summaryrefslogtreecommitdiff
path: root/deps/v8/src/builtins/builtins-string-gen.cc
blob: d46bbacadb59215aaa1a89409916840aa3dea31c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/builtins/builtins-string-gen.h"

#include "src/builtins/builtins-regexp-gen.h"
#include "src/builtins/builtins-utils-gen.h"
#include "src/builtins/builtins.h"
#include "src/codegen/code-factory.h"
#include "src/execution/protectors.h"
#include "src/heap/factory-inl.h"
#include "src/heap/heap-inl.h"
#include "src/logging/counters.h"
#include "src/objects/objects.h"
#include "src/objects/property-cell.h"

namespace v8 {
namespace internal {

using Node = compiler::Node;

TNode<RawPtrT> StringBuiltinsAssembler::DirectStringData(
    TNode<String> string, TNode<Word32T> string_instance_type) {
  // Compute the effective offset of the first character.
  TVARIABLE(RawPtrT, var_data);
  Label if_sequential(this), if_external(this), if_join(this);
  Branch(Word32Equal(Word32And(string_instance_type,
                               Int32Constant(kStringRepresentationMask)),
                     Int32Constant(kSeqStringTag)),
         &if_sequential, &if_external);

  BIND(&if_sequential);
  {
    var_data = RawPtrAdd(
        ReinterpretCast<RawPtrT>(BitcastTaggedToWord(string)),
        IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag));
    Goto(&if_join);
  }

  BIND(&if_external);
  {
    var_data = LoadExternalStringResourceDataPtr(CAST(string));
    Goto(&if_join);
  }

  BIND(&if_join);
  return var_data.value();
}

template <typename SubjectChar, typename PatternChar>
TNode<IntPtrT> StringBuiltinsAssembler::CallSearchStringRaw(
    const TNode<RawPtrT> subject_ptr, const TNode<IntPtrT> subject_length,
    const TNode<RawPtrT> search_ptr, const TNode<IntPtrT> search_length,
    const TNode<IntPtrT> start_position) {
  const TNode<ExternalReference> function_addr = ExternalConstant(
      ExternalReference::search_string_raw<SubjectChar, PatternChar>());
  const TNode<ExternalReference> isolate_ptr =
      ExternalConstant(ExternalReference::isolate_address(isolate()));

  MachineType type_ptr = MachineType::Pointer();
  MachineType type_intptr = MachineType::IntPtr();

  const TNode<IntPtrT> result = UncheckedCast<IntPtrT>(CallCFunction(
      function_addr, type_intptr, std::make_pair(type_ptr, isolate_ptr),
      std::make_pair(type_ptr, subject_ptr),
      std::make_pair(type_intptr, subject_length),
      std::make_pair(type_ptr, search_ptr),
      std::make_pair(type_intptr, search_length),
      std::make_pair(type_intptr, start_position)));

  return result;
}
TNode<IntPtrT> StringBuiltinsAssembler::SearchOneByteStringInTwoByteString(
    const TNode<RawPtrT> subject_ptr, const TNode<IntPtrT> subject_length,
    const TNode<RawPtrT> search_ptr, const TNode<IntPtrT> search_length,
    const TNode<IntPtrT> start_position) {
  return CallSearchStringRaw<const uc16, const uint8_t>(
      subject_ptr, subject_length, search_ptr, search_length, start_position);
}
TNode<IntPtrT> StringBuiltinsAssembler::SearchOneByteStringInOneByteString(
    const TNode<RawPtrT> subject_ptr, const TNode<IntPtrT> subject_length,
    const TNode<RawPtrT> search_ptr, const TNode<IntPtrT> search_length,
    const TNode<IntPtrT> start_position) {
  return CallSearchStringRaw<const uint8_t, const uint8_t>(
      subject_ptr, subject_length, search_ptr, search_length, start_position);
}
TNode<IntPtrT> StringBuiltinsAssembler::SearchTwoByteStringInTwoByteString(
    const TNode<RawPtrT> subject_ptr, const TNode<IntPtrT> subject_length,
    const TNode<RawPtrT> search_ptr, const TNode<IntPtrT> search_length,
    const TNode<IntPtrT> start_position) {
  return CallSearchStringRaw<const uc16, const uc16>(
      subject_ptr, subject_length, search_ptr, search_length, start_position);
}
TNode<IntPtrT> StringBuiltinsAssembler::SearchTwoByteStringInOneByteString(
    const TNode<RawPtrT> subject_ptr, const TNode<IntPtrT> subject_length,
    const TNode<RawPtrT> search_ptr, const TNode<IntPtrT> search_length,
    const TNode<IntPtrT> start_position) {
  return CallSearchStringRaw<const uint8_t, const uc16>(
      subject_ptr, subject_length, search_ptr, search_length, start_position);
}
TNode<IntPtrT> StringBuiltinsAssembler::SearchOneByteInOneByteString(
    const TNode<RawPtrT> subject_ptr, const TNode<IntPtrT> subject_length,
    const TNode<RawPtrT> search_ptr, const TNode<IntPtrT> start_position) {
  const TNode<RawPtrT> subject_start_ptr =
      RawPtrAdd(subject_ptr, start_position);
  const TNode<IntPtrT> search_byte =
      ChangeInt32ToIntPtr(Load<Uint8T>(search_ptr));
  const TNode<UintPtrT> search_length =
      Unsigned(IntPtrSub(subject_length, start_position));
  const TNode<ExternalReference> memchr =
      ExternalConstant(ExternalReference::libc_memchr_function());
  const TNode<RawPtrT> result_address = UncheckedCast<RawPtrT>(
      CallCFunction(memchr, MachineType::Pointer(),
                    std::make_pair(MachineType::Pointer(), subject_start_ptr),
                    std::make_pair(MachineType::IntPtr(), search_byte),
                    std::make_pair(MachineType::UintPtr(), search_length)));
  return Select<IntPtrT>(
      WordEqual(result_address, IntPtrConstant(0)),
      [=] { return IntPtrConstant(-1); },
      [=] {
        return IntPtrAdd(RawPtrSub(result_address, subject_start_ptr),
                         start_position);
      });
}

