summaryrefslogtreecommitdiff
path: root/deps/v8/src/builtins/arm64/builtins-arm64.cc
blob: fa539031d3d80ce8dca7a8de255c7a6152c4f162 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#if V8_TARGET_ARCH_ARM64

#include "src/api/api-arguments.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/interface-descriptors-inl.h"
// For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
#include "src/codegen/macro-assembler-inl.h"
#include "src/codegen/register-configuration.h"
#include "src/debug/debug.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/frame-constants.h"
#include "src/execution/frames.h"
#include "src/heap/heap-inl.h"
#include "src/logging/counters.h"
#include "src/objects/cell.h"
#include "src/objects/foreign.h"
#include "src/objects/heap-number.h"
#include "src/objects/instance-type.h"
#include "src/objects/js-generator.h"
#include "src/objects/objects-inl.h"
#include "src/objects/smi.h"
#include "src/runtime/runtime.h"

#if V8_ENABLE_WEBASSEMBLY
#include "src/wasm/baseline/liftoff-assembler-defs.h"
#include "src/wasm/object-access.h"
#include "src/wasm/stacks.h"
#include "src/wasm/wasm-constants.h"
#include "src/wasm/wasm-linkage.h"
#include "src/wasm/wasm-objects.h"
#endif  // V8_ENABLE_WEBASSEMBLY

#if defined(V8_OS_WIN)
#include "src/diagnostics/unwinding-info-win64.h"
#endif  // V8_OS_WIN

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm)

void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
  __ CodeEntry();

  __ Mov(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
  __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
          RelocInfo::CODE_TARGET);
}

namespace {

void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- x0     : number of arguments
  //  -- x1     : constructor function
  //  -- x3     : new target
  //  -- cp     : context
  //  -- lr     : return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------

  ASM_LOCATION("Builtins::Generate_JSConstructStubHelper");
  Label stack_overflow;

  __ StackOverflowCheck(x0, &stack_overflow);

  // Enter a construct frame.
  {
    FrameScope scope(masm, StackFrame::CONSTRUCT);
    Label already_aligned;
    Register argc = x0;

    if (v8_flags.debug_code) {
      // Check that FrameScope pushed the context on to the stack already.
      __ Peek(x2, 0);
      __ Cmp(x2, cp);
      __ Check(eq, AbortReason::kUnexpectedValue);
    }

    // Push number of arguments.
    __ SmiTag(x11, argc);
    __ Push(x11, padreg);

    // Round up to maintain alignment.
    Register slot_count = x2;
    Register slot_count_without_rounding = x12;
    __ Add(slot_count_without_rounding, argc, 1);
    __ Bic(slot_count, slot_count_without_rounding, 1);
    __ Claim(slot_count);

    // Preserve the incoming parameters on the stack.
    __ LoadRoot(x4, RootIndex::kTheHoleValue);

    // Compute a pointer to the slot immediately above the location on the
    // stack to which arguments will be later copied.
    __ SlotAddress(x2, argc);

    // Store padding, if needed.
    __ Tbnz(slot_count_without_rounding, 0, &already_aligned);
    __ Str(padreg, MemOperand(x2));
    __ Bind(&already_aligned);

    // TODO(victorgomes): When the arguments adaptor is completely removed, we
    // should get the formal parameter count and copy the arguments in its
    // correct position (including any undefined), instead of delaying this to
    // InvokeFunction.

    // Copy arguments to the expression stack.
    {
      Register count = x2;
      Register dst = x10;
      Register src = x11;
      __ SlotAddress(dst, 0);
      // Poke the hole (receiver).
      __ Str(x4, MemOperand(dst));
      __ Add(dst, dst, kSystemPointerSize);  // Skip receiver.
      __ Add(src, fp,
             StandardFrameConstants::kCallerSPOffset +
                 kSystemPointerSize);  // Skip receiver.
      __ Sub(count, argc, kJSArgcReceiverSlots);
      __ CopyDoubleWords(dst, src, count);
    }

    // ----------- S t a t e -------------
    //  --                           x0: number of arguments (untagged)
    //  --                           x1: constructor function
    //  --                           x3: new target
    // If argc is odd:
    //  --     sp[0*kSystemPointerSize]: the hole (receiver)
    //  --     sp[1*kSystemPointerSize]: argument 1
    //  --             ...
    //  -- sp[(n-1)*kSystemPointerSize]: argument (n - 1)
    //  -- sp[(n+0)*kSystemPointerSize]: argument n
    //  -- sp[(n+1)*kSystemPointerSize]: padding
    //  -- sp[(n+2)*kSystemPointerSize]: padding
    //  -- sp[(n+3)*kSystemPointerSize]: number of arguments (tagged)
    //  -- sp[(n+4)*kSystemPointerSize]: context (pushed by FrameScope)
    // If argc is even:
    //  --     sp[0*kSystemPointerSize]: the hole (receiver)
    //  --     sp[1*kSystemPointerSize]: argument 1
    //  --             ...
    //  -- sp[(n-1)*kSystemPointerSize]: argument (n - 1)
    //  -- sp[(n+0)*kSystemPointerSize]: argument n
    //  -- sp[(n+1)*kSystemPointerSize]: padding
    //  -- sp[(n+2)*kSystemPointerSize]: number of arguments (tagged)
    //  -- sp[(n+3)*kSystemPointerSize]: context (pushed by FrameScope)
    // -----------------------------------

    // Call the function.
    __ InvokeFunctionWithNewTarget(x1, x3, argc, InvokeType::kCall);

    // Restore the context from the frame.
    __ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
    // Restore smi-tagged arguments count from the frame. Use fp relative
    // addressing to avoid the circular dependency between padding existence and
    // argc parity.
    __ SmiUntag(x1, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
    // Leave construct frame.
  }

  // Remove caller arguments from the stack and return.
  __ DropArguments(x1, TurboAssembler::kCountIncludesReceiver);
  __ Ret();

  __ Bind(&stack_overflow);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    __ Unreachable();
  }
}

}  // namespace

// The construct stub for ES5 constructor functions and ES6 class constructors.
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- x0     : number of arguments
  //  -- x1     : constructor function
  //  -- x3     : new target
  //  -- lr     : return address
  //  -- cp     : context pointer
  //  -- sp[...]: constructor arguments
  // -----------------------------------

  ASM_LOCATION("Builtins::Generate_JSConstructStubGeneric");

  FrameScope scope(masm, StackFrame::MANUAL);
  // Enter a construct frame.
  __ EnterFrame(StackFrame::CONSTRUCT);
  Label post_instantiation_deopt_entry, not_create_implicit_receiver;

  if (v8_flags.debug_code) {
    // Check that FrameScope pushed the context on to the stack already.
    __ Peek(x2, 0);
    __ Cmp(x2, cp);
    __ Check(eq, AbortReason::kUnexpectedValue);
  }

  // Preserve the incoming parameters on the stack.
  __ SmiTag(x0);
  __ Push(x0, x1, padreg, x3);

  // ----------- S t a t e -------------
  //  --        sp[0*kSystemPointerSize]: new target
  //  --        sp[1*kSystemPointerSize]: padding
  //  -- x1 and sp[2*kSystemPointerSize]: constructor function
  //  --        sp[3*kSystemPointerSize]: number of arguments (tagged)
  //  --        sp[4*kSystemPointerSize]: context (pushed by FrameScope)
  // -----------------------------------

  __ LoadTaggedPointerField(
      x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
  __ Ldr(w4, FieldMemOperand(x4, SharedFunctionInfo::kFlagsOffset));
  __ DecodeField<SharedFunctionInfo::FunctionKindBits>(w4);
  __ JumpIfIsInRange(
      w4, static_cast<uint32_t>(FunctionKind::kDefaultDerivedConstructor),
      static_cast<uint32_t>(FunctionKind::kDerivedConstructor),
      &not_create_implicit_receiver);

  // If not derived class constructor: Allocate the new receiver object.
  __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET);

  __ B(&post_instantiation_deopt_entry);

  // Else: use TheHoleValue as receiver for constructor call
  __ Bind(&not_create_implicit_receiver);
  __ LoadRoot(x0, RootIndex::kTheHoleValue);

  // ----------- S t a t e -------------
  //  --                                x0: receiver
  //  -- Slot 4 / sp[0*kSystemPointerSize]: new target
  //  -- Slot 3 / sp[1*kSystemPointerSize]: padding
  //  -- Slot 2 / sp[2*kSystemPointerSize]: constructor function
  //  -- Slot 1 / sp[3*kSystemPointerSize]: number of arguments (tagged)
  //  -- Slot 0 / sp[4*kSystemPointerSize]: context
  // -----------------------------------
  // Deoptimizer enters here.
  masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
      masm->pc_offset());

  __ Bind(&post_instantiation_deopt_entry);

  // Restore new target from the top of the stack.
  __ Peek(x3, 0 * kSystemPointerSize);

  // Restore constructor function and argument count.
  __ Ldr(x1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
  __ SmiUntag(x12, MemOperand(fp, ConstructFrameConstants::kLengthOffset));

  // Copy arguments to the expression stack. The called function pops the
  // receiver along with its arguments, so we need an extra receiver on the
  // stack, in case we have to return it later.

  // Overwrite the new target with a receiver.
  __ Poke(x0, 0);

  // Push two further copies of the receiver. One will be popped by the called
  // function. The second acts as padding if the number of arguments plus
  // receiver is odd - pushing receiver twice avoids branching. It also means
  // that we don't have to handle the even and odd cases specially on
  // InvokeFunction's return, as top of stack will be the receiver in either
  // case.
  __ Push(x0, x0);

  // ----------- S t a t e -------------
  //  --                              x3: new target
  //  --                             x12: number of arguments (untagged)
  //  --        sp[0*kSystemPointerSize]: implicit receiver (overwrite if argc
  //  odd)
  //  --        sp[1*kSystemPointerSize]: implicit receiver
  //  --        sp[2*kSystemPointerSize]: implicit receiver
  //  --        sp[3*kSystemPointerSize]: padding
  //  -- x1 and sp[4*kSystemPointerSize]: constructor function
  //  --        sp[5*kSystemPointerSize]: number of arguments (tagged)
  //  --        sp[6*kSystemPointerSize]: context
  // -----------------------------------

  // Round the number of arguments down to the next even number, and claim
  // slots for the arguments. If the number of arguments was odd, the last
  // argument will overwrite one of the receivers pushed above.
  Register argc_without_receiver = x11;
  __ Sub(argc_without_receiver, x12, kJSArgcReceiverSlots);
  __ Bic(x10, x12, 1);

  // Check if we have enough stack space to push all arguments.
  Label stack_overflow;
  __ StackOverflowCheck(x10, &stack_overflow);
  __ Claim(x10);

  // TODO(victorgomes): When the arguments adaptor is completely removed, we
  // should get the formal parameter count and copy the arguments in its
  // correct position (including any undefined), instead of delaying this to
  // InvokeFunction.

  // Copy the arguments.
  {
    Register count = x2;
    Register dst = x10;
    Register src = x11;
    __ Mov(count, argc_without_receiver);
    __ Poke(x0, 0);          // Add the receiver.
    __ SlotAddress(dst, 1);  // Skip receiver.
    __ Add(src, fp,
           StandardFrameConstants::kCallerSPOffset + kSystemPointerSize);
    __ CopyDoubleWords(dst, src, count);
  }

  // Call the function.
  __ Mov(x0, x12);
  __ InvokeFunctionWithNewTarget(x1, x3, x0, InvokeType::kCall);

  // ----------- S t a t e -------------
  //  -- sp[0*kSystemPointerSize]: implicit receiver
  //  -- sp[1*kSystemPointerSize]: padding
  //  -- sp[2*kSystemPointerSize]: constructor function
  //  -- sp[3*kSystemPointerSize]: number of arguments
  //  -- sp[4*kSystemPointerSize]: context
  // -----------------------------------

  // Store offset of return address for deoptimizer.
  masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
      masm->pc_offset());

  // If the result is an object (in the ECMA sense), we should get rid
  // of the receiver and use the result; see ECMA-262 section 13.2.2-7
  // on page 74.
  Label use_receiver, do_throw, leave_and_return, check_receiver;

  // If the result is undefined, we jump out to using the implicit receiver.
  __ CompareRoot(x0, RootIndex::kUndefinedValue);
  __ B(ne, &check_receiver);

  // Throw away the result of the constructor invocation and use the
  // on-stack receiver as the result.
  __ Bind(&use_receiver);
  __ Peek(x0, 0 * kSystemPointerSize);
  __ CompareRoot(x0, RootIndex::kTheHoleValue);
  __ B(eq, &do_throw);

  __ Bind(&leave_and_return);
  // Restore smi-tagged arguments count from the frame.
  __ SmiUntag(x1, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
  // Leave construct frame.
  __ LeaveFrame(StackFrame::CONSTRUCT);
  // Remove caller arguments from the stack and return.
  __ DropArguments(x1, TurboAssembler::kCountIncludesReceiver);
  __ Ret();

  // Otherwise we do a smi check and fall through to check if the return value
  // is a valid receiver.
  __ bind(&check_receiver);

  // If the result is a smi, it is *not* an object in the ECMA sense.
  __ JumpIfSmi(x0, &use_receiver);

  // If the type of the result (stored in its map) is less than
  // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
  static_assert(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
  __ JumpIfObjectType(x0, x4, x5, FIRST_JS_RECEIVER_TYPE, &leave_and_return,
                      ge);
  __ B(&use_receiver);

  __ Bind(&do_throw);
  // Restore the context from the frame.
  __ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
  __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
  __ Unreachable();

  __ Bind(&stack_overflow);
  // Restore the context from the frame.
  __ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
  __ CallRuntime(Runtime::kThrowStackOverflow);
  __ Unreachable();
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
  Generate_JSBuiltinsConstructStubHelper(masm);
}

void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
  FrameScope scope(masm, StackFrame::INTERNAL);
  __ PushArgument(x1);
  __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
  __ Unreachable();
}

static void AssertCodeTIsBaselineAllowClobber(MacroAssembler* masm,
                                              Register code, Register scratch) {
  // Verify that the code kind is baseline code via the CodeKind.
  __ Ldr(scratch, FieldMemOperand(code, CodeT::kFlagsOffset));
  __ DecodeField<CodeT::KindField>(scratch);
  __ Cmp(scratch, Operand(static_cast<int>(CodeKind::BASELINE)));
  __ Assert(eq, AbortReason::kExpectedBaselineData);
}

static void AssertCodeTIsBaseline(MacroAssembler* masm, Register code,
                                  Register scratch) {
  DCHECK(!AreAliased(code, scratch));
  return AssertCodeTIsBaselineAllowClobber(masm, code, scratch);
}

// TODO(v8:11429): Add a path for "not_compiled" and unify the two uses under
// the more general dispatch.
static void GetSharedFunctionInfoBytecodeOrBaseline(MacroAssembler* masm,
                                                    Register sfi_data,
                                                    Register scratch1,
                                                    Label* is_baseline) {
  ASM_CODE_COMMENT(masm);
  Label done;
  __ CompareObjectType(sfi_data, scratch1, scratch1, CODET_TYPE);
  if (v8_flags.debug_code) {
    Label not_baseline;
    __ B(ne, &not_baseline);
    AssertCodeTIsBaseline(masm, sfi_data, scratch1);
    __ B(eq, is_baseline);
    __ Bind(&not_baseline);
  } else {
    __ B(eq, is_baseline);
  }
  __ Cmp(scratch1, INTERPRETER_DATA_TYPE);
  __ B(ne, &done);
  __ LoadTaggedPointerField(
      sfi_data,
      FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
  __ Bind(&done);
}

// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- x0 : the value to pass to the generator
  //  -- x1 : the JSGeneratorObject to resume
  //  -- lr : return address
  // -----------------------------------

  // Store input value into generator object.
  __ StoreTaggedField(
      x0, FieldMemOperand(x1, JSGeneratorObject::kInputOrDebugPosOffset));
  __ RecordWriteField(x1, JSGeneratorObject::kInputOrDebugPosOffset, x0,
                      kLRHasNotBeenSaved, SaveFPRegsMode::kIgnore);
  // Check that x1 is still valid, RecordWrite might have clobbered it.
  __ AssertGeneratorObject(x1);

  // Load suspended function and context.
  __ LoadTaggedPointerField(
      x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset));
  __ LoadTaggedPointerField(cp,
                            FieldMemOperand(x4, JSFunction::kContextOffset));

  // Flood function if we are stepping.
  Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
  Label stepping_prepared;
  ExternalReference debug_hook =
      ExternalReference::debug_hook_on_function_call_address(masm->isolate());
  __ Mov(x10, debug_hook);
  __ Ldrsb(x10, MemOperand(x10));
  __ CompareAndBranch(x10, Operand(0), ne, &prepare_step_in_if_stepping);

  // Flood function if we need to continue stepping in the suspended generator.
  ExternalReference debug_suspended_generator =
      ExternalReference::debug_suspended_generator_address(masm->isolate());
  __ Mov(x10, debug_suspended_generator);
  __ Ldr(x10, MemOperand(x10));
  __ CompareAndBranch(x10, Operand(x1), eq,
                      &prepare_step_in_suspended_generator);
  __ Bind(&stepping_prepared);

  // Check the stack for overflow. We are not trying to catch interruptions
  // (i.e. debug break and preemption) here, so check the "real stack limit".
  Label stack_overflow;
  __ LoadStackLimit(x10, StackLimitKind::kRealStackLimit);
  __ Cmp(sp, x10);
  __ B(lo, &stack_overflow);

  // Get number of arguments for generator function.
  __ LoadTaggedPointerField(
      x10, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
  __ Ldrh(w10, FieldMemOperand(
                   x10, SharedFunctionInfo::kFormalParameterCountOffset));

  __ Sub(x10, x10, kJSArgcReceiverSlots);
  // Claim slots for arguments and receiver (rounded up to a multiple of two).
  __ Add(x11, x10, 2);
  __ Bic(x11, x11, 1);
  __ Claim(x11);

  // Store padding (which might be replaced by the last argument).
  __ Sub(x11, x11, 1);
  __ Poke(padreg, Operand(x11, LSL, kSystemPointerSizeLog2));

  // Poke receiver into highest claimed slot.
  __ LoadTaggedPointerField(
      x5, FieldMemOperand(x1, JSGeneratorObject::kReceiverOffset));
  __ Poke(x5, __ ReceiverOperand(x10));

  // ----------- S t a t e -------------
  //  -- x1                       : the JSGeneratorObject to resume
  //  -- x4                       : generator function
  //  -- x10                      : argument count
  //  -- cp                       : generator context
  //  -- lr                       : return address
  //  -- sp[0 .. arg count]       : claimed for receiver and args
  // -----------------------------------

  // Copy the function arguments from the generator object's register file.
  __ LoadTaggedPointerField(
      x5,
      FieldMemOperand(x1, JSGeneratorObject::kParametersAndRegistersOffset));
  {
    Label loop, done;
    __ Cbz(x10, &done);
    __ SlotAddress(x12, x10);
    __ Add(x5, x5, Operand(x10, LSL, kTaggedSizeLog2));
    __ Add(x5, x5, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
    __ Bind(&loop);
    __ Sub(x10, x10, 1);
    __ LoadAnyTaggedField(x11, MemOperand(x5, -kTaggedSize, PreIndex));
    __ Str(x11, MemOperand(x12, -kSystemPointerSize, PostIndex));
    __ Cbnz(x10, &loop);
    __ Bind(&done);
  }

  // Underlying function needs to have bytecode available.
  if (v8_flags.debug_code) {
    Label is_baseline;
    __ LoadTaggedPointerField(
        x3, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
    __ LoadTaggedPointerField(
        x3, FieldMemOperand(x3, SharedFunctionInfo::kFunctionDataOffset));
    GetSharedFunctionInfoBytecodeOrBaseline(masm, x3, x0, &is_baseline);
    __ CompareObjectType(x3, x3, x3, BYTECODE_ARRAY_TYPE);
    __ Assert(eq, AbortReason::kMissingBytecodeArray);
    __ bind(&is_baseline);
  }

  // Resume (Ignition/TurboFan) generator object.
  {
    __ LoadTaggedPointerField(
        x0, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
    __ Ldrh(w0, FieldMemOperand(
                    x0, SharedFunctionInfo::kFormalParameterCountOffset));
    // We abuse new.target both to indicate that this is a resume call and to
    // pass in the generator object.  In ordinary calls, new.target is always
    // undefined because generator functions are non-constructable.
    __ Mov(x3, x1);
    __ Mov(x1, x4);
    static_assert(kJavaScriptCallCodeStartRegister == x2, "ABI mismatch");
    __ LoadTaggedPointerField(x2, FieldMemOperand(x1, JSFunction::kCodeOffset));
    __ JumpCodeTObject(x2);
  }

  __ Bind(&prepare_step_in_if_stepping);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    // Push hole as receiver since we do not use it for stepping.
    __ LoadRoot(x5, RootIndex::kTheHoleValue);
    __ Push(x1, padreg, x4, x5);
    __ CallRuntime(Runtime::kDebugOnFunctionCall);
    __ Pop(padreg, x1);
    __ LoadTaggedPointerField(
        x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset));
  }
  __ B(&stepping_prepared);

  __ Bind(&prepare_step_in_suspended_generator);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ Push(x1, padreg);
    __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
    __ Pop(padreg, x1);
    __ LoadTaggedPointerField(
        x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset));
  }
  __ B(&stepping_prepared);

  __ bind(&stack_overflow);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    __ Unreachable();  // This should be unreachable.
  }
}

namespace {

// Called with the native C calling convention. The corresponding function
// signature is either:
//
//   using JSEntryFunction = GeneratedCode<Address(
//       Address root_register_value, Address new_target, Address target,
//       Address receiver, intptr_t argc, Address** argv)>;
// or
//   using JSEntryFunction = GeneratedCode<Address(
//       Address root_register_value, MicrotaskQueue* microtask_queue)>;
//
// Input is either:
//   x0: root_register_value.
//   x1: new_target.
//   x2: target.
//   x3: receiver.
//   x4: argc.
//   x5: argv.
// or
//   x0: root_register_value.
//   x1: microtask_queue.
// Output:
//   x0: result.
void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
                             Builtin entry_trampoline) {
  Label invoke, handler_entry, exit;

  {
    NoRootArrayScope no_root_array(masm);

#if defined(V8_OS_WIN)
    // In order to allow Windows debugging tools to reconstruct a call stack, we
    // must generate information describing how to recover at least fp, sp, and
    // pc for the calling frame. Here, JSEntry registers offsets to
    // xdata_encoder which then emits the offset values as part of the unwind
    // data accordingly.
    win64_unwindinfo::XdataEncoder* xdata_encoder = masm->GetXdataEncoder();
    if (xdata_encoder) {
      xdata_encoder->onFramePointerAdjustment(
          EntryFrameConstants::kDirectCallerFPOffset,
          EntryFrameConstants::kDirectCallerSPOffset);
    }
#endif

    __ PushCalleeSavedRegisters();

    // Set up the reserved register for 0.0.
    __ Fmov(fp_zero, 0.0);

    // Initialize the root register.
    // C calling convention. The first argument is passed in x0.
    __ Mov(kRootRegister, x0);

#ifdef V8_COMPRESS_POINTERS_IN_SHARED_CAGE
    // Initialize the pointer cage base register.
    __ LoadRootRelative(kPtrComprCageBaseRegister,
                        IsolateData::cage_base_offset());
#endif
  }

  // Set up fp. It points to the {fp, lr} pair pushed as the last step in
  // PushCalleeSavedRegisters.
  static_assert(
      EntryFrameConstants::kCalleeSavedRegisterBytesPushedAfterFpLrPair == 0);
  static_assert(EntryFrameConstants::kOffsetToCalleeSavedRegisters == 0);
  __ Mov(fp, sp);

  // Build an entry frame (see layout below).

  // Push frame type markers.
  __ Mov(x12, StackFrame::TypeToMarker(type));
  __ Push(x12, xzr);

  __ Mov(x11, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
                                        masm->isolate()));
  __ Ldr(x10, MemOperand(x11));  // x10 = C entry FP.

  // Clear c_entry_fp, now we've loaded its value to be pushed on the stack.
  // If the c_entry_fp is not already zero and we don't clear it, the
  // SafeStackFrameIterator will assume we are executing C++ and miss the JS
  // frames on top.
  __ Str(xzr, MemOperand(x11));

  // Set js_entry_sp if this is the outermost JS call.
  Label done;
  ExternalReference js_entry_sp = ExternalReference::Create(
      IsolateAddressId::kJSEntrySPAddress, masm->isolate());
  __ Mov(x12, js_entry_sp);
  __ Ldr(x11, MemOperand(x12));  // x11 = previous JS entry SP.

