summaryrefslogtreecommitdiff
path: root/deps/v8/src/bigint/tostring.cc
blob: cfe7eefd7018f5883a5cd94c4ebffbb214f65d8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <cstring>
#include <limits>

#include "src/bigint/bigint-internal.h"
#include "src/bigint/digit-arithmetic.h"
#include "src/bigint/div-helpers.h"
#include "src/bigint/util.h"
#include "src/bigint/vector-arithmetic.h"

namespace v8 {
namespace bigint {

namespace {

// Lookup table for the maximum number of bits required per character of a
// base-N string representation of a number. To increase accuracy, the array
// value is the actual value multiplied by 32. To generate this table:
// for (var i = 0; i <= 36; i++) { print(Math.ceil(Math.log2(i) * 32) + ","); }
constexpr uint8_t kMaxBitsPerChar[] = {
    0,   0,   32,  51,  64,  75,  83,  90,  96,  // 0..8
    102, 107, 111, 115, 119, 122, 126, 128,      // 9..16
    131, 134, 136, 139, 141, 143, 145, 147,      // 17..24
    149, 151, 153, 154, 156, 158, 159, 160,      // 25..32
    162, 163, 165, 166,                          // 33..36
};

static const int kBitsPerCharTableShift = 5;
static const size_t kBitsPerCharTableMultiplier = 1u << kBitsPerCharTableShift;

static const char kConversionChars[] = "0123456789abcdefghijklmnopqrstuvwxyz";

// Raises {base} to the power of {exponent}. Does not check for overflow.
digit_t digit_pow(digit_t base, digit_t exponent) {
  digit_t result = 1ull;
  while (exponent > 0) {
    if (exponent & 1) {
      result *= base;
    }
    exponent >>= 1;
    base *= base;
  }
  return result;
}

// Compile-time version of the above.
constexpr digit_t digit_pow_rec(digit_t base, digit_t exponent) {
  return exponent == 1 ? base : base * digit_pow_rec(base, exponent - 1);
}

// A variant of ToStringFormatter::BasecaseLast, specialized for a radix
// known at compile-time.
template <int radix>
char* BasecaseFixedLast(digit_t chunk, char* out) {
  while (chunk != 0) {
    DCHECK(*(out - 1) == kStringZapValue);
    if (radix <= 10) {
      *(--out) = '0' + (chunk % radix);
    } else {
      *(--out) = kConversionChars[chunk % radix];
    }
    chunk /= radix;
  }
  return out;
}

// By making {radix} a compile-time constant and computing {chunk_divisor}
// as another compile-time constant from it, we allow the compiler to emit
// an optimized instruction sequence based on multiplications with "magic"
// numbers (modular multiplicative inverses) instead of actual divisions.
// The price we pay is having to work on half digits; the technique doesn't
// work with twodigit_t-by-digit_t divisions.
// Includes an equivalent of ToStringFormatter::BasecaseMiddle, accordingly
// specialized for a radix known at compile time.
template <digit_t radix>
char* DivideByMagic(RWDigits rest, Digits input, char* output) {
  constexpr uint8_t max_bits_per_char = kMaxBitsPerChar[radix];
  constexpr int chunk_chars =
      kHalfDigitBits * kBitsPerCharTableMultiplier / max_bits_per_char;
  constexpr digit_t chunk_divisor = digit_pow_rec(radix, chunk_chars);
  digit_t remainder = 0;
  for (int i = input.len() - 1; i >= 0; i--) {
    digit_t d = input[i];
    digit_t upper = (remainder << kHalfDigitBits) | (d >> kHalfDigitBits);
    digit_t u_result = upper / chunk_divisor;
    remainder = upper % chunk_divisor;
    digit_t lower = (remainder << kHalfDigitBits) | (d & kHalfDigitMask);
    digit_t l_result = lower / chunk_divisor;
    remainder = lower % chunk_divisor;
    rest[i] = (u_result << kHalfDigitBits) | l_result;
  }
  // {remainder} is now the current chunk to be written out.
  for (int i = 0; i < chunk_chars; i++) {
    DCHECK(*(output - 1) == kStringZapValue);
    if (radix <= 10) {
      *(--output) = '0' + (remainder % radix);
    } else {
      *(--output) = kConversionChars[remainder % radix];
    }
    remainder /= radix;
  }
  DCHECK(remainder == 0);
  return output;
}

class RecursionLevel;