void StringBuiltinsAssembler::GenerateStringEqual(TNode<String> left,
                                                  TNode<String> right) {
  TVARIABLE(String, var_left, left);
  TVARIABLE(String, var_right, right);
  Label if_equal(this), if_notequal(this), if_indirect(this, Label::kDeferred),
      restart(this, {&var_left, &var_right});

  TNode<IntPtrT> lhs_length = LoadStringLengthAsWord(left);
  TNode<IntPtrT> rhs_length = LoadStringLengthAsWord(right);

  // Strings with different lengths cannot be equal.
  GotoIf(WordNotEqual(lhs_length, rhs_length), &if_notequal);

  Goto(&restart);
  BIND(&restart);
  TNode<String> lhs = var_left.value();
  TNode<String> rhs = var_right.value();

  TNode<Uint16T> lhs_instance_type = LoadInstanceType(lhs);
  TNode<Uint16T> rhs_instance_type = LoadInstanceType(rhs);

  StringEqual_Core(lhs, lhs_instance_type, rhs, rhs_instance_type, lhs_length,
                   &if_equal, &if_notequal, &if_indirect);

  BIND(&if_indirect);
  {
    // Try to unwrap indirect strings, restart the above attempt on success.
    MaybeDerefIndirectStrings(&var_left, lhs_instance_type, &var_right,
                              rhs_instance_type, &restart);

    TailCallRuntime(Runtime::kStringEqual, NoContextConstant(), lhs, rhs);
  }

  BIND(&if_equal);
  Return(TrueConstant());

  BIND(&if_notequal);
  Return(FalseConstant());
}

void StringBuiltinsAssembler::StringEqual_Core(
    TNode<String> lhs, TNode<Word32T> lhs_instance_type, TNode<String> rhs,
    TNode<Word32T> rhs_instance_type, TNode<IntPtrT> length, Label* if_equal,
    Label* if_not_equal, Label* if_indirect) {
  CSA_ASSERT(this, WordEqual(LoadStringLengthAsWord(lhs), length));
  CSA_ASSERT(this, WordEqual(LoadStringLengthAsWord(rhs), length));
  // Fast check to see if {lhs} and {rhs} refer to the same String object.
  GotoIf(TaggedEqual(lhs, rhs), if_equal);

  // Combine the instance types into a single 16-bit value, so we can check
  // both of them at once.
  TNode<Word32T> both_instance_types = Word32Or(
      lhs_instance_type, Word32Shl(rhs_instance_type, Int32Constant(8)));

  // Check if both {lhs} and {rhs} are internalized. Since we already know
  // that they're not the same object, they're not equal in that case.
  int const kBothInternalizedMask =
      kIsNotInternalizedMask | (kIsNotInternalizedMask << 8);
  int const kBothInternalizedTag = kInternalizedTag | (kInternalizedTag << 8);
  GotoIf(Word32Equal(Word32And(both_instance_types,
                               Int32Constant(kBothInternalizedMask)),
                     Int32Constant(kBothInternalizedTag)),
         if_not_equal);