  // Select between the inner and outermost frame marker, based on the JS entry
  // sp. We assert that the inner marker is zero, so we can use xzr to save a
  // move instruction.
  DCHECK_EQ(StackFrame::INNER_JSENTRY_FRAME, 0);
  __ Cmp(x11, 0);  // If x11 is zero, this is the outermost frame.
  // x11 = JS entry frame marker.
  __ Csel(x11, xzr, StackFrame::OUTERMOST_JSENTRY_FRAME, ne);
  __ B(ne, &done);
  __ Str(fp, MemOperand(x12));

  __ Bind(&done);

  __ Push(x10, x11);

  // The frame set up looks like this:
  // sp[0] : JS entry frame marker.
  // sp[1] : C entry FP.
  // sp[2] : stack frame marker (0).
  // sp[3] : stack frame marker (type).
  // sp[4] : saved fp   <- fp points here.
  // sp[5] : saved lr
  // sp[6,24) : other saved registers

  // Jump to a faked try block that does the invoke, with a faked catch
  // block that sets the pending exception.
  __ B(&invoke);

  // Prevent the constant pool from being emitted between the record of the
  // handler_entry position and the first instruction of the sequence here.
  // There is no risk because Assembler::Emit() emits the instruction before
  // checking for constant pool emission, but we do not want to depend on
  // that.
  {
    Assembler::BlockPoolsScope block_pools(masm);

    // Store the current pc as the handler offset. It's used later to create the
    // handler table.
    __ BindExceptionHandler(&handler_entry);
    masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());

    // Caught exception: Store result (exception) in the pending exception
    // field in the JSEnv and return a failure sentinel. Coming in here the
    // fp will be invalid because UnwindAndFindHandler sets it to 0 to
    // signal the existence of the JSEntry frame.
    __ Mov(x10,
           ExternalReference::Create(IsolateAddressId::kPendingExceptionAddress,
                                     masm->isolate()));
  }
  __ Str(x0, MemOperand(x10));
  __ LoadRoot(x0, RootIndex::kException);
  __ B(&exit);

  // Invoke: Link this frame into the handler chain.
  __ Bind(&invoke);

  // Push new stack handler.
  static_assert(StackHandlerConstants::kSize == 2 * kSystemPointerSize,
                "Unexpected offset for StackHandlerConstants::kSize");
  static_assert(StackHandlerConstants::kNextOffset == 0 * kSystemPointerSize,
                "Unexpected offset for StackHandlerConstants::kNextOffset");

  // Link the current handler as the next handler.
  __ Mov(x11, ExternalReference::Create(IsolateAddressId::kHandlerAddress,
                                        masm->isolate()));
  __ Ldr(x10, MemOperand(x11));
  __ Push(padreg, x10);

  // Set this new handler as the current one.
  {
    UseScratchRegisterScope temps(masm);
    Register scratch = temps.AcquireX();
    __ Mov(scratch, sp);
    __ Str(scratch, MemOperand(x11));
  }

  // If an exception not caught by another handler occurs, this handler
  // returns control to the code after the B(&invoke) above, which
  // restores all callee-saved registers (including cp and fp) to their
  // saved values before returning a failure to C.
  //
  // Invoke the function by calling through JS entry trampoline builtin and
  // pop the faked function when we return.
  Handle<CodeT> trampoline_code =
      masm->isolate()->builtins()->code_handle(entry_trampoline);
  __ Call(trampoline_code, RelocInfo::CODE_TARGET);

  // Pop the stack handler and unlink this frame from the handler chain.
  static_assert(StackHandlerConstants::kNextOffset == 0 * kSystemPointerSize,
                "Unexpected offset for StackHandlerConstants::kNextOffset");
  __ Pop(x10, padreg);
  __ Mov(x11, ExternalReference::Create(IsolateAddressId::kHandlerAddress,
                                        masm->isolate()));
  __ Drop(StackHandlerConstants::kSlotCount - 2);
  __ Str(x10, MemOperand(x11));

  __ Bind(&exit);
  // x0 holds the result.
  // The stack pointer points to the top of the entry frame pushed on entry from
  // C++ (at the beginning of this stub):
  // sp[0] : JS entry frame marker.
  // sp[1] : C entry FP.
  // sp[2] : stack frame marker (0).
  // sp[3] : stack frame marker (type).
  // sp[4] : saved fp   <- fp might point here, or might be zero.
  // sp[5] : saved lr
  // sp[6,24) : other saved registers

  // Check if the current stack frame is marked as the outermost JS frame.
  Label non_outermost_js_2;
  {
    Register c_entry_fp = x11;
    __ PeekPair(x10, c_entry_fp, 0);
    __ Cmp(x10, StackFrame::OUTERMOST_JSENTRY_FRAME);
    __ B(ne, &non_outermost_js_2);
    __ Mov(x12, js_entry_sp);
    __ Str(xzr, MemOperand(x12));
    __ Bind(&non_outermost_js_2);

    // Restore the top frame descriptors from the stack.
    __ Mov(x12, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
                                          masm->isolate()));
    __ Str(c_entry_fp, MemOperand(x12));
  }

  // Reset the stack to the callee saved registers.
  static_assert(
      EntryFrameConstants::kFixedFrameSize % (2 * kSystemPointerSize) == 0,
      "Size of entry frame is not a multiple of 16 bytes");
  __ Drop(EntryFrameConstants::kFixedFrameSize / kSystemPointerSize);
  // Restore the callee-saved registers and return.
  __ PopCalleeSavedRegisters();
  __ Ret();
}

}  // namespace

void Builtins::Generate_JSEntry(MacroAssembler* masm) {
  Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtin::kJSEntryTrampoline);
}

void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
  Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
                          Builtin::kJSConstructEntryTrampoline);
}

void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
  Generate_JSEntryVariant(masm, StackFrame::ENTRY,
                          Builtin::kRunMicrotasksTrampoline);
}

// Input:
//   x1: new.target.
//   x2: function.
//   x3: receiver.
//   x4: argc.
//   x5: argv.
// Output:
//   x0: result.
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
                                             bool is_construct) {
  Register new_target = x1;
  Register function = x2;
  Register receiver = x3;
  Register argc = x4;
  Register argv = x5;
  Register scratch = x10;
  Register slots_to_claim = x11;

  {
    // Enter an internal frame.
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Setup the context (we need to use the caller context from the isolate).
    __ Mov(scratch, ExternalReference::Create(IsolateAddressId::kContextAddress,
                                              masm->isolate()));
    __ Ldr(cp, MemOperand(scratch));

    // Claim enough space for the arguments and the function, including an
    // optional slot of padding.
    constexpr int additional_slots = 2;
    __ Add(slots_to_claim, argc, additional_slots);
    __ Bic(slots_to_claim, slots_to_claim, 1);

    // Check if we have enough stack space to push all arguments.
    Label enough_stack_space, stack_overflow;
    __ StackOverflowCheck(slots_to_claim, &stack_overflow);
    __ B(&enough_stack_space);

    __ Bind(&stack_overflow);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    __ Unreachable();

    __ Bind(&enough_stack_space);
    __ Claim(slots_to_claim);

    // Store padding (which might be overwritten).
    __ SlotAddress(scratch, slots_to_claim);
    __ Str(padreg, MemOperand(scratch, -kSystemPointerSize));

    // Store receiver on the stack.
    __ Poke(receiver, 0);
    // Store function on the stack.
    __ SlotAddress(scratch, argc);
    __ Str(function, MemOperand(scratch));

    // Copy arguments to the stack in a loop, in reverse order.
    // x4: argc.
    // x5: argv.
    Label loop, done;

    // Skip the argument set up if we have no arguments.
    __ Cmp(argc, JSParameterCount(0));
    __ B(eq, &done);

    // scratch has been set to point to the location of the function, which
    // marks the end of the argument copy.
    __ SlotAddress(x0, 1);  // Skips receiver.
    __ Bind(&loop);
    // Load the handle.
    __ Ldr(x11, MemOperand(argv, kSystemPointerSize, PostIndex));
    // Dereference the handle.
    __ Ldr(x11, MemOperand(x11));
    // Poke the result into the stack.
    __ Str(x11, MemOperand(x0, kSystemPointerSize, PostIndex));
    // Loop if we've not reached the end of copy marker.
    __ Cmp(x0, scratch);
    __ B(lt, &loop);

    __ Bind(&done);

    __ Mov(x0, argc);
    __ Mov(x3, new_target);
    __ Mov(x1, function);
    // x0: argc.
    // x1: function.
    // x3: new.target.

    // Initialize all JavaScript callee-saved registers, since they will be seen
    // by the garbage collector as part of handlers.
    // The original values have been saved in JSEntry.
    __ LoadRoot(x19, RootIndex::kUndefinedValue);
    __ Mov(x20, x19);
    __ Mov(x21, x19);
    __ Mov(x22, x19);
    __ Mov(x23, x19);
    __ Mov(x24, x19);
    __ Mov(x25, x19);
#ifndef V8_COMPRESS_POINTERS_IN_SHARED_CAGE
    __ Mov(x28, x19);
#endif
    // Don't initialize the reserved registers.
    // x26 : root register (kRootRegister).
    // x27 : context pointer (cp).
    // x28 : pointer cage base register (kPtrComprCageBaseRegister).
    // x29 : frame pointer (fp).

    Handle<CodeT> builtin = is_construct
                                ? BUILTIN_CODE(masm->isolate(), Construct)
                                : masm->isolate()->builtins()->Call();
    __ Call(builtin, RelocInfo::CODE_TARGET);

    // Exit the JS internal frame and remove the parameters (except function),
    // and return.
  }

  // Result is in x0. Return.
  __ Ret();
}

void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, false);
}

void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, true);
}

void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
  // This expects two C++ function parameters passed by Invoke() in
  // execution.cc.
  //   x0: root_register_value
  //   x1: microtask_queue

  __ Mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(), x1);
  __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
}

static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
                                  Register scratch2) {
  ASM_CODE_COMMENT(masm);
  Register params_size = scratch1;
  // Get the size of the formal parameters + receiver (in bytes).
  __ Ldr(params_size,
         MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ Ldr(params_size.W(),
         FieldMemOperand(params_size, BytecodeArray::kParameterSizeOffset));

  Register actual_params_size = scratch2;
  // Compute the size of the actual parameters + receiver (in bytes).
  __ Ldr(actual_params_size,
         MemOperand(fp, StandardFrameConstants::kArgCOffset));
  __ lsl(actual_params_size, actual_params_size, kSystemPointerSizeLog2);

  // If actual is bigger than formal, then we should use it to free up the stack
  // arguments.
  Label corrected_args_count;
  __ Cmp(params_size, actual_params_size);
  __ B(ge, &corrected_args_count);
  __ Mov(params_size, actual_params_size);
  __ Bind(&corrected_args_count);

  // Leave the frame (also dropping the register file).
  __ LeaveFrame(StackFrame::INTERPRETED);

  // Drop receiver + arguments.
  if (v8_flags.debug_code) {
    __ Tst(params_size, kSystemPointerSize - 1);
    __ Check(eq, AbortReason::kUnexpectedValue);
  }
  __ Lsr(params_size, params_size, kSystemPointerSizeLog2);
  __ DropArguments(params_size);
}

// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode. Will not advance
// the bytecode offset if the current bytecode is a JumpLoop, instead just
// re-executing the JumpLoop to jump to the correct bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
                                          Register bytecode_array,
                                          Register bytecode_offset,
                                          Register bytecode, Register scratch1,
                                          Register scratch2, Label* if_return) {
  ASM_CODE_COMMENT(masm);
  Register bytecode_size_table = scratch1;

  // The bytecode offset value will be increased by one in wide and extra wide
  // cases. In the case of having a wide or extra wide JumpLoop bytecode, we
  // will restore the original bytecode. In order to simplify the code, we have
  // a backup of it.
  Register original_bytecode_offset = scratch2;
  DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
                     bytecode, original_bytecode_offset));

  __ Mov(bytecode_size_table, ExternalReference::bytecode_size_table_address());
  __ Mov(original_bytecode_offset, bytecode_offset);

  // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
  Label process_bytecode, extra_wide;
  static_assert(0 == static_cast<int>(interpreter::Bytecode::kWide));
  static_assert(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
  static_assert(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
  static_assert(3 ==
                static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
  __ Cmp(bytecode, Operand(0x3));
  __ B(hi, &process_bytecode);
  __ Tst(bytecode, Operand(0x1));
  // The code to load the next bytecode is common to both wide and extra wide.
  // We can hoist them up here since they do not modify the flags after Tst.
  __ Add(bytecode_offset, bytecode_offset, Operand(1));
  __ Ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset));
  __ B(ne, &extra_wide);

  // Update table to the wide scaled table.
  __ Add(bytecode_size_table, bytecode_size_table,
         Operand(kByteSize * interpreter::Bytecodes::kBytecodeCount));
  __ B(&process_bytecode);

  __ Bind(&extra_wide);
  // Update table to the extra wide scaled table.
  __ Add(bytecode_size_table, bytecode_size_table,
         Operand(2 * kByteSize * interpreter::Bytecodes::kBytecodeCount));

  __ Bind(&process_bytecode);

// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME)                                              \
  __ Cmp(x1, Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \
  __ B(if_return, eq);
  RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL

  // If this is a JumpLoop, re-execute it to perform the jump to the beginning
  // of the loop.
  Label end, not_jump_loop;
  __ Cmp(bytecode, Operand(static_cast<int>(interpreter::Bytecode::kJumpLoop)));
  __ B(ne, &not_jump_loop);
  // We need to restore the original bytecode_offset since we might have
  // increased it to skip the wide / extra-wide prefix bytecode.
  __ Mov(bytecode_offset, original_bytecode_offset);
  __ B(&end);

  __ bind(&not_jump_loop);
  // Otherwise, load the size of the current bytecode and advance the offset.
  __ Ldrb(scratch1.W(), MemOperand(bytecode_size_table, bytecode));
  __ Add(bytecode_offset, bytecode_offset, scratch1);

  __ Bind(&end);
}

namespace {

void ResetBytecodeAge(MacroAssembler* masm, Register bytecode_array) {
  __ Strh(wzr,
          FieldMemOperand(bytecode_array, BytecodeArray::kBytecodeAgeOffset));
}

void ResetFeedbackVectorOsrUrgency(MacroAssembler* masm,
                                   Register feedback_vector, Register scratch) {
  DCHECK(!AreAliased(feedback_vector, scratch));
  __ Ldrb(scratch,
          FieldMemOperand(feedback_vector, FeedbackVector::kOsrStateOffset));
  __ And(scratch, scratch,
         Operand(FeedbackVector::MaybeHasOptimizedOsrCodeBit::kMask));
  __ Strb(scratch,
          FieldMemOperand(feedback_vector, FeedbackVector::kOsrStateOffset));
}

}  // namespace

// static
void Builtins::Generate_BaselineOutOfLinePrologue(MacroAssembler* masm) {
  UseScratchRegisterScope temps(masm);
  // Need a few extra registers
  temps.Include(x14, x15);

  auto descriptor =
      Builtins::CallInterfaceDescriptorFor(Builtin::kBaselineOutOfLinePrologue);
  Register closure = descriptor.GetRegisterParameter(
      BaselineOutOfLinePrologueDescriptor::kClosure);
  // Load the feedback vector from the closure.
  Register feedback_vector = temps.AcquireX();
  __ LoadTaggedPointerField(
      feedback_vector,
      FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
  __ LoadTaggedPointerField(
      feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
  __ AssertFeedbackVector(feedback_vector, x4);

  // Check the tiering state.
  Label flags_need_processing;
  Register flags = temps.AcquireW();
  __ LoadFeedbackVectorFlagsAndJumpIfNeedsProcessing(
      flags, feedback_vector, CodeKind::BASELINE, &flags_need_processing);

  {
    UseScratchRegisterScope temps(masm);
    ResetFeedbackVectorOsrUrgency(masm, feedback_vector, temps.AcquireW());
  }

  // Increment invocation count for the function.
  {
    UseScratchRegisterScope temps(masm);
    Register invocation_count = temps.AcquireW();
    __ Ldr(invocation_count,
           FieldMemOperand(feedback_vector,
                           FeedbackVector::kInvocationCountOffset));
    __ Add(invocation_count, invocation_count, Operand(1));
    __ Str(invocation_count,
           FieldMemOperand(feedback_vector,
                           FeedbackVector::kInvocationCountOffset));
  }

  FrameScope frame_scope(masm, StackFrame::MANUAL);
  {
    ASM_CODE_COMMENT_STRING(masm, "Frame Setup");
    // Normally the first thing we'd do here is Push(lr, fp), but we already
    // entered the frame in BaselineCompiler::Prologue, as we had to use the
    // value lr before the call to this BaselineOutOfLinePrologue builtin.

    Register callee_context = descriptor.GetRegisterParameter(
        BaselineOutOfLinePrologueDescriptor::kCalleeContext);
    Register callee_js_function = descriptor.GetRegisterParameter(
        BaselineOutOfLinePrologueDescriptor::kClosure);
    __ Push(callee_context, callee_js_function);
    DCHECK_EQ(callee_js_function, kJavaScriptCallTargetRegister);
    DCHECK_EQ(callee_js_function, kJSFunctionRegister);

    Register argc = descriptor.GetRegisterParameter(
        BaselineOutOfLinePrologueDescriptor::kJavaScriptCallArgCount);
    // We'll use the bytecode for both code age/OSR resetting, and pushing onto
    // the frame, so load it into a register.
    Register bytecode_array = descriptor.GetRegisterParameter(
        BaselineOutOfLinePrologueDescriptor::kInterpreterBytecodeArray);
    ResetBytecodeAge(masm, bytecode_array);
    __ Push(argc, bytecode_array);

    // Baseline code frames store the feedback vector where interpreter would
    // store the bytecode offset.
    __ AssertFeedbackVector(feedback_vector, x4);
    // Our stack is currently aligned. We have have to push something along with
    // the feedback vector to keep it that way -- we may as well start
    // initialising the register frame.
    __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
    __ Push(feedback_vector, kInterpreterAccumulatorRegister);
  }

  Label call_stack_guard;
  Register frame_size = descriptor.GetRegisterParameter(
      BaselineOutOfLinePrologueDescriptor::kStackFrameSize);
  {
    ASM_CODE_COMMENT_STRING(masm, "Stack/interrupt check");
    // Stack check. This folds the checks for both the interrupt stack limit
    // check and the real stack limit into one by just checking for the
    // interrupt limit. The interrupt limit is either equal to the real stack
    // limit or tighter. By ensuring we have space until that limit after
    // building the frame we can quickly precheck both at once.
    UseScratchRegisterScope temps(masm);

    Register sp_minus_frame_size = temps.AcquireX();
    __ Sub(sp_minus_frame_size, sp, frame_size);
    Register interrupt_limit = temps.AcquireX();
    __ LoadStackLimit(interrupt_limit, StackLimitKind::kInterruptStackLimit);
    __ Cmp(sp_minus_frame_size, interrupt_limit);
    __ B(lo, &call_stack_guard);
  }

  // Do "fast" return to the caller pc in lr.
  if (v8_flags.debug_code) {
    // The accumulator should already be "undefined", we don't have to load it.
    __ CompareRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
    __ Assert(eq, AbortReason::kUnexpectedValue);
  }
  __ Ret();

  __ bind(&flags_need_processing);
  {
    ASM_CODE_COMMENT_STRING(masm, "Optimized marker check");
    // Drop the frame created by the baseline call.
    __ Pop<TurboAssembler::kAuthLR>(fp, lr);
    __ OptimizeCodeOrTailCallOptimizedCodeSlot(flags, feedback_vector);
    __ Trap();
  }

  __ bind(&call_stack_guard);
  {
    ASM_CODE_COMMENT_STRING(masm, "Stack/interrupt call");
    Register new_target = descriptor.GetRegisterParameter(
        BaselineOutOfLinePrologueDescriptor::kJavaScriptCallNewTarget);

    FrameScope frame_scope(masm, StackFrame::INTERNAL);
    // Save incoming new target or generator
    __ Push(padreg, new_target);
    __ SmiTag(frame_size);
    __ PushArgument(frame_size);
    __ CallRuntime(Runtime::kStackGuardWithGap);
    __ Pop(new_target, padreg);
  }
  __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
  __ Ret();
}

// static
void Builtins::Generate_BaselineOutOfLinePrologueDeopt(MacroAssembler* masm) {
  // We're here because we got deopted during BaselineOutOfLinePrologue's stack
  // check. Undo all its frame creation and call into the interpreter instead.

  // Drop the accumulator register (we already started building the register
  // frame) and bytecode offset (was the feedback vector but got replaced
  // during deopt).
  __ Drop(2);

  // Bytecode array, argc, Closure, Context.
  __ Pop(padreg, kJavaScriptCallArgCountRegister, kJavaScriptCallTargetRegister,
         kContextRegister);

  // Drop frame pointer
  __ LeaveFrame(StackFrame::BASELINE);

  // Enter the interpreter.
  __ TailCallBuiltin(Builtin::kInterpreterEntryTrampoline);
}

// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right.
//
// The live registers are:
//   - x0: actual argument count
//   - x1: the JS function object being called.
//   - x3: the incoming new target or generator object
//   - cp: our context.
//   - fp: our caller's frame pointer.
//   - lr: return address.
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frame-constants.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(
    MacroAssembler* masm, InterpreterEntryTrampolineMode mode) {
  Register closure = x1;
  Register feedback_vector = x2;

  // Get the bytecode array from the function object and load it into
  // kInterpreterBytecodeArrayRegister.
  __ LoadTaggedPointerField(
      x4, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
  __ LoadTaggedPointerField(
      kInterpreterBytecodeArrayRegister,
      FieldMemOperand(x4, SharedFunctionInfo::kFunctionDataOffset));

  Label is_baseline;
  GetSharedFunctionInfoBytecodeOrBaseline(
      masm, kInterpreterBytecodeArrayRegister, x11, &is_baseline);

  // The bytecode array could have been flushed from the shared function info,
  // if so, call into CompileLazy.
  Label compile_lazy;
  __ CompareObjectType(kInterpreterBytecodeArrayRegister, x4, x4,
                       BYTECODE_ARRAY_TYPE);
  __ B(ne, &compile_lazy);

  // Load the feedback vector from the closure.
  __ LoadTaggedPointerField(
      feedback_vector,
      FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
  __ LoadTaggedPointerField(
      feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));

  Label push_stack_frame;
  // Check if feedback vector is valid. If valid, check for optimized code
  // and update invocation count. Otherwise, setup the stack frame.
  __ LoadTaggedPointerField(
      x7, FieldMemOperand(feedback_vector, HeapObject::kMapOffset));
  __ Ldrh(x7, FieldMemOperand(x7, Map::kInstanceTypeOffset));
  __ Cmp(x7, FEEDBACK_VECTOR_TYPE);
  __ B(ne, &push_stack_frame);

  // Check the tiering state.
  Label flags_need_processing;
  Register flags = w7;
  __ LoadFeedbackVectorFlagsAndJumpIfNeedsProcessing(
      flags, feedback_vector, CodeKind::INTERPRETED_FUNCTION,
      &flags_need_processing);

  {
    UseScratchRegisterScope temps(masm);
    ResetFeedbackVectorOsrUrgency(masm, feedback_vector, temps.AcquireW());
  }

  Label not_optimized;
  __ bind(&not_optimized);

  // Increment invocation count for the function.
  __ Ldr(w10, FieldMemOperand(feedback_vector,
                              FeedbackVector::kInvocationCountOffset));
  __ Add(w10, w10, Operand(1));
  __ Str(w10, FieldMemOperand(feedback_vector,
                              FeedbackVector::kInvocationCountOffset));

  // Open a frame scope to indicate that there is a frame on the stack.  The
  // MANUAL indicates that the scope shouldn't actually generate code to set up
  // the frame (that is done below).
  __ Bind(&push_stack_frame);
  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ Push<TurboAssembler::kSignLR>(lr, fp);
  __ mov(fp, sp);
  __ Push(cp, closure);

  ResetBytecodeAge(masm, kInterpreterBytecodeArrayRegister);

  // Load the initial bytecode offset.
  __ Mov(kInterpreterBytecodeOffsetRegister,
         Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));

  // Push actual argument count, bytecode array, Smi tagged bytecode array
  // offset and an undefined (to properly align the stack pointer).
  static_assert(TurboAssembler::kExtraSlotClaimedByPrologue == 1);
  __ SmiTag(x6, kInterpreterBytecodeOffsetRegister);
  __ Push(kJavaScriptCallArgCountRegister, kInterpreterBytecodeArrayRegister);
  __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
  __ Push(x6, kInterpreterAccumulatorRegister);

  // Allocate the local and temporary register file on the stack.
  Label stack_overflow;
  {
    // Load frame size from the BytecodeArray object.
    __ Ldr(w11, FieldMemOperand(kInterpreterBytecodeArrayRegister,
                                BytecodeArray::kFrameSizeOffset));

    // Do a stack check to ensure we don't go over the limit.
    __ Sub(x10, sp, Operand(x11));
    {
      UseScratchRegisterScope temps(masm);
      Register scratch = temps.AcquireX();
      __ LoadStackLimit(scratch, StackLimitKind::kRealStackLimit);
      __ Cmp(x10, scratch);
    }
    __ B(lo, &stack_overflow);

    // If ok, push undefined as the initial value for all register file entries.
    // Note: there should always be at least one stack slot for the return
    // register in the register file.
    Label loop_header;
    __ Lsr(x11, x11, kSystemPointerSizeLog2);
    // Round down (since we already have an undefined in the stack) the number
    // of registers to a multiple of 2, to align the stack to 16 bytes.
    __ Bic(x11, x11, 1);
    __ PushMultipleTimes(kInterpreterAccumulatorRegister, x11);
    __ Bind(&loop_header);
  }

  // If the bytecode array has a valid incoming new target or generator object
  // register, initialize it with incoming value which was passed in x3.
  Label no_incoming_new_target_or_generator_register;
  __ Ldrsw(x10,
           FieldMemOperand(
               kInterpreterBytecodeArrayRegister,
               BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
  __ Cbz(x10, &no_incoming_new_target_or_generator_register);
  __ Str(x3, MemOperand(fp, x10, LSL, kSystemPointerSizeLog2));
  __ Bind(&no_incoming_new_target_or_generator_register);

  // Perform interrupt stack check.
  // TODO(solanes): Merge with the real stack limit check above.
  Label stack_check_interrupt, after_stack_check_interrupt;
  __ LoadStackLimit(x10, StackLimitKind::kInterruptStackLimit);
  __ Cmp(sp, x10);
  __ B(lo, &stack_check_interrupt);
  __ Bind(&after_stack_check_interrupt);

  // The accumulator is already loaded with undefined.

  // Load the dispatch table into a register and dispatch to the bytecode
  // handler at the current bytecode offset.
  Label do_dispatch;
  __ bind(&do_dispatch);
  __ Mov(
      kInterpreterDispatchTableRegister,
      ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
  __ Ldrb(x23, MemOperand(kInterpreterBytecodeArrayRegister,
                          kInterpreterBytecodeOffsetRegister));
  __ Mov(x1, Operand(x23, LSL, kSystemPointerSizeLog2));
  __ Ldr(kJavaScriptCallCodeStartRegister,
         MemOperand(kInterpreterDispatchTableRegister, x1));
  __ Call(kJavaScriptCallCodeStartRegister);

  __ RecordComment("--- InterpreterEntryReturnPC point ---");
  if (mode == InterpreterEntryTrampolineMode::kDefault) {
    masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(
        masm->pc_offset());
  } else {
    DCHECK_EQ(mode, InterpreterEntryTrampolineMode::kForProfiling);
    // Both versions must be the same up to this point otherwise the builtins
    // will not be interchangable.
    CHECK_EQ(
        masm->isolate()->heap()->interpreter_entry_return_pc_offset().value(),
        masm->pc_offset());
  }

  // Any returns to the entry trampoline are either due to the return bytecode
  // or the interpreter tail calling a builtin and then a dispatch.

  __ JumpTarget();

  // Get bytecode array and bytecode offset from the stack frame.
  __ Ldr(kInterpreterBytecodeArrayRegister,
         MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ SmiUntag(kInterpreterBytecodeOffsetRegister,
              MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));

  // Either return, or advance to the next bytecode and dispatch.
  Label do_return;
  __ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister,
                         kInterpreterBytecodeOffsetRegister));
  AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
                                kInterpreterBytecodeOffsetRegister, x1, x2, x3,
                                &do_return);
  __ B(&do_dispatch);

  __ bind(&do_return);
  // The return value is in x0.
  LeaveInterpreterFrame(masm, x2, x4);
  __ Ret();

  __ bind(&stack_check_interrupt);
  // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset
  // for the call to the StackGuard.
  __ Mov(kInterpreterBytecodeOffsetRegister,
         Operand(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag +
                              kFunctionEntryBytecodeOffset)));
  __ Str(kInterpreterBytecodeOffsetRegister,
         MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  __ CallRuntime(Runtime::kStackGuard);

  // After the call, restore the bytecode array, bytecode offset and accumulator
  // registers again. Also, restore the bytecode offset in the stack to its
  // previous value.
  __ Ldr(kInterpreterBytecodeArrayRegister,
         MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ Mov(kInterpreterBytecodeOffsetRegister,
         Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
  __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);

  __ SmiTag(x10, kInterpreterBytecodeOffsetRegister);
  __ Str(x10, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));

  __ jmp(&after_stack_check_interrupt);

  __ bind(&flags_need_processing);
  __ OptimizeCodeOrTailCallOptimizedCodeSlot(flags, feedback_vector);

  __ bind(&is_baseline);
  {
    // Load the feedback vector from the closure.
    __ LoadTaggedPointerField(
        feedback_vector,
        FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
    __ LoadTaggedPointerField(
        feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));

    Label install_baseline_code;
    // Check if feedback vector is valid. If not, call prepare for baseline to
    // allocate it.
    __ LoadTaggedPointerField(
        x7, FieldMemOperand(feedback_vector, HeapObject::kMapOffset));
    __ Ldrh(x7, FieldMemOperand(x7, Map::kInstanceTypeOffset));
    __ Cmp(x7, FEEDBACK_VECTOR_TYPE);
    __ B(ne, &install_baseline_code);

    // Check the tiering state.
    __ LoadFeedbackVectorFlagsAndJumpIfNeedsProcessing(
        flags, feedback_vector, CodeKind::BASELINE, &flags_need_processing);

    // Load the baseline code into the closure.
    __ Move(x2, kInterpreterBytecodeArrayRegister);
    static_assert(kJavaScriptCallCodeStartRegister == x2, "ABI mismatch");
    __ ReplaceClosureCodeWithOptimizedCode(x2, closure);
    __ JumpCodeTObject(x2);

    __ bind(&install_baseline_code);
    __ GenerateTailCallToReturnedCode(Runtime::kInstallBaselineCode);
  }

  __ bind(&compile_lazy);
  __ GenerateTailCallToReturnedCode(Runtime::kCompileLazy);
  __ Unreachable();  // Should not return.