// The classic algorithm must check for interrupt requests if no faster
// algorithm is available.
#if V8_ADVANCED_BIGINT_ALGORITHMS
#define MAYBE_INTERRUPT(code) ((void)0)
#else
#define MAYBE_INTERRUPT(code) code
#endif

class ToStringFormatter {
 public:
  ToStringFormatter(Digits X, int radix, bool sign, char* out,
                    int chars_available, ProcessorImpl* processor)
      : digits_(X),
        radix_(radix),
        sign_(sign),
        out_start_(out),
        out_end_(out + chars_available),
        out_(out_end_),
        processor_(processor) {
    digits_.Normalize();
    DCHECK(chars_available >= ToStringResultLength(digits_, radix_, sign_));
  }

  void Start();
  int Finish();

  void Classic() {
    if (digits_.len() == 0) {
      *(--out_) = '0';
      return;
    }
    if (digits_.len() == 1) {
      out_ = BasecaseLast(digits_[0], out_);
      return;
    }
    // {rest} holds the part of the BigInt that we haven't looked at yet.
    // Not to be confused with "remainder"!
    ScratchDigits rest(digits_.len());
    // In the first round, divide the input, allocating a new BigInt for
    // the result == rest; from then on divide the rest in-place.
    Digits dividend = digits_;
    do {
      if (radix_ == 10) {
        // Faster but costs binary size, so we optimize the most common case.
        out_ = DivideByMagic<10>(rest, dividend, out_);
        MAYBE_INTERRUPT(processor_->AddWorkEstimate(rest.len() * 2));
      } else {
        digit_t chunk;
        processor_->DivideSingle(rest, &chunk, dividend, chunk_divisor_);
        out_ = BasecaseMiddle(chunk, out_);
        // Assume that a division is about ten times as expensive as a
        // multiplication.
        MAYBE_INTERRUPT(processor_->AddWorkEstimate(rest.len() * 10));
      }
      MAYBE_INTERRUPT(if (processor_->should_terminate()) return );
      rest.Normalize();
      dividend = rest;
    } while (rest.len() > 1);
    out_ = BasecaseLast(rest[0], out_);
  }

  void BasePowerOfTwo();

  void Fast();
  char* FillWithZeros(RecursionLevel* level, char* prev_cursor, char* out,
                      bool is_last_on_level);
  char* ProcessLevel(RecursionLevel* level, Digits chunk, char* out,
                     bool is_last_on_level);

 private:
  // When processing the last (most significant) digit, don't write leading
  // zeros.
  char* BasecaseLast(digit_t digit, char* out) {
    if (radix_ == 10) return BasecaseFixedLast<10>(digit, out);
    do {
      DCHECK(*(out - 1) == kStringZapValue);
      *(--out) = kConversionChars[digit % radix_];
      digit /= radix_;
    } while (digit > 0);
    return out;
  }

  // When processing a middle (non-most significant) digit, always write the
  // same number of characters (as many '0' as necessary).
  char* BasecaseMiddle(digit_t digit, char* out) {
    for (int i = 0; i < chunk_chars_; i++) {
      DCHECK(*(out - 1) == kStringZapValue);
      *(--out) = kConversionChars[digit % radix_];
      digit /= radix_;
    }
    DCHECK(digit == 0);
    return out;
  }

  Digits digits_;
  int radix_;
  int max_bits_per_char_ = 0;
  int chunk_chars_ = 0;
  bool sign_;
  char* out_start_;
  char* out_end_;
  char* out_;
  digit_t chunk_divisor_ = 0;
  ProcessorImpl* processor_;
};

