
    p->value =
        mode == VAR ? kDummyPreParserVariable : kDummyPreParserLexicalVariable;
  }
}

void VariableMap::Remove(Variable* var) {
  const AstRawString* name = var->raw_name();
  ZoneHashMap::Remove(const_cast<AstRawString*>(name), name->hash());
}

void VariableMap::Add(Zone* zone, Variable* var) {
  const AstRawString* name = var->raw_name();
  Entry* p =
      ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(),
                                  ZoneAllocationPolicy(zone));
  DCHECK_NULL(p->value);
  DCHECK_EQ(name, p->key);
  p->value = var;
}

Variable* VariableMap::Lookup(const AstRawString* name) {
  Entry* p = ZoneHashMap::Lookup(const_cast<AstRawString*>(name), name->hash());
  if (p != NULL) {
    DCHECK(reinterpret_cast<const AstRawString*>(p->key) == name);
    DCHECK(p->value != NULL);
    return reinterpret_cast<Variable*>(p->value);
  }
  return NULL;
}

void SloppyBlockFunctionMap::Delegate::set_statement(Statement* statement) {
  if (statement_ != nullptr) {
    statement_->set_statement(statement);
  }
}

SloppyBlockFunctionMap::SloppyBlockFunctionMap(Zone* zone)
    : ZoneHashMap(8, ZoneAllocationPolicy(zone)) {}

void SloppyBlockFunctionMap::Declare(
    Zone* zone, const AstRawString* name,
    SloppyBlockFunctionMap::Delegate* delegate) {
  // AstRawStrings are unambiguous, i.e., the same string is always represented
  // by the same AstRawString*.
  Entry* p =
      ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(),
                                  ZoneAllocationPolicy(zone));
  delegate->set_next(static_cast<SloppyBlockFunctionMap::Delegate*>(p->value));
  p->value = delegate;
}

// ----------------------------------------------------------------------------
// Implementation of Scope

Scope::Scope(Zone* zone)
    : zone_(zone),
      outer_scope_(nullptr),
      variables_(zone),
      scope_type_(SCRIPT_SCOPE) {
  SetDefaults();
}

Scope::Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type)
    : zone_(zone),
      outer_scope_(outer_scope),
      variables_(zone),
      scope_type_(scope_type) {
  DCHECK_NE(SCRIPT_SCOPE, scope_type);
  SetDefaults();
  set_language_mode(outer_scope->language_mode());
  force_context_allocation_ =
      !is_function_scope() && outer_scope->has_forced_context_allocation();
  outer_scope_->AddInnerScope(this);
}

Scope::Snapshot::Snapshot(Scope* scope)
    : outer_scope_(scope),
      top_inner_scope_(scope->inner_scope_),
      top_unresolved_(scope->unresolved_),
      top_local_(scope->GetClosureScope()->locals_.end()),
      top_decl_(scope->GetClosureScope()->decls_.end()) {}

DeclarationScope::DeclarationScope(Zone* zone,
                                   AstValueFactory* ast_value_factory)
    : Scope(zone),
      function_kind_(kNormalFunction),
      params_(4, zone),
      sloppy_block_function_map_(zone) {
  DCHECK_EQ(scope_type_, SCRIPT_SCOPE);
  SetDefaults();

  // Make sure that if we don't find the global 'this', it won't be declared as
  // a regular dynamic global by predeclaring it with the right variable kind.
  DeclareDynamicGlobal(ast_value_factory->this_string(), THIS_VARIABLE);
}

DeclarationScope::DeclarationScope(Zone* zone, Scope* outer_scope,
                                   ScopeType scope_type,
                                   FunctionKind function_kind)
    : Scope(zone, outer_scope, scope_type),
      function_kind_(function_kind),
      params_(4, zone),
      sloppy_block_function_map_(zone) {
  DCHECK_NE(scope_type, SCRIPT_SCOPE);
  SetDefaults();
  asm_function_ = outer_scope_->IsAsmModule();
}

ModuleScope::ModuleScope(DeclarationScope* script_scope,
                         AstValueFactory* ast_value_factory)
    : DeclarationScope(ast_value_factory->zone(), script_scope, MODULE_SCOPE,
                       kModule) {
  Zone* zone = ast_value_factory->zone();
  module_descriptor_ = new (zone) ModuleDescriptor(zone);
  set_language_mode(STRICT);
  DeclareThis(ast_value_factory);
}

ModuleScope::ModuleScope(Isolate* isolate, Handle<ScopeInfo> scope_info,
                         AstValueFactory* avfactory)
    : DeclarationScope(avfactory->zone(), MODULE_SCOPE, scope_info) {
  Zone* zone = avfactory->zone();
  Handle<ModuleInfo> module_info(scope_info->ModuleDescriptorInfo(), isolate);

  set_language_mode(STRICT);
  module_descriptor_ = new (zone) ModuleDescriptor(zone);

  // Deserialize special exports.
  Handle<FixedArray> special_exports(module_info->special_exports(), isolate);
  for (int i = 0, n = special_exports->length(); i < n; ++i) {
    Handle<ModuleInfoEntry> serialized_entry(
        ModuleInfoEntry::cast(special_exports->get(i)), isolate);
    module_descriptor_->AddSpecialExport(
        ModuleDescriptor::Entry::Deserialize(isolate, avfactory,
                                             serialized_entry),
        avfactory->zone());
  }

  // Deserialize regular exports.
  module_descriptor_->DeserializeRegularExports(isolate, avfactory,
                                                module_info);

  // Deserialize namespace imports.
  Handle<FixedArray> namespace_imports(module_info->namespace_imports(),
                                       isolate);
  for (int i = 0, n = namespace_imports->length(); i < n; ++i) {
    Handle<ModuleInfoEntry> serialized_entry(
        ModuleInfoEntry::cast(namespace_imports->get(i)), isolate);
    module_descriptor_->AddNamespaceImport(
        ModuleDescriptor::Entry::Deserialize(isolate, avfactory,
                                             serialized_entry),
        avfactory->zone());
  }

  // Deserialize regular imports.
  Handle<FixedArray> regular_imports(module_info->regular_imports(), isolate);
  for (int i = 0, n = regular_imports->length(); i < n; ++i) {
    Handle<ModuleInfoEntry> serialized_entry(
        ModuleInfoEntry::cast(regular_imports->get(i)), isolate);
    module_descriptor_->AddRegularImport(ModuleDescriptor::Entry::Deserialize(
        isolate, avfactory, serialized_entry));
  }
}

Scope::Scope(Zone* zone, ScopeType scope_type, Handle<ScopeInfo> scope_info)
    : zone_(zone),
      outer_scope_(nullptr),
      variables_(zone),
      scope_info_(scope_info),
      scope_type_(scope_type) {
  DCHECK(!scope_info.is_null());
  SetDefaults();
#ifdef DEBUG
  already_resolved_ = true;
#endif
  if (scope_info->CallsEval()) RecordEvalCall();
  set_language_mode(scope_info->language_mode());
  num_heap_slots_ = scope_info->ContextLength();
  DCHECK_LE(Context::MIN_CONTEXT_SLOTS, num_heap_slots_);
}

DeclarationScope::DeclarationScope(Zone* zone, ScopeType scope_type,
                                   Handle<ScopeInfo> scope_info)
    : Scope(zone, scope_type, scope_info),
      function_kind_(scope_info->function_kind()),
      params_(0, zone),
      sloppy_block_function_map_(zone) {
  DCHECK_NE(scope_type, SCRIPT_SCOPE);
  SetDefaults();
}

Scope::Scope(Zone* zone, const AstRawString* catch_variable_name,
             Handle<ScopeInfo> scope_info)
    : zone_(zone),
      outer_scope_(nullptr),
      variables_(zone),
      scope_info_(scope_info),
      scope_type_(CATCH_SCOPE) {
  SetDefaults();
#ifdef DEBUG
  already_resolved_ = true;
#endif
  // Cache the catch variable, even though it's also available via the
  // scope_info, as the parser expects that a catch scope always has the catch
  // variable as first and only variable.
  Variable* variable = Declare(zone, catch_variable_name, VAR);
  AllocateHeapSlot(variable);
}

void DeclarationScope::SetDefaults() {
  is_declaration_scope_ = true;
  has_simple_parameters_ = true;
  asm_module_ = false;
  asm_function_ = false;
  force_eager_compilation_ = false;
  has_arguments_parameter_ = false;
  scope_uses_super_property_ = false;
  has_rest_ = false;
  receiver_ = nullptr;
  new_target_ = nullptr;
  function_ = nullptr;
  arguments_ = nullptr;
  this_function_ = nullptr;
  should_eager_compile_ = false;
  was_lazily_parsed_ = false;
#ifdef DEBUG
  DeclarationScope* outer_declaration_scope =
      outer_scope_ ? outer_scope_->GetDeclarationScope() : nullptr;
  is_being_lazily_parsed_ =
      outer_declaration_scope ? outer_declaration_scope->is_being_lazily_parsed_
                              : false;
#endif
}

void Scope::SetDefaults() {
#ifdef DEBUG
  scope_name_ = nullptr;
  already_resolved_ = false;
  needs_migration_ = false;
#endif
  inner_scope_ = nullptr;
  sibling_ = nullptr;
  unresolved_ = nullptr;

  start_position_ = kNoSourcePosition;
  end_position_ = kNoSourcePosition;

  num_stack_slots_ = 0;
  num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;

  set_language_mode(SLOPPY);

  scope_calls_eval_ = false;
  scope_nonlinear_ = false;
  is_hidden_ = false;
  is_debug_evaluate_scope_ = false;

  inner_scope_calls_eval_ = false;
  force_context_allocation_ = false;

  is_declaration_scope_ = false;
}

bool Scope::HasSimpleParameters() {
  DeclarationScope* scope = GetClosureScope();
  return !scope->is_function_scope() || scope->has_simple_parameters();
}

bool DeclarationScope::ShouldEagerCompile() const {
  return force_eager_compilation_ || should_eager_compile_;
}

void DeclarationScope::set_should_eager_compile() {
  should_eager_compile_ = !was_lazily_parsed_;
}

void DeclarationScope::set_asm_module() {
  asm_module_ = true;
  // Mark any existing inner function scopes as asm function scopes.
  for (Scope* inner = inner_scope_; inner != nullptr; inner = inner->sibling_) {
    if (inner->is_function_scope()) {
      inner->AsDeclarationScope()->set_asm_function();
    }
  }
}

bool Scope::IsAsmModule() const {
  return is_function_scope() && AsDeclarationScope()->asm_module();
}

bool Scope::IsAsmFunction() const {
  return is_function_scope() && AsDeclarationScope()->asm_function();
}