  __ bind(&stack_overflow);
  __ CallRuntime(Runtime::kThrowStackOverflow);
  __ Unreachable();  // Should not return.
}

static void GenerateInterpreterPushArgs(MacroAssembler* masm, Register num_args,
                                        Register first_arg_index,
                                        Register spread_arg_out,
                                        ConvertReceiverMode receiver_mode,
                                        InterpreterPushArgsMode mode) {
  ASM_CODE_COMMENT(masm);
  Register last_arg_addr = x10;
  Register stack_addr = x11;
  Register slots_to_claim = x12;
  Register slots_to_copy = x13;

  DCHECK(!AreAliased(num_args, first_arg_index, last_arg_addr, stack_addr,
                     slots_to_claim, slots_to_copy));
  // spread_arg_out may alias with the first_arg_index input.
  DCHECK(!AreAliased(spread_arg_out, last_arg_addr, stack_addr, slots_to_claim,
                     slots_to_copy));

  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // Exclude final spread from slots to claim and the number of arguments.
    __ Sub(num_args, num_args, 1);
  }

  // Round up to an even number of slots.
  __ Add(slots_to_claim, num_args, 1);
  __ Bic(slots_to_claim, slots_to_claim, 1);

  // Add a stack check before pushing arguments.
  Label stack_overflow, done;
  __ StackOverflowCheck(slots_to_claim, &stack_overflow);
  __ B(&done);
  __ Bind(&stack_overflow);
  __ TailCallRuntime(Runtime::kThrowStackOverflow);
  __ Unreachable();
  __ Bind(&done);

  __ Claim(slots_to_claim);

  {
    // Store padding, which may be overwritten.
    UseScratchRegisterScope temps(masm);
    Register scratch = temps.AcquireX();
    __ Sub(scratch, slots_to_claim, 1);
    __ Poke(padreg, Operand(scratch, LSL, kSystemPointerSizeLog2));
  }

  const bool skip_receiver =
      receiver_mode == ConvertReceiverMode::kNullOrUndefined;
  if (skip_receiver) {
    __ Sub(slots_to_copy, num_args, kJSArgcReceiverSlots);
  } else {
    __ Mov(slots_to_copy, num_args);
  }
  __ SlotAddress(stack_addr, skip_receiver ? 1 : 0);

  __ Sub(last_arg_addr, first_arg_index,
         Operand(slots_to_copy, LSL, kSystemPointerSizeLog2));
  __ Add(last_arg_addr, last_arg_addr, kSystemPointerSize);

  // Load the final spread argument into spread_arg_out, if necessary.
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    __ Ldr(spread_arg_out, MemOperand(last_arg_addr, -kSystemPointerSize));
  }

  __ CopyDoubleWords(stack_addr, last_arg_addr, slots_to_copy,
                     TurboAssembler::kDstLessThanSrcAndReverse);

  if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
    // Store "undefined" as the receiver arg if we need to.
    Register receiver = x14;
    __ LoadRoot(receiver, RootIndex::kUndefinedValue);
    __ Poke(receiver, 0);
  }
}

// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
    MacroAssembler* masm, ConvertReceiverMode receiver_mode,
    InterpreterPushArgsMode mode) {
  DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
  // ----------- S t a t e -------------
  //  -- x0 : the number of arguments
  //  -- x2 : the address of the first argument to be pushed. Subsequent
  //          arguments should be consecutive above this, in the same order as
  //          they are to be pushed onto the stack.
  //  -- x1 : the target to call (can be any Object).
  // -----------------------------------

  // Push the arguments. num_args may be updated according to mode.
  // spread_arg_out will be updated to contain the last spread argument, when
  // mode == InterpreterPushArgsMode::kWithFinalSpread.
  Register num_args = x0;
  Register first_arg_index = x2;
  Register spread_arg_out =
      (mode == InterpreterPushArgsMode::kWithFinalSpread) ? x2 : no_reg;
  GenerateInterpreterPushArgs(masm, num_args, first_arg_index, spread_arg_out,
                              receiver_mode, mode);

  // Call the target.
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
            RelocInfo::CODE_TARGET);
  } else {
    __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
            RelocInfo::CODE_TARGET);
  }
}

// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
    MacroAssembler* masm, InterpreterPushArgsMode mode) {
  // ----------- S t a t e -------------
  // -- x0 : argument count
  // -- x3 : new target
  // -- x1 : constructor to call
  // -- x2 : allocation site feedback if available, undefined otherwise
  // -- x4 : address of the first argument
  // -----------------------------------
  __ AssertUndefinedOrAllocationSite(x2);

  // Push the arguments. num_args may be updated according to mode.
  // spread_arg_out will be updated to contain the last spread argument, when
  // mode == InterpreterPushArgsMode::kWithFinalSpread.
  Register num_args = x0;
  Register first_arg_index = x4;
  Register spread_arg_out =
      (mode == InterpreterPushArgsMode::kWithFinalSpread) ? x2 : no_reg;
  GenerateInterpreterPushArgs(masm, num_args, first_arg_index, spread_arg_out,
                              ConvertReceiverMode::kNullOrUndefined, mode);

  if (mode == InterpreterPushArgsMode::kArrayFunction) {
    __ AssertFunction(x1);

    // Tail call to the array construct stub (still in the caller
    // context at this point).
    __ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl),
            RelocInfo::CODE_TARGET);
  } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // Call the constructor with x0, x1, and x3 unmodified.
    __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
            RelocInfo::CODE_TARGET);
  } else {
    DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
    // Call the constructor with x0, x1, and x3 unmodified.
    __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
  }
}

static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
  // Initialize the dispatch table register.
  __ Mov(
      kInterpreterDispatchTableRegister,
      ExternalReference::interpreter_dispatch_table_address(masm->isolate()));

  // Get the bytecode array pointer from the frame.
  __ Ldr(kInterpreterBytecodeArrayRegister,
         MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));

  if (v8_flags.debug_code) {
    // Check function data field is actually a BytecodeArray object.
    __ AssertNotSmi(
        kInterpreterBytecodeArrayRegister,
        AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
    __ CompareObjectType(kInterpreterBytecodeArrayRegister, x1, x1,
                         BYTECODE_ARRAY_TYPE);
    __ Assert(
        eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
  }

  // Get the target bytecode offset from the frame.
  __ SmiUntag(kInterpreterBytecodeOffsetRegister,
              MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));

  if (v8_flags.debug_code) {
    Label okay;
    __ cmp(kInterpreterBytecodeOffsetRegister,
           Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
    __ B(ge, &okay);
    __ Unreachable();
    __ bind(&okay);
  }

  // Set up LR to point to code below, so we return there after we're done
  // executing the function.
  Label return_from_bytecode_dispatch;
  __ Adr(lr, &return_from_bytecode_dispatch);

  // Dispatch to the target bytecode.
  __ Ldrb(x23, MemOperand(kInterpreterBytecodeArrayRegister,
                          kInterpreterBytecodeOffsetRegister));
  __ Mov(x1, Operand(x23, LSL, kSystemPointerSizeLog2));
  __ Ldr(kJavaScriptCallCodeStartRegister,
         MemOperand(kInterpreterDispatchTableRegister, x1));

  {
    UseScratchRegisterScope temps(masm);
    temps.Exclude(x17);
    __ Mov(x17, kJavaScriptCallCodeStartRegister);
    __ Jump(x17);
  }

  __ Bind(&return_from_bytecode_dispatch);

  // We return here after having executed the function in the interpreter.
  // Now jump to the correct point in the interpreter entry trampoline.
  Label builtin_trampoline, trampoline_loaded;
  Smi interpreter_entry_return_pc_offset(
      masm->isolate()->heap()->interpreter_entry_return_pc_offset());
  DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero());

  // If the SFI function_data is an InterpreterData, the function will have a
  // custom copy of the interpreter entry trampoline for profiling. If so,
  // get the custom trampoline, otherwise grab the entry address of the global
  // trampoline.
  __ Ldr(x1, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
  __ LoadTaggedPointerField(
      x1, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
  __ LoadTaggedPointerField(
      x1, FieldMemOperand(x1, SharedFunctionInfo::kFunctionDataOffset));
  __ CompareObjectType(x1, kInterpreterDispatchTableRegister,
                       kInterpreterDispatchTableRegister,
                       INTERPRETER_DATA_TYPE);
  __ B(ne, &builtin_trampoline);

  __ LoadTaggedPointerField(
      x1, FieldMemOperand(x1, InterpreterData::kInterpreterTrampolineOffset));
  __ LoadCodeTEntry(x1, x1);
  __ B(&trampoline_loaded);

  __ Bind(&builtin_trampoline);
  __ Mov(x1, ExternalReference::
                 address_of_interpreter_entry_trampoline_instruction_start(
                     masm->isolate()));
  __ Ldr(x1, MemOperand(x1));

  __ Bind(&trampoline_loaded);

  {
    UseScratchRegisterScope temps(masm);
    temps.Exclude(x17);
    __ Add(x17, x1, Operand(interpreter_entry_return_pc_offset.value()));
    __ Br(x17);
  }
}

void Builtins::Generate_InterpreterEnterAtNextBytecode(MacroAssembler* masm) {
  // Get bytecode array and bytecode offset from the stack frame.
  __ ldr(kInterpreterBytecodeArrayRegister,
         MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ SmiUntag(kInterpreterBytecodeOffsetRegister,
              MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));

  Label enter_bytecode, function_entry_bytecode;
  __ cmp(kInterpreterBytecodeOffsetRegister,
         Operand(BytecodeArray::kHeaderSize - kHeapObjectTag +
                 kFunctionEntryBytecodeOffset));
  __ B(eq, &function_entry_bytecode);

  // Load the current bytecode.
  __ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister,
                         kInterpreterBytecodeOffsetRegister));

  // Advance to the next bytecode.
  Label if_return;
  AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
                                kInterpreterBytecodeOffsetRegister, x1, x2, x3,
                                &if_return);

  __ bind(&enter_bytecode);
  // Convert new bytecode offset to a Smi and save in the stackframe.
  __ SmiTag(x2, kInterpreterBytecodeOffsetRegister);
  __ Str(x2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));

  Generate_InterpreterEnterBytecode(masm);

  __ bind(&function_entry_bytecode);
  // If the code deoptimizes during the implicit function entry stack interrupt
  // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
  // not a valid bytecode offset. Detect this case and advance to the first
  // actual bytecode.
  __ Mov(kInterpreterBytecodeOffsetRegister,
         Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
  __ B(&enter_bytecode);

  // We should never take the if_return path.
  __ bind(&if_return);
  __ Abort(AbortReason::kInvalidBytecodeAdvance);
}

void Builtins::Generate_InterpreterEnterAtBytecode(MacroAssembler* masm) {
  Generate_InterpreterEnterBytecode(masm);
}

namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
                                      bool java_script_builtin,
                                      bool with_result) {
  const RegisterConfiguration* config(RegisterConfiguration::Default());
  int allocatable_register_count = config->num_allocatable_general_registers();
  int frame_size = BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp +
                   (allocatable_register_count +
                    BuiltinContinuationFrameConstants::PaddingSlotCount(
                        allocatable_register_count)) *
                       kSystemPointerSize;

  UseScratchRegisterScope temps(masm);
  Register scratch = temps.AcquireX();  // Temp register is not allocatable.

  // Set up frame pointer.
  __ Add(fp, sp, frame_size);

  if (with_result) {
    if (java_script_builtin) {
      __ mov(scratch, x0);
    } else {
      // Overwrite the hole inserted by the deoptimizer with the return value
      // from the LAZY deopt point.
      __ Str(x0, MemOperand(
                     fp, BuiltinContinuationFrameConstants::kCallerSPOffset));
    }
  }

  // Restore registers in pairs.
  int offset = -BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp -
               allocatable_register_count * kSystemPointerSize;
  for (int i = allocatable_register_count - 1; i > 0; i -= 2) {
    int code1 = config->GetAllocatableGeneralCode(i);
    int code2 = config->GetAllocatableGeneralCode(i - 1);
    Register reg1 = Register::from_code(code1);
    Register reg2 = Register::from_code(code2);
    __ Ldp(reg1, reg2, MemOperand(fp, offset));
    offset += 2 * kSystemPointerSize;
  }

  // Restore first register separately, if number of registers is odd.
  if (allocatable_register_count % 2 != 0) {
    int code = config->GetAllocatableGeneralCode(0);
    __ Ldr(Register::from_code(code), MemOperand(fp, offset));
  }

  if (java_script_builtin) __ SmiUntag(kJavaScriptCallArgCountRegister);

  if (java_script_builtin && with_result) {
    // Overwrite the hole inserted by the deoptimizer with the return value from
    // the LAZY deopt point. x0 contains the arguments count, the return value
    // from LAZY is always the last argument.
    constexpr int return_offset =
        BuiltinContinuationFrameConstants::kCallerSPOffset /
            kSystemPointerSize -
        kJSArgcReceiverSlots;
    __ add(x0, x0, return_offset);
    __ Str(scratch, MemOperand(fp, x0, LSL, kSystemPointerSizeLog2));
    // Recover argument count.
    __ sub(x0, x0, return_offset);
  }

  // Load builtin index (stored as a Smi) and use it to get the builtin start
  // address from the builtins table.
  Register builtin = scratch;
  __ Ldr(
      builtin,
      MemOperand(fp, BuiltinContinuationFrameConstants::kBuiltinIndexOffset));

  // Restore fp, lr.
  __ Mov(sp, fp);
  __ Pop<TurboAssembler::kAuthLR>(fp, lr);

  __ LoadEntryFromBuiltinIndex(builtin);
  __ Jump(builtin);
}
}  // namespace

void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, false, false);
}

void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
    MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, false, true);
}

void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, true, false);
}

void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
    MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, true, true);
}

void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kNotifyDeoptimized);
  }

  // Pop TOS register and padding.
  DCHECK_EQ(kInterpreterAccumulatorRegister.code(), x0.code());
  __ Pop(x0, padreg);
  __ Ret();
}

namespace {

void Generate_OSREntry(MacroAssembler* masm, Register entry_address,
                       Operand offset = Operand(0)) {
  // Pop the return address to this function's caller from the return stack
  // buffer, since we'll never return to it.
  Label jump;
  __ Adr(lr, &jump);
  __ Ret();

  __ Bind(&jump);

  UseScratchRegisterScope temps(masm);
  temps.Exclude(x17);
  if (offset.IsZero()) {
    __ Mov(x17, entry_address);
  } else {
    __ Add(x17, entry_address, offset);
  }
  __ Br(x17);
}

enum class OsrSourceTier {
  kInterpreter,
  kBaseline,
};

void OnStackReplacement(MacroAssembler* masm, OsrSourceTier source,
                        Register maybe_target_code) {
  Label jump_to_optimized_code;
  {
    // If maybe_target_code is not null, no need to call into runtime. A
    // precondition here is: if maybe_target_code is a Code object, it must NOT
    // be marked_for_deoptimization (callers must ensure this).
    __ CompareTaggedAndBranch(x0, Smi::zero(), ne, &jump_to_optimized_code);
  }

  ASM_CODE_COMMENT(masm);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kCompileOptimizedOSR);
  }

  // If the code object is null, just return to the caller.
  __ CompareTaggedAndBranch(x0, Smi::zero(), ne, &jump_to_optimized_code);
  __ Ret();

  __ Bind(&jump_to_optimized_code);
  DCHECK_EQ(maybe_target_code, x0);  // Already in the right spot.

  // OSR entry tracing.
  {
    Label next;
    __ Mov(x1, ExternalReference::address_of_log_or_trace_osr());
    __ Ldrsb(x1, MemOperand(x1));
    __ Tst(x1, 0xFF);  // Mask to the LSB.
    __ B(eq, &next);

    {
      FrameScope scope(masm, StackFrame::INTERNAL);
      __ Push(x0, padreg);  // Preserve the code object.
      __ CallRuntime(Runtime::kLogOrTraceOptimizedOSREntry, 0);
      __ Pop(padreg, x0);
    }

    __ Bind(&next);
  }

  if (source == OsrSourceTier::kInterpreter) {
    // Drop the handler frame that is be sitting on top of the actual
    // JavaScript frame. This is the case then OSR is triggered from bytecode.
    __ LeaveFrame(StackFrame::STUB);
  }

  if (V8_EXTERNAL_CODE_SPACE_BOOL) {
    __ LoadCodeDataContainerCodeNonBuiltin(x0, x0);
  }

  // Load deoptimization data from the code object.
  // <deopt_data> = <code>[#deoptimization_data_offset]
  __ LoadTaggedPointerField(
      x1,
      FieldMemOperand(x0, Code::kDeoptimizationDataOrInterpreterDataOffset));

  // Load the OSR entrypoint offset from the deoptimization data.
  // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
  __ SmiUntagField(
      x1, FieldMemOperand(x1, FixedArray::OffsetOfElementAt(
                                  DeoptimizationData::kOsrPcOffsetIndex)));

  // Compute the target address = code_obj + header_size + osr_offset
  // <entry_addr> = <code_obj> + #header_size + <osr_offset>
  __ Add(x0, x0, x1);
  Generate_OSREntry(masm, x0, Code::kHeaderSize - kHeapObjectTag);
}

}  // namespace

void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
  using D = OnStackReplacementDescriptor;
  static_assert(D::kParameterCount == 1);
  OnStackReplacement(masm, OsrSourceTier::kInterpreter,
                     D::MaybeTargetCodeRegister());
}

void Builtins::Generate_BaselineOnStackReplacement(MacroAssembler* masm) {
  using D = OnStackReplacementDescriptor;
  static_assert(D::kParameterCount == 1);

  __ ldr(kContextRegister,
         MemOperand(fp, BaselineFrameConstants::kContextOffset));
  OnStackReplacement(masm, OsrSourceTier::kBaseline,
                     D::MaybeTargetCodeRegister());
}

// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- x0       : argc
  //  -- sp[0]    : receiver
  //  -- sp[8]    : thisArg  (if argc >= 1)
  //  -- sp[16]   : argArray (if argc == 2)
  // -----------------------------------

  ASM_LOCATION("Builtins::Generate_FunctionPrototypeApply");

  Register argc = x0;
  Register receiver = x1;
  Register arg_array = x2;
  Register this_arg = x3;
  Register undefined_value = x4;
  Register null_value = x5;

  __ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
  __ LoadRoot(null_value, RootIndex::kNullValue);

  // 1. Load receiver into x1, argArray into x2 (if present), remove all
  // arguments from the stack (including the receiver), and push thisArg (if
  // present) instead.
  {
    Label done;
    __ Mov(this_arg, undefined_value);
    __ Mov(arg_array, undefined_value);
    __ Peek(receiver, 0);
    __ Cmp(argc, Immediate(JSParameterCount(1)));
    __ B(lt, &done);
    __ Peek(this_arg, kSystemPointerSize);
    __ B(eq, &done);
    __ Peek(arg_array, 2 * kSystemPointerSize);
    __ bind(&done);
  }
  __ DropArguments(argc, TurboAssembler::kCountIncludesReceiver);
  __ PushArgument(this_arg);

  // ----------- S t a t e -------------
  //  -- x2      : argArray
  //  -- x1      : receiver
  //  -- sp[0]   : thisArg
  // -----------------------------------

  // 2. We don't need to check explicitly for callable receiver here,
  // since that's the first thing the Call/CallWithArrayLike builtins
  // will do.

  // 3. Tail call with no arguments if argArray is null or undefined.
  Label no_arguments;
  __ CmpTagged(arg_array, null_value);
  __ CcmpTagged(arg_array, undefined_value, ZFlag, ne);
  __ B(eq, &no_arguments);

  // 4a. Apply the receiver to the given argArray.
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
          RelocInfo::CODE_TARGET);

  // 4b. The argArray is either null or undefined, so we tail call without any
  // arguments to the receiver.
  __ Bind(&no_arguments);
  {
    __ Mov(x0, JSParameterCount(0));
    DCHECK_EQ(receiver, x1);
    __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
  }
}

// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
  Register argc = x0;
  Register function = x1;

  ASM_LOCATION("Builtins::Generate_FunctionPrototypeCall");

  // 1. Get the callable to call (passed as receiver) from the stack.
  __ Peek(function, __ ReceiverOperand(argc));

  // 2. Handle case with no arguments.
  {
    Label non_zero;
    Register scratch = x10;
    __ Cmp(argc, JSParameterCount(0));
    __ B(gt, &non_zero);
    __ LoadRoot(scratch, RootIndex::kUndefinedValue);
    // Overwrite receiver with undefined, which will be the new receiver.
    // We do not need to overwrite the padding slot above it with anything.
    __ Poke(scratch, 0);
    // Call function. The argument count is already zero.
    __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
    __ Bind(&non_zero);
  }

  Label arguments_ready;
  // 3. Shift arguments. It depends if the arguments is even or odd.
  // That is if padding exists or not.
  {
    Label even;
    Register copy_from = x10;
    Register copy_to = x11;
    Register count = x12;
    UseScratchRegisterScope temps(masm);
    Register argc_without_receiver = temps.AcquireX();
    __ Sub(argc_without_receiver, argc, kJSArgcReceiverSlots);

    // CopyDoubleWords changes the count argument.
    __ Mov(count, argc_without_receiver);
    __ Tbz(argc_without_receiver, 0, &even);

    // Shift arguments one slot down on the stack (overwriting the original
    // receiver).
    __ SlotAddress(copy_from, 1);
    __ Sub(copy_to, copy_from, kSystemPointerSize);
    __ CopyDoubleWords(copy_to, copy_from, count);
    // Overwrite the duplicated remaining last argument.
    __ Poke(padreg, Operand(argc_without_receiver, LSL, kXRegSizeLog2));
    __ B(&arguments_ready);

    // Copy arguments one slot higher in memory, overwriting the original
    // receiver and padding.
    __ Bind(&even);
    __ SlotAddress(copy_from, count);
    __ Add(copy_to, copy_from, kSystemPointerSize);
    __ CopyDoubleWords(copy_to, copy_from, count,
                       TurboAssembler::kSrcLessThanDst);
    __ Drop(2);
  }

  // 5. Adjust argument count to make the original first argument the new
  //    receiver and call the callable.
  __ Bind(&arguments_ready);
  __ Sub(argc, argc, 1);
  __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}

void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- x0     : argc
  //  -- sp[0]  : receiver
  //  -- sp[8]  : target         (if argc >= 1)
  //  -- sp[16] : thisArgument   (if argc >= 2)
  //  -- sp[24] : argumentsList  (if argc == 3)
  // -----------------------------------

  ASM_LOCATION("Builtins::Generate_ReflectApply");

  Register argc = x0;
  Register arguments_list = x2;
  Register target = x1;
  Register this_argument = x4;
  Register undefined_value = x3;

  __ LoadRoot(undefined_value, RootIndex::kUndefinedValue);

  // 1. Load target into x1 (if present), argumentsList into x2 (if present),
  // remove all arguments from the stack (including the receiver), and push
  // thisArgument (if present) instead.
  {
    Label done;
    __ Mov(target, undefined_value);
    __ Mov(this_argument, undefined_value);
    __ Mov(arguments_list, undefined_value);
    __ Cmp(argc, Immediate(JSParameterCount(1)));
    __ B(lt, &done);
    __ Peek(target, kSystemPointerSize);
    __ B(eq, &done);
    __ Peek(this_argument, 2 * kSystemPointerSize);
    __ Cmp(argc, Immediate(JSParameterCount(3)));
    __ B(lt, &done);
    __ Peek(arguments_list, 3 * kSystemPointerSize);
    __ bind(&done);
  }
  __ DropArguments(argc, TurboAssembler::kCountIncludesReceiver);
  __ PushArgument(this_argument);

  // ----------- S t a t e -------------
  //  -- x2      : argumentsList
  //  -- x1      : target
  //  -- sp[0]   : thisArgument
  // -----------------------------------

  // 2. We don't need to check explicitly for callable target here,
  // since that's the first thing the Call/CallWithArrayLike builtins
  // will do.

  // 3. Apply the target to the given argumentsList.
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
          RelocInfo::CODE_TARGET);
}

void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- x0       : argc
  //  -- sp[0]   : receiver
  //  -- sp[8]   : target
  //  -- sp[16]  : argumentsList
  //  -- sp[24]  : new.target (optional)
  // -----------------------------------

  ASM_LOCATION("Builtins::Generate_ReflectConstruct");

  Register argc = x0;
  Register arguments_list = x2;
  Register target = x1;
  Register new_target = x3;
  Register undefined_value = x4;

  __ LoadRoot(undefined_value, RootIndex::kUndefinedValue);

  // 1. Load target into x1 (if present), argumentsList into x2 (if present),
  // new.target into x3 (if present, otherwise use target), remove all
  // arguments from the stack (including the receiver), and push thisArgument
  // (if present) instead.
  {
    Label done;
    __ Mov(target, undefined_value);
    __ Mov(arguments_list, undefined_value);
    __ Mov(new_target, undefined_value);
    __ Cmp(argc, Immediate(JSParameterCount(1)));
    __ B(lt, &done);
    __ Peek(target, kSystemPointerSize);
    __ B(eq, &done);
    __ Peek(arguments_list, 2 * kSystemPointerSize);
    __ Mov(new_target, target);  // new.target defaults to target
    __ Cmp(argc, Immediate(JSParameterCount(3)));
    __ B(lt, &done);
    __ Peek(new_target, 3 * kSystemPointerSize);
    __ bind(&done);
  }

  __ DropArguments(argc, TurboAssembler::kCountIncludesReceiver);

  // Push receiver (undefined).
  __ PushArgument(undefined_value);

  // ----------- S t a t e -------------
  //  -- x2      : argumentsList
  //  -- x1      : target
  //  -- x3      : new.target
  //  -- sp[0]   : receiver (undefined)
  // -----------------------------------

  // 2. We don't need to check explicitly for constructor target here,
  // since that's the first thing the Construct/ConstructWithArrayLike
  // builtins will do.

  // 3. We don't need to check explicitly for constructor new.target here,
  // since that's the second thing the Construct/ConstructWithArrayLike
  // builtins will do.