#undef MAYBE_INTERRUPT

// Prepares data for {Classic}. Not needed for {BasePowerOfTwo}.
void ToStringFormatter::Start() {
  max_bits_per_char_ = kMaxBitsPerChar[radix_];
  chunk_chars_ = kDigitBits * kBitsPerCharTableMultiplier / max_bits_per_char_;
  chunk_divisor_ = digit_pow(radix_, chunk_chars_);
  // By construction of chunk_chars_, there can't have been overflow.
  DCHECK(chunk_divisor_ != 0);
}

int ToStringFormatter::Finish() {
  DCHECK(out_ >= out_start_);
  DCHECK(out_ < out_end_);  // At least one character was written.
  while (out_ < out_end_ && *out_ == '0') out_++;
  if (sign_) *(--out_) = '-';
  int excess = 0;
  if (out_ > out_start_) {
    size_t actual_length = out_end_ - out_;
    excess = static_cast<int>(out_ - out_start_);
    std::memmove(out_start_, out_, actual_length);
  }
  return excess;
}

void ToStringFormatter::BasePowerOfTwo() {
  const int bits_per_char = CountTrailingZeros(radix_);
  const int char_mask = radix_ - 1;
  digit_t digit = 0;
  // Keeps track of how many unprocessed bits there are in {digit}.
  int available_bits = 0;
  for (int i = 0; i < digits_.len() - 1; i++) {
    digit_t new_digit = digits_[i];
    // Take any leftover bits from the last iteration into account.
    int current = (digit | (new_digit << available_bits)) & char_mask;
    *(--out_) = kConversionChars[current];
    int consumed_bits = bits_per_char - available_bits;
    digit = new_digit >> consumed_bits;
    available_bits = kDigitBits - consumed_bits;
    while (available_bits >= bits_per_char) {
      *(--out_) = kConversionChars[digit & char_mask];
      digit >>= bits_per_char;
      available_bits -= bits_per_char;
    }
  }
  // Take any leftover bits from the last iteration into account.
  digit_t msd = digits_.msd();
  int current = (digit | (msd << available_bits)) & char_mask;
  *(--out_) = kConversionChars[current];
  digit = msd >> (bits_per_char - available_bits);
  while (digit != 0) {
    *(--out_) = kConversionChars[digit & char_mask];
    digit >>= bits_per_char;
  }
}

#if V8_ADVANCED_BIGINT_ALGORITHMS

// "Fast" divide-and-conquer conversion to string. The basic idea is to
// recursively cut the BigInt in half (using a division with remainder,
// the divisor being ~half as large (in bits) as the current dividend).
//
// As preparation, we build up a linked list of metadata for each recursion
// level. We do this bottom-up, i.e. start with the level that will produce
// two halves that are register-sized and bail out to the base case.
// Each higher level (executed earlier, prepared later) uses a divisor that is
// the square of the previously-created "next" level's divisor. Preparation
// terminates when the current divisor is at least half as large as the bigint.
// We also precompute each level's divisor's inverse, so we can use
// Barrett division later.
//
// Example: say we want to format 1234567890123, and we can fit two decimal
// digits into a register for the base case.
//
//              1234567890123
//                    ↓
//               %100000000 (a)              // RecursionLevel 2,
//             /            \                // is_toplevel_ == true.
//         12345            67890123
//           ↓                  ↓
//    (e) %10000             %10000 (b)      // RecursionLevel 1
//        /    \            /      \
//       1     2345      6789      0123
//       ↓   (f) ↓         ↓ (d)     ↓
// (g) %100    %100      %100      %100 (c)  // RecursionLevel 0
//     / \     /   \     /   \     /   \
//    00 01   23   45   67   89   01   23
//        ↓    ↓    ↓    ↓    ↓    ↓    ↓    // Base case.
//       "1" "23" "45" "67" "89" "01" "23"
//
// We start building RecursionLevels in order 0 -> 1 -> 2, performing the
// squarings 100² = 10000 and 10000² = 100000000 each only once. Execution
// then happens in order (a) through (g); lower-level divisors are used
// repeatedly. We build the string from right to left.
// Note that we can skip the division at (g) and fall through directly.
// Also, note that there are two chunks with value 1: one of them must produce
// a leading "0" in its string representation, the other must not.
//
// In this example, {base_divisor} is 100 and {base_char_count} is 2.