Scope* Scope::DeserializeScopeChain(Isolate* isolate, Zone* zone,
                                    ScopeInfo* scope_info,
                                    DeclarationScope* script_scope,
                                    AstValueFactory* ast_value_factory,
                                    DeserializationMode deserialization_mode) {
  // Reconstruct the outer scope chain from a closure's context chain.
  Scope* current_scope = nullptr;
  Scope* innermost_scope = nullptr;
  Scope* outer_scope = nullptr;
  while (scope_info) {
    if (scope_info->scope_type() == WITH_SCOPE) {
      // For scope analysis, debug-evaluate is equivalent to a with scope.
      outer_scope = new (zone) Scope(zone, WITH_SCOPE, handle(scope_info));

      // TODO(yangguo): Remove once debug-evaluate properly keeps track of the
      // function scope in which we are evaluating.
      if (scope_info->IsDebugEvaluateScope()) {
        outer_scope->set_is_debug_evaluate_scope();
      }
    } else if (scope_info->scope_type() == SCRIPT_SCOPE) {
      // If we reach a script scope, it's the outermost scope. Install the
      // scope info of this script context onto the existing script scope to
      // avoid nesting script scopes.
      if (deserialization_mode == DeserializationMode::kIncludingVariables) {
        script_scope->SetScriptScopeInfo(handle(scope_info));
      }
      DCHECK(!scope_info->HasOuterScopeInfo());
      break;
    } else if (scope_info->scope_type() == FUNCTION_SCOPE) {
      outer_scope =
          new (zone) DeclarationScope(zone, FUNCTION_SCOPE, handle(scope_info));
      if (scope_info->IsAsmFunction())
        outer_scope->AsDeclarationScope()->set_asm_function();
      if (scope_info->IsAsmModule())
        outer_scope->AsDeclarationScope()->set_asm_module();
    } else if (scope_info->scope_type() == EVAL_SCOPE) {
      outer_scope =
          new (zone) DeclarationScope(zone, EVAL_SCOPE, handle(scope_info));
    } else if (scope_info->scope_type() == BLOCK_SCOPE) {
      if (scope_info->is_declaration_scope()) {
        outer_scope =
            new (zone) DeclarationScope(zone, BLOCK_SCOPE, handle(scope_info));
      } else {
        outer_scope = new (zone) Scope(zone, BLOCK_SCOPE, handle(scope_info));
      }
    } else if (scope_info->scope_type() == MODULE_SCOPE) {
      outer_scope = new (zone)
          ModuleScope(isolate, handle(scope_info), ast_value_factory);
    } else {
      DCHECK_EQ(scope_info->scope_type(), CATCH_SCOPE);
      DCHECK_EQ(scope_info->LocalCount(), 1);
      String* name = scope_info->LocalName(0);
      outer_scope = new (zone)
          Scope(zone, ast_value_factory->GetString(handle(name, isolate)),
                handle(scope_info));
    }
    if (deserialization_mode == DeserializationMode::kScopesOnly) {
      outer_scope->scope_info_ = Handle<ScopeInfo>::null();
    }
    if (current_scope != nullptr) {
      outer_scope->AddInnerScope(current_scope);
    }
    current_scope = outer_scope;
    if (innermost_scope == nullptr) innermost_scope = current_scope;
    scope_info = scope_info->HasOuterScopeInfo() ? scope_info->OuterScopeInfo()
                                                 : nullptr;
  }

  if (innermost_scope == nullptr) return script_scope;
  script_scope->AddInnerScope(current_scope);
  return innermost_scope;
}

DeclarationScope* Scope::AsDeclarationScope() {
  DCHECK(is_declaration_scope());
  return static_cast<DeclarationScope*>(this);
}

const DeclarationScope* Scope::AsDeclarationScope() const {
  DCHECK(is_declaration_scope());
  return static_cast<const DeclarationScope*>(this);
}

ModuleScope* Scope::AsModuleScope() {
  DCHECK(is_module_scope());
  return static_cast<ModuleScope*>(this);
}

const ModuleScope* Scope::AsModuleScope() const {
  DCHECK(is_module_scope());
  return static_cast<const ModuleScope*>(this);
}

int Scope::num_parameters() const {
  return is_declaration_scope() ? AsDeclarationScope()->num_parameters() : 0;
}

void DeclarationScope::DeclareSloppyBlockFunction(
    const AstRawString* name, Scope* scope,
    SloppyBlockFunctionStatement* statement) {
  auto* delegate =
      new (zone()) SloppyBlockFunctionMap::Delegate(scope, statement);
  sloppy_block_function_map_.Declare(zone(), name, delegate);
}

void DeclarationScope::HoistSloppyBlockFunctions(AstNodeFactory* factory) {
  DCHECK(is_sloppy(language_mode()));
  DCHECK(is_function_scope() || is_eval_scope() || is_script_scope() ||
         (is_block_scope() && outer_scope()->is_function_scope()));
  DCHECK(HasSimpleParameters() || is_block_scope() || is_being_lazily_parsed_);
  DCHECK_EQ(factory == nullptr, is_being_lazily_parsed_);

  bool has_simple_parameters = HasSimpleParameters();
  // For each variable which is used as a function declaration in a sloppy
  // block,
  SloppyBlockFunctionMap* map = sloppy_block_function_map();
  for (ZoneHashMap::Entry* p = map->Start(); p != nullptr; p = map->Next(p)) {
    AstRawString* name = static_cast<AstRawString*>(p->key);

    // If the variable wouldn't conflict with a lexical declaration
    // or parameter,

    // Check if there's a conflict with a parameter.
    // This depends on the fact that functions always have a scope solely to
    // hold complex parameters, and the names local to that scope are
    // precisely the names of the parameters. IsDeclaredParameter(name) does
    // not hold for names declared by complex parameters, nor are those
    // bindings necessarily declared lexically, so we have to check for them
    // explicitly. On the other hand, if there are not complex parameters,
    // it is sufficient to just check IsDeclaredParameter.
    if (!has_simple_parameters) {
      if (outer_scope_->LookupLocal(name) != nullptr) {
        continue;
      }
    } else {
      if (IsDeclaredParameter(name)) {
        continue;
      }
    }

    bool var_created = false;

    // Write in assignments to var for each block-scoped function declaration
    auto delegates = static_cast<SloppyBlockFunctionMap::Delegate*>(p->value);

    DeclarationScope* decl_scope = this;
    while (decl_scope->is_eval_scope()) {
      decl_scope = decl_scope->outer_scope()->GetDeclarationScope();
    }
    Scope* outer_scope = decl_scope->outer_scope();

    for (SloppyBlockFunctionMap::Delegate* delegate = delegates;
         delegate != nullptr; delegate = delegate->next()) {
      // Check if there's a conflict with a lexical declaration
      Scope* query_scope = delegate->scope()->outer_scope();
      Variable* var = nullptr;
      bool should_hoist = true;

      // Note that we perform this loop for each delegate named 'name',
      // which may duplicate work if those delegates share scopes.
      // It is not sufficient to just do a Lookup on query_scope: for
      // example, that does not prevent hoisting of the function in
      // `{ let e; try {} catch (e) { function e(){} } }`
      do {
        var = query_scope->LookupLocal(name);
        if (var != nullptr && IsLexical(var)) {
          should_hoist = false;
          break;
        }
        query_scope = query_scope->outer_scope();
      } while (query_scope != outer_scope);

      if (!should_hoist) continue;

      // Declare a var-style binding for the function in the outer scope
      if (!var_created) {
        var_created = true;
        if (factory) {
          VariableProxy* proxy =
              factory->NewVariableProxy(name, NORMAL_VARIABLE);
          auto declaration =
              factory->NewVariableDeclaration(proxy, this, kNoSourcePosition);
          // Based on the preceding check, it doesn't matter what we pass as
          // allow_harmony_restrictive_generators and
          // sloppy_mode_block_scope_function_redefinition.
          bool ok = true;
          DeclareVariable(declaration, VAR,
                          Variable::DefaultInitializationFlag(VAR), false,
                          nullptr, &ok);
          CHECK(ok);  // Based on the preceding check, this should not fail
        } else {
          DeclareVariableName(name, VAR);
        }
      }

      if (factory) {
        Expression* assignment = factory->NewAssignment(
            Token::ASSIGN, NewUnresolved(factory, name),
            delegate->scope()->NewUnresolved(factory, name), kNoSourcePosition);
        Statement* statement =
            factory->NewExpressionStatement(assignment, kNoSourcePosition);
        delegate->set_statement(statement);
      }
    }
  }
}

void DeclarationScope::Analyze(ParseInfo* info, AnalyzeMode mode) {
  RuntimeCallTimerScope runtimeTimer(info->isolate(),
                                     &RuntimeCallStats::CompileScopeAnalysis);
  DCHECK(info->literal() != NULL);
  DeclarationScope* scope = info->literal()->scope();