  // Check if both {lhs} and {rhs} are direct strings, and that in case of
  // ExternalStrings the data pointer is cached.
  STATIC_ASSERT(kUncachedExternalStringTag != 0);
  STATIC_ASSERT(kIsIndirectStringTag != 0);
  int const kBothDirectStringMask =
      kIsIndirectStringMask | kUncachedExternalStringMask |
      ((kIsIndirectStringMask | kUncachedExternalStringMask) << 8);
  GotoIfNot(Word32Equal(Word32And(both_instance_types,
                                  Int32Constant(kBothDirectStringMask)),
                        Int32Constant(0)),
            if_indirect);

  // Dispatch based on the {lhs} and {rhs} string encoding.
  int const kBothStringEncodingMask =
      kStringEncodingMask | (kStringEncodingMask << 8);
  int const kOneOneByteStringTag = kOneByteStringTag | (kOneByteStringTag << 8);
  int const kTwoTwoByteStringTag = kTwoByteStringTag | (kTwoByteStringTag << 8);
  int const kOneTwoByteStringTag = kOneByteStringTag | (kTwoByteStringTag << 8);
  Label if_oneonebytestring(this), if_twotwobytestring(this),
      if_onetwobytestring(this), if_twoonebytestring(this);
  TNode<Word32T> masked_instance_types =
      Word32And(both_instance_types, Int32Constant(kBothStringEncodingMask));
  GotoIf(
      Word32Equal(masked_instance_types, Int32Constant(kOneOneByteStringTag)),
      &if_oneonebytestring);
  GotoIf(
      Word32Equal(masked_instance_types, Int32Constant(kTwoTwoByteStringTag)),
      &if_twotwobytestring);
  Branch(
      Word32Equal(masked_instance_types, Int32Constant(kOneTwoByteStringTag)),
      &if_onetwobytestring, &if_twoonebytestring);

  BIND(&if_oneonebytestring);
  StringEqual_Loop(lhs, lhs_instance_type, MachineType::Uint8(), rhs,
                   rhs_instance_type, MachineType::Uint8(), length, if_equal,
                   if_not_equal);

  BIND(&if_twotwobytestring);
  StringEqual_Loop(lhs, lhs_instance_type, MachineType::Uint16(), rhs,
                   rhs_instance_type, MachineType::Uint16(), length, if_equal,
                   if_not_equal);

  BIND(&if_onetwobytestring);
  StringEqual_Loop(lhs, lhs_instance_type, MachineType::Uint8(), rhs,
                   rhs_instance_type, MachineType::Uint16(), length, if_equal,
                   if_not_equal);

  BIND(&if_twoonebytestring);
  StringEqual_Loop(lhs, lhs_instance_type, MachineType::Uint16(), rhs,
                   rhs_instance_type, MachineType::Uint8(), length, if_equal,
                   if_not_equal);
}

void StringBuiltinsAssembler::StringEqual_Loop(
    TNode<String> lhs, TNode<Word32T> lhs_instance_type, MachineType lhs_type,
    TNode<String> rhs, TNode<Word32T> rhs_instance_type, MachineType rhs_type,
    TNode<IntPtrT> length, Label* if_equal, Label* if_not_equal) {
  CSA_ASSERT(this, WordEqual(LoadStringLengthAsWord(lhs), length));
  CSA_ASSERT(this, WordEqual(LoadStringLengthAsWord(rhs), length));

  // Compute the effective offset of the first character.
  TNode<RawPtrT> lhs_data = DirectStringData(lhs, lhs_instance_type);
  TNode<RawPtrT> rhs_data = DirectStringData(rhs, rhs_instance_type);

  // Loop over the {lhs} and {rhs} strings to see if they are equal.
  TVARIABLE(IntPtrT, var_offset, IntPtrConstant(0));
  Label loop(this, &var_offset);
  Goto(&loop);
  BIND(&loop);
  {
    // If {offset} equals {end}, no difference was found, so the
    // strings are equal.
    GotoIf(WordEqual(var_offset.value(), length), if_equal);

    // Load the next characters from {lhs} and {rhs}.
    TNode<Word32T> lhs_value = UncheckedCast<Word32T>(
        Load(lhs_type, lhs_data,
             WordShl(var_offset.value(),
                     ElementSizeLog2Of(lhs_type.representation()))));
    TNode<Word32T> rhs_value = UncheckedCast<Word32T>(
        Load(rhs_type, rhs_data,
             WordShl(var_offset.value(),
                     ElementSizeLog2Of(rhs_type.representation()))));

    // Check if the characters match.
    GotoIf(Word32NotEqual(lhs_value, rhs_value), if_not_equal);