// TODO(jkummerow): Investigate whether it is beneficial to build one or two
// fewer RecursionLevels, and use the topmost level for more than one division.

class RecursionLevel {
 public:
  static RecursionLevel* CreateLevels(digit_t base_divisor, int base_char_count,
                                      int target_bit_length,
                                      ProcessorImpl* processor);
  ~RecursionLevel() { delete next_; }

  void ComputeInverse(ProcessorImpl* proc, int dividend_length = 0);
  Digits GetInverse(int dividend_length);

 private:
  friend class ToStringFormatter;
  RecursionLevel(digit_t base_divisor, int base_char_count)
      : char_count_(base_char_count), divisor_(1) {
    divisor_[0] = base_divisor;
  }
  explicit RecursionLevel(RecursionLevel* next)
      : char_count_(next->char_count_ * 2),
        next_(next),
        divisor_(next->divisor_.len() * 2) {
    next->is_toplevel_ = false;
  }

  void LeftShiftDivisor() {
    leading_zero_shift_ = CountLeadingZeros(divisor_.msd());
    LeftShift(divisor_, divisor_, leading_zero_shift_);
  }

  int leading_zero_shift_{0};
  // The number of characters generated by *each half* of this level.
  int char_count_;
  bool is_toplevel_{true};
  RecursionLevel* next_{nullptr};
  ScratchDigits divisor_;
  std::unique_ptr<Storage> inverse_storage_;
  Digits inverse_{nullptr, 0};
};

// static
RecursionLevel* RecursionLevel::CreateLevels(digit_t base_divisor,
                                             int base_char_count,
                                             int target_bit_length,
                                             ProcessorImpl* processor) {
  RecursionLevel* level = new RecursionLevel(base_divisor, base_char_count);
  // We can stop creating levels when the next level's divisor, which is the
  // square of the current level's divisor, would be strictly bigger (in terms
  // of its numeric value) than the input we're formatting. Since computing that
  // next divisor is expensive, we want to predict the necessity based on bit
  // lengths. Bit lengths are an imperfect predictor of numeric value, so we
  // have to be careful:
  // - since we can't estimate which one of two numbers of equal bit length
  //   is bigger, we have to aim for a strictly bigger bit length.
  // - when squaring, the bit length sometimes doubles (e.g. 0b11² == 0b1001),
  //   but usually we "lose" a bit (e.g. 0b10² == 0b100).
  while (BitLength(level->divisor_) * 2 - 1 <= target_bit_length) {
    RecursionLevel* prev = level;
    level = new RecursionLevel(prev);
    processor->Multiply(level->divisor_, prev->divisor_, prev->divisor_);
    if (processor->should_terminate()) {
      delete level;
      return nullptr;
    }
    level->divisor_.Normalize();
    // Left-shifting the divisor must only happen after it's been used to
    // compute the next divisor.
    prev->LeftShiftDivisor();
    prev->ComputeInverse(processor);
  }
  level->LeftShiftDivisor();
  // Not calling info->ComputeInverse here so that it can take the input's
  // length into account to save some effort on inverse generation.
  return level;
}

// The top level might get by with a smaller inverse than we could maximally
// compute, so the caller should provide the dividend length.
void RecursionLevel::ComputeInverse(ProcessorImpl* processor,
                                    int dividend_length) {
  int inverse_len = divisor_.len();
  if (dividend_length != 0) {
    inverse_len = dividend_length - divisor_.len();
    DCHECK(inverse_len <= divisor_.len());
  }
  int scratch_len = InvertScratchSpace(inverse_len);
  ScratchDigits scratch(scratch_len);
  Storage* inv_storage = new Storage(inverse_len + 1);
  inverse_storage_.reset(inv_storage);
  RWDigits inverse_initializer(inv_storage->get(), inverse_len + 1);
  Digits input(divisor_, divisor_.len() - inverse_len, inverse_len);
  processor->Invert(inverse_initializer, input, scratch);
  inverse_initializer.TrimOne();
  inverse_ = inverse_initializer;
}