  Handle<ScopeInfo> outer_scope_info;
  if (info->maybe_outer_scope_info().ToHandle(&outer_scope_info)) {
    if (scope->outer_scope()) {
      DeclarationScope* script_scope = new (info->zone())
          DeclarationScope(info->zone(), info->ast_value_factory());
      info->set_script_scope(script_scope);
      scope->ReplaceOuterScope(Scope::DeserializeScopeChain(
          info->isolate(), info->zone(), *outer_scope_info, script_scope,
          info->ast_value_factory(),
          Scope::DeserializationMode::kIncludingVariables));
    } else {
      DCHECK_EQ(outer_scope_info->scope_type(), SCRIPT_SCOPE);
      scope->SetScriptScopeInfo(outer_scope_info);
    }
  }

  if (scope->is_eval_scope() && is_sloppy(scope->language_mode())) {
    AstNodeFactory factory(info->ast_value_factory());
    scope->HoistSloppyBlockFunctions(&factory);
  }

  // We are compiling one of four cases:
  // 1) top-level code,
  // 2) a function/eval/module on the top-level
  // 3) a function/eval in a scope that was already resolved.
  // 4) an asm.js function
  DCHECK(scope->scope_type() == SCRIPT_SCOPE ||
         scope->outer_scope()->scope_type() == SCRIPT_SCOPE ||
         scope->outer_scope()->already_resolved_ ||
         (info->asm_function_scope() && scope->is_function_scope()));

  // The outer scope is never lazy.
  scope->set_should_eager_compile();

  scope->AllocateVariables(info, mode);

  // Ensuring that the outer script scope has a scope info avoids having
  // special case for native contexts vs other contexts.
  if (info->script_scope()->scope_info_.is_null()) {
    info->script_scope()->scope_info_ =
        handle(ScopeInfo::Empty(info->isolate()));
  }

#ifdef DEBUG
  if (info->script_is_native() ? FLAG_print_builtin_scopes
                               : FLAG_print_scopes) {
    scope->Print();
  }
  scope->CheckScopePositions();
  scope->CheckZones();
#endif
}

void DeclarationScope::DeclareThis(AstValueFactory* ast_value_factory) {
  DCHECK(!already_resolved_);
  DCHECK(is_declaration_scope());
  DCHECK(has_this_declaration());

  bool derived_constructor = IsDerivedConstructor(function_kind_);
  Variable* var =
      Declare(zone(), ast_value_factory->this_string(),
              derived_constructor ? CONST : VAR, THIS_VARIABLE,
              derived_constructor ? kNeedsInitialization : kCreatedInitialized);
  receiver_ = var;
}

void DeclarationScope::DeclareArguments(AstValueFactory* ast_value_factory) {
  DCHECK(is_function_scope());
  DCHECK(!is_arrow_scope());

  arguments_ = LookupLocal(ast_value_factory->arguments_string());
  if (arguments_ == nullptr) {
    // Declare 'arguments' variable which exists in all non arrow functions.
    // Note that it might never be accessed, in which case it won't be
    // allocated during variable allocation.
    arguments_ = Declare(zone(), ast_value_factory->arguments_string(), VAR);
  } else if (IsLexicalVariableMode(arguments_->mode())) {
    // Check if there's lexically declared variable named arguments to avoid
    // redeclaration. See ES#sec-functiondeclarationinstantiation, step 20.
    arguments_ = nullptr;
  }
}

void DeclarationScope::DeclareDefaultFunctionVariables(
    AstValueFactory* ast_value_factory) {
  DCHECK(is_function_scope());
  DCHECK(!is_arrow_scope());

  DeclareThis(ast_value_factory);
  new_target_ = Declare(zone(), ast_value_factory->new_target_string(), CONST);

  if (IsConciseMethod(function_kind_) || IsClassConstructor(function_kind_) ||
      IsAccessorFunction(function_kind_)) {
    this_function_ =
        Declare(zone(), ast_value_factory->this_function_string(), CONST);
  }
}

Variable* DeclarationScope::DeclareFunctionVar(const AstRawString* name) {
  DCHECK(is_function_scope());
  DCHECK_NULL(function_);
  DCHECK_NULL(variables_.Lookup(name));
  VariableKind kind = is_sloppy(language_mode()) ? SLOPPY_FUNCTION_NAME_VARIABLE
                                                 : NORMAL_VARIABLE;
  function_ =
      new (zone()) Variable(this, name, CONST, kind, kCreatedInitialized);
  if (calls_sloppy_eval()) {
    NonLocal(name, DYNAMIC);
  } else {
    variables_.Add(zone(), function_);
  }
  return function_;
}

bool Scope::HasBeenRemoved() const {
  if (sibling() == this) {
    DCHECK_NULL(inner_scope_);
    DCHECK(is_block_scope());
    return true;
  }
  return false;
}

Scope* Scope::GetUnremovedScope() {
  Scope* scope = this;
  while (scope != nullptr && scope->HasBeenRemoved()) {
    scope = scope->outer_scope();
  }
  DCHECK_NOT_NULL(scope);
  return scope;
}

Scope* Scope::FinalizeBlockScope() {
  DCHECK(is_block_scope());
  DCHECK(!HasBeenRemoved());

  if (variables_.occupancy() > 0 ||
      (is_declaration_scope() && calls_sloppy_eval())) {
    return this;
  }

  // Remove this scope from outer scope.
  outer_scope()->RemoveInnerScope(this);

  // Reparent inner scopes.
  if (inner_scope_ != nullptr) {
    Scope* scope = inner_scope_;
    scope->outer_scope_ = outer_scope();
    while (scope->sibling_ != nullptr) {
      scope = scope->sibling_;
      scope->outer_scope_ = outer_scope();
    }
    scope->sibling_ = outer_scope()->inner_scope_;
    outer_scope()->inner_scope_ = inner_scope_;
    inner_scope_ = nullptr;
  }

  // Move unresolved variables
  if (unresolved_ != nullptr) {
    if (outer_scope()->unresolved_ != nullptr) {
      VariableProxy* unresolved = unresolved_;
      while (unresolved->next_unresolved() != nullptr) {
        unresolved = unresolved->next_unresolved();
      }
      unresolved->set_next_unresolved(outer_scope()->unresolved_);
    }
    outer_scope()->unresolved_ = unresolved_;
    unresolved_ = nullptr;
  }

  PropagateUsageFlagsToScope(outer_scope_);
  // This block does not need a context.
  num_heap_slots_ = 0;

  // Mark scope as removed by making it its own sibling.
  sibling_ = this;
  DCHECK(HasBeenRemoved());

  return nullptr;
}

void DeclarationScope::AddLocal(Variable* var) {
  DCHECK(!already_resolved_);
  // Temporaries are only placed in ClosureScopes.
  DCHECK_EQ(GetClosureScope(), this);
  locals_.Add(var);
}

Variable* Scope::Declare(Zone* zone, const AstRawString* name,
                         VariableMode mode, VariableKind kind,
                         InitializationFlag initialization_flag,
                         MaybeAssignedFlag maybe_assigned_flag) {
  bool added;
  Variable* var =
      variables_.Declare(zone, this, name, mode, kind, initialization_flag,
                         maybe_assigned_flag, &added);
  if (added) locals_.Add(var);
  return var;
}

void Scope::Snapshot::Reparent(DeclarationScope* new_parent) const {
  DCHECK_EQ(new_parent, outer_scope_->inner_scope_);
  DCHECK_EQ(new_parent->outer_scope_, outer_scope_);
  DCHECK_EQ(new_parent, new_parent->GetClosureScope());
  DCHECK_NULL(new_parent->inner_scope_);
  DCHECK_NULL(new_parent->unresolved_);
  DCHECK(new_parent->locals_.is_empty());
  Scope* inner_scope = new_parent->sibling_;
  if (inner_scope != top_inner_scope_) {
    for (; inner_scope->sibling() != top_inner_scope_;
         inner_scope = inner_scope->sibling()) {
      inner_scope->outer_scope_ = new_parent;
      DCHECK_NE(inner_scope, new_parent);
    }
    inner_scope->outer_scope_ = new_parent;

    new_parent->inner_scope_ = new_parent->sibling_;
    inner_scope->sibling_ = nullptr;
    // Reset the sibling rather than the inner_scope_ since we
    // want to keep new_parent there.
    new_parent->sibling_ = top_inner_scope_;
  }

  if (outer_scope_->unresolved_ != top_unresolved_) {
    VariableProxy* last = outer_scope_->unresolved_;
    while (last->next_unresolved() != top_unresolved_) {
      last = last->next_unresolved();
    }
    last->set_next_unresolved(nullptr);
    new_parent->unresolved_ = outer_scope_->unresolved_;
    outer_scope_->unresolved_ = top_unresolved_;
  }

  // TODO(verwaest): This currently only moves do-expression declared variables
  // in default arguments that weren't already previously declared with the same
  // name in the closure-scope. See
  // test/mjsunit/harmony/default-parameter-do-expression.js.
  DeclarationScope* outer_closure = outer_scope_->GetClosureScope();

  new_parent->locals_.MoveTail(outer_closure->locals(), top_local_);
  for (Variable* local : new_parent->locals_) {
    DCHECK(local->mode() == TEMPORARY || local->mode() == VAR);
    DCHECK_EQ(local->scope(), local->scope()->GetClosureScope());
    DCHECK_NE(local->scope(), new_parent);
    local->set_scope(new_parent);
    if (local->mode() == VAR) {
      outer_closure->variables_.Remove(local);
      new_parent->variables_.Add(new_parent->zone(), local);
    }
  }
  outer_closure->locals_.Rewind(top_local_);
  outer_closure->decls_.Rewind(top_decl_);
}

void Scope::ReplaceOuterScope(Scope* outer) {
  DCHECK_NOT_NULL(outer);
  DCHECK_NOT_NULL(outer_scope_);
  DCHECK(!already_resolved_);
  outer_scope_->RemoveInnerScope(this);
  outer->AddInnerScope(this);
  outer_scope_ = outer;
}


void Scope::PropagateUsageFlagsToScope(Scope* other) {
  DCHECK_NOT_NULL(other);
  DCHECK(!already_resolved_);
  DCHECK(!other->already_resolved_);
  if (calls_eval()) other->RecordEvalCall();
  if (inner_scope_calls_eval_) other->inner_scope_calls_eval_ = true;
}