  // 4. Construct the target with the given new.target and argumentsList.
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
          RelocInfo::CODE_TARGET);
}

namespace {

// Prepares the stack for copying the varargs. First we claim the necessary
// slots, taking care of potential padding. Then we copy the existing arguments
// one slot up or one slot down, as needed.
void Generate_PrepareForCopyingVarargs(MacroAssembler* masm, Register argc,
                                       Register len) {
  Label exit, even;
  Register slots_to_copy = x10;
  Register slots_to_claim = x12;

  __ Mov(slots_to_copy, argc);
  __ Mov(slots_to_claim, len);
  __ Tbz(slots_to_claim, 0, &even);

  // Claim space we need. If argc (without receiver) is even, slots_to_claim =
  // len + 1, as we need one extra padding slot. If argc (without receiver) is
  // odd, we know that the original arguments will have a padding slot we can
  // reuse (since len is odd), so slots_to_claim = len - 1.
  {
    Register scratch = x11;
    __ Add(slots_to_claim, len, 1);
    __ And(scratch, argc, 1);
    __ Sub(slots_to_claim, slots_to_claim, Operand(scratch, LSL, 1));
  }

  __ Bind(&even);
  __ Cbz(slots_to_claim, &exit);
  __ Claim(slots_to_claim);

  // Move the arguments already in the stack including the receiver.
  {
    Register src = x11;
    Register dst = x12;
    __ SlotAddress(src, slots_to_claim);
    __ SlotAddress(dst, 0);
    __ CopyDoubleWords(dst, src, slots_to_copy);
  }
  __ Bind(&exit);
}

}  // namespace

// static
// TODO(v8:11615): Observe Code::kMaxArguments in CallOrConstructVarargs
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
                                               Handle<CodeT> code) {
  // ----------- S t a t e -------------
  //  -- x1 : target
  //  -- x0 : number of parameters on the stack
  //  -- x2 : arguments list (a FixedArray)
  //  -- x4 : len (number of elements to push from args)
  //  -- x3 : new.target (for [[Construct]])
  // -----------------------------------
  if (v8_flags.debug_code) {
    // Allow x2 to be a FixedArray, or a FixedDoubleArray if x4 == 0.
    Label ok, fail;
    __ AssertNotSmi(x2, AbortReason::kOperandIsNotAFixedArray);
    __ LoadTaggedPointerField(x10, FieldMemOperand(x2, HeapObject::kMapOffset));
    __ Ldrh(x13, FieldMemOperand(x10, Map::kInstanceTypeOffset));
    __ Cmp(x13, FIXED_ARRAY_TYPE);
    __ B(eq, &ok);
    __ Cmp(x13, FIXED_DOUBLE_ARRAY_TYPE);
    __ B(ne, &fail);
    __ Cmp(x4, 0);
    __ B(eq, &ok);
    // Fall through.
    __ bind(&fail);
    __ Abort(AbortReason::kOperandIsNotAFixedArray);

    __ bind(&ok);
  }

  Register arguments_list = x2;
  Register argc = x0;
  Register len = x4;

  Label stack_overflow;
  __ StackOverflowCheck(len, &stack_overflow);

  // Skip argument setup if we don't need to push any varargs.
  Label done;
  __ Cbz(len, &done);

  Generate_PrepareForCopyingVarargs(masm, argc, len);

  // Push varargs.
  {
    Label loop;
    Register src = x10;
    Register the_hole_value = x11;
    Register undefined_value = x12;
    Register scratch = x13;
    __ Add(src, arguments_list, FixedArray::kHeaderSize - kHeapObjectTag);
    __ LoadRoot(the_hole_value, RootIndex::kTheHoleValue);
    __ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
    // We do not use the CompareRoot macro as it would do a LoadRoot behind the
    // scenes and we want to avoid that in a loop.
    // TODO(all): Consider using Ldp and Stp.
    Register dst = x16;
    __ SlotAddress(dst, argc);
    __ Add(argc, argc, len);  // Update new argc.
    __ Bind(&loop);
    __ Sub(len, len, 1);
    __ LoadAnyTaggedField(scratch, MemOperand(src, kTaggedSize, PostIndex));
    __ CmpTagged(scratch, the_hole_value);
    __ Csel(scratch, scratch, undefined_value, ne);
    __ Str(scratch, MemOperand(dst, kSystemPointerSize, PostIndex));
    __ Cbnz(len, &loop);
  }
  __ Bind(&done);
  // Tail-call to the actual Call or Construct builtin.
  __ Jump(code, RelocInfo::CODE_TARGET);

  __ bind(&stack_overflow);
  __ TailCallRuntime(Runtime::kThrowStackOverflow);
}

// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
                                                      CallOrConstructMode mode,
                                                      Handle<CodeT> code) {
  // ----------- S t a t e -------------
  //  -- x0 : the number of arguments
  //  -- x3 : the new.target (for [[Construct]] calls)
  //  -- x1 : the target to call (can be any Object)
  //  -- x2 : start index (to support rest parameters)
  // -----------------------------------

  Register argc = x0;
  Register start_index = x2;

  // Check if new.target has a [[Construct]] internal method.
  if (mode == CallOrConstructMode::kConstruct) {
    Label new_target_constructor, new_target_not_constructor;
    __ JumpIfSmi(x3, &new_target_not_constructor);
    __ LoadTaggedPointerField(x5, FieldMemOperand(x3, HeapObject::kMapOffset));
    __ Ldrb(x5, FieldMemOperand(x5, Map::kBitFieldOffset));
    __ TestAndBranchIfAnySet(x5, Map::Bits1::IsConstructorBit::kMask,
                             &new_target_constructor);
    __ Bind(&new_target_not_constructor);
    {
      FrameScope scope(masm, StackFrame::MANUAL);
      __ EnterFrame(StackFrame::INTERNAL);
      __ PushArgument(x3);
      __ CallRuntime(Runtime::kThrowNotConstructor);
      __ Unreachable();
    }
    __ Bind(&new_target_constructor);
  }

  Register len = x6;
  Label stack_done, stack_overflow;
  __ Ldr(len, MemOperand(fp, StandardFrameConstants::kArgCOffset));
  __ Subs(len, len, kJSArgcReceiverSlots);
  __ Subs(len, len, start_index);
  __ B(le, &stack_done);
  // Check for stack overflow.
  __ StackOverflowCheck(len, &stack_overflow);

  Generate_PrepareForCopyingVarargs(masm, argc, len);

  // Push varargs.
  {
    Register args_fp = x5;
    Register dst = x13;
    // Point to the fist argument to copy from (skipping receiver).
    __ Add(args_fp, fp,
           CommonFrameConstants::kFixedFrameSizeAboveFp + kSystemPointerSize);
    __ lsl(start_index, start_index, kSystemPointerSizeLog2);
    __ Add(args_fp, args_fp, start_index);
    // Point to the position to copy to.
    __ SlotAddress(dst, argc);
    // Update total number of arguments.
    __ Add(argc, argc, len);
    __ CopyDoubleWords(dst, args_fp, len);
  }
  __ B(&stack_done);

  __ Bind(&stack_overflow);
  __ TailCallRuntime(Runtime::kThrowStackOverflow);
  __ Bind(&stack_done);

  __ Jump(code, RelocInfo::CODE_TARGET);
}

// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
                                     ConvertReceiverMode mode) {
  ASM_LOCATION("Builtins::Generate_CallFunction");
  // ----------- S t a t e -------------
  //  -- x0 : the number of arguments
  //  -- x1 : the function to call (checked to be a JSFunction)
  // -----------------------------------
  __ AssertCallableFunction(x1);

  __ LoadTaggedPointerField(
      x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));

  // Enter the context of the function; ToObject has to run in the function
  // context, and we also need to take the global proxy from the function
  // context in case of conversion.
  __ LoadTaggedPointerField(cp,
                            FieldMemOperand(x1, JSFunction::kContextOffset));
  // We need to convert the receiver for non-native sloppy mode functions.
  Label done_convert;
  __ Ldr(w3, FieldMemOperand(x2, SharedFunctionInfo::kFlagsOffset));
  __ TestAndBranchIfAnySet(w3,
                           SharedFunctionInfo::IsNativeBit::kMask |
                               SharedFunctionInfo::IsStrictBit::kMask,
                           &done_convert);
  {
    // ----------- S t a t e -------------
    //  -- x0 : the number of arguments
    //  -- x1 : the function to call (checked to be a JSFunction)
    //  -- x2 : the shared function info.
    //  -- cp : the function context.
    // -----------------------------------

    if (mode == ConvertReceiverMode::kNullOrUndefined) {
      // Patch receiver to global proxy.
      __ LoadGlobalProxy(x3);
    } else {
      Label convert_to_object, convert_receiver;
      __ Peek(x3, __ ReceiverOperand(x0));
      __ JumpIfSmi(x3, &convert_to_object);
      static_assert(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
      __ CompareObjectType(x3, x4, x4, FIRST_JS_RECEIVER_TYPE);
      __ B(hs, &done_convert);
      if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
        Label convert_global_proxy;
        __ JumpIfRoot(x3, RootIndex::kUndefinedValue, &convert_global_proxy);
        __ JumpIfNotRoot(x3, RootIndex::kNullValue, &convert_to_object);
        __ Bind(&convert_global_proxy);
        {
          // Patch receiver to global proxy.
          __ LoadGlobalProxy(x3);
        }
        __ B(&convert_receiver);
      }
      __ Bind(&convert_to_object);
      {
        // Convert receiver using ToObject.
        // TODO(bmeurer): Inline the allocation here to avoid building the frame
        // in the fast case? (fall back to AllocateInNewSpace?)
        FrameScope scope(masm, StackFrame::INTERNAL);
        __ SmiTag(x0);
        __ Push(padreg, x0, x1, cp);
        __ Mov(x0, x3);
        __ Call(BUILTIN_CODE(masm->isolate(), ToObject),
                RelocInfo::CODE_TARGET);
        __ Mov(x3, x0);
        __ Pop(cp, x1, x0, padreg);
        __ SmiUntag(x0);
      }
      __ LoadTaggedPointerField(
          x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
      __ Bind(&convert_receiver);
    }
    __ Poke(x3, __ ReceiverOperand(x0));
  }
  __ Bind(&done_convert);

  // ----------- S t a t e -------------
  //  -- x0 : the number of arguments
  //  -- x1 : the function to call (checked to be a JSFunction)
  //  -- x2 : the shared function info.
  //  -- cp : the function context.
  // -----------------------------------

  __ Ldrh(x2,
          FieldMemOperand(x2, SharedFunctionInfo::kFormalParameterCountOffset));
  __ InvokeFunctionCode(x1, no_reg, x2, x0, InvokeType::kJump);
}

namespace {

void Generate_PushBoundArguments(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- x0 : the number of arguments
  //  -- x1 : target (checked to be a JSBoundFunction)
  //  -- x3 : new.target (only in case of [[Construct]])
  // -----------------------------------

  Register bound_argc = x4;
  Register bound_argv = x2;

  // Load [[BoundArguments]] into x2 and length of that into x4.
  Label no_bound_arguments;
  __ LoadTaggedPointerField(
      bound_argv, FieldMemOperand(x1, JSBoundFunction::kBoundArgumentsOffset));
  __ SmiUntagField(bound_argc,
                   FieldMemOperand(bound_argv, FixedArray::kLengthOffset));
  __ Cbz(bound_argc, &no_bound_arguments);
  {
    // ----------- S t a t e -------------
    //  -- x0 : the number of arguments
    //  -- x1 : target (checked to be a JSBoundFunction)
    //  -- x2 : the [[BoundArguments]] (implemented as FixedArray)
    //  -- x3 : new.target (only in case of [[Construct]])
    //  -- x4 : the number of [[BoundArguments]]
    // -----------------------------------

    Register argc = x0;

    // Check for stack overflow.
    {
      // Check the stack for overflow. We are not trying to catch interruptions
      // (i.e. debug break and preemption) here, so check the "real stack
      // limit".
      Label done;
      __ LoadStackLimit(x10, StackLimitKind::kRealStackLimit);
      // Make x10 the space we have left. The stack might already be overflowed
      // here which will cause x10 to become negative.
      __ Sub(x10, sp, x10);
      // Check if the arguments will overflow the stack.
      __ Cmp(x10, Operand(bound_argc, LSL, kSystemPointerSizeLog2));
      __ B(gt, &done);
      __ TailCallRuntime(Runtime::kThrowStackOverflow);
      __ Bind(&done);
    }

    Label copy_bound_args;
    Register total_argc = x15;
    Register slots_to_claim = x12;
    Register scratch = x10;
    Register receiver = x14;

    __ Sub(argc, argc, kJSArgcReceiverSlots);
    __ Add(total_argc, argc, bound_argc);
    __ Peek(receiver, 0);

    // Round up slots_to_claim to an even number if it is odd.
    __ Add(slots_to_claim, bound_argc, 1);
    __ Bic(slots_to_claim, slots_to_claim, 1);
    __ Claim(slots_to_claim, kSystemPointerSize);

    __ Tbz(bound_argc, 0, &copy_bound_args);
    {
      Label argc_even;
      __ Tbz(argc, 0, &argc_even);
      // Arguments count is odd (with the receiver it's even), so there's no
      // alignment padding above the arguments and we have to "add" it. We
      // claimed bound_argc + 1, since it is odd and it was rounded up. +1 here
      // is for stack alignment padding.
      // 1. Shift args one slot down.
      {
        Register copy_from = x11;
        Register copy_to = x12;
        __ SlotAddress(copy_to, slots_to_claim);
        __ Add(copy_from, copy_to, kSystemPointerSize);
        __ CopyDoubleWords(copy_to, copy_from, argc);
      }
      // 2. Write a padding in the last slot.
      __ Add(scratch, total_argc, 1);
      __ Str(padreg, MemOperand(sp, scratch, LSL, kSystemPointerSizeLog2));
      __ B(&copy_bound_args);

      __ Bind(&argc_even);
      // Arguments count is even (with the receiver it's odd), so there's an
      // alignment padding above the arguments and we can reuse it. We need to
      // claim bound_argc - 1, but we claimed bound_argc + 1, since it is odd
      // and it was rounded up.
      // 1. Drop 2.
      __ Drop(2);
      // 2. Shift args one slot up.
      {
        Register copy_from = x11;
        Register copy_to = x12;
        __ SlotAddress(copy_to, total_argc);
        __ Sub(copy_from, copy_to, kSystemPointerSize);
        __ CopyDoubleWords(copy_to, copy_from, argc,
                           TurboAssembler::kSrcLessThanDst);
      }
    }

    // If bound_argc is even, there is no alignment massage to do, and we have
    // already claimed the correct number of slots (bound_argc).
    __ Bind(&copy_bound_args);

    // Copy the receiver back.
    __ Poke(receiver, 0);
    // Copy [[BoundArguments]] to the stack (below the receiver).
    {
      Label loop;
      Register counter = bound_argc;
      Register copy_to = x12;
      __ Add(bound_argv, bound_argv, FixedArray::kHeaderSize - kHeapObjectTag);
      __ SlotAddress(copy_to, 1);
      __ Bind(&loop);
      __ Sub(counter, counter, 1);
      __ LoadAnyTaggedField(scratch,
                            MemOperand(bound_argv, kTaggedSize, PostIndex));
      __ Str(scratch, MemOperand(copy_to, kSystemPointerSize, PostIndex));
      __ Cbnz(counter, &loop);
    }
    // Update argc.
    __ Add(argc, total_argc, kJSArgcReceiverSlots);
  }
  __ Bind(&no_bound_arguments);
}

}  // namespace

// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- x0 : the number of arguments
  //  -- x1 : the function to call (checked to be a JSBoundFunction)
  // -----------------------------------
  __ AssertBoundFunction(x1);

  // Patch the receiver to [[BoundThis]].
  __ LoadAnyTaggedField(x10,
                        FieldMemOperand(x1, JSBoundFunction::kBoundThisOffset));
  __ Poke(x10, __ ReceiverOperand(x0));

  // Push the [[BoundArguments]] onto the stack.
  Generate_PushBoundArguments(masm);

  // Call the [[BoundTargetFunction]] via the Call builtin.
  __ LoadTaggedPointerField(
      x1, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset));
  __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
          RelocInfo::CODE_TARGET);
}

// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
  // ----------- S t a t e -------------
  //  -- x0 : the number of arguments
  //  -- x1 : the target to call (can be any Object).
  // -----------------------------------
  Register argc = x0;
  Register target = x1;
  Register map = x4;
  Register instance_type = x5;
  DCHECK(!AreAliased(argc, target, map, instance_type));

  Label non_callable, class_constructor;
  __ JumpIfSmi(target, &non_callable);
  __ LoadMap(map, target);
  __ CompareInstanceTypeRange(map, instance_type,
                              FIRST_CALLABLE_JS_FUNCTION_TYPE,
                              LAST_CALLABLE_JS_FUNCTION_TYPE);
  __ Jump(masm->isolate()->builtins()->CallFunction(mode),
          RelocInfo::CODE_TARGET, ls);
  __ Cmp(instance_type, JS_BOUND_FUNCTION_TYPE);
  __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
          RelocInfo::CODE_TARGET, eq);

  // Check if target has a [[Call]] internal method.
  {
    Register flags = x4;
    __ Ldrb(flags, FieldMemOperand(map, Map::kBitFieldOffset));
    map = no_reg;
    __ TestAndBranchIfAllClear(flags, Map::Bits1::IsCallableBit::kMask,
                               &non_callable);
  }

  // Check if target is a proxy and call CallProxy external builtin
  __ Cmp(instance_type, JS_PROXY_TYPE);
  __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET, eq);

  // Check if target is a wrapped function and call CallWrappedFunction external
  // builtin
  __ Cmp(instance_type, JS_WRAPPED_FUNCTION_TYPE);
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWrappedFunction),
          RelocInfo::CODE_TARGET, eq);

  // ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
  // Check that the function is not a "classConstructor".
  __ Cmp(instance_type, JS_CLASS_CONSTRUCTOR_TYPE);
  __ B(eq, &class_constructor);

  // 2. Call to something else, which might have a [[Call]] internal method (if
  // not we raise an exception).
  // Overwrite the original receiver with the (original) target.
  __ Poke(target, __ ReceiverOperand(argc));

  // Let the "call_as_function_delegate" take care of the rest.
  __ LoadNativeContextSlot(target, Context::CALL_AS_FUNCTION_DELEGATE_INDEX);
  __ Jump(masm->isolate()->builtins()->CallFunction(
              ConvertReceiverMode::kNotNullOrUndefined),
          RelocInfo::CODE_TARGET);

  // 3. Call to something that is not callable.
  __ bind(&non_callable);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ PushArgument(target);
    __ CallRuntime(Runtime::kThrowCalledNonCallable);
    __ Unreachable();
  }

  // 4. The function is a "classConstructor", need to raise an exception.
  __ bind(&class_constructor);
  {
    FrameScope frame(masm, StackFrame::INTERNAL);
    __ PushArgument(target);
    __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
    __ Unreachable();
  }
}

// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- x0 : the number of arguments
  //  -- x1 : the constructor to call (checked to be a JSFunction)
  //  -- x3 : the new target (checked to be a constructor)
  // -----------------------------------
  __ AssertConstructor(x1);
  __ AssertFunction(x1);

  // Calling convention for function specific ConstructStubs require
  // x2 to contain either an AllocationSite or undefined.
  __ LoadRoot(x2, RootIndex::kUndefinedValue);

  Label call_generic_stub;

  // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
  __ LoadTaggedPointerField(
      x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
  __ Ldr(w4, FieldMemOperand(x4, SharedFunctionInfo::kFlagsOffset));
  __ TestAndBranchIfAllClear(
      w4, SharedFunctionInfo::ConstructAsBuiltinBit::kMask, &call_generic_stub);

  __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
          RelocInfo::CODE_TARGET);

  __ bind(&call_generic_stub);
  __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
          RelocInfo::CODE_TARGET);
}

// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- x0 : the number of arguments
  //  -- x1 : the function to call (checked to be a JSBoundFunction)
  //  -- x3 : the new target (checked to be a constructor)
  // -----------------------------------
  __ AssertConstructor(x1);
  __ AssertBoundFunction(x1);

  // Push the [[BoundArguments]] onto the stack.
  Generate_PushBoundArguments(masm);

  // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
  {
    Label done;
    __ CmpTagged(x1, x3);
    __ B(ne, &done);
    __ LoadTaggedPointerField(
        x3, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset));
    __ Bind(&done);
  }

  // Construct the [[BoundTargetFunction]] via the Construct builtin.
  __ LoadTaggedPointerField(
      x1, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset));
  __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}

// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- x0 : the number of arguments
  //  -- x1 : the constructor to call (can be any Object)
  //  -- x3 : the new target (either the same as the constructor or
  //          the JSFunction on which new was invoked initially)
  // -----------------------------------
  Register argc = x0;
  Register target = x1;
  Register map = x4;
  Register instance_type = x5;
  DCHECK(!AreAliased(argc, target, map, instance_type));

  // Check if target is a Smi.
  Label non_constructor, non_proxy;
  __ JumpIfSmi(target, &non_constructor);

  // Check if target has a [[Construct]] internal method.
  __ LoadTaggedPointerField(map,
                            FieldMemOperand(target, HeapObject::kMapOffset));
  {
    Register flags = x2;
    DCHECK(!AreAliased(argc, target, map, instance_type, flags));
    __ Ldrb(flags, FieldMemOperand(map, Map::kBitFieldOffset));
    __ TestAndBranchIfAllClear(flags, Map::Bits1::IsConstructorBit::kMask,
                               &non_constructor);
  }

  // Dispatch based on instance type.
  __ CompareInstanceTypeRange(map, instance_type, FIRST_JS_FUNCTION_TYPE,
                              LAST_JS_FUNCTION_TYPE);
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
          RelocInfo::CODE_TARGET, ls);

  // Only dispatch to bound functions after checking whether they are
  // constructors.
  __ Cmp(instance_type, JS_BOUND_FUNCTION_TYPE);
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
          RelocInfo::CODE_TARGET, eq);

  // Only dispatch to proxies after checking whether they are constructors.
  __ Cmp(instance_type, JS_PROXY_TYPE);
  __ B(ne, &non_proxy);
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
          RelocInfo::CODE_TARGET);

  // Called Construct on an exotic Object with a [[Construct]] internal method.
  __ bind(&non_proxy);
  {
    // Overwrite the original receiver with the (original) target.
    __ Poke(target, __ ReceiverOperand(argc));

    // Let the "call_as_constructor_delegate" take care of the rest.
    __ LoadNativeContextSlot(target,
                             Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX);
    __ Jump(masm->isolate()->builtins()->CallFunction(),
            RelocInfo::CODE_TARGET);
  }

  // Called Construct on an Object that doesn't have a [[Construct]] internal
  // method.
  __ bind(&non_constructor);
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
          RelocInfo::CODE_TARGET);
}

#if V8_ENABLE_WEBASSEMBLY
// Compute register lists for parameters to be saved. We save all parameter
// registers (see wasm-linkage.h). They might be overwritten in runtime
// calls. We don't have any callee-saved registers in wasm, so no need to
// store anything else.
constexpr RegList kSavedGpRegs = ([]() constexpr {
  RegList saved_gp_regs;
  for (Register gp_param_reg : wasm::kGpParamRegisters) {
    saved_gp_regs.set(gp_param_reg);
  }
  // The instance has already been stored in the fixed part of the frame.
  saved_gp_regs.clear(kWasmInstanceRegister);
  // All set registers were unique. The instance is skipped.
  CHECK_EQ(saved_gp_regs.Count(), arraysize(wasm::kGpParamRegisters) - 1);
  // We push a multiple of 16 bytes.
  CHECK_EQ(0, saved_gp_regs.Count() % 2);
  CHECK_EQ(WasmLiftoffSetupFrameConstants::kNumberOfSavedGpParamRegs,
           saved_gp_regs.Count());
  return saved_gp_regs;
})();

constexpr DoubleRegList kSavedFpRegs = ([]() constexpr {
  DoubleRegList saved_fp_regs;
  for (DoubleRegister fp_param_reg : wasm::kFpParamRegisters) {
    saved_fp_regs.set(fp_param_reg);
  }

  CHECK_EQ(saved_fp_regs.Count(), arraysize(wasm::kFpParamRegisters));
  CHECK_EQ(WasmLiftoffSetupFrameConstants::kNumberOfSavedFpParamRegs,
           saved_fp_regs.Count());
  return saved_fp_regs;
})();

// When entering this builtin, we have just created a Wasm stack frame:
//
// [   Wasm instance   ]  <-- sp
// [ WASM frame marker ]
// [     saved fp      ]  <-- fp
//
// Due to stack alignment restrictions, this builtin adds the feedback vector
// plus a filler to the stack. The stack pointer will be
// moved an appropriate distance by {PatchPrepareStackFrame}.
//
// [     (unused)      ]  <-- sp
// [  feedback vector  ]
// [   Wasm instance   ]
// [ WASM frame marker ]
// [     saved fp      ]  <-- fp
void Builtins::Generate_WasmLiftoffFrameSetup(MacroAssembler* masm) {
  Register func_index = wasm::kLiftoffFrameSetupFunctionReg;
  Register vector = x9;
  Register scratch = x10;
  Label allocate_vector, done;

  __ LoadTaggedPointerField(
      vector, FieldMemOperand(kWasmInstanceRegister,
                              WasmInstanceObject::kFeedbackVectorsOffset));
  __ Add(vector, vector, Operand(func_index, LSL, kTaggedSizeLog2));
  __ LoadTaggedPointerField(vector,
                            FieldMemOperand(vector, FixedArray::kHeaderSize));
  __ JumpIfSmi(vector, &allocate_vector);
  __ bind(&done);
  __ Push(vector, xzr);
  __ Ret();

  __ bind(&allocate_vector);
  // Feedback vector doesn't exist yet. Call the runtime to allocate it.
  // We temporarily change the frame type for this, because we need special
  // handling by the stack walker in case of GC.
  __ Mov(scratch, StackFrame::TypeToMarker(StackFrame::WASM_LIFTOFF_SETUP));
  __ Str(scratch, MemOperand(fp, TypedFrameConstants::kFrameTypeOffset));
  // Save registers.
  __ PushXRegList(kSavedGpRegs);
  __ PushQRegList(kSavedFpRegs);
  __ Push<TurboAssembler::kSignLR>(lr, xzr);  // xzr is for alignment.

  // Arguments to the runtime function: instance, func_index, and an
  // additional stack slot for the NativeModule. The first pushed register
  // is for alignment. {x0} and {x1} are picked arbitrarily.
  __ SmiTag(func_index);
  __ Push(x0, kWasmInstanceRegister, func_index, x1);
  __ Mov(cp, Smi::zero());
  __ CallRuntime(Runtime::kWasmAllocateFeedbackVector, 3);
  __ Mov(vector, kReturnRegister0);

  // Restore registers and frame type.
  __ Pop<TurboAssembler::kAuthLR>(xzr, lr);
  __ PopQRegList(kSavedFpRegs);
  __ PopXRegList(kSavedGpRegs);
  // Restore the instance from the frame.
  __ Ldr(kWasmInstanceRegister,
         MemOperand(fp, WasmFrameConstants::kWasmInstanceOffset));
  __ Mov(scratch, StackFrame::TypeToMarker(StackFrame::WASM));
  __ Str(scratch, MemOperand(fp, TypedFrameConstants::kFrameTypeOffset));
  __ B(&done);
}

void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
  // The function index was put in w8 by the jump table trampoline.
  // Sign extend and convert to Smi for the runtime call.
  __ sxtw(kWasmCompileLazyFuncIndexRegister,
          kWasmCompileLazyFuncIndexRegister.W());
  __ SmiTag(kWasmCompileLazyFuncIndexRegister);

  UseScratchRegisterScope temps(masm);
  temps.Exclude(x17);
  {
    HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
    FrameScope scope(masm, StackFrame::INTERNAL);
    // Manually save the instance (which kSavedGpRegs skips because its
    // other use puts it into the fixed frame anyway). The stack slot is valid
    // because the {FrameScope} (via {EnterFrame}) always reserves it (for stack
    // alignment reasons). The instance is needed because once this builtin is
    // done, we'll call a regular Wasm function.
    __ Str(kWasmInstanceRegister,
           MemOperand(fp, WasmFrameConstants::kWasmInstanceOffset));

    // Save registers that we need to keep alive across the runtime call.
    __ PushXRegList(kSavedGpRegs);
    __ PushQRegList(kSavedFpRegs);

    __ Push(kWasmInstanceRegister, kWasmCompileLazyFuncIndexRegister);
    // Initialize the JavaScript context with 0. CEntry will use it to
    // set the current context on the isolate.
    __ Mov(cp, Smi::zero());
    __ CallRuntime(Runtime::kWasmCompileLazy, 2);

    // Untag the returned Smi into into x17 (ip1), for later use.
    static_assert(!kSavedGpRegs.has(x17));
    __ SmiUntag(x17, kReturnRegister0);

    // Restore registers.
    __ PopQRegList(kSavedFpRegs);
    __ PopXRegList(kSavedGpRegs);
    // Restore the instance from the frame.
    __ Ldr(kWasmInstanceRegister,
           MemOperand(fp, WasmFrameConstants::kWasmInstanceOffset));
  }

  // The runtime function returned the jump table slot offset as a Smi (now in
  // x17). Use that to compute the jump target. Use x17 (ip1) for the branch
  // target, to be compliant with CFI.
  constexpr Register temp = x8;
  static_assert(!kSavedGpRegs.has(temp));
  __ ldr(temp, FieldMemOperand(kWasmInstanceRegister,
                               WasmInstanceObject::kJumpTableStartOffset));
  __ add(x17, temp, Operand(x17));
  // Finally, jump to the jump table slot for the function.
  __ Jump(x17);
}

void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) {
  HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
  {
    FrameScope scope(masm, StackFrame::WASM_DEBUG_BREAK);

    // Save all parameter registers. They might hold live values, we restore
    // them after the runtime call.
    __ PushXRegList(WasmDebugBreakFrameConstants::kPushedGpRegs);
    __ PushQRegList(WasmDebugBreakFrameConstants::kPushedFpRegs);

    // Initialize the JavaScript context with 0. CEntry will use it to
    // set the current context on the isolate.
    __ Move(cp, Smi::zero());
    __ CallRuntime(Runtime::kWasmDebugBreak, 0);