Digits RecursionLevel::GetInverse(int dividend_length) {
  DCHECK(inverse_.len() != 0);
  int inverse_len = dividend_length - divisor_.len();
  DCHECK(inverse_len <= inverse_.len());
  return inverse_ + (inverse_.len() - inverse_len);
}

void ToStringFormatter::Fast() {
  std::unique_ptr<RecursionLevel> recursion_levels(RecursionLevel::CreateLevels(
      chunk_divisor_, chunk_chars_, BitLength(digits_), processor_));
  if (processor_->should_terminate()) return;
  out_ = ProcessLevel(recursion_levels.get(), digits_, out_, true);
}

// Writes '0' characters right-to-left, starting at {out}-1, until the distance
// from {right_boundary} to {out} equals the number of characters that {level}
// is supposed to produce.
char* ToStringFormatter::FillWithZeros(RecursionLevel* level,
                                       char* right_boundary, char* out,
                                       bool is_last_on_level) {
  // Fill up with zeros up to the character count expected to be generated
  // on this level; unless this is the left edge of the result.
  if (is_last_on_level) return out;
  int chunk_chars = level == nullptr ? chunk_chars_ : level->char_count_ * 2;
  char* end = right_boundary - chunk_chars;
  DCHECK(out >= end);
  while (out > end) {
    *(--out) = '0';
  }
  return out;
}

char* ToStringFormatter::ProcessLevel(RecursionLevel* level, Digits chunk,
                                      char* out, bool is_last_on_level) {
  // Step 0: if only one digit is left, bail out to the base case.
  Digits normalized = chunk;
  normalized.Normalize();
  if (normalized.len() <= 1) {
    char* right_boundary = out;
    if (normalized.len() == 1) {
      out = BasecaseLast(normalized[0], out);
    }
    return FillWithZeros(level, right_boundary, out, is_last_on_level);
  }

  // Step 1: If the chunk is guaranteed to remain smaller than the divisor
  // even after left-shifting, fall through to the next level immediately.
  if (normalized.len() < level->divisor_.len()) {
    char* right_boundary = out;
    out = ProcessLevel(level->next_, chunk, out, is_last_on_level);
    return FillWithZeros(level, right_boundary, out, is_last_on_level);
  }
  // Step 2: Prepare the chunk.
  bool allow_inplace_modification = chunk.digits() != digits_.digits();
  Digits original_chunk = chunk;
  ShiftedDigits chunk_shifted(chunk, level->leading_zero_shift_,
                              allow_inplace_modification);
  chunk = chunk_shifted;
  chunk.Normalize();
  // Check (now precisely) if the chunk is smaller than the divisor.
  int comparison = Compare(chunk, level->divisor_);
  if (comparison <= 0) {
    char* right_boundary = out;
    if (comparison < 0) {
      // If the chunk is strictly smaller than the divisor, we can process
      // it directly on the next level as the right half, and know that the
      // left half is all '0'.
      // In case we shifted {chunk} in-place, we must undo that
      // before the call...
      chunk_shifted.Reset();
      // ...and otherwise undo the {chunk = chunk_shifted} assignment above.
      chunk = original_chunk;
      out = ProcessLevel(level->next_, chunk, out, is_last_on_level);
    } else {
      DCHECK(comparison == 0);
      // If the chunk is equal to the divisor, we know that the right half
      // is all '0', and the left half is '...0001'.
      // Handling this case specially is an optimization; we could also
      // fall through to the generic "chunk > divisor" path below.
      out = FillWithZeros(level->next_, right_boundary, out, false);
      *(--out) = '1';
    }
    // In both cases, make sure the left half is fully written.
    return FillWithZeros(level, right_boundary, out, is_last_on_level);
  }
  // Step 3: Allocate space for the results.
  // Allocate one extra digit so the next level can left-shift in-place.
  ScratchDigits right(level->divisor_.len() + 1);
  // Allocate one extra digit because DivideBarrett requires it.
  ScratchDigits left(chunk.len() - level->divisor_.len() + 1);

