summaryrefslogtreecommitdiff
path: root/deps/v8/src/builtins/builtins-lazy-gen.cc
blob: 0428372b9948d45cb0f5e0d82dc655a22007126e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/builtins/builtins-lazy-gen.h"

#include "src/builtins/builtins-utils-gen.h"
#include "src/builtins/builtins.h"
#include "src/common/globals.h"
#include "src/objects/code-inl.h"
#include "src/objects/feedback-vector.h"
#include "src/objects/shared-function-info.h"

namespace v8 {
namespace internal {

void LazyBuiltinsAssembler::GenerateTailCallToJSCode(
    TNode<Code> code, TNode<JSFunction> function) {
  auto argc = UncheckedParameter<Int32T>(Descriptor::kActualArgumentsCount);
  auto context = Parameter<Context>(Descriptor::kContext);
  auto new_target = Parameter<Object>(Descriptor::kNewTarget);
  TailCallJSCode(code, context, function, new_target, argc);
}

void LazyBuiltinsAssembler::GenerateTailCallToReturnedCode(
    Runtime::FunctionId function_id, TNode<JSFunction> function) {
  auto context = Parameter<Context>(Descriptor::kContext);
  TNode<Code> code = CAST(CallRuntime(function_id, context, function));
  GenerateTailCallToJSCode(code, function);
}

void LazyBuiltinsAssembler::MaybeTailCallOptimizedCodeSlot(
    TNode<JSFunction> function, TNode<FeedbackVector> feedback_vector) {
  Label fallthrough(this), may_have_optimized_code(this),
      maybe_needs_logging(this);

  TNode<Uint16T> flags =
      LoadObjectField<Uint16T>(feedback_vector, FeedbackVector::kFlagsOffset);

  // Fall through if no optimization trigger or optimized code.
  GotoIfNot(
      IsSetWord32(flags, FeedbackVector::kFlagsHasAnyOptimizedCode |
                             FeedbackVector::kFlagsTieringStateIsAnyRequested |
                             FeedbackVector::kFlagsLogNextExecution),
      &fallthrough);

  GotoIfNot(
      IsSetWord32(flags, FeedbackVector::kFlagsTieringStateIsAnyRequested),
      &maybe_needs_logging);
  GenerateTailCallToReturnedCode(Runtime::kCompileOptimized, function);

  BIND(&maybe_needs_logging);
  {
    GotoIfNot(IsSetWord32(flags, FeedbackVector::kFlagsLogNextExecution),
              &may_have_optimized_code);
    GenerateTailCallToReturnedCode(Runtime::kFunctionLogNextExecution,
                                   function);
  }

  BIND(&may_have_optimized_code);
  {
    Label heal_optimized_code_slot(this);
    TNode<MaybeObject> maybe_optimized_code_entry = LoadMaybeWeakObjectField(
        feedback_vector, FeedbackVector::kMaybeOptimizedCodeOffset);

    // Optimized code slot is a weak reference to Code object.
    TNode<Code> optimized_code = CAST(GetHeapObjectAssumeWeak(
        maybe_optimized_code_entry, &heal_optimized_code_slot));

    // Check if the optimized code is marked for deopt. If it is, call the
    // runtime to clear it.
    GotoIf(IsMarkedForDeoptimization(optimized_code),
           &heal_optimized_code_slot);

    // Optimized code is good, get it into the closure and link the closure into
    // the optimized functions list, then tail call the optimized code.
    StoreObjectField(function, JSFunction::kCodeOffset, optimized_code);
    Comment("MaybeTailCallOptimizedCodeSlot:: GenerateTailCallToJSCode");
    GenerateTailCallToJSCode(optimized_code, function);

    // Optimized code slot contains deoptimized code, or the code is cleared
    // and tiering state hasn't yet been updated. Evict the code, update the
    // state and re-enter the closure's code.
    BIND(&heal_optimized_code_slot);
    GenerateTailCallToReturnedCode(Runtime::kHealOptimizedCodeSlot, function);
  }

  // Fall-through if the optimized code cell is clear and the tiering state is
  // kNone.
  BIND(&fallthrough);
}

void LazyBuiltinsAssembler::CompileLazy(TNode<JSFunction> function) {
  // First lookup code, maybe we don't need to compile!
  Label compile_function(this, Label::kDeferred);

  // Check the code object for the SFI. If SFI's code entry points to
  // CompileLazy, then we need to lazy compile regardless of the function or
  // tiering state.
  TNode<SharedFunctionInfo> shared =
      CAST(LoadObjectField(function, JSFunction::kSharedFunctionInfoOffset));
  TVARIABLE(Uint16T, sfi_data_type);
  TNode<Code> sfi_code =
      GetSharedFunctionInfoCode(shared, &sfi_data_type, &compile_function);

  TNode<HeapObject> feedback_cell_value = LoadFeedbackCellValue(function);

  // If feedback cell isn't initialized, compile function
  GotoIf(IsUndefined(feedback_cell_value), &compile_function);

  CSA_DCHECK(this, TaggedNotEqual(sfi_code, HeapConstant(BUILTIN_CODE(
                                                isolate(), CompileLazy))));
  StoreObjectField(function, JSFunction::kCodeOffset, sfi_code);

  Label maybe_use_sfi_code(this);
  // If there is no feedback, don't check for optimized code.
  GotoIf(HasInstanceType(feedback_cell_value, CLOSURE_FEEDBACK_CELL_ARRAY_TYPE),
         &maybe_use_sfi_code);

  // If it isn't undefined or fixed array it must be a feedback vector.
  CSA_DCHECK(this, IsFeedbackVector(feedback_cell_value));

  // Is there a tiering state or optimized code in the feedback vector?
  MaybeTailCallOptimizedCodeSlot(function, CAST(feedback_cell_value));
  Goto(&maybe_use_sfi_code);

  // At this point we have a candidate InstructionStream object. It's *not* a
  // cached optimized InstructionStream object (we'd have tail-called it above).
  // A usual case would be the InterpreterEntryTrampoline to start executing
  // existing bytecode.
  BIND(&maybe_use_sfi_code);
  Label tailcall_code(this), baseline(this);
  TVARIABLE(Code, code);

  // Check if we have baseline code.
  GotoIf(InstanceTypeEqual(sfi_data_type.value(), CODE_TYPE), &baseline);

  code = sfi_code;
  Goto(&tailcall_code);

  BIND(&baseline);
  // Ensure we have a feedback vector.
  code = Select<Code>(
      IsFeedbackVector(feedback_cell_value), [=]() { return sfi_code; },
      [=]() {
        return CAST(CallRuntime(Runtime::kInstallBaselineCode,
                                Parameter<Context>(Descriptor::kContext),
                                function));
      });
  Goto(&tailcall_code);

  BIND(&tailcall_code);
  GenerateTailCallToJSCode(code.value(), function);

  BIND(&compile_function);
  GenerateTailCallToReturnedCode(Runtime::kCompileLazy, function);
}

TF_BUILTIN(CompileLazy, LazyBuiltinsAssembler) {
  auto function = Parameter<JSFunction>(Descriptor::kTarget);

  CompileLazy(function);
}

TF_BUILTIN(CompileLazyDeoptimizedCode, LazyBuiltinsAssembler) {
  auto function = Parameter<JSFunction>(Descriptor::kTarget);

  TNode<Code> code = HeapConstant(BUILTIN_CODE(isolate(), CompileLazy));
  // Set the code slot inside the JSFunction to CompileLazy.
  StoreObjectField(function, JSFunction::kCodeOffset, code);
  GenerateTailCallToJSCode(code, function);
}

}  // namespace internal
}  // namespace v8