    // Restore registers.
    __ PopQRegList(WasmDebugBreakFrameConstants::kPushedFpRegs);
    __ PopXRegList(WasmDebugBreakFrameConstants::kPushedGpRegs);
  }
  __ Ret();
}

namespace {
// Helper functions for the GenericJSToWasmWrapper.
void PrepareForBuiltinCall(MacroAssembler* masm, MemOperand GCScanSlotPlace,
                           const int GCScanSlotCount, Register current_param,
                           Register param_limit,
                           Register current_int_param_slot,
                           Register current_float_param_slot,
                           Register valuetypes_array_ptr,
                           Register wasm_instance, Register function_data,
                           Register original_fp) {
  UseScratchRegisterScope temps(masm);
  Register GCScanCount = temps.AcquireX();
  // Pushes and puts the values in order onto the stack before builtin calls for
  // the GenericJSToWasmWrapper.
  __ Mov(GCScanCount, GCScanSlotCount);
  __ Str(GCScanCount, GCScanSlotPlace);
  __ Stp(current_param, param_limit,
        MemOperand(sp, -2 * kSystemPointerSize, PreIndex));
  __ Stp(current_int_param_slot, current_float_param_slot,
        MemOperand(sp, -2 * kSystemPointerSize, PreIndex));
  __ Stp(valuetypes_array_ptr, original_fp,
        MemOperand(sp, -2 * kSystemPointerSize, PreIndex));
  __ Stp(wasm_instance, function_data,
        MemOperand(sp, -2 * kSystemPointerSize, PreIndex));
  // We had to prepare the parameters for the Call: we have to put the context
  // into kContextRegister.
  __ LoadAnyTaggedField(
      kContextRegister, // cp(x27)
      MemOperand(wasm_instance, wasm::ObjectAccess::ToTagged(
                                    WasmInstanceObject::kNativeContextOffset)));
}

void RestoreAfterBuiltinCall(MacroAssembler* masm, Register function_data,
                             Register wasm_instance,
                             Register valuetypes_array_ptr,
                             Register current_float_param_slot,
                             Register current_int_param_slot,
                             Register param_limit, Register current_param,
                             Register original_fp) {
  // Pop and load values from the stack in order into the registers after
  // builtin calls for the GenericJSToWasmWrapper.
  __ Ldp(wasm_instance, function_data,
        MemOperand(sp, 2 * kSystemPointerSize, PostIndex));
  __ Ldp(valuetypes_array_ptr, original_fp,
        MemOperand(sp, 2 * kSystemPointerSize, PostIndex));
  __ Ldp(current_int_param_slot, current_float_param_slot,
        MemOperand(sp, 2 * kSystemPointerSize, PostIndex));
  __ Ldp(current_param, param_limit,
        MemOperand(sp, 2 * kSystemPointerSize, PostIndex));
}

// Check that the stack was in the old state (if generated code assertions are
// enabled), and switch to the new state.
void SwitchStackState(MacroAssembler* masm, Register jmpbuf,
                      Register tmp,
                      wasm::JumpBuffer::StackState old_state,
                      wasm::JumpBuffer::StackState new_state) {
  if (v8_flags.debug_code) {
    __ Ldr(tmp.W(), MemOperand(jmpbuf, wasm::kJmpBufStateOffset));
    __ Cmp(tmp.W(), old_state);
    Label ok;
    __ B(&ok, eq);
    __ Trap();
    __ bind(&ok);
  }
  __ Mov(tmp.W(), new_state);
  __ Str(tmp.W(), MemOperand(jmpbuf, wasm::kJmpBufStateOffset));
}

void FillJumpBuffer(MacroAssembler* masm, Register jmpbuf, Label* pc,
                    Register tmp) {
  __ Mov(tmp, sp);
  __ Str(tmp, MemOperand(jmpbuf, wasm::kJmpBufSpOffset));
  __ Str(fp, MemOperand(jmpbuf, wasm::kJmpBufFpOffset));
  __ LoadStackLimit(tmp, StackLimitKind::kRealStackLimit);
  __ Str(tmp, MemOperand(jmpbuf, wasm::kJmpBufStackLimitOffset));
  __ Adr(tmp, pc);
  __ Str(tmp, MemOperand(jmpbuf, wasm::kJmpBufPcOffset));
}

void LoadJumpBuffer(MacroAssembler* masm, Register jmpbuf, bool load_pc,
                    Register tmp) {
  __ Ldr(tmp, MemOperand(jmpbuf, wasm::kJmpBufSpOffset));
  __ Mov(sp, tmp);
  __ Ldr(fp, MemOperand(jmpbuf, wasm::kJmpBufFpOffset));
  SwitchStackState(masm, jmpbuf, tmp, wasm::JumpBuffer::Inactive,
                   wasm::JumpBuffer::Active);
  if (load_pc) {
    __ Ldr(tmp, MemOperand(jmpbuf, wasm::kJmpBufPcOffset));
    __ Br(tmp);
  }
  // The stack limit is set separately under the ExecutionAccess lock.
}

void SaveState(MacroAssembler* masm, Register active_continuation,
               Register tmp, Label* suspend) {
  Register jmpbuf = tmp;
  __ LoadExternalPointerField(
      jmpbuf,
      FieldMemOperand(active_continuation,
                      WasmContinuationObject::kJmpbufOffset),
      kWasmContinuationJmpbufTag);
  UseScratchRegisterScope temps(masm);
  Register scratch = temps.AcquireX();
  FillJumpBuffer(masm, jmpbuf, suspend, scratch);
}

// Returns the new suspender in kReturnRegister0.
void AllocateSuspender(MacroAssembler* masm, Register function_data,
                       Register wasm_instance, Register tmp) {
  __ Mov(tmp, 2);
  __ Str(tmp,
         MemOperand(fp, BuiltinWasmWrapperConstants::kGCScanSlotCountOffset));
  __ Stp(wasm_instance, function_data,
        MemOperand(sp, -2 * kSystemPointerSize, PreIndex));
  __ LoadAnyTaggedField(
      kContextRegister,
      MemOperand(wasm_instance, wasm::ObjectAccess::ToTagged(
                                    WasmInstanceObject::kNativeContextOffset)));
  __ CallRuntime(Runtime::kWasmAllocateSuspender);
  __ Ldp(wasm_instance, function_data,
        MemOperand(sp, 2 * kSystemPointerSize, PostIndex));
  static_assert(kReturnRegister0 == x0);
}

void LoadTargetJumpBuffer(MacroAssembler* masm, Register target_continuation,
                          Register tmp) {
  Register target_jmpbuf = target_continuation;
  __ LoadExternalPointerField(
      target_jmpbuf,
      FieldMemOperand(target_continuation,
                      WasmContinuationObject::kJmpbufOffset),
      kWasmContinuationJmpbufTag);
  __ Str(xzr,
         MemOperand(fp, BuiltinWasmWrapperConstants::kGCScanSlotCountOffset));
  // Switch stack!
  LoadJumpBuffer(masm, target_jmpbuf, false, tmp);
}

void ReloadParentContinuation(MacroAssembler* masm, Register wasm_instance,
                              Register return_reg, Register tmp1,
                              Register tmp2) {
  Register active_continuation = tmp1;
  __ LoadRoot(active_continuation, RootIndex::kActiveContinuation);

  // Set a null pointer in the jump buffer's SP slot to indicate to the stack
  // frame iterator that this stack is empty.
  Register jmpbuf = tmp2;
  __ LoadExternalPointerField(
      jmpbuf,
      FieldMemOperand(active_continuation,
                      WasmContinuationObject::kJmpbufOffset),
      kWasmContinuationJmpbufTag);
  __ Str(xzr, MemOperand(jmpbuf, wasm::kJmpBufSpOffset));
  {
    UseScratchRegisterScope temps(masm);
    Register scratch = temps.AcquireX();
    SwitchStackState(masm, jmpbuf, scratch, wasm::JumpBuffer::Active,
                     wasm::JumpBuffer::Retired);
  }
  Register parent = tmp2;
  __ LoadAnyTaggedField(
      parent,
      FieldMemOperand(active_continuation,
                      WasmContinuationObject::kParentOffset));

  // Update active continuation root.
  int32_t active_continuation_offset =
    TurboAssembler::RootRegisterOffsetForRootIndex(
      RootIndex::kActiveContinuation);
  __ Str(parent, MemOperand(kRootRegister, active_continuation_offset));
  jmpbuf = parent;
  __ LoadExternalPointerField(
      jmpbuf, FieldMemOperand(parent, WasmContinuationObject::kJmpbufOffset),
      kWasmContinuationJmpbufTag);

  // Switch stack!
  LoadJumpBuffer(masm, jmpbuf, false, tmp1);

  __ Mov(tmp1, 1);
  __ Str(tmp1,
         MemOperand(fp, BuiltinWasmWrapperConstants::kGCScanSlotCountOffset));
  __ Stp(wasm_instance, return_reg,
      MemOperand(sp, -2 * kSystemPointerSize, PreIndex));  // Spill.
  __ Move(kContextRegister, Smi::zero());
  __ CallRuntime(Runtime::kWasmSyncStackLimit);
  __ Ldp(wasm_instance, return_reg,
      MemOperand(sp, 2 * kSystemPointerSize, PostIndex));
}

void RestoreParentSuspender(MacroAssembler* masm, Register tmp1,
                            Register tmp2) {
  Register suspender = tmp1;
  __ LoadRoot(suspender, RootIndex::kActiveSuspender);
  MemOperand state_loc =
    FieldMemOperand(suspender, WasmSuspenderObject::kStateOffset);
  __ Move(tmp2, Smi::FromInt(WasmSuspenderObject::kInactive));
  __ StoreTaggedField(tmp2, state_loc);
  __ LoadAnyTaggedField(
      suspender,
      FieldMemOperand(suspender, WasmSuspenderObject::kParentOffset));
  __ CompareRoot(suspender, RootIndex::kUndefinedValue);
  Label undefined;
  __ B(&undefined, eq);
  if (v8_flags.debug_code) {
    // Check that the parent suspender is active.
    Label parent_inactive;
    Register state = tmp2;
    __ SmiUntag(state, state_loc);
    __ cmp(state, WasmSuspenderObject::kActive);
    __ B(&parent_inactive, eq);
    __ Trap();
    __ bind(&parent_inactive);
  }
  __ Move(tmp2, Smi::FromInt(WasmSuspenderObject::kActive));
  __ StoreTaggedField(tmp2, state_loc);
  __ bind(&undefined);
  int32_t active_suspender_offset =
    TurboAssembler::RootRegisterOffsetForRootIndex(
      RootIndex::kActiveSuspender);
  __ Str(suspender, MemOperand(kRootRegister, active_suspender_offset));
}

void LoadFunctionDataAndWasmInstance(MacroAssembler* masm,
                                     Register function_data,
                                     Register wasm_instance) {
  Register closure = function_data;
  __ LoadAnyTaggedField(
      function_data,
      MemOperand(
          closure,
          wasm::ObjectAccess::SharedFunctionInfoOffsetInTaggedJSFunction()));
  __ LoadAnyTaggedField(
      function_data,
      FieldMemOperand(function_data,
                      SharedFunctionInfo::kFunctionDataOffset));

  __ LoadAnyTaggedField(
      wasm_instance,
      FieldMemOperand(function_data,
                      WasmExportedFunctionData::kInstanceOffset));
}

void LoadValueTypesArray(MacroAssembler* masm, Register function_data,
                         Register valuetypes_array_ptr, Register return_count,
                         Register param_count) {
  Register signature = valuetypes_array_ptr;
  __ LoadExternalPointerField(
      signature,
      FieldMemOperand(function_data, WasmExportedFunctionData::kSigOffset),
      kWasmExportedFunctionDataSignatureTag);
  __ Ldr(return_count,
          MemOperand(signature, wasm::FunctionSig::kReturnCountOffset));
  __ Ldr(param_count,
          MemOperand(signature, wasm::FunctionSig::kParameterCountOffset));
  valuetypes_array_ptr = signature;
  __ Ldr(valuetypes_array_ptr,
          MemOperand(signature, wasm::FunctionSig::kRepsOffset));
}

class RegisterAllocator {
 public:
  class Scoped {
   public:
    Scoped(RegisterAllocator* allocator, Register* reg):
      allocator_(allocator), reg_(reg) {}
    ~Scoped() { allocator_->Free(reg_); }
   private:
    RegisterAllocator* allocator_;
    Register* reg_;
  };

  explicit RegisterAllocator(const CPURegList& registers)
      : initial_(registers),
        available_(registers) {}
  void Ask(Register* reg) {
    DCHECK_EQ(*reg, no_reg);
    DCHECK(!available_.IsEmpty());
    *reg = available_.PopLowestIndex().X();
    allocated_registers_.push_back(reg);
  }

  void Pinned(const Register& requested, Register* reg) {
    DCHECK(available_.IncludesAliasOf(requested));
    *reg = requested;
    Reserve(requested);
    allocated_registers_.push_back(reg);
  }

  void Free(Register* reg) {
    DCHECK_NE(*reg, no_reg);
    available_.Combine(*reg);
    *reg = no_reg;
    allocated_registers_.erase(
      find(allocated_registers_.begin(), allocated_registers_.end(), reg));
  }

  void Reserve(const Register& reg) {
    if (reg == NoReg) {
      return;
    }
    DCHECK(available_.IncludesAliasOf(reg));
    available_.Remove(reg);
  }

  void Reserve(const Register& reg1,
               const Register& reg2,
               const Register& reg3 = NoReg,
               const Register& reg4 = NoReg,
               const Register& reg5 = NoReg,
               const Register& reg6 = NoReg) {
    Reserve(reg1);
    Reserve(reg2);
    Reserve(reg3);
    Reserve(reg4);
    Reserve(reg5);
    Reserve(reg6);
  }

  bool IsUsed(const Register& reg) {
    return initial_.IncludesAliasOf(reg)
      && !available_.IncludesAliasOf(reg);
  }

  void ResetExcept(const Register& reg1 = NoReg,
                   const Register& reg2 = NoReg,
                   const Register& reg3 = NoReg,
                   const Register& reg4 = NoReg,
                   const Register& reg5 = NoReg,
                   const Register& reg6 = NoReg) {
    available_ = initial_;
    if (reg1 != NoReg) {
      available_.Remove(reg1, reg2, reg3, reg4);
    }
    if (reg5 != NoReg) {
      available_.Remove(reg5, reg6);
    }
    auto it = allocated_registers_.begin();
    while (it != allocated_registers_.end()) {
      if (available_.IncludesAliasOf(**it)) {
        **it = no_reg;
        allocated_registers_.erase(it);
      } else {
        it++;
      }
    }
  }

  static RegisterAllocator WithAllocatableGeneralRegisters() {
    CPURegList list(kXRegSizeInBits, RegList());
    const RegisterConfiguration* config(RegisterConfiguration::Default());
    list.set_bits(config->allocatable_general_codes_mask());
    return RegisterAllocator(list);
  }

 private:
  std::vector<Register*> allocated_registers_;
  const CPURegList initial_;
  CPURegList available_;
};

#define DEFINE_REG(Name) \
  Register Name = no_reg; \
  regs.Ask(&Name);

#define DEFINE_REG_W(Name) \
  DEFINE_REG(Name); \
  Name = Name.W();

#define ASSIGN_REG(Name) \
  regs.Ask(&Name);

#define ASSIGN_REG_W(Name) \
  ASSIGN_REG(Name); \
  Name = Name.W();

#define DEFINE_PINNED(Name, Reg) \
  Register Name = no_reg; \
  regs.Pinned(Reg, &Name);

#define DEFINE_SCOPED(Name) \
  DEFINE_REG(Name) \
  RegisterAllocator::Scoped scope_##Name(&regs, &Name);

#define FREE_REG(Name) \
  regs.Free(&Name);

void GenericJSToWasmWrapperHelper(MacroAssembler* masm, bool stack_switch) {
  auto regs = RegisterAllocator::WithAllocatableGeneralRegisters();
  // Set up the stackframe.
  __ EnterFrame(stack_switch ? StackFrame::STACK_SWITCH
                             : StackFrame::JS_TO_WASM);

  // -------------------------------------------
  // Compute offsets and prepare for GC.
  // -------------------------------------------
  constexpr int kGCScanSlotCountOffset =
      BuiltinWasmWrapperConstants::kGCScanSlotCountOffset;
  // The number of parameters passed to this function.
  constexpr int kInParamCountOffset =
      BuiltinWasmWrapperConstants::kInParamCountOffset;
  // The number of parameters according to the signature.
  constexpr int kParamCountOffset =
      BuiltinWasmWrapperConstants::kParamCountOffset;
  constexpr int kSuspenderOffset =
      BuiltinWasmWrapperConstants::kSuspenderOffset;
  constexpr int kReturnCountOffset = kSuspenderOffset - kSystemPointerSize;
  constexpr int kValueTypesArrayStartOffset =
      kReturnCountOffset - kSystemPointerSize;
  // The number of reference parameters.
  // It is used as a boolean flag to check if one of the parameters is
  // a reference.
  // If so, we iterate over the parameters two times, first for all value types
  // and then for all references. During second iteration we store the actual
  // reference params count.
  constexpr int kRefParamsCountOffset =
      kValueTypesArrayStartOffset - kSystemPointerSize;
  // We set and use this slot only when moving parameters into the parameter
  // registers (so no GC scan is needed).
  constexpr int kFunctionDataOffset =
      kRefParamsCountOffset - kSystemPointerSize;
  constexpr int kLastSpillOffset = kFunctionDataOffset;
  constexpr int kNumSpillSlots =
      (-TypedFrameConstants::kFixedFrameSizeFromFp - kLastSpillOffset) >>
      kSystemPointerSizeLog2;
  __ Sub(sp, sp, Immediate(kNumSpillSlots * kSystemPointerSize));
  // Put the in_parameter count on the stack, we only  need it at the very end
  // when we pop the parameters off the stack.
  __ Sub(kJavaScriptCallArgCountRegister, kJavaScriptCallArgCountRegister, 1);
  __ Str(kJavaScriptCallArgCountRegister, MemOperand(fp, kInParamCountOffset));

  Label compile_wrapper, compile_wrapper_done;
  // Load function data and check wrapper budget.
  DEFINE_PINNED(function_data, kJSFunctionRegister);
  DEFINE_PINNED(wasm_instance, kWasmInstanceRegister);
  LoadFunctionDataAndWasmInstance(masm, function_data, wasm_instance);

  DEFINE_REG(scratch);
  if (!stack_switch) {
    // -------------------------------------------
    // Decrement the budget of the generic wrapper in function data.
    // -------------------------------------------
    MemOperand budget_loc = FieldMemOperand(
        function_data,
        WasmExportedFunctionData::kWrapperBudgetOffset);
    __ SmiUntag(scratch, budget_loc);
    __ Subs(scratch, scratch, 1);
    __ SmiTag(scratch);
    __ StoreTaggedField(scratch, budget_loc);

    // -------------------------------------------
    // Check if the budget of the generic wrapper reached 0 (zero).
    // -------------------------------------------
    // Instead of a specific comparison, we can directly use the flags set
    // from the previous addition.
    __ B(&compile_wrapper, le);
    __ bind(&compile_wrapper_done);
  }

  regs.ResetExcept(function_data, wasm_instance);

  Label suspend;
  Register original_fp = no_reg;
  if (stack_switch) {
    DEFINE_PINNED(suspender, kReturnRegister0);
    // Set the suspender spill slot to a sentinel value, in case a GC happens
    // before we set the actual value.
    ASSIGN_REG(scratch);
    __ LoadRoot(scratch, RootIndex::kUndefinedValue);
    __ Str(scratch, MemOperand(fp, kSuspenderOffset));
    DEFINE_REG(active_continuation);
    __ LoadRoot(active_continuation, RootIndex::kActiveContinuation);
    SaveState(masm, active_continuation, scratch, &suspend);
    FREE_REG(active_continuation);
    AllocateSuspender(masm, function_data, wasm_instance, scratch);
    // A result of AllocateSuspender is in the return register.
    __ Str(suspender, MemOperand(fp, kSuspenderOffset));
    DEFINE_SCOPED(target_continuation);
    __ LoadAnyTaggedField(
        target_continuation,
        FieldMemOperand(suspender, WasmSuspenderObject::kContinuationOffset));
    FREE_REG(suspender);
    // Save the old stack's rbp in r9, and use it to access the parameters in
    // the parent frame.
    // We also distribute the spill slots across the two stacks as needed by
    // creating a "shadow frame":
    //
    //      old stack:                    new stack:
    //      +-----------------+
    //      | <parent frame>  |
    //      +-----------------+
    //      | pc              |
    //      +-----------------+           +-----------------+
    //      | caller rbp      |           | 0 (jmpbuf rbp)  |
    // x9-> +-----------------+      fp-> +-----------------+
    //      | frame marker    |           | frame marker    |
    //      +-----------------+           +-----------------+
    //      |kGCScanSlotCount |           |kGCScanSlotCount |
    //      +-----------------+           +-----------------+
    //      | kInParamCount   |           |      /          |
    //      +-----------------+           +-----------------+
    //      | kParamCount     |           |      /          |
    //      +-----------------+           +-----------------+
    //      | kSuspender      |           |      /          |
    //      +-----------------+           +-----------------+
    //      |      /          |           | kReturnCount    |
    //      +-----------------+           +-----------------+
    //      |      /          |           |kValueTypesArray |
    //      +-----------------+           +-----------------+
    //      |      /          |           | kHasRefTypes    |
    //      +-----------------+           +-----------------+
    //      |      /          |           | kFunctionData   |
    //      +-----------------+     sp->  +-----------------+
    //          seal stack                         |
    //                                             V
    //
    // - When we first enter the prompt, we have access to both frames, so it
    // does not matter where the values are spilled.
    // - When we suspend for the first time, we longjmp to the original frame
    // (left).  So the frame needs to contain the necessary information to
    // properly deconstruct itself (actual param count and signature param
    // count).
    // - When we suspend for the second time, we longjmp to the frame that was
    // set up by the WasmResume builtin, which has the same layout as the
    // original frame (left).
    // - When the closure finally resolves, we use the value types pointer
    // stored in the shadow frame to get the return type and convert the return
    // value accordingly.
    // original_fp stays alive until we load params to param registers.
    // To prevent aliasing assign higher register here.
    regs.Pinned(x9, &original_fp);
    __ Mov(original_fp, fp);
    LoadTargetJumpBuffer(masm, target_continuation, scratch);
    // Push the loaded rbp. We know it is null, because there is no frame yet,
    // so we could also push 0 directly. In any case we need to push it,
    // because this marks the base of the stack segment for
    // the stack frame iterator.
    __ EnterFrame(StackFrame::STACK_SWITCH);
    __ Sub(sp, sp, Immediate(kNumSpillSlots * kSystemPointerSize));
    // Set a sentinel value for the suspender spill slot in the new frame.
    __ LoadRoot(scratch, RootIndex::kUndefinedValue);
    __ Str(scratch, MemOperand(fp, kSuspenderOffset));
  } else {
    original_fp = fp;
  }
  regs.ResetExcept(original_fp, function_data, wasm_instance);

  Label prepare_for_wasm_call;
  // Load a signature and store on stack.
  // Param should be x0 for calling Runtime in the conversion loop.
  DEFINE_PINNED(param, x0);
  DEFINE_REG(valuetypes_array_ptr);
  DEFINE_REG(return_count);
  // param_count stays alive until we load params to param registers.
  // To prevent aliasing assign higher register here.
  DEFINE_PINNED(param_count, x10);
  // -------------------------------------------
  // Load values from the signature.
  // -------------------------------------------
  LoadValueTypesArray(masm, function_data, valuetypes_array_ptr,
                      return_count, param_count);

  // Initialize the {RefParamsCount} slot with 0.
  __ Str(xzr, MemOperand(fp, kRefParamsCountOffset));

  // -------------------------------------------
  // Store signature-related values to the stack.
  // -------------------------------------------
  // We store values on the stack to restore them after function calls.
  // We cannot push values onto the stack right before the wasm call.
  // The Wasm function expects the parameters, that didn't fit into
  // the registers, on the top of the stack.
  __ Str(param_count, MemOperand(original_fp, kParamCountOffset));
  __ Str(return_count, MemOperand(fp, kReturnCountOffset));
  __ Str(valuetypes_array_ptr, MemOperand(fp, kValueTypesArrayStartOffset));

  // -------------------------------------------
  // Parameter handling.
  // -------------------------------------------
  __ Cmp(param_count, 0);

  // IF we have 0 params: jump through parameter handling.
  __ B(&prepare_for_wasm_call, eq);

  // -------------------------------------------
  // Create 2 sections for integer and float params.
  // -------------------------------------------
  // We will create 2 sections on the stack for the evaluated parameters:
  // Integer and Float section, both with parameter count size. We will place
  // the parameters into these sections depending on their valuetype. This
  // way we can easily fill the general purpose and floating point parameter
  // registers and place the remaining parameters onto the stack in proper
  // order for the Wasm function. These remaining params are the final stack
  // parameters for the call to WebAssembly. Example of the stack layout
  // after processing 2 int and 1 float parameters when param_count is 4.
  //   +-----------------+
  //   |       fp        |
  //   |-----------------|-------------------------------
  //   |                 |   Slots we defined
  //   |   Saved values  |    when setting up
  //   |                 |     the stack
  //   |                 |
  //   +-Integer section-+--- <--- start_int_section ----
  //   |  1st int param  |
  //   |- - - - - - - - -|
  //   |  2nd int param  |
  //   |- - - - - - - - -|  <----- current_int_param_slot
  //   |                 |       (points to the stackslot
  //   |- - - - - - - - -|  where the next int param should be placed)
  //   |                 |
  //   +--Float section--+--- <--- start_float_section --
  //   | 1st float param |
  //   |- - - - - - - - -|  <----  current_float_param_slot
  //   |                 |       (points to the stackslot
  //   |- - - - - - - - -|  where the next float param should be placed)
  //   |                 |
  //   |- - - - - - - - -|
  //   |                 |
  //   +---Final stack---+------------------------------
  //   +-parameters for--+------------------------------
  //   +-the Wasm call---+------------------------------
  //   |      . . .      |

  // For Integer section.
  DEFINE_REG(current_int_param_slot);
  // Set the current_int_param_slot to point to the start of the section.
  __ Sub(current_int_param_slot, sp, kSystemPointerSize);

  DEFINE_REG(current_float_param_slot);
  // Set the current_float_param_slot to point to the start of the section.
  __ Sub(current_float_param_slot, current_int_param_slot,
          Operand(param_count, LSL, kSystemPointerSizeLog2));
  // Claim space for int and float params at once,
  // to be sure sp is aligned by kSystemPointerSize << 1 = 16.
  __ Sub(sp, sp, Operand(param_count, LSL, kSystemPointerSizeLog2 + 1));

  // -------------------------------------------
  // Set up for the param evaluation loop.
  // -------------------------------------------
  // We will loop through the params starting with the 1st param.
  // The order of processing the params is important. We have to evaluate
  // them in an increasing order.
  //       +-----------------+---------------
  //       |     param n     |
  //       |- - - - - - - - -|
  //       |    param n-1    |   Caller
  //       |       ...       | frame slots
  //       |     param 1     |
  //       |- - - - - - - - -|
  //       |    receiver     |
  //       +-----------------+---------------
  //       |  return addr    |
  //   FP->|- - - - - - - - -|
  //       |       fp        |   Spill slots
  //       |- - - - - - - - -|
  //
  // [current_param] gives us the parameter we are processing.
  // We iterate through half-open interval <1st param, [fp + param_limit]).