Variable* Scope::LookupInScopeInfo(const AstRawString* name) {
  Handle<String> name_handle = name->string();
  // The Scope is backed up by ScopeInfo. This means it cannot operate in a
  // heap-independent mode, and all strings must be internalized immediately. So
  // it's ok to get the Handle<String> here.
  // If we have a serialized scope info, we might find the variable there.
  // There should be no local slot with the given name.
  DCHECK_LT(scope_info_->StackSlotIndex(*name_handle), 0);

  bool found = false;

  VariableLocation location;
  int index;
  VariableMode mode;
  InitializationFlag init_flag;
  MaybeAssignedFlag maybe_assigned_flag;

  {
    location = VariableLocation::CONTEXT;
    index = ScopeInfo::ContextSlotIndex(scope_info_, name_handle, &mode,
                                        &init_flag, &maybe_assigned_flag);
    found = index >= 0;
  }

  if (!found && scope_type() == MODULE_SCOPE) {
    location = VariableLocation::MODULE;
    index = scope_info_->ModuleIndex(name_handle, &mode, &init_flag,
                                     &maybe_assigned_flag);
    found = index != 0;
  }

  if (!found) {
    index = scope_info_->FunctionContextSlotIndex(*name_handle);
    if (index < 0) return nullptr;  // Nowhere found.
    Variable* var = AsDeclarationScope()->DeclareFunctionVar(name);
    DCHECK_EQ(CONST, var->mode());
    var->AllocateTo(VariableLocation::CONTEXT, index);
    return variables_.Lookup(name);
  }

  VariableKind kind = NORMAL_VARIABLE;
  if (location == VariableLocation::CONTEXT &&
      index == scope_info_->ReceiverContextSlotIndex()) {
    kind = THIS_VARIABLE;
  }
  // TODO(marja, rossberg): Correctly declare FUNCTION, CLASS, NEW_TARGET, and
  // ARGUMENTS bindings as their corresponding VariableKind.

  Variable* var = variables_.Declare(zone(), this, name, mode, kind, init_flag,
                                     maybe_assigned_flag);
  var->AllocateTo(location, index);
  return var;
}

Variable* Scope::Lookup(const AstRawString* name) {
  for (Scope* scope = this;
       scope != NULL;
       scope = scope->outer_scope()) {
    Variable* var = scope->LookupLocal(name);
    if (var != NULL) return var;
  }
  return NULL;
}

Variable* DeclarationScope::DeclareParameter(
    const AstRawString* name, VariableMode mode, bool is_optional, bool is_rest,
    bool* is_duplicate, AstValueFactory* ast_value_factory) {
  DCHECK(!already_resolved_);
  DCHECK(is_function_scope() || is_module_scope());
  DCHECK(!has_rest_);
  DCHECK(!is_optional || !is_rest);
  DCHECK(!is_being_lazily_parsed_);
  DCHECK(!was_lazily_parsed_);
  Variable* var;
  if (mode == TEMPORARY) {
    var = NewTemporary(name);
  } else {
    var = Declare(zone(), name, mode);
    // TODO(wingo): Avoid O(n^2) check.
    *is_duplicate = IsDeclaredParameter(name);
  }
  has_rest_ = is_rest;
  params_.Add(var, zone());
  if (name == ast_value_factory->arguments_string()) {
    has_arguments_parameter_ = true;
  }
  return var;
}

Variable* Scope::DeclareLocal(const AstRawString* name, VariableMode mode,
                              InitializationFlag init_flag, VariableKind kind,
                              MaybeAssignedFlag maybe_assigned_flag) {
  DCHECK(!already_resolved_);
  // This function handles VAR, LET, and CONST modes.  DYNAMIC variables are
  // introduced during variable allocation, and TEMPORARY variables are
  // allocated via NewTemporary().
  DCHECK(IsDeclaredVariableMode(mode));
  DCHECK(!GetDeclarationScope()->is_being_lazily_parsed());
  DCHECK(!GetDeclarationScope()->was_lazily_parsed());
  return Declare(zone(), name, mode, kind, init_flag, maybe_assigned_flag);
}

Variable* Scope::DeclareVariable(
    Declaration* declaration, VariableMode mode, InitializationFlag init,
    bool allow_harmony_restrictive_generators,
    bool* sloppy_mode_block_scope_function_redefinition, bool* ok) {
  DCHECK(IsDeclaredVariableMode(mode));
  DCHECK(!already_resolved_);
  DCHECK(!GetDeclarationScope()->is_being_lazily_parsed());
  DCHECK(!GetDeclarationScope()->was_lazily_parsed());

  if (mode == VAR && !is_declaration_scope()) {
    return GetDeclarationScope()->DeclareVariable(
        declaration, mode, init, allow_harmony_restrictive_generators,
        sloppy_mode_block_scope_function_redefinition, ok);
  }
  DCHECK(!is_catch_scope());
  DCHECK(!is_with_scope());
  DCHECK(is_declaration_scope() ||
         (IsLexicalVariableMode(mode) && is_block_scope()));

  VariableProxy* proxy = declaration->proxy();
  DCHECK(proxy->raw_name() != NULL);
  const AstRawString* name = proxy->raw_name();
  bool is_function_declaration = declaration->IsFunctionDeclaration();

  Variable* var = nullptr;
  if (is_eval_scope() && is_sloppy(language_mode()) && mode == VAR) {
    // In a var binding in a sloppy direct eval, pollute the enclosing scope
    // with this new binding by doing the following:
    // The proxy is bound to a lookup variable to force a dynamic declaration
    // using the DeclareEvalVar or DeclareEvalFunction runtime functions.
    VariableKind kind = NORMAL_VARIABLE;
    // TODO(sigurds) figure out if kNotAssigned is OK here
    var = new (zone()) Variable(this, name, mode, kind, init, kNotAssigned);
    var->AllocateTo(VariableLocation::LOOKUP, -1);
  } else {
    // Declare the variable in the declaration scope.
    var = LookupLocal(name);
    if (var == NULL) {
      // Declare the name.
      VariableKind kind = NORMAL_VARIABLE;
      if (is_function_declaration) {
        kind = FUNCTION_VARIABLE;
      }
      var = DeclareLocal(name, mode, init, kind, kNotAssigned);
    } else if (IsLexicalVariableMode(mode) ||
               IsLexicalVariableMode(var->mode())) {
      // Allow duplicate function decls for web compat, see bug 4693.
      bool duplicate_allowed = false;
      if (is_sloppy(language_mode()) && is_function_declaration &&
          var->is_function()) {
        DCHECK(IsLexicalVariableMode(mode) &&
               IsLexicalVariableMode(var->mode()));
        // If the duplication is allowed, then the var will show up
        // in the SloppyBlockFunctionMap and the new FunctionKind
        // will be a permitted duplicate.
        FunctionKind function_kind =
            declaration->AsFunctionDeclaration()->fun()->kind();
        duplicate_allowed =
            GetDeclarationScope()->sloppy_block_function_map()->Lookup(
                const_cast<AstRawString*>(name), name->hash()) != nullptr &&
            !IsAsyncFunction(function_kind) &&
            !(allow_harmony_restrictive_generators &&
              IsGeneratorFunction(function_kind));
      }
      if (duplicate_allowed) {
        *sloppy_mode_block_scope_function_redefinition = true;
      } else {
        // The name was declared in this scope before; check for conflicting
        // re-declarations. We have a conflict if either of the declarations
        // is not a var (in script scope, we also have to ignore legacy const
        // for compatibility). There is similar code in runtime.cc in the
        // Declare functions. The function CheckConflictingVarDeclarations
        // checks for var and let bindings from different scopes whereas this
        // is a check for conflicting declarations within the same scope. This
        // check also covers the special case
        //
        // function () { let x; { var x; } }
        //
        // because the var declaration is hoisted to the function scope where
        // 'x' is already bound.
        DCHECK(IsDeclaredVariableMode(var->mode()));
        // In harmony we treat re-declarations as early errors. See
        // ES5 16 for a definition of early errors.
        *ok = false;
        return nullptr;
      }
    } else if (mode == VAR) {
      var->set_maybe_assigned();
    }
  }
  DCHECK_NOT_NULL(var);

  // We add a declaration node for every declaration. The compiler
  // will only generate code if necessary. In particular, declarations
  // for inner local variables that do not represent functions won't
  // result in any generated code.
  //
  // This will lead to multiple declaration nodes for the
  // same variable if it is declared several times. This is not a
  // semantic issue, but it may be a performance issue since it may
  // lead to repeated DeclareEvalVar or DeclareEvalFunction calls.
  decls_.Add(declaration);
  proxy->BindTo(var);
  return var;
}

void Scope::DeclareVariableName(const AstRawString* name, VariableMode mode) {
  DCHECK(IsDeclaredVariableMode(mode));
  DCHECK(!already_resolved_);
  DCHECK(GetDeclarationScope()->is_being_lazily_parsed());

  if (mode == VAR && !is_declaration_scope()) {
    return GetDeclarationScope()->DeclareVariableName(name, mode);
  }
  DCHECK(!is_with_scope());
  DCHECK(!is_eval_scope());
  // Unlike DeclareVariable, DeclareVariableName allows declaring variables in
  // catch scopes: Parser::RewriteCatchPattern bypasses DeclareVariable by
  // calling DeclareLocal directly, and it doesn't make sense to add a similar
  // bypass mechanism for PreParser.
  DCHECK(is_declaration_scope() || (IsLexicalVariableMode(mode) &&
                                    (is_block_scope() || is_catch_scope())));
  DCHECK(scope_info_.is_null());