  // Step 4: Divide to split {chunk} into {left} and {right}.
  int inverse_len = chunk.len() - level->divisor_.len();
  if (inverse_len == 0) {
    processor_->DivideSchoolbook(left, right, chunk, level->divisor_);
  } else if (level->divisor_.len() == 1) {
    processor_->DivideSingle(left, right.digits(), chunk, level->divisor_[0]);
    for (int i = 1; i < right.len(); i++) right[i] = 0;
  } else {
    ScratchDigits scratch(DivideBarrettScratchSpace(chunk.len()));
    // The top level only computes its inverse when {chunk.len()} is
    // available. Other levels have precomputed theirs.
    if (level->is_toplevel_) {
      level->ComputeInverse(processor_, chunk.len());
      if (processor_->should_terminate()) return out;
    }
    Digits inverse = level->GetInverse(chunk.len());
    processor_->DivideBarrett(left, right, chunk, level->divisor_, inverse,
                              scratch);
    if (processor_->should_terminate()) return out;
  }
  RightShift(right, right, level->leading_zero_shift_);
#if DEBUG
  Digits left_test = left;
  left_test.Normalize();
  DCHECK(left_test.len() <= level->divisor_.len());
#endif

  // Step 5: Recurse.
  char* end_of_right_part = ProcessLevel(level->next_, right, out, false);
  // The recursive calls are required and hence designed to write exactly as
  // many characters as their level is responsible for.
  DCHECK(end_of_right_part == out - level->char_count_);
  USE(end_of_right_part);
  if (processor_->should_terminate()) return out;
  // We intentionally don't use {end_of_right_part} here to be prepared for
  // potential future multi-threaded execution.
  return ProcessLevel(level->next_, left, out - level->char_count_,
                      is_last_on_level);
}

#endif  // V8_ADVANCED_BIGINT_ALGORITHMS

}  // namespace

void ProcessorImpl::ToString(char* out, int* out_length, Digits X, int radix,
                             bool sign) {
  const bool use_fast_algorithm = X.len() >= kToStringFastThreshold;
  ToStringImpl(out, out_length, X, radix, sign, use_fast_algorithm);
}

// Factored out so that tests can call it.
void ProcessorImpl::ToStringImpl(char* out, int* out_length, Digits X,
                                 int radix, bool sign, bool fast) {
#if DEBUG
  for (int i = 0; i < *out_length; i++) out[i] = kStringZapValue;
#endif
  ToStringFormatter formatter(X, radix, sign, out, *out_length, this);
  if (IsPowerOfTwo(radix)) {
    formatter.BasePowerOfTwo();
#if V8_ADVANCED_BIGINT_ALGORITHMS
  } else if (fast) {
    formatter.Start();
    formatter.Fast();
    if (should_terminate()) return;
#else
    USE(fast);
#endif  // V8_ADVANCED_BIGINT_ALGORITHMS
  } else {
    formatter.Start();
    formatter.Classic();
  }
  int excess = formatter.Finish();
  *out_length -= excess;
}

Status Processor::ToString(char* out, int* out_length, Digits X, int radix,
                           bool sign) {
  ProcessorImpl* impl = static_cast<ProcessorImpl*>(this);
  impl->ToString(out, out_length, X, radix, sign);
  return impl->get_and_clear_status();
}

int ToStringResultLength(Digits X, int radix, bool sign) {
  const int bit_length = BitLength(X);
  int result;
  if (IsPowerOfTwo(radix)) {
    const int bits_per_char = CountTrailingZeros(radix);
    result = DIV_CEIL(bit_length, bits_per_char) + sign;
  } else {
    // Maximum number of bits we can represent with one character.
    const uint8_t max_bits_per_char = kMaxBitsPerChar[radix];
    // For estimating the result length, we have to be pessimistic and work with
    // the minimum number of bits one character can represent.
    const uint8_t min_bits_per_char = max_bits_per_char - 1;
    // Perform the following computation with uint64_t to avoid overflows.
    uint64_t chars_required = bit_length;
    chars_required *= kBitsPerCharTableMultiplier;
    chars_required = DIV_CEIL(chars_required, min_bits_per_char);
    DCHECK(chars_required <
           static_cast<uint64_t>(std::numeric_limits<int>::max()));
    result = static_cast<int>(chars_required);
  }
  result += sign;
  return result;
}

}  // namespace bigint
}  // namespace v8