  DEFINE_REG(param_ptr);
  constexpr int kReceiverOnStackSize = kSystemPointerSize;
  __ Add(param_ptr, original_fp,
          kFPOnStackSize + kPCOnStackSize + kReceiverOnStackSize);
  DEFINE_REG(param_limit);
  __ Add(param_limit, param_ptr,
          Operand(param_count, LSL, kSystemPointerSizeLog2));
  // We have to check the types of the params. The ValueType array contains
  // first the return then the param types.
  // Set the ValueType array pointer to point to the first parameter.
  constexpr int kValueTypeSize = sizeof(wasm::ValueType);
  static_assert(kValueTypeSize == 4);
  const int32_t kValueTypeSizeLog2 = log2(kValueTypeSize);
  __ Add(valuetypes_array_ptr, valuetypes_array_ptr,
          Operand(return_count, LSL, kValueTypeSizeLog2));
  DEFINE_REG_W(valuetype);

  Label numeric_params_done;
  if (stack_switch) {
    // Prepare for materializing the suspender parameter. We don't materialize
    // it here but in the next loop that processes references. Here we only
    // adjust the pointers to keep the state consistent:
    // - Skip the first valuetype in the signature,
    // - Adjust the param limit which is off by one because of the extra
    // param in the signature,
    // - Set HasRefTypes to 1 to ensure that the reference loop is entered.
    __ Add(valuetypes_array_ptr, valuetypes_array_ptr, kValueTypeSize);
    __ Sub(param_limit, param_limit, kSystemPointerSize);
    // Use return_count as a scratch register, because it is not used
    // in this block anymore.
    __ Mov(return_count, 1);
    __ Str(return_count, MemOperand(fp, kRefParamsCountOffset));
    __ cmp(param_ptr, param_limit);
    __ B(&numeric_params_done, eq);
  }

  // -------------------------------------------
  // Param evaluation loop.
  // -------------------------------------------
  Label loop_through_params;
  __ bind(&loop_through_params);

  __ Ldr(param, MemOperand(param_ptr, kSystemPointerSize, PostIndex));
  __ Ldr(valuetype, MemOperand(valuetypes_array_ptr,
                                wasm::ValueType::bit_field_offset()));

  // -------------------------------------------
  // Param conversion.
  // -------------------------------------------
  // If param is a Smi we can easily convert it. Otherwise we'll call
  // a builtin for conversion.
  Label convert_param, param_conversion_done;
  __ cmp(valuetype, Immediate(wasm::kWasmI32.raw_bit_field()));
  __ B(&convert_param, ne);
  __ JumpIfNotSmi(param, &convert_param);
  // Change the paramfrom Smi to int32.
  __ SmiUntag(param);
  // Place the param into the proper slot in Integer section.
  __ Str(param,
        MemOperand(current_int_param_slot, -kSystemPointerSize, PostIndex));
  __ jmp(&param_conversion_done);

  // -------------------------------------------
  // Param conversion builtins.
  // -------------------------------------------
  __ bind(&convert_param);
  // The order of pushes is important. We want the heap objects,
  // that should be scanned by GC, to be on the top of the stack.
  // We have to set the indicating value for the GC to the number of values
  // on the top of the stack that have to be scanned before calling
  // the builtin function.
  // The builtin expects the parameter to be in register param = x0.
  constexpr int kBuiltinCallGCScanSlotCount = 2;
  PrepareForBuiltinCall(masm, MemOperand(fp, kGCScanSlotCountOffset),
                        kBuiltinCallGCScanSlotCount, param_ptr, param_limit,
                        current_int_param_slot, current_float_param_slot,
                        valuetypes_array_ptr, wasm_instance, function_data,
                        original_fp);

  Label param_kWasmI32_not_smi;
  Label param_kWasmI64;
  Label param_kWasmF32;
  Label param_kWasmF64;

  __ cmp(valuetype, Immediate(wasm::kWasmI32.raw_bit_field()));
  __ B(&param_kWasmI32_not_smi, eq);

  __ cmp(valuetype, Immediate(wasm::kWasmI64.raw_bit_field()));
  __ B(&param_kWasmI64, eq);

  __ cmp(valuetype, Immediate(wasm::kWasmF32.raw_bit_field()));
  __ B(&param_kWasmF32, eq);

  __ cmp(valuetype, Immediate(wasm::kWasmF64.raw_bit_field()));
  __ B(&param_kWasmF64, eq);

  // The parameter is a reference.
  // We do not copy the references to the int section yet.
  // Instead we will later loop over all parameters again to handle reference
  // parameters. The reason is that later value type parameters may trigger a
  // GC, and we cannot keep reference parameters alive then. Instead we leave
  // reference parameters at their initial place on the stack and only copy
  // them once no GC can happen anymore.
  // As an optimization we set a flag here that indicates that we have seen a
  // reference so far. If there was no reference parameter, we would not
  // iterate over the parameters for a second time.
  // Use param_limit as a scratch reg,
  // it is going to be restored in next call anyway.
  __ Mov(param_limit, Immediate(1));
  __ Str(param_limit, MemOperand(fp, kRefParamsCountOffset));
  RestoreAfterBuiltinCall(masm, function_data, wasm_instance,
                          valuetypes_array_ptr, current_float_param_slot,
                          current_int_param_slot, param_limit, param_ptr,
                          original_fp);
  __ jmp(&param_conversion_done);

  __ bind(&param_kWasmI32_not_smi);
  __ Call(BUILTIN_CODE(masm->isolate(), WasmTaggedNonSmiToInt32),
          RelocInfo::CODE_TARGET);
  // Param is the result of the builtin.
  RestoreAfterBuiltinCall(masm, function_data, wasm_instance,
                          valuetypes_array_ptr, current_float_param_slot,
                          current_int_param_slot, param_limit, param_ptr,
                          original_fp);
  __ Str(param,
          MemOperand(current_int_param_slot, -kSystemPointerSize, PostIndex));
  __ jmp(&param_conversion_done);

  __ bind(&param_kWasmI64);
  __ Call(BUILTIN_CODE(masm->isolate(), BigIntToI64), RelocInfo::CODE_TARGET);
  RestoreAfterBuiltinCall(masm, function_data, wasm_instance,
                          valuetypes_array_ptr, current_float_param_slot,
                          current_int_param_slot, param_limit, param_ptr,
                          original_fp);
  __ Str(param,
          MemOperand(current_int_param_slot, -kSystemPointerSize, PostIndex));
  __ jmp(&param_conversion_done);

  __ bind(&param_kWasmF32);
  __ Call(BUILTIN_CODE(masm->isolate(), WasmTaggedToFloat64),
          RelocInfo::CODE_TARGET);
  RestoreAfterBuiltinCall(masm, function_data, wasm_instance,
                          valuetypes_array_ptr, current_float_param_slot,
                          current_int_param_slot, param_limit, param_ptr,
                          original_fp);
  // Truncate float64 to float32.
  __ Fcvt(s1, kFPReturnRegister0);
  __ Str(s1, MemOperand(current_float_param_slot, -kSystemPointerSize,
                        PostIndex));
  __ jmp(&param_conversion_done);

  __ bind(&param_kWasmF64);
  __ Call(BUILTIN_CODE(masm->isolate(), WasmTaggedToFloat64),
          RelocInfo::CODE_TARGET);
  RestoreAfterBuiltinCall(masm, function_data, wasm_instance,
                          valuetypes_array_ptr, current_float_param_slot,
                          current_int_param_slot, param_limit, param_ptr,
                          original_fp);
  __ Str(kFPReturnRegister0,
          MemOperand(current_float_param_slot, -kSystemPointerSize,
                    PostIndex));
  __ jmp(&param_conversion_done);

  // -------------------------------------------
  // Param conversion done.
  // -------------------------------------------
  __ bind(&param_conversion_done);

  __ Add(valuetypes_array_ptr, valuetypes_array_ptr, kValueTypeSize);

  __ cmp(param_ptr, param_limit);
  __ B(&loop_through_params, ne);
  __ bind(&numeric_params_done);

  // -------------------------------------------
  // Second loop to handle references.
  // -------------------------------------------
  // In this loop we iterate over all parameters for a second time and copy
  // all reference parameters at the end of the integer parameters section.
  Label ref_params_done;
  // We check if we have seen a reference in the first parameter loop.
  __ Ldr(param_count, MemOperand(original_fp, kParamCountOffset));
  DEFINE_REG(ref_param_count);
  __ Ldr(ref_param_count, MemOperand(fp, kRefParamsCountOffset));
  __ cmp(ref_param_count, 0);
  __ B(&ref_params_done, eq);
  __ Mov(ref_param_count, 0);
  // We re-calculate the beginning of the value-types array and the beginning
  // of the parameters ({valuetypes_array_ptr} and {current_param}).
  __ Ldr(valuetypes_array_ptr, MemOperand(fp, kValueTypesArrayStartOffset));
  __ Ldr(return_count, MemOperand(fp, kReturnCountOffset));
  __ Add(valuetypes_array_ptr, valuetypes_array_ptr,
          Operand(return_count, LSL, kValueTypeSizeLog2));
  __ Add(param_ptr, original_fp,
          kFPOnStackSize + kPCOnStackSize + kReceiverOnStackSize);
  __ Add(param_limit, param_ptr,
          Operand(param_count, LSL, kSystemPointerSizeLog2));
  if (stack_switch) {
    // Materialize the suspender param
    __ Ldr(param, MemOperand(original_fp, kSuspenderOffset));
    __ Str(param,
        MemOperand(current_int_param_slot, -kSystemPointerSize, PostIndex));
    __ Add(valuetypes_array_ptr, valuetypes_array_ptr, kValueTypeSize);
    __ Add(ref_param_count, ref_param_count, Immediate(1));
    __ cmp(param_ptr, param_limit);
    __ B(&ref_params_done, eq);
  }

  Label ref_loop_through_params;
  Label ref_loop_end;
  // Start of the loop.
  __ bind(&ref_loop_through_params);

  // Load the current parameter with type.
  __ Ldr(param, MemOperand(param_ptr, kSystemPointerSize, PostIndex));
  __ Ldr(valuetype,
          MemOperand(valuetypes_array_ptr,
                      wasm::ValueType::bit_field_offset()));
  // Extract the ValueKind of the type, to check for kRef and kRefNull.
  __ And(valuetype, valuetype, Immediate(wasm::kWasmValueKindBitsMask));
  Label move_ref_to_slot;
  __ cmp(valuetype, Immediate(wasm::ValueKind::kRefNull));
  __ B(&move_ref_to_slot, eq);
  __ cmp(valuetype, Immediate(wasm::ValueKind::kRef));
  __ B(&move_ref_to_slot, eq);
  __ jmp(&ref_loop_end);

  // Place the param into the proper slot in Integer section.
  __ bind(&move_ref_to_slot);
  __ Add(ref_param_count, ref_param_count, Immediate(1));
  __ Str(param,
        MemOperand(current_int_param_slot, -kSystemPointerSize, PostIndex));

  // Move to the next parameter.
  __ bind(&ref_loop_end);
  __ Add(valuetypes_array_ptr, valuetypes_array_ptr, kValueTypeSize);

  // Check if we finished all parameters.
  __ cmp(param_ptr, param_limit);
  __ B(&ref_loop_through_params, ne);

  __ Str(ref_param_count, MemOperand(fp, kRefParamsCountOffset));
  __ bind(&ref_params_done);
  // There is no potential GC calls after this point,
  // so storing it in the spill to reuse register.
  __ Str(function_data, MemOperand(fp, kFunctionDataOffset));

  regs.ResetExcept(valuetypes_array_ptr, param_count, current_int_param_slot,
                   current_float_param_slot, wasm_instance, original_fp);

  // -------------------------------------------
  // Allocate space on the stack for Wasm params.
  // -------------------------------------------
  // We have to pre-allocate stack param space before iterating them,
  // because ARM64 requires SP to be aligned by 16. To comply we have
  // to insert a 8 bytes gap in a case of odd amount of parameters and
  // fill the slots skipping this gap. We cannot place the gap slot
  // at the end, because Wasm function is expecting params from the bottom
  // border of a caller frame without any gaps.

  // There is one gap slot after the last spill slot.
  // It is there because kNumSpillSlots + StackMarker == 9*8 bytes,
  // but SP should be aligned by 16.
  constexpr int kGapSlotSize = kSystemPointerSize;
  constexpr int kIntegerSectionStartOffset =
    kLastSpillOffset - kGapSlotSize - kSystemPointerSize;
  DEFINE_REG(start_int_section);
  __ Add(start_int_section, fp, kIntegerSectionStartOffset);

  DEFINE_REG(start_float_section);
  __ Sub(start_float_section, start_int_section,
          Operand(param_count, LSL, kSystemPointerSizeLog2));

  // Substract params passed in registers.
  // There are 6 general purpose and 8 fp registers for parameters,
  // but kIntegerSectionStartOffset is already shifted by kSystemPointerSize,
  // so we should substruct (n - 1) slots.
  __ Sub(start_int_section, start_int_section, 5 * kSystemPointerSize);
  __ Sub(start_float_section, start_float_section, 7 * kSystemPointerSize);

  // We want the current_param_slot (insertion) pointers to point at the last
  // param of the section instead of the next free slot.
  __ Add(current_int_param_slot, current_int_param_slot,
          Immediate(kSystemPointerSize));
  __ Add(current_float_param_slot, current_float_param_slot,
          Immediate(kSystemPointerSize));

  DEFINE_REG(args_pointer);
  Label has_ints, has_floats;
  // How much space int params require on stack(in bytes)?
  __ Subs(args_pointer, start_int_section, current_int_param_slot);
  __ B(&has_ints, gt);
  // Clamp negative value to 0.
  __ Mov(args_pointer, 0);
  __ bind(&has_ints);
  ASSIGN_REG(scratch);
  // How much space float params require on stack(in bytes)?
  __ Subs(scratch, start_float_section, current_float_param_slot);
  __ B(&has_floats, gt);
  // Clamp negative value to 0.
  __ Mov(scratch, 0);
  __ bind(&has_floats);
  // Sum int and float stack space requirements.
  __ Add(args_pointer, args_pointer, scratch);
  // Round up stack space to 16 divisor.
  __ Add(scratch, args_pointer, 0xF);
  __ Bic(scratch, scratch, 0xF);
  // Reserve space for params on stack.
  __ Sub(sp, sp, scratch);
  // Setup args pointer after possible gap.
  // args_pointer contains num_of_stack_arguments * kSystemPointerSize.
  __ Add(args_pointer, sp, args_pointer);
  // Setup args_pointer to first stack param slot.
  __ Sub(args_pointer, args_pointer, kSystemPointerSize);

  // -------------------------------------------
  // Final stack parameters loop.
  // -------------------------------------------
  // The parameters that didn't fit into the registers should be placed on
  // the top of the stack contiguously. The interval of parameters between
  // the start_section and the current_param_slot pointers define
  // the remaining parameters of the section.
  // We can iterate through the valuetypes array to decide from which section
  // we need to push the parameter onto the top of the stack. By iterating in
  // a reversed order we can easily pick the last parameter of the proper
  // section. The parameter of the section is pushed on the top of the stack
  // only if the interval of remaining params is not empty. This way we
  // ensure that only params that didn't fit into param registers are
  // pushed again.

  Label loop_through_valuetypes;
  Label loop_place_ref_params;
  ASSIGN_REG(ref_param_count);
  __ Ldr(ref_param_count, MemOperand(fp, kRefParamsCountOffset));
  __ bind(&loop_place_ref_params);
  __ cmp(ref_param_count, Immediate(0));
  __ B(&loop_through_valuetypes, eq);

  __ Cmp(start_int_section, current_int_param_slot);
  // if no int or ref param remains, directly iterate valuetypes
  __ B(&loop_through_valuetypes, le);

  ASSIGN_REG(param);
  __ Ldr(param,
          MemOperand(current_int_param_slot, kSystemPointerSize, PostIndex));
  __ Str(param, MemOperand(args_pointer, -kSystemPointerSize, PostIndex));
  __ Sub(ref_param_count, ref_param_count, Immediate(1));
  __ jmp(&loop_place_ref_params);

  __ bind(&loop_through_valuetypes);

  // We iterated through the valuetypes array, we are one field over the end
  // in the beginning. Also, we have to decrement it in each iteration.
  __ Sub(valuetypes_array_ptr, valuetypes_array_ptr, kValueTypeSize);

  // Check if there are still remaining integer params.
  Label continue_loop;
  __ cmp(start_int_section, current_int_param_slot);
  // If there are remaining integer params.
  __ B(&continue_loop, gt);

  // Check if there are still remaining float params.
  __ cmp(start_float_section, current_float_param_slot);
  // If there aren't any params remaining.
  Label params_done;
  __ B(&params_done, le);

  __ bind(&continue_loop);
  ASSIGN_REG_W(valuetype);
  __ Ldr(valuetype, MemOperand(valuetypes_array_ptr,
                                wasm::ValueType::bit_field_offset()));
  Label place_integer_param;
  Label place_float_param;
  __ cmp(valuetype, Immediate(wasm::kWasmI32.raw_bit_field()));
  __ B(&place_integer_param, eq);

  __ cmp(valuetype, Immediate(wasm::kWasmI64.raw_bit_field()));
  __ B(&place_integer_param, eq);

  __ cmp(valuetype, Immediate(wasm::kWasmF32.raw_bit_field()));
  __ B(&place_float_param, eq);

  __ cmp(valuetype, Immediate(wasm::kWasmF64.raw_bit_field()));
  __ B(&place_float_param, eq);

  // ref params have already been pushed, so go through directly
  __ jmp(&loop_through_valuetypes);

  // All other types are reference types. We can just fall through to place
  // them in the integer section.

  __ bind(&place_integer_param);
  __ cmp(start_int_section, current_int_param_slot);
  // If there aren't any integer params remaining, just floats, then go to
  // the next valuetype.
  __ B(&loop_through_valuetypes, le);

  // Copy the param from the integer section to the actual parameter area.
  __ Ldr(param,
          MemOperand(current_int_param_slot, kSystemPointerSize, PostIndex));
  __ Str(param, MemOperand(args_pointer, -kSystemPointerSize, PostIndex));
  __ jmp(&loop_through_valuetypes);

  __ bind(&place_float_param);
  __ cmp(start_float_section, current_float_param_slot);
  // If there aren't any float params remaining, just integers, then go to
  // the next valuetype.
  __ B(&loop_through_valuetypes, le);

  // Copy the param from the float section to the actual parameter area.
  __ Ldr(param,
        MemOperand(current_float_param_slot, kSystemPointerSize, PostIndex));
  __ Str(param, MemOperand(args_pointer, -kSystemPointerSize, PostIndex));
  __ jmp(&loop_through_valuetypes);

  __ bind(&params_done);

  regs.ResetExcept(original_fp, wasm_instance, param_count);

  // -------------------------------------------
  // Move the parameters into the proper param registers.
  // -------------------------------------------
  // Exclude param registers from the register registry.
  regs.Reserve(x0, x2, x3, x4, x5, x6);
  DEFINE_PINNED(function_entry, x1);
  ASSIGN_REG(start_int_section);
  __ Add(start_int_section, fp, kIntegerSectionStartOffset);
  ASSIGN_REG(start_float_section);
  __ Sub(start_float_section, start_int_section,
          Operand(param_count, LSL, kSystemPointerSizeLog2));
  // Arm64 simulator checks access below SP, so allocate some
  // extra space to make it happy during filling registers,
  // when we have less slots than param registers.
  __ Sub(sp, sp, 8 * kSystemPointerSize);
  // Fill the FP param registers.
  __ Ldr(d0, MemOperand(start_float_section, 0));
  __ Ldr(d1, MemOperand(start_float_section, -kSystemPointerSize));
  __ Ldr(d2, MemOperand(start_float_section, -2 * kSystemPointerSize));
  __ Ldr(d3, MemOperand(start_float_section, -3 * kSystemPointerSize));
  __ Ldr(d4, MemOperand(start_float_section, -4 * kSystemPointerSize));
  __ Ldr(d5, MemOperand(start_float_section, -5 * kSystemPointerSize));
  __ Ldr(d6, MemOperand(start_float_section, -6 * kSystemPointerSize));
  __ Ldr(d7, MemOperand(start_float_section, -7 * kSystemPointerSize));

  // Fill the GP param registers.
  __ Ldr(x0, MemOperand(start_int_section, 0));
  __ Ldr(x2, MemOperand(start_int_section, -kSystemPointerSize));
  __ Ldr(x3, MemOperand(start_int_section, -2 * kSystemPointerSize));
  __ Ldr(x4, MemOperand(start_int_section, -3 * kSystemPointerSize));
  __ Ldr(x5, MemOperand(start_int_section, -4 * kSystemPointerSize));
  __ Ldr(x6, MemOperand(start_int_section, -5 * kSystemPointerSize));

  // Restore SP to previous state.
  __ Add(sp, sp, 8 * kSystemPointerSize);

  // If we jump through 0 params shortcut, then function_data is live in x1.
  // In regular flow we need to repopulate it from the spill slot.
  DCHECK_EQ(function_data, no_reg);
  function_data = function_entry;
  __ Ldr(function_data, MemOperand(fp, kFunctionDataOffset));

  __ bind(&prepare_for_wasm_call);
  // -------------------------------------------
  // Prepare for the Wasm call.
  // -------------------------------------------
  // Set thread_in_wasm_flag.
  DEFINE_REG(thread_in_wasm_flag_addr);
  __ Ldr(
      thread_in_wasm_flag_addr,
      MemOperand(kRootRegister,
                  Isolate::thread_in_wasm_flag_address_offset()));
  ASSIGN_REG(scratch);
  __ Mov(scratch, 1);
  __ Str(scratch, MemOperand(thread_in_wasm_flag_addr, 0));

  __ LoadAnyTaggedField(
      function_entry,
      FieldMemOperand(function_data,
                      WasmExportedFunctionData::kInternalOffset));
  function_data = no_reg;
  __ LoadExternalPointerField(
      function_entry,
      FieldMemOperand(function_entry,
                      WasmInternalFunction::kCallTargetOffset),
      kWasmInternalFunctionCallTargetTag);

  // We set the indicating value for the GC to the proper one for Wasm call.
  __ Str(xzr, MemOperand(fp, kGCScanSlotCountOffset));
  // -------------------------------------------
  // Call the Wasm function.
  // -------------------------------------------
  __ Call(function_entry);

  // Note: we might be returning to a different frame if the stack was
  // suspended and resumed during the call. The new frame is set up by
  // WasmResume and has a compatible layout.

  // -------------------------------------------
  // Resetting after the Wasm call.
  // -------------------------------------------
  // Restore rsp to free the reserved stack slots for the sections.
  __ Add(sp, fp, kLastSpillOffset - kSystemPointerSize);

  // Unset thread_in_wasm_flag.
  __ Ldr(
      thread_in_wasm_flag_addr,
      MemOperand(kRootRegister,
                  Isolate::thread_in_wasm_flag_address_offset()));
  __ Str(xzr, MemOperand(thread_in_wasm_flag_addr, 0));

  regs.ResetExcept(original_fp, wasm_instance);

  // -------------------------------------------
  // Return handling.
  // -------------------------------------------
  DEFINE_PINNED(return_reg, kReturnRegister0); // x0
  ASSIGN_REG(return_count);
  __ Ldr(return_count, MemOperand(fp, kReturnCountOffset));

  // If we have 1 return value, then jump to conversion.
  __ cmp(return_count, 1);
  Label convert_return;
  __ B(&convert_return, eq);

  // Otherwise load undefined.
  __ LoadRoot(return_reg, RootIndex::kUndefinedValue);

  Label return_done;
  __ bind(&return_done);

  if (stack_switch) {
    DEFINE_SCOPED(tmp);
    DEFINE_SCOPED(tmp2);
    ReloadParentContinuation(masm, wasm_instance, return_reg, tmp, tmp2);
    RestoreParentSuspender(masm, tmp, tmp2);
  }
  __ bind(&suspend);
  // No need to process the return value if the stack is suspended, there is
  // a single 'externref' value (the promise) which doesn't require conversion.

  ASSIGN_REG(param_count);
  __ Ldr(param_count, MemOperand(fp, kParamCountOffset));

  // Calculate the number of parameters we have to pop off the stack. This
  // number is max(in_param_count, param_count).
  DEFINE_REG(in_param_count);
  __ Ldr(in_param_count, MemOperand(fp, kInParamCountOffset));
  __ cmp(param_count, in_param_count);
  __ csel(param_count, in_param_count, param_count, lt);

  // -------------------------------------------
  // Deconstrunct the stack frame.
  // -------------------------------------------
  __ LeaveFrame(stack_switch ? StackFrame::STACK_SWITCH
                             : StackFrame::JS_TO_WASM);

  // We have to remove the caller frame slots:
  //  - JS arguments
  //  - the receiver
  // and transfer the control to the return address (the return address is
  // expected to be on the top of the stack).
  // We cannot use just the ret instruction for this, because we cannot pass
  // the number of slots to remove in a Register as an argument.
  __ DropArguments(param_count, TurboAssembler::kCountExcludesReceiver);
  __ Ret(lr);

  // -------------------------------------------
  // Return conversions.
  // -------------------------------------------
  __ bind(&convert_return);
  // We have to make sure that the kGCScanSlotCount is set correctly when we
  // call the builtins for conversion. For these builtins it's the same as
  // for the Wasm call, that is, kGCScanSlotCount = 0, so we don't have to
  // reset it. We don't need the JS context for these builtin calls.

  ASSIGN_REG(valuetypes_array_ptr);
  __ Ldr(valuetypes_array_ptr, MemOperand(fp, kValueTypesArrayStartOffset));
  // The first valuetype of the array is the return's valuetype.
  ASSIGN_REG_W(valuetype);
  __ Ldr(valuetype,
        MemOperand(valuetypes_array_ptr,
                    wasm::ValueType::bit_field_offset()));

  Label return_kWasmI32;
  Label return_kWasmI64;
  Label return_kWasmF32;
  Label return_kWasmF64;
  Label return_kWasmFuncRef;

  __ cmp(valuetype, Immediate(wasm::kWasmI32.raw_bit_field()));
  __ B(&return_kWasmI32, eq);

  __ cmp(valuetype, Immediate(wasm::kWasmI64.raw_bit_field()));
  __ B(&return_kWasmI64, eq);

  __ cmp(valuetype, Immediate(wasm::kWasmF32.raw_bit_field()));
  __ B(&return_kWasmF32, eq);

  __ cmp(valuetype, Immediate(wasm::kWasmF64.raw_bit_field()));
  __ B(&return_kWasmF64, eq);

  // kWasmFuncRef is not representable as a cmp immediate operand.
  ASSIGN_REG_W(scratch);
  __ Mov(scratch, Immediate(wasm::kWasmFuncRef.raw_bit_field()));
  __ cmp(valuetype, scratch);
  __ B(&return_kWasmFuncRef, eq);

  // All types that are not SIMD are reference types.
  __ cmp(valuetype, Immediate(wasm::kWasmS128.raw_bit_field()));
  // References can be passed to JavaScript as is.
  __ B(&return_done, ne);

  __ bind(&return_kWasmI32);
  Label to_heapnumber;
  // If pointer compression is disabled, we can convert the return to a smi.
  if (SmiValuesAre32Bits()) {
    __ SmiTag(return_reg);
  } else {
    __ Mov(scratch, return_reg.W());
    // Double the return value to test if it can be a Smi.
    __ Adds(scratch, scratch, return_reg.W());
    // If there was overflow, convert the return value to a HeapNumber.
    __ B(&to_heapnumber, vs);
    // If there was no overflow, we can convert to Smi.
    __ SmiTag(return_reg);
  }
  __ jmp(&return_done);

  // Handle the conversion of the I32 return value to HeapNumber when it
  // cannot be a smi.
  __ bind(&to_heapnumber);
  __ Call(BUILTIN_CODE(masm->isolate(), WasmInt32ToHeapNumber),
          RelocInfo::CODE_TARGET);
  __ jmp(&return_done);

  __ bind(&return_kWasmI64);
  __ Call(BUILTIN_CODE(masm->isolate(), I64ToBigInt),
          RelocInfo::CODE_TARGET);
  __ jmp(&return_done);

  __ bind(&return_kWasmF32);
  __ Call(BUILTIN_CODE(masm->isolate(), WasmFloat32ToNumber),
          RelocInfo::CODE_TARGET);
  __ jmp(&return_done);

  __ bind(&return_kWasmF64);
  __ Call(BUILTIN_CODE(masm->isolate(), WasmFloat64ToNumber),
          RelocInfo::CODE_TARGET);
  __ jmp(&return_done);

  __ bind(&return_kWasmFuncRef);
  __ Call(BUILTIN_CODE(masm->isolate(), WasmFuncRefToJS),
          RelocInfo::CODE_TARGET);
  __ jmp(&return_done);

  regs.ResetExcept();

  // --------------------------------------------------------------------------
  //                          Deferred code.
  // --------------------------------------------------------------------------

  if (!stack_switch) {
    // -------------------------------------------
    // Kick off compilation.
    // -------------------------------------------
    __ bind(&compile_wrapper);
    // Enable GC.
    MemOperand GCScanSlotPlace = MemOperand(fp, kGCScanSlotCountOffset);
    ASSIGN_REG(scratch);
    __ Mov(scratch, 4);
    __ Str(scratch, GCScanSlotPlace);

    // These register are live and pinned to the same values
    // at the place of jumping to this deffered code.
    DEFINE_PINNED(function_data, kJSFunctionRegister);
    DEFINE_PINNED(wasm_instance, kWasmInstanceRegister);
    __ Stp(wasm_instance, function_data,
      MemOperand(sp, -2 * kSystemPointerSize, PreIndex));
    // Push the arguments for the runtime call.
    __ Push(wasm_instance, function_data);
    // Set up context.
    __ Move(kContextRegister, Smi::zero());
    // Call the runtime function that kicks off compilation.
    __ CallRuntime(Runtime::kWasmCompileWrapper, 2);
    __ Ldp(wasm_instance, function_data,
      MemOperand(sp, 2 * kSystemPointerSize, PostIndex));
    __ jmp(&compile_wrapper_done);
  }
}