  // Declare the variable in the declaration scope.
  variables_.DeclareName(zone(), name, mode);
}

VariableProxy* Scope::NewUnresolved(AstNodeFactory* factory,
                                    const AstRawString* name,
                                    int start_position, VariableKind kind) {
  // Note that we must not share the unresolved variables with
  // the same name because they may be removed selectively via
  // RemoveUnresolved().
  DCHECK(!already_resolved_);
  DCHECK_EQ(factory->zone(), zone());
  VariableProxy* proxy = factory->NewVariableProxy(name, kind, start_position);
  proxy->set_next_unresolved(unresolved_);
  unresolved_ = proxy;
  return proxy;
}

void Scope::AddUnresolved(VariableProxy* proxy) {
  DCHECK(!already_resolved_);
  DCHECK(!proxy->is_resolved());
  proxy->set_next_unresolved(unresolved_);
  unresolved_ = proxy;
}

Variable* DeclarationScope::DeclareDynamicGlobal(const AstRawString* name,
                                                 VariableKind kind) {
  DCHECK(is_script_scope());
  return variables_.Declare(zone(), this, name, DYNAMIC_GLOBAL, kind);
}


bool Scope::RemoveUnresolved(VariableProxy* var) {
  if (unresolved_ == var) {
    unresolved_ = var->next_unresolved();
    var->set_next_unresolved(nullptr);
    return true;
  }
  VariableProxy* current = unresolved_;
  while (current != nullptr) {
    VariableProxy* next = current->next_unresolved();
    if (var == next) {
      current->set_next_unresolved(next->next_unresolved());
      var->set_next_unresolved(nullptr);
      return true;
    }
    current = next;
  }
  return false;
}

Variable* Scope::NewTemporary(const AstRawString* name) {
  DeclarationScope* scope = GetClosureScope();
  Variable* var = new (zone())
      Variable(scope, name, TEMPORARY, NORMAL_VARIABLE, kCreatedInitialized);
  scope->AddLocal(var);
  return var;
}

Declaration* Scope::CheckConflictingVarDeclarations() {
  for (Declaration* decl : decls_) {
    VariableMode mode = decl->proxy()->var()->mode();
    if (IsLexicalVariableMode(mode) && !is_block_scope()) continue;

    // Iterate through all scopes until and including the declaration scope.
    Scope* previous = NULL;
    Scope* current = decl->scope();
    // Lexical vs lexical conflicts within the same scope have already been
    // captured in Parser::Declare. The only conflicts we still need to check
    // are lexical vs VAR, or any declarations within a declaration block scope
    // vs lexical declarations in its surrounding (function) scope.
    if (IsLexicalVariableMode(mode)) current = current->outer_scope_;
    do {
      // There is a conflict if there exists a non-VAR binding.
      Variable* other_var =
          current->variables_.Lookup(decl->proxy()->raw_name());
      if (other_var != NULL && IsLexicalVariableMode(other_var->mode())) {
        return decl;
      }
      previous = current;
      current = current->outer_scope_;
    } while (!previous->is_declaration_scope());
  }
  return NULL;
}

Declaration* Scope::CheckLexDeclarationsConflictingWith(
    const ZoneList<const AstRawString*>& names) {
  DCHECK(is_block_scope());
  for (int i = 0; i < names.length(); ++i) {
    Variable* var = LookupLocal(names.at(i));
    if (var != nullptr) {
      // Conflict; find and return its declaration.
      DCHECK(IsLexicalVariableMode(var->mode()));
      const AstRawString* name = names.at(i);
      for (Declaration* decl : decls_) {
        if (decl->proxy()->raw_name() == name) return decl;
      }
      DCHECK(false);
    }
  }
  return nullptr;
}

void DeclarationScope::AllocateVariables(ParseInfo* info, AnalyzeMode mode) {
  // Module variables must be allocated before variable resolution
  // to ensure that AccessNeedsHoleCheck() can detect import variables.
  if (is_module_scope()) AsModuleScope()->AllocateModuleVariables();

  ResolveVariablesRecursively(info);
  AllocateVariablesRecursively();

  MaybeHandle<ScopeInfo> outer_scope;
  if (outer_scope_ != nullptr) outer_scope = outer_scope_->scope_info_;

  AllocateScopeInfosRecursively(info->isolate(), outer_scope);
  if (mode == AnalyzeMode::kDebugger) {
    AllocateDebuggerScopeInfos(info->isolate(), outer_scope);
  }
  // The debugger expects all shared function infos to contain a scope info.
  // Since the top-most scope will end up in a shared function info, make sure
  // it has one, even if it doesn't need a scope info.
  // TODO(jochen|yangguo): Remove this requirement.
  if (scope_info_.is_null()) {
    scope_info_ = ScopeInfo::Create(info->isolate(), zone(), this, outer_scope);
  }
}

bool Scope::AllowsLazyParsingWithoutUnresolvedVariables(
    const Scope* outer) const {
  // If none of the outer scopes need to decide whether to context allocate
  // specific variables, we can preparse inner functions without unresolved
  // variables. Otherwise we need to find unresolved variables to force context
  // allocation of the matching declarations. We can stop at the outer scope for
  // the parse, since context allocation of those variables is already
  // guaranteed to be correct.
  for (const Scope* s = this; s != outer; s = s->outer_scope_) {
    // Eval forces context allocation on all outer scopes, so we don't need to
    // look at those scopes. Sloppy eval makes top-level non-lexical variables
    // dynamic, whereas strict-mode requires context allocation.
    if (s->is_eval_scope()) return is_sloppy(s->language_mode());
    // Catch scopes force context allocation of all variables.
    if (s->is_catch_scope()) continue;
    // With scopes do not introduce variables that need allocation.
    if (s->is_with_scope()) continue;
    // If everything is guaranteed to be context allocated we can ignore the
    // scope.
    if (s->has_forced_context_allocation()) continue;
    // Only block scopes and function scopes should disallow preparsing.
    DCHECK(s->is_block_scope() || s->is_function_scope());
    return false;
  }
  return true;
}

bool DeclarationScope::AllowsLazyCompilation() const {
  return !force_eager_compilation_;
}

int Scope::ContextChainLength(Scope* scope) const {
  int n = 0;
  for (const Scope* s = this; s != scope; s = s->outer_scope_) {
    DCHECK(s != NULL);  // scope must be in the scope chain
    if (s->NeedsContext()) n++;
  }
  return n;
}

int Scope::ContextChainLengthUntilOutermostSloppyEval() const {
  int result = 0;
  int length = 0;

  for (const Scope* s = this; s != nullptr; s = s->outer_scope()) {
    if (!s->NeedsContext()) continue;
    length++;
    if (s->calls_sloppy_eval()) result = length;
  }

  return result;
}

int Scope::MaxNestedContextChainLength() {
  int max_context_chain_length = 0;
  for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
    if (scope->is_function_scope()) continue;
    max_context_chain_length = std::max(scope->MaxNestedContextChainLength(),
                                        max_context_chain_length);
  }
  if (NeedsContext()) {
    max_context_chain_length += 1;
  }
  return max_context_chain_length;
}

DeclarationScope* Scope::GetDeclarationScope() {
  Scope* scope = this;
  while (!scope->is_declaration_scope()) {
    scope = scope->outer_scope();
  }
  return scope->AsDeclarationScope();
}

const DeclarationScope* Scope::GetClosureScope() const {
  const Scope* scope = this;
  while (!scope->is_declaration_scope() || scope->is_block_scope()) {
    scope = scope->outer_scope();
  }
  return scope->AsDeclarationScope();
}

DeclarationScope* Scope::GetClosureScope() {
  Scope* scope = this;
  while (!scope->is_declaration_scope() || scope->is_block_scope()) {
    scope = scope->outer_scope();
  }
  return scope->AsDeclarationScope();
}

bool Scope::NeedsScopeInfo() const {
  DCHECK(!already_resolved_);
  DCHECK(GetClosureScope()->ShouldEagerCompile());
  // The debugger expects all functions to have scope infos.
  // TODO(jochen|yangguo): Remove this requirement.
  if (is_function_scope()) return true;
  return NeedsContext();
}

ModuleScope* Scope::GetModuleScope() {
  Scope* scope = this;
  DCHECK(!scope->is_script_scope());
  while (!scope->is_module_scope()) {
    scope = scope->outer_scope();
    DCHECK_NOT_NULL(scope);
  }
  return scope->AsModuleScope();
}

DeclarationScope* Scope::GetReceiverScope() {
  Scope* scope = this;
  while (!scope->is_script_scope() &&
         (!scope->is_function_scope() ||
          scope->AsDeclarationScope()->is_arrow_scope())) {
    scope = scope->outer_scope();
  }
  return scope->AsDeclarationScope();
}

Scope* Scope::GetOuterScopeWithContext() {
  Scope* scope = outer_scope_;
  while (scope && !scope->NeedsContext()) {
    scope = scope->outer_scope();
  }
  return scope;
}

Handle<StringSet> DeclarationScope::CollectNonLocals(
    ParseInfo* info, Handle<StringSet> non_locals) {
  VariableProxy* free_variables = FetchFreeVariables(this, info);
  for (VariableProxy* proxy = free_variables; proxy != nullptr;
       proxy = proxy->next_unresolved()) {
    non_locals = StringSet::Add(non_locals, proxy->name());
  }
  return non_locals;
}

void DeclarationScope::ResetAfterPreparsing(AstValueFactory* ast_value_factory,
                                            bool aborted) {
  DCHECK(is_function_scope());