} // namespace

void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) {
  GenericJSToWasmWrapperHelper(masm, false);
}

void Builtins::Generate_WasmReturnPromiseOnSuspend(MacroAssembler* masm) {
  GenericJSToWasmWrapperHelper(masm, true);
}

void Builtins::Generate_WasmSuspend(MacroAssembler* masm) {
  auto regs = RegisterAllocator::WithAllocatableGeneralRegisters();
  // Set up the stackframe.
  __ EnterFrame(StackFrame::STACK_SWITCH);

  DEFINE_PINNED(promise, x0);
  DEFINE_PINNED(suspender, x1);

  __ Sub(sp, sp, RoundUp(-(BuiltinWasmWrapperConstants::kGCScanSlotCountOffset
                           - TypedFrameConstants::kFixedFrameSizeFromFp), 16));
  // Set a sentinel value for the spill slot visited by the GC.
  DEFINE_REG(undefined);
  __ LoadRoot(undefined, RootIndex::kUndefinedValue);
  __ Str(undefined,
          MemOperand(fp, BuiltinWasmWrapperConstants::kSuspenderOffset));

  // TODO(thibaudm): Throw if any of the following holds:
  // - caller is null
  // - ActiveSuspender is undefined
  // - 'suspender' is not the active suspender

  // -------------------------------------------
  // Save current state in active jump buffer.
  // -------------------------------------------
  Label resume;
  DEFINE_REG(continuation);
  __ LoadRoot(continuation, RootIndex::kActiveContinuation);
  DEFINE_REG(jmpbuf);
  DEFINE_REG(scratch);
  __ LoadExternalPointerField(
      jmpbuf,
      FieldMemOperand(continuation, WasmContinuationObject::kJmpbufOffset),
      kWasmContinuationJmpbufTag);
  FillJumpBuffer(masm, jmpbuf, &resume, scratch);
  SwitchStackState(masm, jmpbuf, scratch, wasm::JumpBuffer::Active,
                   wasm::JumpBuffer::Inactive);
  __ Move(scratch, Smi::FromInt(WasmSuspenderObject::kSuspended));
  __ StoreTaggedField(
      scratch,
      FieldMemOperand(suspender, WasmSuspenderObject::kStateOffset));
  regs.ResetExcept(promise, suspender, continuation);

  DEFINE_REG(suspender_continuation);
  __ LoadAnyTaggedField(
      suspender_continuation,
      FieldMemOperand(suspender, WasmSuspenderObject::kContinuationOffset));
  if (v8_flags.debug_code) {
    // -------------------------------------------
    // Check that the suspender's continuation is the active continuation.
    // -------------------------------------------
    // TODO(thibaudm): Once we add core stack-switching instructions, this
    // check will not hold anymore: it's possible that the active continuation
    // changed (due to an internal switch), so we have to update the suspender.
    __ cmp(suspender_continuation, continuation);
    Label ok;
    __ B(&ok, eq);
    __ Trap();
    __ bind(&ok);
  }
  FREE_REG(continuation);
  // -------------------------------------------
  // Update roots.
  // -------------------------------------------
  DEFINE_REG(caller);
  __ LoadAnyTaggedField(caller,
                        FieldMemOperand(suspender_continuation,
                                       WasmContinuationObject::kParentOffset));
  int32_t active_continuation_offset =
    TurboAssembler::RootRegisterOffsetForRootIndex(
      RootIndex::kActiveContinuation);
  __ Str(caller, MemOperand(kRootRegister, active_continuation_offset));
  DEFINE_REG(parent);
  __ LoadAnyTaggedField(
      parent, FieldMemOperand(suspender, WasmSuspenderObject::kParentOffset));
  int32_t active_suspender_offset =
    TurboAssembler::RootRegisterOffsetForRootIndex(RootIndex::kActiveSuspender);
  __ Str(parent, MemOperand(kRootRegister, active_suspender_offset));
  regs.ResetExcept(promise, caller);

  // -------------------------------------------
  // Load jump buffer.
  // -------------------------------------------
  MemOperand GCScanSlotPlace =
      MemOperand(fp, BuiltinWasmWrapperConstants::kGCScanSlotCountOffset);
  ASSIGN_REG(scratch);
  __ Mov(scratch, 2);
  __ Str(scratch, GCScanSlotPlace);
  __ Stp(caller, promise,
      MemOperand(sp, -2 * kSystemPointerSize, PreIndex));
  __ Move(kContextRegister, Smi::zero());
  __ CallRuntime(Runtime::kWasmSyncStackLimit);
  __ Ldp(caller, promise,
      MemOperand(sp, 2 * kSystemPointerSize, PostIndex));
  ASSIGN_REG(jmpbuf);
  __ LoadExternalPointerField(
      jmpbuf, FieldMemOperand(caller, WasmContinuationObject::kJmpbufOffset),
      kWasmContinuationJmpbufTag);
  __ Mov(kReturnRegister0, promise);
  __ Str(xzr, GCScanSlotPlace);
  LoadJumpBuffer(masm, jmpbuf, true, scratch);
  __ Trap();
  __ bind(&resume);
  __ LeaveFrame(StackFrame::STACK_SWITCH);
  __ Ret(lr);
}

namespace {
// Resume the suspender stored in the closure. We generate two variants of this
// builtin: the onFulfilled variant resumes execution at the saved PC and
// forwards the value, the onRejected variant throws the value.

void Generate_WasmResumeHelper(MacroAssembler* masm, wasm::OnResume on_resume) {
  auto regs = RegisterAllocator::WithAllocatableGeneralRegisters();
  __ EnterFrame(StackFrame::STACK_SWITCH);

  DEFINE_PINNED(param_count, kJavaScriptCallArgCountRegister);
  __ Sub(param_count, param_count, 1);          // Exclude receiver.
  DEFINE_PINNED(closure, kJSFunctionRegister);  // x1

  // These slots are not used in this builtin. But when we return from the
  // resumed continuation, we return to the GenericJSToWasmWrapper code, which
  // expects these slots to be set.
  constexpr int kInParamCountOffset =
      BuiltinWasmWrapperConstants::kInParamCountOffset;
  constexpr int kParamCountOffset =
      BuiltinWasmWrapperConstants::kParamCountOffset;
  // Extra slot for allignment.
  __ Sub(sp, sp, Immediate(4 * kSystemPointerSize));
  __ Str(param_count, MemOperand(fp, kParamCountOffset));
  __ Str(param_count, MemOperand(fp, kInParamCountOffset));
  // Set a sentinel value for the spill slot visited by the GC.
  DEFINE_REG(scratch);
  __ LoadRoot(scratch, RootIndex::kUndefinedValue);
  __ Str(scratch,
         MemOperand(fp, BuiltinWasmWrapperConstants::kSuspenderOffset));

  regs.ResetExcept(closure);

  // -------------------------------------------
  // Load suspender from closure.
  // -------------------------------------------
  DEFINE_REG(sfi);
  __ LoadAnyTaggedField(
      sfi,
      MemOperand(
          closure,
          wasm::ObjectAccess::SharedFunctionInfoOffsetInTaggedJSFunction()));
  FREE_REG(closure);
  // Suspender should be ObjectRegister register to be used in
  // RecordWriteField calls later.
  DEFINE_PINNED(suspender, WriteBarrierDescriptor::ObjectRegister());
  DEFINE_REG(function_data);
  __ LoadAnyTaggedField(
      function_data,
      FieldMemOperand(sfi, SharedFunctionInfo::kFunctionDataOffset));
  // The write barrier uses a fixed register for the host object (rdi). The next
  // barrier is on the suspender, so load it in rdi directly.
  __ LoadAnyTaggedField(
      suspender,
      FieldMemOperand(function_data, WasmResumeData::kSuspenderOffset));
  // Check the suspender state.
  Label suspender_is_suspended;
  DEFINE_REG(state);
  __ SmiUntag(state,
              FieldMemOperand(suspender, WasmSuspenderObject::kStateOffset));
  __ cmp(state, WasmSuspenderObject::kSuspended);
  __ B(&suspender_is_suspended, eq);
  __ Trap();

  regs.ResetExcept(suspender);

  __ bind(&suspender_is_suspended);
  // -------------------------------------------
  // Save current state.
  // -------------------------------------------
  Label suspend;
  DEFINE_REG(active_continuation);
  __ LoadRoot(active_continuation, RootIndex::kActiveContinuation);
  DEFINE_REG(current_jmpbuf);
  ASSIGN_REG(scratch);
  __ LoadExternalPointerField(
      current_jmpbuf,
      FieldMemOperand(active_continuation,
                      WasmContinuationObject::kJmpbufOffset),
      kWasmContinuationJmpbufTag);
  FillJumpBuffer(masm, current_jmpbuf, &suspend, scratch);
  SwitchStackState(masm, current_jmpbuf, scratch, wasm::JumpBuffer::Active,
                   wasm::JumpBuffer::Inactive);
  FREE_REG(current_jmpbuf);

  // -------------------------------------------
  // Set the suspender and continuation parents and update the roots
  // -------------------------------------------
  DEFINE_REG(active_suspender);
  __ LoadRoot(active_suspender, RootIndex::kActiveSuspender);
  __ StoreTaggedField(
      active_suspender,
      FieldMemOperand(suspender, WasmSuspenderObject::kParentOffset));
  __ RecordWriteField(suspender, WasmSuspenderObject::kParentOffset,
                      active_suspender, kLRHasBeenSaved,
                      SaveFPRegsMode::kIgnore);
  __ Move(scratch, Smi::FromInt(WasmSuspenderObject::kActive));
  __ StoreTaggedField(
      scratch,
      FieldMemOperand(suspender, WasmSuspenderObject::kStateOffset));
  int32_t active_suspender_offset =
    TurboAssembler::RootRegisterOffsetForRootIndex(
      RootIndex::kActiveSuspender);
  __ Str(suspender, MemOperand(kRootRegister, active_suspender_offset));

  // Next line we are going to load a field from suspender, but we have to use
  // the same register for target_continuation to use it in RecordWriteField.
  // So, free suspender here to use pinned reg, but load from it next line.
  FREE_REG(suspender);
  DEFINE_PINNED(target_continuation, WriteBarrierDescriptor::ObjectRegister());
  suspender = target_continuation;
  __ LoadAnyTaggedField(
      target_continuation,
      FieldMemOperand(suspender,
                      WasmSuspenderObject::kContinuationOffset));
  suspender = no_reg;

  __ StoreTaggedField(
      active_continuation,
      FieldMemOperand(target_continuation,
                      WasmContinuationObject::kParentOffset));
  __ RecordWriteField(
      target_continuation, WasmContinuationObject::kParentOffset,
      active_continuation, kLRHasBeenSaved, SaveFPRegsMode::kIgnore);
  FREE_REG(active_continuation);
  int32_t active_continuation_offset =
    TurboAssembler::RootRegisterOffsetForRootIndex(
      RootIndex::kActiveContinuation);
  __ Str(target_continuation,
         MemOperand(kRootRegister, active_continuation_offset));

  MemOperand GCScanSlotPlace =
      MemOperand(fp, BuiltinWasmWrapperConstants::kGCScanSlotCountOffset);
  __ Mov(scratch, 1);
  __ Str(scratch, GCScanSlotPlace);
  __ Stp(target_continuation, scratch, // Scratch for padding.
         MemOperand(sp, -2*kSystemPointerSize, PreIndex));
  __ Move(kContextRegister, Smi::zero());
  __ CallRuntime(Runtime::kWasmSyncStackLimit);
  __ Ldp(target_continuation, scratch,
         MemOperand(sp, 2*kSystemPointerSize, PostIndex));

  regs.ResetExcept(target_continuation);

  // -------------------------------------------
  // Load state from target jmpbuf (longjmp).
  // -------------------------------------------
  regs.Reserve(kReturnRegister0);
  DEFINE_REG(target_jmpbuf);
  ASSIGN_REG(scratch);
  __ LoadExternalPointerField(
      target_jmpbuf,
      FieldMemOperand(target_continuation,
                      WasmContinuationObject::kJmpbufOffset),
      kWasmContinuationJmpbufTag);
  // Move resolved value to return register.
  __ Ldr(kReturnRegister0, MemOperand(fp, 3 * kSystemPointerSize));
  __ Str(xzr, GCScanSlotPlace);
  if (on_resume == wasm::OnResume::kThrow) {
    // Switch to the continuation's stack without restoring the PC.
    LoadJumpBuffer(masm, target_jmpbuf, false, scratch);
    // Forward the onRejected value to kThrow.
    __ Push(xzr, kReturnRegister0);
    __ CallRuntime(Runtime::kThrow);
  } else {
    // Resume the continuation normally.
    LoadJumpBuffer(masm, target_jmpbuf, true, scratch);
  }
  __ Trap();
  __ bind(&suspend);
  __ LeaveFrame(StackFrame::STACK_SWITCH);
  // Pop receiver + parameter.
  __ DropArguments(2, TurboAssembler::kCountIncludesReceiver);
  __ Ret(lr);
}
}  // namespace

void Builtins::Generate_WasmResume(MacroAssembler* masm) {
  Generate_WasmResumeHelper(masm, wasm::OnResume::kContinue);
}

void Builtins::Generate_WasmReject(MacroAssembler* masm) {
  Generate_WasmResumeHelper(masm, wasm::OnResume::kThrow);
}

void Builtins::Generate_WasmOnStackReplace(MacroAssembler* masm) {
  // Only needed on x64.
  __ Trap();
}
#endif  // V8_ENABLE_WEBASSEMBLY

void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
                               SaveFPRegsMode save_doubles, ArgvMode argv_mode,
                               bool builtin_exit_frame) {
  // The Abort mechanism relies on CallRuntime, which in turn relies on
  // CEntry, so until this stub has been generated, we have to use a
  // fall-back Abort mechanism.
  //
  // Note that this stub must be generated before any use of Abort.
  HardAbortScope hard_aborts(masm);

  ASM_LOCATION("CEntry::Generate entry");

  // Register parameters:
  //    x0: argc (including receiver, untagged)
  //    x1: target
  // If argv_mode == ArgvMode::kRegister:
  //    x11: argv (pointer to first argument)
  //
  // The stack on entry holds the arguments and the receiver, with the receiver
  // at the highest address:
  //
  //    sp[argc-1]: receiver
  //    sp[argc-2]: arg[argc-2]
  //    ...           ...
  //    sp[1]:      arg[1]
  //    sp[0]:      arg[0]
  //
  // The arguments are in reverse order, so that arg[argc-2] is actually the
  // first argument to the target function and arg[0] is the last.
  const Register& argc_input = x0;
  const Register& target_input = x1;

  // Calculate argv, argc and the target address, and store them in
  // callee-saved registers so we can retry the call without having to reload
  // these arguments.
  // TODO(jbramley): If the first call attempt succeeds in the common case (as
  // it should), then we might be better off putting these parameters directly
  // into their argument registers, rather than using callee-saved registers and
  // preserving them on the stack.
  const Register& argv = x21;
  const Register& argc = x22;
  const Register& target = x23;

  // Derive argv from the stack pointer so that it points to the first argument
  // (arg[argc-2]), or just below the receiver in case there are no arguments.
  //  - Adjust for the arg[] array.
  Register temp_argv = x11;
  if (argv_mode == ArgvMode::kStack) {
    __ SlotAddress(temp_argv, x0);
    //  - Adjust for the receiver.
    __ Sub(temp_argv, temp_argv, 1 * kSystemPointerSize);
  }

  // Reserve three slots to preserve x21-x23 callee-saved registers.
  int extra_stack_space = 3;
  // Enter the exit frame.
  FrameScope scope(masm, StackFrame::MANUAL);
  __ EnterExitFrame(
      save_doubles == SaveFPRegsMode::kSave, x10, extra_stack_space,
      builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);

  // Poke callee-saved registers into reserved space.
  __ Poke(argv, 1 * kSystemPointerSize);
  __ Poke(argc, 2 * kSystemPointerSize);
  __ Poke(target, 3 * kSystemPointerSize);

  // We normally only keep tagged values in callee-saved registers, as they
  // could be pushed onto the stack by called stubs and functions, and on the
  // stack they can confuse the GC. However, we're only calling C functions
  // which can push arbitrary data onto the stack anyway, and so the GC won't
  // examine that part of the stack.
  __ Mov(argc, argc_input);
  __ Mov(target, target_input);
  __ Mov(argv, temp_argv);

  // x21 : argv
  // x22 : argc
  // x23 : call target
  //
  // The stack (on entry) holds the arguments and the receiver, with the
  // receiver at the highest address:
  //
  //         argv[8]:     receiver
  // argv -> argv[0]:     arg[argc-2]
  //         ...          ...
  //         argv[...]:   arg[1]
  //         argv[...]:   arg[0]
  //
  // Immediately below (after) this is the exit frame, as constructed by
  // EnterExitFrame:
  //         fp[8]:    CallerPC (lr)
  //   fp -> fp[0]:    CallerFP (old fp)
  //         fp[-8]:   Space reserved for SPOffset.
  //         fp[-16]:  CodeObject()
  //         sp[...]:  Saved doubles, if saved_doubles is true.
  //         sp[32]:   Alignment padding, if necessary.
  //         sp[24]:   Preserved x23 (used for target).
  //         sp[16]:   Preserved x22 (used for argc).
  //         sp[8]:    Preserved x21 (used for argv).
  //   sp -> sp[0]:    Space reserved for the return address.
  //
  // After a successful call, the exit frame, preserved registers (x21-x23) and
  // the arguments (including the receiver) are dropped or popped as
  // appropriate. The stub then returns.
  //
  // After an unsuccessful call, the exit frame and suchlike are left
  // untouched, and the stub either throws an exception by jumping to one of
  // the exception_returned label.

  // Prepare AAPCS64 arguments to pass to the builtin.
  __ Mov(x0, argc);
  __ Mov(x1, argv);
  __ Mov(x2, ExternalReference::isolate_address(masm->isolate()));

  __ StoreReturnAddressAndCall(target);

  // Result returned in x0 or x1:x0 - do not destroy these registers!

  //  x0    result0      The return code from the call.
  //  x1    result1      For calls which return ObjectPair.
  //  x21   argv
  //  x22   argc
  //  x23   target
  const Register& result = x0;

  // Check result for exception sentinel.
  Label exception_returned;
  __ CompareRoot(result, RootIndex::kException);
  __ B(eq, &exception_returned);

  // The call succeeded, so unwind the stack and return.

  // Restore callee-saved registers x21-x23.
  __ Mov(x11, argc);

  __ Peek(argv, 1 * kSystemPointerSize);
  __ Peek(argc, 2 * kSystemPointerSize);
  __ Peek(target, 3 * kSystemPointerSize);

  __ LeaveExitFrame(save_doubles == SaveFPRegsMode::kSave, x10, x9);
  if (argv_mode == ArgvMode::kStack) {
    // Drop the remaining stack slots and return from the stub.
    __ DropArguments(x11);
  }
  __ AssertFPCRState();
  __ Ret();

  // Handling of exception.
  __ Bind(&exception_returned);

  ExternalReference pending_handler_context_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
  ExternalReference pending_handler_entrypoint_address =
      ExternalReference::Create(
          IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
  ExternalReference pending_handler_fp_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
  ExternalReference pending_handler_sp_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());

  // Ask the runtime for help to determine the handler. This will set x0 to
  // contain the current pending exception, don't clobber it.
  ExternalReference find_handler =
      ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
  {
    FrameScope scope(masm, StackFrame::MANUAL);
    __ Mov(x0, 0);  // argc.
    __ Mov(x1, 0);  // argv.
    __ Mov(x2, ExternalReference::isolate_address(masm->isolate()));
    __ CallCFunction(find_handler, 3);
  }

  // Retrieve the handler context, SP and FP.
  __ Mov(cp, pending_handler_context_address);
  __ Ldr(cp, MemOperand(cp));
  {
    UseScratchRegisterScope temps(masm);
    Register scratch = temps.AcquireX();
    __ Mov(scratch, pending_handler_sp_address);
    __ Ldr(scratch, MemOperand(scratch));
    __ Mov(sp, scratch);
  }
  __ Mov(fp, pending_handler_fp_address);
  __ Ldr(fp, MemOperand(fp));

  // If the handler is a JS frame, restore the context to the frame. Note that
  // the context will be set to (cp == 0) for non-JS frames.
  Label not_js_frame;
  __ Cbz(cp, &not_js_frame);
  __ Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  __ Bind(&not_js_frame);

  {
    // Clear c_entry_fp, like we do in `LeaveExitFrame`.
    UseScratchRegisterScope temps(masm);
    Register scratch = temps.AcquireX();
    __ Mov(scratch, ExternalReference::Create(
                        IsolateAddressId::kCEntryFPAddress, masm->isolate()));
    __ Str(xzr, MemOperand(scratch));
  }

  // Compute the handler entry address and jump to it. We use x17 here for the
  // jump target, as this jump can occasionally end up at the start of
  // InterpreterEnterAtBytecode, which when CFI is enabled starts with
  // a "BTI c".
  UseScratchRegisterScope temps(masm);
  temps.Exclude(x17);
  __ Mov(x17, pending_handler_entrypoint_address);
  __ Ldr(x17, MemOperand(x17));
  __ Br(x17);
}

void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
  Label done;
  Register result = x7;

  DCHECK(result.Is64Bits());

  HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
  UseScratchRegisterScope temps(masm);
  Register scratch1 = temps.AcquireX();
  Register scratch2 = temps.AcquireX();
  DoubleRegister double_scratch = temps.AcquireD();

  // Account for saved regs.
  const int kArgumentOffset = 2 * kSystemPointerSize;

  __ Push(result, scratch1);  // scratch1 is also pushed to preserve alignment.
  __ Peek(double_scratch, kArgumentOffset);

  // Try to convert with a FPU convert instruction.  This handles all
  // non-saturating cases.
  __ TryConvertDoubleToInt64(result, double_scratch, &done);
  __ Fmov(result, double_scratch);

  // If we reach here we need to manually convert the input to an int32.

  // Extract the exponent.
  Register exponent = scratch1;
  __ Ubfx(exponent, result, HeapNumber::kMantissaBits,
          HeapNumber::kExponentBits);

  // It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since
  // the mantissa gets shifted completely out of the int32_t result.
  __ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32);
  __ CzeroX(result, ge);
  __ B(ge, &done);

  // The Fcvtzs sequence handles all cases except where the conversion causes
  // signed overflow in the int64_t target. Since we've already handled
  // exponents >= 84, we can guarantee that 63 <= exponent < 84.

  if (v8_flags.debug_code) {
    __ Cmp(exponent, HeapNumber::kExponentBias + 63);
    // Exponents less than this should have been handled by the Fcvt case.
    __ Check(ge, AbortReason::kUnexpectedValue);
  }

  // Isolate the mantissa bits, and set the implicit '1'.
  Register mantissa = scratch2;
  __ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits);
  __ Orr(mantissa, mantissa, 1ULL << HeapNumber::kMantissaBits);

  // Negate the mantissa if necessary.
  __ Tst(result, kXSignMask);
  __ Cneg(mantissa, mantissa, ne);

  // Shift the mantissa bits in the correct place. We know that we have to shift
  // it left here, because exponent >= 63 >= kMantissaBits.
  __ Sub(exponent, exponent,
         HeapNumber::kExponentBias + HeapNumber::kMantissaBits);
  __ Lsl(result, mantissa, exponent);

  __ Bind(&done);
  __ Poke(result, kArgumentOffset);
  __ Pop(scratch1, result);
  __ Ret();
}

namespace {

// The number of register that CallApiFunctionAndReturn will need to save on
// the stack. The space for these registers need to be allocated in the
// ExitFrame before calling CallApiFunctionAndReturn.
constexpr int kCallApiFunctionSpillSpace = 4;

int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
  return static_cast<int>(ref0.address() - ref1.address());
}

// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions.
// 'stack_space' is the space to be unwound on exit (includes the call JS
// arguments space and the additional space allocated for the fast call).
// 'spill_offset' is the offset from the stack pointer where
// CallApiFunctionAndReturn can spill registers.
void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address,
                              ExternalReference thunk_ref, int stack_space,
                              MemOperand* stack_space_operand, int spill_offset,
                              MemOperand return_value_operand) {
  ASM_CODE_COMMENT(masm);
  ASM_LOCATION("CallApiFunctionAndReturn");
  Isolate* isolate = masm->isolate();
  ExternalReference next_address =
      ExternalReference::handle_scope_next_address(isolate);
  const int kNextOffset = 0;
  const int kLimitOffset = AddressOffset(
      ExternalReference::handle_scope_limit_address(isolate), next_address);
  const int kLevelOffset = AddressOffset(
      ExternalReference::handle_scope_level_address(isolate), next_address);

  DCHECK(function_address == x1 || function_address == x2);

  // Save the callee-save registers we are going to use.
  // TODO(all): Is this necessary? ARM doesn't do it.
  static_assert(kCallApiFunctionSpillSpace == 4);
  __ Poke(x19, (spill_offset + 0) * kXRegSize);
  __ Poke(x20, (spill_offset + 1) * kXRegSize);
  __ Poke(x21, (spill_offset + 2) * kXRegSize);
  __ Poke(x22, (spill_offset + 3) * kXRegSize);

  // Allocate HandleScope in callee-save registers.
  // We will need to restore the HandleScope after the call to the API function,
  // by allocating it in callee-save registers they will be preserved by C code.
  Register handle_scope_base = x22;
  Register next_address_reg = x19;
  Register limit_reg = x20;
  Register level_reg = w21;

  __ Mov(handle_scope_base, next_address);
  __ Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
  __ Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
  __ Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset));
  __ Add(level_reg, level_reg, 1);
  __ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));

  Label profiler_enabled, done_api_call;
  __ Ldrb(w10, __ ExternalReferenceAsOperand(
                   ExternalReference::is_profiling_address(isolate), x10));
  __ Cbnz(w10, &profiler_enabled);
#ifdef V8_RUNTIME_CALL_STATS
  __ Mov(x10, ExternalReference::address_of_runtime_stats_flag());
  __ Ldrsw(w10, MemOperand(x10));
  __ Cbnz(w10, &profiler_enabled);
#endif  // V8_RUNTIME_CALL_STATS

  // Call the api function directly.
  __ Mov(x10, function_address);
  __ StoreReturnAddressAndCall(x10);
  __ Bind(&done_api_call);

  Label promote_scheduled_exception;
  Label delete_allocated_handles;
  Label leave_exit_frame;
  Label return_value_loaded;

  // Load value from ReturnValue.
  __ Ldr(x0, return_value_operand);
  __ Bind(&return_value_loaded);
  // No more valid handles (the result handle was the last one). Restore
  // previous handle scope.
  __ Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
  if (v8_flags.debug_code) {
    __ Ldr(w1, MemOperand(handle_scope_base, kLevelOffset));
    __ Cmp(w1, level_reg);
    __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall);
  }
  __ Sub(level_reg, level_reg, 1);
  __ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
  __ Ldr(x1, MemOperand(handle_scope_base, kLimitOffset));
  __ Cmp(limit_reg, x1);
  __ B(ne, &delete_allocated_handles);

  // Leave the API exit frame.
  __ Bind(&leave_exit_frame);
  // Restore callee-saved registers.
  __ Peek(x19, (spill_offset + 0) * kXRegSize);
  __ Peek(x20, (spill_offset + 1) * kXRegSize);
  __ Peek(x21, (spill_offset + 2) * kXRegSize);
  __ Peek(x22, (spill_offset + 3) * kXRegSize);

  if (stack_space_operand != nullptr) {
    DCHECK_EQ(stack_space, 0);
    // Load the number of stack slots to drop before LeaveExitFrame modifies sp.
    __ Ldr(x19, *stack_space_operand);
  }

  __ LeaveExitFrame(false, x1, x5);

  // Check if the function scheduled an exception.
  __ Mov(x5, ExternalReference::scheduled_exception_address(isolate));
  __ Ldr(x5, MemOperand(x5));
  __ JumpIfNotRoot(x5, RootIndex::kTheHoleValue, &promote_scheduled_exception);

  if (stack_space_operand == nullptr) {
    DCHECK_NE(stack_space, 0);
    __ DropSlots(stack_space);
  } else {
    DCHECK_EQ(stack_space, 0);
    __ DropArguments(x19);
  }