  // Reset all non-trivial members.
  params_.Clear();
  decls_.Clear();
  locals_.Clear();
  inner_scope_ = nullptr;
  unresolved_ = nullptr;

  if (aborted) {
    // Prepare scope for use in the outer zone.
    zone_ = ast_value_factory->zone();
    variables_.Reset(ZoneAllocationPolicy(zone_));
    sloppy_block_function_map_.Reset(ZoneAllocationPolicy(zone_));
    if (!IsArrowFunction(function_kind_)) {
      DeclareDefaultFunctionVariables(ast_value_factory);
    }
  } else {
    // Make sure this scope isn't used for allocation anymore.
    zone_ = nullptr;
    variables_.Invalidate();
    sloppy_block_function_map_.Invalidate();
  }

#ifdef DEBUG
  needs_migration_ = false;
  is_being_lazily_parsed_ = false;
#endif

  was_lazily_parsed_ = !aborted;
}

void DeclarationScope::AnalyzePartially(AstNodeFactory* ast_node_factory) {
  DCHECK(!force_eager_compilation_);
  VariableProxy* unresolved = nullptr;

  if (!outer_scope_->is_script_scope()) {
    // Try to resolve unresolved variables for this Scope and migrate those
    // which cannot be resolved inside. It doesn't make sense to try to resolve
    // them in the outer Scopes here, because they are incomplete.
    for (VariableProxy* proxy = FetchFreeVariables(this); proxy != nullptr;
         proxy = proxy->next_unresolved()) {
      DCHECK(!proxy->is_resolved());
      VariableProxy* copy = ast_node_factory->CopyVariableProxy(proxy);
      copy->set_next_unresolved(unresolved);
      unresolved = copy;
    }

    // Clear arguments_ if unused. This is used as a signal for optimization.
    if (arguments_ != nullptr &&
        !(MustAllocate(arguments_) && !has_arguments_parameter_)) {
      arguments_ = nullptr;
    }
  }

  ResetAfterPreparsing(ast_node_factory->ast_value_factory(), false);

  unresolved_ = unresolved;
}

#ifdef DEBUG
namespace {

const char* Header(ScopeType scope_type, FunctionKind function_kind,
                   bool is_declaration_scope) {
  switch (scope_type) {
    case EVAL_SCOPE: return "eval";
    // TODO(adamk): Should we print concise method scopes specially?
    case FUNCTION_SCOPE:
      if (IsGeneratorFunction(function_kind)) return "function*";
      if (IsAsyncFunction(function_kind)) return "async function";
      if (IsArrowFunction(function_kind)) return "arrow";
      return "function";
    case MODULE_SCOPE: return "module";
    case SCRIPT_SCOPE: return "global";
    case CATCH_SCOPE: return "catch";
    case BLOCK_SCOPE: return is_declaration_scope ? "varblock" : "block";
    case WITH_SCOPE: return "with";
  }
  UNREACHABLE();
  return NULL;
}

void Indent(int n, const char* str) { PrintF("%*s%s", n, "", str); }

void PrintName(const AstRawString* name) {
  PrintF("%.*s", name->length(), name->raw_data());
}

void PrintLocation(Variable* var) {
  switch (var->location()) {
    case VariableLocation::UNALLOCATED:
      break;
    case VariableLocation::PARAMETER:
      PrintF("parameter[%d]", var->index());
      break;
    case VariableLocation::LOCAL:
      PrintF("local[%d]", var->index());
      break;
    case VariableLocation::CONTEXT:
      PrintF("context[%d]", var->index());
      break;
    case VariableLocation::LOOKUP:
      PrintF("lookup");
      break;
    case VariableLocation::MODULE:
      PrintF("module");
      break;
  }
}

void PrintVar(int indent, Variable* var) {
  Indent(indent, VariableMode2String(var->mode()));
  PrintF(" ");
  if (var->raw_name()->IsEmpty())
    PrintF(".%p", reinterpret_cast<void*>(var));
  else
    PrintName(var->raw_name());
  PrintF(";  // ");
  PrintLocation(var);
  bool comma = !var->IsUnallocated();
  if (var->has_forced_context_allocation()) {
    if (comma) PrintF(", ");
    PrintF("forced context allocation");
    comma = true;
  }
  if (var->maybe_assigned() == kNotAssigned) {
    if (comma) PrintF(", ");
    PrintF("never assigned");
  }
  PrintF("\n");
}

void PrintMap(int indent, const char* label, VariableMap* map, bool locals,
              Variable* function_var) {
  bool printed_label = false;
  for (VariableMap::Entry* p = map->Start(); p != nullptr; p = map->Next(p)) {
    Variable* var = reinterpret_cast<Variable*>(p->value);
    if (var == function_var) continue;
    bool local = !IsDynamicVariableMode(var->mode());
    if ((locals ? local : !local) &&
        (var->is_used() || !var->IsUnallocated())) {
      if (!printed_label) {
        Indent(indent, label);
        printed_label = true;
      }
      PrintVar(indent, var);
    }
  }
}

}  // anonymous namespace

void DeclarationScope::PrintParameters() {
  PrintF(" (");
  for (int i = 0; i < params_.length(); i++) {
    if (i > 0) PrintF(", ");
    const AstRawString* name = params_[i]->raw_name();
    if (name->IsEmpty())
      PrintF(".%p", reinterpret_cast<void*>(params_[i]));
    else
      PrintName(name);
  }
  PrintF(")");
}

void Scope::Print(int n) {
  int n0 = (n > 0 ? n : 0);
  int n1 = n0 + 2;  // indentation

  // Print header.
  FunctionKind function_kind = is_function_scope()
                                   ? AsDeclarationScope()->function_kind()
                                   : kNormalFunction;
  Indent(n0, Header(scope_type_, function_kind, is_declaration_scope()));
  if (scope_name_ != nullptr && !scope_name_->IsEmpty()) {
    PrintF(" ");
    PrintName(scope_name_);
  }

  // Print parameters, if any.
  Variable* function = nullptr;
  if (is_function_scope()) {
    AsDeclarationScope()->PrintParameters();
    function = AsDeclarationScope()->function_var();
  }

  PrintF(" { // (%d, %d)\n", start_position(), end_position());

  // Function name, if any (named function literals, only).
  if (function != nullptr) {
    Indent(n1, "// (local) function name: ");
    PrintName(function->raw_name());
    PrintF("\n");
  }

  // Scope info.
  if (is_strict(language_mode())) {
    Indent(n1, "// strict mode scope\n");
  }
  if (IsAsmModule()) Indent(n1, "// scope is an asm module\n");
  if (IsAsmFunction()) Indent(n1, "// scope is an asm function\n");
  if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
  if (is_declaration_scope() && AsDeclarationScope()->uses_super_property()) {
    Indent(n1, "// scope uses 'super' property\n");
  }
  if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
  if (is_declaration_scope()) {
    DeclarationScope* scope = AsDeclarationScope();
    if (scope->was_lazily_parsed()) Indent(n1, "// lazily parsed\n");
    if (scope->ShouldEagerCompile()) Indent(n1, "// will be compiled\n");
  }
  if (has_forced_context_allocation()) {
    Indent(n1, "// forces context allocation\n");
  }
  if (num_stack_slots_ > 0) {
    Indent(n1, "// ");
    PrintF("%d stack slots\n", num_stack_slots_);
  }
  if (num_heap_slots_ > 0) {
    Indent(n1, "// ");
    PrintF("%d heap slots\n", num_heap_slots_);
  }

  // Print locals.
  if (function != nullptr) {
    Indent(n1, "// function var:\n");
    PrintVar(n1, function);
  }

  // Print temporaries.
  {
    bool printed_header = false;
    for (Variable* local : locals_) {
      if (local->mode() != TEMPORARY) continue;
      if (!printed_header) {
        printed_header = true;
        Indent(n1, "// temporary vars:\n");
      }
      PrintVar(n1, local);
    }
  }

  if (variables_.occupancy() > 0) {
    PrintMap(n1, "// local vars:\n", &variables_, true, function);
    PrintMap(n1, "// dynamic vars:\n", &variables_, false, function);
  }

  // Print inner scopes (disable by providing negative n).
  if (n >= 0) {
    for (Scope* scope = inner_scope_; scope != nullptr;
         scope = scope->sibling_) {
      PrintF("\n");
      scope->Print(n1);
    }
  }

  Indent(n0, "}\n");
}

void Scope::CheckScopePositions() {
  // Visible leaf scopes must have real positions.
  if (!is_hidden() && inner_scope_ == nullptr) {
    CHECK_NE(kNoSourcePosition, start_position());
    CHECK_NE(kNoSourcePosition, end_position());
  }
  for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
    scope->CheckScopePositions();
  }
}

void Scope::CheckZones() {
  DCHECK(!needs_migration_);
  for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
    if (scope->is_declaration_scope() &&
        scope->AsDeclarationScope()->was_lazily_parsed()) {
      DCHECK_NULL(scope->zone());
      DCHECK_NULL(scope->inner_scope_);
      continue;
    }
    CHECK_EQ(scope->zone(), zone());
    scope->CheckZones();
  }
}
#endif  // DEBUG

Variable* Scope::NonLocal(const AstRawString* name, VariableMode mode) {
  // Declare a new non-local.
  DCHECK(IsDynamicVariableMode(mode));
  Variable* var = variables_.Declare(zone(), nullptr, name, mode);
  // Allocate it by giving it a dynamic lookup.
  var->AllocateTo(VariableLocation::LOOKUP, -1);
  return var;
}

Variable* Scope::LookupRecursive(VariableProxy* proxy, Scope* outer_scope_end) {
  DCHECK_NE(outer_scope_end, this);
  // Short-cut: whenever we find a debug-evaluate scope, just look everything up
  // dynamically. Debug-evaluate doesn't properly create scope info for the
  // lookups it does. It may not have a valid 'this' declaration, and anything
  // accessed through debug-evaluate might invalidly resolve to stack-allocated
  // variables.
  // TODO(yangguo): Remove once debug-evaluate creates proper ScopeInfo for the
  // scopes in which it's evaluating.
  if (is_debug_evaluate_scope_) return NonLocal(proxy->raw_name(), DYNAMIC);