  __ Ret();

  // Call the api function via thunk wrapper.
  __ Bind(&profiler_enabled);
  // Additional parameter is the address of the actual callback.
  __ Mov(x3, function_address);
  __ Mov(x10, thunk_ref);
  __ StoreReturnAddressAndCall(x10);
  __ B(&done_api_call);

  // Re-throw by promoting a scheduled exception.
  __ Bind(&promote_scheduled_exception);
  __ TailCallRuntime(Runtime::kPromoteScheduledException);

  // HandleScope limit has changed. Delete allocated extensions.
  __ Bind(&delete_allocated_handles);
  __ Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
  // Save the return value in a callee-save register.
  Register saved_result = x19;
  __ Mov(saved_result, x0);
  __ Mov(x0, ExternalReference::isolate_address(isolate));
  __ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1);
  __ Mov(x0, saved_result);
  __ B(&leave_exit_frame);
}

}  // namespace

void Builtins::Generate_CallApiCallback(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- cp                  : context
  //  -- x1                  : api function address
  //  -- x2                  : arguments count (not including the receiver)
  //  -- x3                  : call data
  //  -- x0                  : holder
  //  -- sp[0]               : receiver
  //  -- sp[8]               : first argument
  //  -- ...
  //  -- sp[(argc) * 8]      : last argument
  // -----------------------------------

  Register api_function_address = x1;
  Register argc = x2;
  Register call_data = x3;
  Register holder = x0;
  Register scratch = x4;

  DCHECK(!AreAliased(api_function_address, argc, call_data, holder, scratch));

  using FCA = FunctionCallbackArguments;

  static_assert(FCA::kArgsLength == 6);
  static_assert(FCA::kNewTargetIndex == 5);
  static_assert(FCA::kDataIndex == 4);
  static_assert(FCA::kReturnValueOffset == 3);
  static_assert(FCA::kReturnValueDefaultValueIndex == 2);
  static_assert(FCA::kIsolateIndex == 1);
  static_assert(FCA::kHolderIndex == 0);

  // Set up FunctionCallbackInfo's implicit_args on the stack as follows:
  //
  // Target state:
  //   sp[0 * kSystemPointerSize]: kHolder
  //   sp[1 * kSystemPointerSize]: kIsolate
  //   sp[2 * kSystemPointerSize]: undefined (kReturnValueDefaultValue)
  //   sp[3 * kSystemPointerSize]: undefined (kReturnValue)
  //   sp[4 * kSystemPointerSize]: kData
  //   sp[5 * kSystemPointerSize]: undefined (kNewTarget)

  // Reserve space on the stack.
  __ Claim(FCA::kArgsLength, kSystemPointerSize);

  // kHolder.
  __ Str(holder, MemOperand(sp, 0 * kSystemPointerSize));

  // kIsolate.
  __ Mov(scratch, ExternalReference::isolate_address(masm->isolate()));
  __ Str(scratch, MemOperand(sp, 1 * kSystemPointerSize));

  // kReturnValueDefaultValue and kReturnValue.
  __ LoadRoot(scratch, RootIndex::kUndefinedValue);
  __ Str(scratch, MemOperand(sp, 2 * kSystemPointerSize));
  __ Str(scratch, MemOperand(sp, 3 * kSystemPointerSize));

  // kData.
  __ Str(call_data, MemOperand(sp, 4 * kSystemPointerSize));

  // kNewTarget.
  __ Str(scratch, MemOperand(sp, 5 * kSystemPointerSize));

  // Keep a pointer to kHolder (= implicit_args) in a scratch register.
  // We use it below to set up the FunctionCallbackInfo object.
  __ Mov(scratch, sp);

  // Allocate the v8::Arguments structure in the arguments' space, since it's
  // not controlled by GC.
  static constexpr int kApiStackSpace = 4;
  static constexpr bool kDontSaveDoubles = false;

  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ EnterExitFrame(kDontSaveDoubles, x10,
                    kApiStackSpace + kCallApiFunctionSpillSpace);

  // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
  // Arguments are after the return address (pushed by EnterExitFrame()).
  __ Str(scratch, MemOperand(sp, 1 * kSystemPointerSize));

  // FunctionCallbackInfo::values_ (points at the first varargs argument passed
  // on the stack).
  __ Add(scratch, scratch,
         Operand((FCA::kArgsLength + 1) * kSystemPointerSize));
  __ Str(scratch, MemOperand(sp, 2 * kSystemPointerSize));

  // FunctionCallbackInfo::length_.
  __ Str(argc, MemOperand(sp, 3 * kSystemPointerSize));

  // We also store the number of slots to drop from the stack after returning
  // from the API function here.
  // Note: Unlike on other architectures, this stores the number of slots to
  // drop, not the number of bytes. arm64 must always drop a slot count that is
  // a multiple of two, and related helper functions (DropArguments) expect a
  // register containing the slot count.
  __ Add(scratch, argc, Operand(FCA::kArgsLength + 1 /*receiver*/));
  __ Str(scratch, MemOperand(sp, 4 * kSystemPointerSize));

  // v8::InvocationCallback's argument.
  DCHECK(!AreAliased(x0, api_function_address));
  __ add(x0, sp, Operand(1 * kSystemPointerSize));

  ExternalReference thunk_ref = ExternalReference::invoke_function_callback();

  // The current frame needs to be aligned.
  DCHECK_EQ(FCA::kArgsLength % 2, 0);

  // There are two stack slots above the arguments we constructed on the stack.
  // TODO(jgruber): Document what these arguments are.
  static constexpr int kStackSlotsAboveFCA = 2;
  MemOperand return_value_operand(
      fp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kSystemPointerSize);

  static constexpr int kSpillOffset = 1 + kApiStackSpace;
  static constexpr int kUseStackSpaceOperand = 0;
  MemOperand stack_space_operand(sp, 4 * kSystemPointerSize);

  AllowExternalCallThatCantCauseGC scope(masm);
  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
                           kUseStackSpaceOperand, &stack_space_operand,
                           kSpillOffset, return_value_operand);
}

void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
  static_assert(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
  static_assert(PropertyCallbackArguments::kHolderIndex == 1);
  static_assert(PropertyCallbackArguments::kIsolateIndex == 2);
  static_assert(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
  static_assert(PropertyCallbackArguments::kReturnValueOffset == 4);
  static_assert(PropertyCallbackArguments::kDataIndex == 5);
  static_assert(PropertyCallbackArguments::kThisIndex == 6);
  static_assert(PropertyCallbackArguments::kArgsLength == 7);

  Register receiver = ApiGetterDescriptor::ReceiverRegister();
  Register holder = ApiGetterDescriptor::HolderRegister();
  Register callback = ApiGetterDescriptor::CallbackRegister();
  Register data = x4;
  Register undef = x5;
  Register isolate_address = x6;
  Register name = x7;
  DCHECK(!AreAliased(receiver, holder, callback, data, undef, isolate_address,
                     name));

  __ LoadAnyTaggedField(data,
                        FieldMemOperand(callback, AccessorInfo::kDataOffset));
  __ LoadRoot(undef, RootIndex::kUndefinedValue);
  __ Mov(isolate_address, ExternalReference::isolate_address(masm->isolate()));
  __ LoadTaggedPointerField(
      name, FieldMemOperand(callback, AccessorInfo::kNameOffset));

  // PropertyCallbackArguments:
  //   receiver, data, return value, return value default, isolate, holder,
  //   should_throw_on_error
  // These are followed by the property name, which is also pushed below the
  // exit frame to make the GC aware of it.
  __ Push(receiver, data, undef, undef, isolate_address, holder, xzr, name);

  // v8::PropertyCallbackInfo::args_ array and name handle.
  static const int kStackUnwindSpace =
      PropertyCallbackArguments::kArgsLength + 1;
  static_assert(kStackUnwindSpace % 2 == 0,
                "slots must be a multiple of 2 for stack pointer alignment");

  // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
  __ Mov(x0, sp);                          // x0 = Handle<Name>
  __ Add(x1, x0, 1 * kSystemPointerSize);  // x1 = v8::PCI::args_

  const int kApiStackSpace = 1;

  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);

  // Create v8::PropertyCallbackInfo object on the stack and initialize
  // it's args_ field.
  __ Poke(x1, 1 * kSystemPointerSize);
  __ SlotAddress(x1, 1);
  // x1 = v8::PropertyCallbackInfo&

  ExternalReference thunk_ref =
      ExternalReference::invoke_accessor_getter_callback();

  Register api_function_address = x2;
  __ LoadExternalPointerField(
      api_function_address,
      FieldMemOperand(callback, AccessorInfo::kMaybeRedirectedGetterOffset),
      kAccessorInfoGetterTag);

  const int spill_offset = 1 + kApiStackSpace;
  // +3 is to skip prolog, return address and name handle.
  MemOperand return_value_operand(
      fp,
      (PropertyCallbackArguments::kReturnValueOffset + 3) * kSystemPointerSize);
  MemOperand* const kUseStackSpaceConstant = nullptr;
  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
                           kStackUnwindSpace, kUseStackSpaceConstant,
                           spill_offset, return_value_operand);
}

void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
  // The sole purpose of DirectCEntry is for movable callers (e.g. any general
  // purpose Code object) to be able to call into C functions that may trigger
  // GC and thus move the caller.
  //
  // DirectCEntry places the return address on the stack (updated by the GC),
  // making the call GC safe. The irregexp backend relies on this.

  __ Poke<TurboAssembler::kSignLR>(lr, 0);  // Store the return address.
  __ Blr(x10);                              // Call the C++ function.
  __ Peek<TurboAssembler::kAuthLR>(lr, 0);  // Return to calling code.
  __ AssertFPCRState();
  __ Ret();
}

namespace {

void CopyRegListToFrame(MacroAssembler* masm, const Register& dst,
                        int dst_offset, const CPURegList& reg_list,
                        const Register& temp0, const Register& temp1,
                        int src_offset = 0) {
  ASM_CODE_COMMENT(masm);
  DCHECK_EQ(reg_list.Count() % 2, 0);
  UseScratchRegisterScope temps(masm);
  CPURegList copy_to_input = reg_list;
  int reg_size = reg_list.RegisterSizeInBytes();
  DCHECK_EQ(temp0.SizeInBytes(), reg_size);
  DCHECK_EQ(temp1.SizeInBytes(), reg_size);

  // Compute some temporary addresses to avoid having the macro assembler set
  // up a temp with an offset for accesses out of the range of the addressing
  // mode.
  Register src = temps.AcquireX();
  masm->Add(src, sp, src_offset);
  masm->Add(dst, dst, dst_offset);

  // Write reg_list into the frame pointed to by dst.
  for (int i = 0; i < reg_list.Count(); i += 2) {
    masm->Ldp(temp0, temp1, MemOperand(src, i * reg_size));

    CPURegister reg0 = copy_to_input.PopLowestIndex();
    CPURegister reg1 = copy_to_input.PopLowestIndex();
    int offset0 = reg0.code() * reg_size;
    int offset1 = reg1.code() * reg_size;

    // Pair up adjacent stores, otherwise write them separately.
    if (offset1 == offset0 + reg_size) {
      masm->Stp(temp0, temp1, MemOperand(dst, offset0));
    } else {
      masm->Str(temp0, MemOperand(dst, offset0));
      masm->Str(temp1, MemOperand(dst, offset1));
    }
  }
  masm->Sub(dst, dst, dst_offset);
}

void RestoreRegList(MacroAssembler* masm, const CPURegList& reg_list,
                    const Register& src_base, int src_offset) {
  ASM_CODE_COMMENT(masm);
  DCHECK_EQ(reg_list.Count() % 2, 0);
  UseScratchRegisterScope temps(masm);
  CPURegList restore_list = reg_list;
  int reg_size = restore_list.RegisterSizeInBytes();

  // Compute a temporary addresses to avoid having the macro assembler set
  // up a temp with an offset for accesses out of the range of the addressing
  // mode.
  Register src = temps.AcquireX();
  masm->Add(src, src_base, src_offset);

  // No need to restore padreg.
  restore_list.Remove(padreg);

  // Restore every register in restore_list from src.
  while (!restore_list.IsEmpty()) {
    CPURegister reg0 = restore_list.PopLowestIndex();
    CPURegister reg1 = restore_list.PopLowestIndex();
    int offset0 = reg0.code() * reg_size;

    if (reg1 == NoCPUReg) {
      masm->Ldr(reg0, MemOperand(src, offset0));
      break;
    }

    int offset1 = reg1.code() * reg_size;

    // Pair up adjacent loads, otherwise read them separately.
    if (offset1 == offset0 + reg_size) {
      masm->Ldp(reg0, reg1, MemOperand(src, offset0));
    } else {
      masm->Ldr(reg0, MemOperand(src, offset0));
      masm->Ldr(reg1, MemOperand(src, offset1));
    }
  }
}

void Generate_DeoptimizationEntry(MacroAssembler* masm,
                                  DeoptimizeKind deopt_kind) {
  Isolate* isolate = masm->isolate();

  // TODO(all): This code needs to be revisited. We probably only need to save
  // caller-saved registers here. Callee-saved registers can be stored directly
  // in the input frame.

  // Save all allocatable double registers.
  CPURegList saved_double_registers(
      kDRegSizeInBits,
      DoubleRegList::FromBits(
          RegisterConfiguration::Default()->allocatable_double_codes_mask()));
  DCHECK_EQ(saved_double_registers.Count() % 2, 0);
  __ PushCPURegList(saved_double_registers);

  // We save all the registers except sp, lr, platform register (x18) and the
  // masm scratches.
  CPURegList saved_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 28);
  saved_registers.Remove(ip0);
  saved_registers.Remove(ip1);
  saved_registers.Remove(x18);
  saved_registers.Combine(fp);
  saved_registers.Align();
  DCHECK_EQ(saved_registers.Count() % 2, 0);
  __ PushCPURegList(saved_registers);

  __ Mov(x3, Operand(ExternalReference::Create(
                 IsolateAddressId::kCEntryFPAddress, isolate)));
  __ Str(fp, MemOperand(x3));

  const int kSavedRegistersAreaSize =
      (saved_registers.Count() * kXRegSize) +
      (saved_double_registers.Count() * kDRegSize);

  // Floating point registers are saved on the stack above core registers.
  const int kDoubleRegistersOffset = saved_registers.Count() * kXRegSize;

  Register code_object = x2;
  Register fp_to_sp = x3;
  // Get the address of the location in the code object. This is the return
  // address for lazy deoptimization.
  __ Mov(code_object, lr);
  // Compute the fp-to-sp delta.
  __ Add(fp_to_sp, sp, kSavedRegistersAreaSize);
  __ Sub(fp_to_sp, fp, fp_to_sp);

  // Allocate a new deoptimizer object.
  __ Ldr(x1, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset));

  // Ensure we can safely load from below fp.
  DCHECK_GT(kSavedRegistersAreaSize, -StandardFrameConstants::kFunctionOffset);
  __ Ldr(x0, MemOperand(fp, StandardFrameConstants::kFunctionOffset));

  // If x1 is a smi, zero x0.
  __ Tst(x1, kSmiTagMask);
  __ CzeroX(x0, eq);

  __ Mov(x1, static_cast<int>(deopt_kind));
  // Following arguments are already loaded:
  //  - x2: code object address
  //  - x3: fp-to-sp delta
  __ Mov(x4, ExternalReference::isolate_address(isolate));

  {
    // Call Deoptimizer::New().
    AllowExternalCallThatCantCauseGC scope(masm);
    __ CallCFunction(ExternalReference::new_deoptimizer_function(), 5);
  }

  // Preserve "deoptimizer" object in register x0.
  Register deoptimizer = x0;

  // Get the input frame descriptor pointer.
  __ Ldr(x1, MemOperand(deoptimizer, Deoptimizer::input_offset()));

  // Copy core registers into the input frame.
  CopyRegListToFrame(masm, x1, FrameDescription::registers_offset(),
                     saved_registers, x2, x3);

  // Copy double registers to the input frame.
  CopyRegListToFrame(masm, x1, FrameDescription::double_registers_offset(),
                     saved_double_registers, x2, x3, kDoubleRegistersOffset);

  // Mark the stack as not iterable for the CPU profiler which won't be able to
  // walk the stack without the return address.
  {
    UseScratchRegisterScope temps(masm);
    Register is_iterable = temps.AcquireX();
    __ Mov(is_iterable, ExternalReference::stack_is_iterable_address(isolate));
    __ strb(xzr, MemOperand(is_iterable));
  }

  // Remove the saved registers from the stack.
  DCHECK_EQ(kSavedRegistersAreaSize % kXRegSize, 0);
  __ Drop(kSavedRegistersAreaSize / kXRegSize);

  // Compute a pointer to the unwinding limit in register x2; that is
  // the first stack slot not part of the input frame.
  Register unwind_limit = x2;
  __ Ldr(unwind_limit, MemOperand(x1, FrameDescription::frame_size_offset()));

  // Unwind the stack down to - but not including - the unwinding
  // limit and copy the contents of the activation frame to the input
  // frame description.
  __ Add(x3, x1, FrameDescription::frame_content_offset());
  __ SlotAddress(x1, 0);
  __ Lsr(unwind_limit, unwind_limit, kSystemPointerSizeLog2);
  __ Mov(x5, unwind_limit);
  __ CopyDoubleWords(x3, x1, x5);
  // Since {unwind_limit} is the frame size up to the parameter count, we might
  // end up with a unaligned stack pointer. This is later recovered when
  // setting the stack pointer to {caller_frame_top_offset}.
  __ Bic(unwind_limit, unwind_limit, 1);
  __ Drop(unwind_limit);

  // Compute the output frame in the deoptimizer.
  __ Push(padreg, x0);  // Preserve deoptimizer object across call.
  {
    // Call Deoptimizer::ComputeOutputFrames().
    AllowExternalCallThatCantCauseGC scope(masm);
    __ CallCFunction(ExternalReference::compute_output_frames_function(), 1);
  }
  __ Pop(x4, padreg);  // Restore deoptimizer object (class Deoptimizer).

  {
    UseScratchRegisterScope temps(masm);
    Register scratch = temps.AcquireX();
    __ Ldr(scratch, MemOperand(x4, Deoptimizer::caller_frame_top_offset()));
    __ Mov(sp, scratch);
  }

  // Replace the current (input) frame with the output frames.
  Label outer_push_loop, outer_loop_header;
  __ Ldrsw(x1, MemOperand(x4, Deoptimizer::output_count_offset()));
  __ Ldr(x0, MemOperand(x4, Deoptimizer::output_offset()));
  __ Add(x1, x0, Operand(x1, LSL, kSystemPointerSizeLog2));
  __ B(&outer_loop_header);

  __ Bind(&outer_push_loop);
  Register current_frame = x2;
  Register frame_size = x3;
  __ Ldr(current_frame, MemOperand(x0, kSystemPointerSize, PostIndex));
  __ Ldr(x3, MemOperand(current_frame, FrameDescription::frame_size_offset()));
  __ Lsr(frame_size, x3, kSystemPointerSizeLog2);
  __ Claim(frame_size);

  __ Add(x7, current_frame, FrameDescription::frame_content_offset());
  __ SlotAddress(x6, 0);
  __ CopyDoubleWords(x6, x7, frame_size);

  __ Bind(&outer_loop_header);
  __ Cmp(x0, x1);
  __ B(lt, &outer_push_loop);

  __ Ldr(x1, MemOperand(x4, Deoptimizer::input_offset()));
  RestoreRegList(masm, saved_double_registers, x1,
                 FrameDescription::double_registers_offset());

  {
    UseScratchRegisterScope temps(masm);
    Register is_iterable = temps.AcquireX();
    Register one = x4;
    __ Mov(is_iterable, ExternalReference::stack_is_iterable_address(isolate));
    __ Mov(one, Operand(1));
    __ strb(one, MemOperand(is_iterable));
  }

  // TODO(all): ARM copies a lot (if not all) of the last output frame onto the
  // stack, then pops it all into registers. Here, we try to load it directly
  // into the relevant registers. Is this correct? If so, we should improve the
  // ARM code.

  // Restore registers from the last output frame.
  // Note that lr is not in the list of saved_registers and will be restored
  // later. We can use it to hold the address of last output frame while
  // reloading the other registers.
  DCHECK(!saved_registers.IncludesAliasOf(lr));
  Register last_output_frame = lr;
  __ Mov(last_output_frame, current_frame);

  RestoreRegList(masm, saved_registers, last_output_frame,
                 FrameDescription::registers_offset());

  UseScratchRegisterScope temps(masm);
  temps.Exclude(x17);
  Register continuation = x17;
  __ Ldr(continuation, MemOperand(last_output_frame,
                                  FrameDescription::continuation_offset()));
  __ Ldr(lr, MemOperand(last_output_frame, FrameDescription::pc_offset()));
#ifdef V8_ENABLE_CONTROL_FLOW_INTEGRITY
  __ Autibsp();
#endif
  __ Br(continuation);
}

}  // namespace

void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) {
  Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager);
}

void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) {
  Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy);
}

namespace {

// Restarts execution either at the current or next (in execution order)
// bytecode. If there is baseline code on the shared function info, converts an
// interpreter frame into a baseline frame and continues execution in baseline
// code. Otherwise execution continues with bytecode.
void Generate_BaselineOrInterpreterEntry(MacroAssembler* masm,
                                         bool next_bytecode,
                                         bool is_osr = false) {
  Label start;
  __ bind(&start);

  // Get function from the frame.
  Register closure = x1;
  __ Ldr(closure, MemOperand(fp, StandardFrameConstants::kFunctionOffset));

  // Get the Code object from the shared function info.
  Register code_obj = x22;
  __ LoadTaggedPointerField(
      code_obj,
      FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
  __ LoadTaggedPointerField(
      code_obj,
      FieldMemOperand(code_obj, SharedFunctionInfo::kFunctionDataOffset));

  // Check if we have baseline code. For OSR entry it is safe to assume we
  // always have baseline code.
  if (!is_osr) {
    Label start_with_baseline;
    __ CompareObjectType(code_obj, x3, x3, CODET_TYPE);
    __ B(eq, &start_with_baseline);

    // Start with bytecode as there is no baseline code.
    Builtin builtin_id = next_bytecode
                             ? Builtin::kInterpreterEnterAtNextBytecode
                             : Builtin::kInterpreterEnterAtBytecode;
    __ Jump(masm->isolate()->builtins()->code_handle(builtin_id),
            RelocInfo::CODE_TARGET);

    // Start with baseline code.
    __ bind(&start_with_baseline);
  } else if (v8_flags.debug_code) {
    __ CompareObjectType(code_obj, x3, x3, CODET_TYPE);
    __ Assert(eq, AbortReason::kExpectedBaselineData);
  }

  if (v8_flags.debug_code) {
    AssertCodeTIsBaseline(masm, code_obj, x3);
  }
  if (V8_EXTERNAL_CODE_SPACE_BOOL) {
    __ LoadCodeDataContainerCodeNonBuiltin(code_obj, code_obj);
  }

  // Load the feedback vector.
  Register feedback_vector = x2;
  __ LoadTaggedPointerField(
      feedback_vector,
      FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
  __ LoadTaggedPointerField(
      feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));

  Label install_baseline_code;
  // Check if feedback vector is valid. If not, call prepare for baseline to
  // allocate it.
  __ CompareObjectType(feedback_vector, x3, x3, FEEDBACK_VECTOR_TYPE);
  __ B(ne, &install_baseline_code);

  // Save BytecodeOffset from the stack frame.
  __ SmiUntag(kInterpreterBytecodeOffsetRegister,
              MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  // Replace BytecodeOffset with the feedback vector.
  __ Str(feedback_vector,
         MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  feedback_vector = no_reg;

  // Compute baseline pc for bytecode offset.
  ExternalReference get_baseline_pc_extref;
  if (next_bytecode || is_osr) {
    get_baseline_pc_extref =
        ExternalReference::baseline_pc_for_next_executed_bytecode();
  } else {
    get_baseline_pc_extref =
        ExternalReference::baseline_pc_for_bytecode_offset();
  }
  Register get_baseline_pc = x3;
  __ Mov(get_baseline_pc, get_baseline_pc_extref);

  // If the code deoptimizes during the implicit function entry stack interrupt
  // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
  // not a valid bytecode offset.
  // TODO(pthier): Investigate if it is feasible to handle this special case
  // in TurboFan instead of here.
  Label valid_bytecode_offset, function_entry_bytecode;
  if (!is_osr) {
    __ cmp(kInterpreterBytecodeOffsetRegister,
           Operand(BytecodeArray::kHeaderSize - kHeapObjectTag +
                   kFunctionEntryBytecodeOffset));
    __ B(eq, &function_entry_bytecode);
  }

  __ Sub(kInterpreterBytecodeOffsetRegister, kInterpreterBytecodeOffsetRegister,
         (BytecodeArray::kHeaderSize - kHeapObjectTag));

  __ bind(&valid_bytecode_offset);
  // Get bytecode array from the stack frame.
  __ ldr(kInterpreterBytecodeArrayRegister,
         MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  // Save the accumulator register, since it's clobbered by the below call.
  __ Push(padreg, kInterpreterAccumulatorRegister);
  {
    Register arg_reg_1 = x0;
    Register arg_reg_2 = x1;
    Register arg_reg_3 = x2;
    __ Mov(arg_reg_1, code_obj);
    __ Mov(arg_reg_2, kInterpreterBytecodeOffsetRegister);
    __ Mov(arg_reg_3, kInterpreterBytecodeArrayRegister);
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallCFunction(get_baseline_pc, 3, 0);
  }
  __ Add(code_obj, code_obj, kReturnRegister0);
  __ Pop(kInterpreterAccumulatorRegister, padreg);

  if (is_osr) {
    ResetBytecodeAge(masm, kInterpreterBytecodeArrayRegister);
    Generate_OSREntry(masm, code_obj, Code::kHeaderSize - kHeapObjectTag);
  } else {
    __ Add(code_obj, code_obj, Code::kHeaderSize - kHeapObjectTag);
    __ Jump(code_obj);
  }
  __ Trap();  // Unreachable.

  if (!is_osr) {
    __ bind(&function_entry_bytecode);
    // If the bytecode offset is kFunctionEntryOffset, get the start address of
    // the first bytecode.
    __ Mov(kInterpreterBytecodeOffsetRegister, Operand(0));
    if (next_bytecode) {
      __ Mov(get_baseline_pc,
             ExternalReference::baseline_pc_for_bytecode_offset());
    }
    __ B(&valid_bytecode_offset);
  }

  __ bind(&install_baseline_code);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ Push(padreg, kInterpreterAccumulatorRegister);
    __ PushArgument(closure);
    __ CallRuntime(Runtime::kInstallBaselineCode, 1);
    __ Pop(kInterpreterAccumulatorRegister, padreg);
  }
  // Retry from the start after installing baseline code.
  __ B(&start);
}

}  // namespace

void Builtins::Generate_BaselineOrInterpreterEnterAtBytecode(
    MacroAssembler* masm) {
  Generate_BaselineOrInterpreterEntry(masm, false);
}

void Builtins::Generate_BaselineOrInterpreterEnterAtNextBytecode(
    MacroAssembler* masm) {
  Generate_BaselineOrInterpreterEntry(masm, true);
}

void Builtins::Generate_InterpreterOnStackReplacement_ToBaseline(
    MacroAssembler* masm) {
  Generate_BaselineOrInterpreterEntry(masm, false, true);
}

void Builtins::Generate_RestartFrameTrampoline(MacroAssembler* masm) {
  // Frame is being dropped:
  // - Look up current function on the frame.
  // - Leave the frame.
  // - Restart the frame by calling the function.

  __ Ldr(x1, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
  __ ldr(x0, MemOperand(fp, StandardFrameConstants::kArgCOffset));

  __ LeaveFrame(StackFrame::INTERPRETED);

  // The arguments are already in the stack (including any necessary padding),
  // we should not try to massage the arguments again.
  __ Mov(x2, kDontAdaptArgumentsSentinel);
  __ InvokeFunction(x1, x2, x0, InvokeType::kJump);
}

#undef __

}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_ARM