  // Try to find the variable in this scope.
  Variable* var = LookupLocal(proxy->raw_name());

  // We found a variable and we are done. (Even if there is an 'eval' in this
  // scope which introduces the same variable again, the resulting variable
  // remains the same.)
  if (var != nullptr) return var;

  if (outer_scope_ == outer_scope_end) {
    // We may just be trying to find all free variables. In that case, don't
    // declare them in the outer scope.
    if (!is_script_scope()) return nullptr;
    // No binding has been found. Declare a variable on the global object.
    return AsDeclarationScope()->DeclareDynamicGlobal(proxy->raw_name(),
                                                      NORMAL_VARIABLE);
  }

  DCHECK(!is_script_scope());

  var = outer_scope_->LookupRecursive(proxy, outer_scope_end);

  // The variable could not be resolved statically.
  if (var == nullptr) return var;

  // TODO(marja): Separate LookupRecursive for preparsed scopes better.
  if (var == kDummyPreParserVariable || var == kDummyPreParserLexicalVariable) {
    DCHECK(GetDeclarationScope()->is_being_lazily_parsed());
    DCHECK(FLAG_lazy_inner_functions);
    return var;
  }

  if (is_function_scope() && !var->is_dynamic()) {
    var->ForceContextAllocation();
  }
  // "this" can't be shadowed by "eval"-introduced bindings or by "with"
  // scopes.
  // TODO(wingo): There are other variables in this category; add them.
  if (var->is_this()) return var;

  if (is_with_scope()) {
    // The current scope is a with scope, so the variable binding can not be
    // statically resolved. However, note that it was necessary to do a lookup
    // in the outer scope anyway, because if a binding exists in an outer
    // scope, the associated variable has to be marked as potentially being
    // accessed from inside of an inner with scope (the property may not be in
    // the 'with' object).
    if (!var->is_dynamic() && var->IsUnallocated()) {
      DCHECK(!already_resolved_);
      var->set_is_used();
      var->ForceContextAllocation();
      if (proxy->is_assigned()) var->set_maybe_assigned();
    }
    return NonLocal(proxy->raw_name(), DYNAMIC);
  }

  if (calls_sloppy_eval() && is_declaration_scope()) {
    // A variable binding may have been found in an outer scope, but the current
    // scope makes a sloppy 'eval' call, so the found variable may not be the
    // correct one (the 'eval' may introduce a binding with the same name). In
    // that case, change the lookup result to reflect this situation. Only
    // scopes that can host var bindings (declaration scopes) need be considered
    // here (this excludes block and catch scopes), and variable lookups at
    // script scope are always dynamic.
    if (var->IsGlobalObjectProperty()) {
      return NonLocal(proxy->raw_name(), DYNAMIC_GLOBAL);
    }

    if (var->is_dynamic()) return var;

    Variable* invalidated = var;
    var = NonLocal(proxy->raw_name(), DYNAMIC_LOCAL);
    var->set_local_if_not_shadowed(invalidated);
  }

  return var;
}

void Scope::ResolveVariable(ParseInfo* info, VariableProxy* proxy) {
  DCHECK(info->script_scope()->is_script_scope());
  DCHECK(!proxy->is_resolved());
  Variable* var = LookupRecursive(proxy, nullptr);
  ResolveTo(info, proxy, var);
}

namespace {

bool AccessNeedsHoleCheck(Variable* var, VariableProxy* proxy, Scope* scope) {
  if (var->mode() == DYNAMIC_LOCAL) {
    // Dynamically introduced variables never need a hole check (since they're
    // VAR bindings, either from var or function declarations), but the variable
    // they shadow might need a hole check, which we want to do if we decide
    // that no shadowing variable was dynamically introoduced.
    DCHECK(!var->binding_needs_init());
    return AccessNeedsHoleCheck(var->local_if_not_shadowed(), proxy, scope);
  }

  if (!var->binding_needs_init()) {
    return false;
  }

  // It's impossible to eliminate module import hole checks here, because it's
  // unknown at compilation time whether the binding referred to in the
  // exporting module itself requires hole checks.
  if (var->location() == VariableLocation::MODULE && !var->IsExport()) {
    return true;
  }

  // Check if the binding really needs an initialization check. The check
  // can be skipped in the following situation: we have a LET or CONST
  // binding, both the Variable and the VariableProxy have the same
  // declaration scope (i.e. they are both in global code, in the
  // same function or in the same eval code), the VariableProxy is in
  // the source physically located after the initializer of the variable,
  // and that the initializer cannot be skipped due to a nonlinear scope.
  //
  // The condition on the declaration scopes is a conservative check for
  // nested functions that access a binding and are called before the
  // binding is initialized:
  //   function() { f(); let x = 1; function f() { x = 2; } }
  //
  // The check cannot be skipped on non-linear scopes, namely switch
  // scopes, to ensure tests are done in cases like the following:
  //   switch (1) { case 0: let x = 2; case 1: f(x); }
  // The scope of the variable needs to be checked, in case the use is
  // in a sub-block which may be linear.
  if (var->scope()->GetDeclarationScope() != scope->GetDeclarationScope()) {
    return true;
  }

  if (var->is_this()) {
    DCHECK(IsDerivedConstructor(scope->GetDeclarationScope()->function_kind()));
    // TODO(littledan): implement 'this' hole check elimination.
    return true;
  }

  // We should always have valid source positions.
  DCHECK(var->initializer_position() != kNoSourcePosition);
  DCHECK(proxy->position() != kNoSourcePosition);

  return var->scope()->is_nonlinear() ||
         var->initializer_position() >= proxy->position();
}

}  // anonymous namespace

void Scope::ResolveTo(ParseInfo* info, VariableProxy* proxy, Variable* var) {
#ifdef DEBUG
  if (info->script_is_native()) {
    // To avoid polluting the global object in native scripts
    //  - Variables must not be allocated to the global scope.
    CHECK_NOT_NULL(outer_scope());
    //  - Variables must be bound locally or unallocated.
    if (var->IsGlobalObjectProperty()) {
      // The following variable name may be minified. If so, disable
      // minification in js2c.py for better output.
      Handle<String> name = proxy->raw_name()->string();
      V8_Fatal(__FILE__, __LINE__, "Unbound variable: '%s' in native script.",
               name->ToCString().get());
    }
    VariableLocation location = var->location();
    CHECK(location == VariableLocation::LOCAL ||
          location == VariableLocation::CONTEXT ||
          location == VariableLocation::PARAMETER ||
          location == VariableLocation::UNALLOCATED);
  }
#endif

  DCHECK_NOT_NULL(var);
  if (proxy->is_assigned()) var->set_maybe_assigned();
  if (AccessNeedsHoleCheck(var, proxy, this)) proxy->set_needs_hole_check();
  proxy->BindTo(var);
}

void Scope::ResolveVariablesRecursively(ParseInfo* info) {
  DCHECK(info->script_scope()->is_script_scope());
  // Lazy parsed declaration scopes are already partially analyzed. If there are
  // unresolved references remaining, they just need to be resolved in outer
  // scopes.
  if (is_declaration_scope() && AsDeclarationScope()->was_lazily_parsed()) {
    DCHECK(variables_.occupancy() == 0);
    for (VariableProxy* proxy = unresolved_; proxy != nullptr;
         proxy = proxy->next_unresolved()) {
      Variable* var = outer_scope()->LookupRecursive(proxy, nullptr);
      if (!var->is_dynamic()) {
        var->set_is_used();
        var->ForceContextAllocation();
        if (proxy->is_assigned()) var->set_maybe_assigned();
      }
    }
  } else {
    // Resolve unresolved variables for this scope.
    for (VariableProxy* proxy = unresolved_; proxy != nullptr;
         proxy = proxy->next_unresolved()) {
      ResolveVariable(info, proxy);
    }

    // Resolve unresolved variables for inner scopes.
    for (Scope* scope = inner_scope_; scope != nullptr;
         scope = scope->sibling_) {
      scope->ResolveVariablesRecursively(info);
    }
  }
}

VariableProxy* Scope::FetchFreeVariables(DeclarationScope* max_outer_scope,
                                         ParseInfo* info,
                                         VariableProxy* stack) {
  // Lazy parsed declaration scopes are already partially analyzed. If there are
  // unresolved references remaining, they just need to be resolved in outer
  // scopes.
  Scope* lookup =
      is_declaration_scope() && AsDeclarationScope()->was_lazily_parsed()
          ? outer_scope()
          : this;
  for (VariableProxy *proxy = unresolved_, *next = nullptr; proxy != nullptr;
       proxy = next) {
    next = proxy->next_unresolved();
    DCHECK(!proxy->is_resolved());
    Variable* var =
        lookup->LookupRecursive(proxy, max_outer_scope->outer_scope());
    if (var == nullptr) {
      proxy->set_next_unresolved(stack);
      stack = proxy;
    } else if (var != kDummyPreParserVariable &&
               var != kDummyPreParserLexicalVariable) {
      if (info != nullptr) {
        // In this case we need to leave scopes in a way that they can be
        // allocated. If we resolved variables from lazy parsed scopes, we need
        // to context allocate the var.
        ResolveTo(info, proxy, var);
        if (!var->is_dynamic() && lookup != this) var->ForceContextAllocation();
      } else {
        var->set_is_used();
      }
    }
  }

  // Clear unresolved_ as it's in an inconsistent state.
  unresolved_ = nullptr;

  for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
    stack = scope->FetchFreeVariables(max_outer_scope, info, stack);
  }

  return stack;
}

bool Scope::MustAllocate(Variable* var) {
  DCHECK(var->location() != VariableLocation::MODULE);
  // Give var a read/write use if there is a chance it might be accessed
  // via an eval() call.  This is only possible if the variable has a
  // visible name.
  if ((var->is_this() || !var->raw_name()->IsEmpty()) &&
      (inner_scope_calls_eval_ || is_catch_scope() || is_script_scope())) {
    var->set_is_used();
    if (inner_scope_calls_eval_) var->set_maybe_assigned();
  }
  DCHECK(!var->has_forced_context_allocation() || var->is_used());
  // Global variables do not need to be allocated.
  return !var->IsGlobalObjectProperty() && var->is_used();
}


bool Scope::MustAllocateInContext(Variable* var) {
  // If var is accessed from an inner scope, or if there is a possibility
  // that it might be accessed from the current or an inner scope (through
  // an eval() call or a runtime with lookup), it must be allocated in the
  // context.
  //
  // Exceptions: If the scope as a whole has forced context allocation, all
  // variables will have context allocation, even temporaries.  Otherwise
  // temporary variables are always stack-allocated.  Catch-bound variables are
  // always context-allocated.
  if (has_forced_context_allocation()) return true;
  if (var->mode() == TEMPORARY) return false;
  if (is_catch_scope()) return true;
  if ((is_script_scope() || is_eval_scope()) &&
      IsLexicalVariableMode(var->mode())) {
    return true;
  }
  return var->has_forced_context_allocation() || inner_scope_calls_eval_;
}


void Scope::AllocateStackSlot(Variable* var) {
  if (is_block_scope()) {
    outer_scope()->GetDeclarationScope()->AllocateStackSlot(var);
  } else {
    var->AllocateTo(VariableLocation::LOCAL, num_stack_slots_++);
  }
}


void Scope::AllocateHeapSlot(Variable* var) {
  var->AllocateTo(VariableLocation::CONTEXT, num_heap_slots_++);
}

void DeclarationScope::AllocateParameterLocals() {
  DCHECK(is_function_scope());

  bool uses_sloppy_arguments = false;

  if (arguments_ != nullptr) {
    DCHECK(!is_arrow_scope());
    // 'arguments' is used. Unless there is also a parameter called
    // 'arguments', we must be conservative and allocate all parameters to
    // the context assuming they will be captured by the arguments object.
    // If we have a parameter named 'arguments', a (new) value is always
    // assigned to it via the function invocation. Then 'arguments' denotes
    // that specific parameter value and cannot be used to access the
    // parameters, which is why we don't need to allocate an arguments
    // object in that case.
    if (MustAllocate(arguments_) && !has_arguments_parameter_) {
      // In strict mode 'arguments' does not alias formal parameters.
      // Therefore in strict mode we allocate parameters as if 'arguments'
      // were not used.
      // If the parameter list is not simple, arguments isn't sloppy either.
      uses_sloppy_arguments =
          is_sloppy(language_mode()) && has_simple_parameters();
    } else {
      // 'arguments' is unused. Tell the code generator that it does not need to
      // allocate the arguments object by nulling out arguments_.
      arguments_ = nullptr;
    }
  }

  // The same parameter may occur multiple times in the parameters_ list.
  // If it does, and if it is not copied into the context object, it must
  // receive the highest parameter index for that parameter; thus iteration
  // order is relevant!
  for (int i = num_parameters() - 1; i >= 0; --i) {
    Variable* var = params_[i];
    DCHECK(!has_rest_ || var != rest_parameter());
    DCHECK_EQ(this, var->scope());
    if (uses_sloppy_arguments) {
      var->set_is_used();
      var->set_maybe_assigned();
      var->ForceContextAllocation();
    }
    AllocateParameter(var, i);
  }
}

void DeclarationScope::AllocateParameter(Variable* var, int index) {
  if (MustAllocate(var)) {
    if (MustAllocateInContext(var)) {
      DCHECK(var->IsUnallocated() || var->IsContextSlot());
      if (var->IsUnallocated()) {
        AllocateHeapSlot(var);
      }
    } else {
      DCHECK(var->IsUnallocated() || var->IsParameter());
      if (var->IsUnallocated()) {
        var->AllocateTo(VariableLocation::PARAMETER, index);
      }
    }
  }
}

void DeclarationScope::AllocateReceiver() {
  if (!has_this_declaration()) return;
  DCHECK_NOT_NULL(receiver());
  DCHECK_EQ(receiver()->scope(), this);
  AllocateParameter(receiver(), -1);
}

void Scope::AllocateNonParameterLocal(Variable* var) {
  DCHECK(var->scope() == this);
  if (var->IsUnallocated() && MustAllocate(var)) {
    if (MustAllocateInContext(var)) {
      AllocateHeapSlot(var);
    } else {
      AllocateStackSlot(var);
    }
  }
}

void Scope::AllocateNonParameterLocalsAndDeclaredGlobals() {
  for (Variable* local : locals_) {
    AllocateNonParameterLocal(local);
  }

  if (is_declaration_scope()) {
    AsDeclarationScope()->AllocateLocals();
  }
}

void DeclarationScope::AllocateLocals() {
  // For now, function_ must be allocated at the very end.  If it gets
  // allocated in the context, it must be the last slot in the context,
  // because of the current ScopeInfo implementation (see
  // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
  if (function_ != nullptr) {
    AllocateNonParameterLocal(function_);
  }

  DCHECK(!has_rest_ || !MustAllocate(rest_parameter()) ||
         !rest_parameter()->IsUnallocated());

  if (new_target_ != nullptr && !MustAllocate(new_target_)) {
    new_target_ = nullptr;
  }

  if (this_function_ != nullptr && !MustAllocate(this_function_)) {
    this_function_ = nullptr;
  }
}

void ModuleScope::AllocateModuleVariables() {
  for (const auto& it : module()->regular_imports()) {
    Variable* var = LookupLocal(it.first);
    var->AllocateTo(VariableLocation::MODULE, it.second->cell_index);
    DCHECK(!var->IsExport());
  }

  for (const auto& it : module()->regular_exports()) {
    Variable* var = LookupLocal(it.first);
    var->AllocateTo(VariableLocation::MODULE, it.second->cell_index);
    DCHECK(var->IsExport());
  }
}

void Scope::AllocateVariablesRecursively() {
  DCHECK(!already_resolved_);
  DCHECK_EQ(0, num_stack_slots_);
  // Don't allocate variables of preparsed scopes.
  if (is_declaration_scope() && AsDeclarationScope()->was_lazily_parsed()) {
    return;
  }

  // Allocate variables for inner scopes.
  for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
    scope->AllocateVariablesRecursively();
  }

  DCHECK(!already_resolved_);
  DCHECK_EQ(Context::MIN_CONTEXT_SLOTS, num_heap_slots_);

  // Allocate variables for this scope.
  // Parameters must be allocated first, if any.
  if (is_declaration_scope()) {
    if (is_function_scope()) {
      AsDeclarationScope()->AllocateParameterLocals();
    }
    AsDeclarationScope()->AllocateReceiver();
  }
  AllocateNonParameterLocalsAndDeclaredGlobals();

  // Force allocation of a context for this scope if necessary. For a 'with'
  // scope and for a function scope that makes an 'eval' call we need a context,
  // even if no local variables were statically allocated in the scope.
  // Likewise for modules and function scopes representing asm.js modules.
  bool must_have_context =
      is_with_scope() || is_module_scope() || IsAsmModule() ||
      (is_function_scope() && calls_sloppy_eval()) ||
      (is_block_scope() && is_declaration_scope() && calls_sloppy_eval());

  // If we didn't allocate any locals in the local context, then we only
  // need the minimal number of slots if we must have a context.
  if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && !must_have_context) {
    num_heap_slots_ = 0;
  }

  // Allocation done.
  DCHECK(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
}

void Scope::AllocateScopeInfosRecursively(Isolate* isolate,
                                          MaybeHandle<ScopeInfo> outer_scope) {
  DCHECK(scope_info_.is_null());
  MaybeHandle<ScopeInfo> next_outer_scope = outer_scope;

  if (NeedsScopeInfo()) {
    scope_info_ = ScopeInfo::Create(isolate, zone(), this, outer_scope);
    // The ScopeInfo chain should mirror the context chain, so we only link to
    // the next outer scope that needs a context.
    if (NeedsContext()) next_outer_scope = scope_info_;
  }

  // Allocate ScopeInfos for inner scopes.
  for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
    if (!scope->is_function_scope() ||
        scope->AsDeclarationScope()->ShouldEagerCompile()) {
      scope->AllocateScopeInfosRecursively(isolate, next_outer_scope);
    }
  }
}

void Scope::AllocateDebuggerScopeInfos(Isolate* isolate,
                                       MaybeHandle<ScopeInfo> outer_scope) {
  if (scope_info_.is_null()) {
    scope_info_ = ScopeInfo::Create(isolate, zone(), this, outer_scope);
  }
  MaybeHandle<ScopeInfo> outer = NeedsContext() ? scope_info_ : outer_scope;
  for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
    if (scope->is_function_scope()) continue;
    scope->AllocateDebuggerScopeInfos(isolate, outer);
  }
}

int Scope::StackLocalCount() const {
  Variable* function =
      is_function_scope() ? AsDeclarationScope()->function_var() : nullptr;
  return num_stack_slots() -
         (function != nullptr && function->IsStackLocal() ? 1 : 0);
}


int Scope::ContextLocalCount() const {
  if (num_heap_slots() == 0) return 0;
  Variable* function =
      is_function_scope() ? AsDeclarationScope()->function_var() : nullptr;
  bool is_function_var_in_context =
      function != nullptr && function->IsContextSlot();
  return num_heap_slots() - Context::MIN_CONTEXT_SLOTS -
         (is_function_var_in_context ? 1 : 0);
}

}  // namespace internal
}  // namespace v8