    // Advance to next character.
    var_offset = IntPtrAdd(var_offset.value(), IntPtrConstant(1));
    Goto(&loop);
  }
}

TNode<String> StringBuiltinsAssembler::StringFromSingleUTF16EncodedCodePoint(
    TNode<Int32T> codepoint) {
  TVARIABLE(String, var_result, EmptyStringConstant());

  Label if_isword16(this), if_isword32(this), return_result(this);

  Branch(Uint32LessThan(codepoint, Int32Constant(0x10000)), &if_isword16,
         &if_isword32);

  BIND(&if_isword16);
  {
    var_result = StringFromSingleCharCode(codepoint);
    Goto(&return_result);
  }

  BIND(&if_isword32);
  {
    TNode<String> value = AllocateSeqTwoByteString(2);
    StoreNoWriteBarrier(
        MachineRepresentation::kWord32, value,
        IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag),
        codepoint);
    var_result = value;
    Goto(&return_result);
  }

  BIND(&return_result);
  return var_result.value();
}

TNode<String> StringBuiltinsAssembler::AllocateConsString(TNode<Uint32T> length,
                                                          TNode<String> left,
                                                          TNode<String> right) {
  // Added string can be a cons string.
  Comment("Allocating ConsString");
  TNode<Int32T> left_instance_type = LoadInstanceType(left);
  TNode<Int32T> right_instance_type = LoadInstanceType(right);

  // Determine the resulting ConsString map to use depending on whether
  // any of {left} or {right} has two byte encoding.
  STATIC_ASSERT(kOneByteStringTag != 0);
  STATIC_ASSERT(kTwoByteStringTag == 0);
  TNode<Int32T> combined_instance_type =
      Word32And(left_instance_type, right_instance_type);
  TNode<Map> result_map = CAST(Select<Object>(
      IsSetWord32(combined_instance_type, kStringEncodingMask),
      [=] { return ConsOneByteStringMapConstant(); },
      [=] { return ConsStringMapConstant(); }));
  TNode<HeapObject> result = AllocateInNewSpace(ConsString::kSize);
  StoreMapNoWriteBarrier(result, result_map);
  StoreObjectFieldNoWriteBarrier(result, ConsString::kLengthOffset, length);
  StoreObjectFieldNoWriteBarrier(result, ConsString::kRawHashFieldOffset,
                                 Int32Constant(String::kEmptyHashField));
  StoreObjectFieldNoWriteBarrier(result, ConsString::kFirstOffset, left);
  StoreObjectFieldNoWriteBarrier(result, ConsString::kSecondOffset, right);
  return CAST(result);
}

TNode<String> StringBuiltinsAssembler::StringAdd(
    TNode<ContextOrEmptyContext> context, TNode<String> left,
    TNode<String> right) {
  CSA_ASSERT(this, IsZeroOrContext(context));

  TVARIABLE(String, result);
  Label check_right(this), runtime(this, Label::kDeferred), cons(this),
      done(this, &result), done_native(this, &result);
  Counters* counters = isolate()->counters();

  TNode<Uint32T> left_length = LoadStringLengthAsWord32(left);
  GotoIfNot(Word32Equal(left_length, Uint32Constant(0)), &check_right);
  result = right;
  Goto(&done_native);

  BIND(&check_right);
  TNode<Uint32T> right_length = LoadStringLengthAsWord32(right);
  GotoIfNot(Word32Equal(right_length, Uint32Constant(0)), &cons);
  result = left;
  Goto(&done_native);

  BIND(&cons);
  {
    TNode<Uint32T> new_length = Uint32Add(left_length, right_length);

    // If new length is greater than String::kMaxLength, goto runtime to
    // throw. Note: we also need to invalidate the string length protector, so
    // can't just throw here directly.
    GotoIf(Uint32GreaterThan(new_length, Uint32Constant(String::kMaxLength)),
           &runtime);

    TVARIABLE(String, var_left, left);
    TVARIABLE(String, var_right, right);
    Label non_cons(this, {&var_left, &var_right});
    Label slow(this, Label::kDeferred);
    GotoIf(Uint32LessThan(new_length, Uint32Constant(ConsString::kMinLength)),
           &non_cons);

    result =
        AllocateConsString(new_length, var_left.value(), var_right.value());
    Goto(&done_native);

    BIND(&non_cons);

    Comment("Full string concatenate");
    TNode<Int32T> left_instance_type = LoadInstanceType(var_left.value());
    TNode<Int32T> right_instance_type = LoadInstanceType(var_right.value());
    // Compute intersection and difference of instance types.

    TNode<Int32T> ored_instance_types =
        Word32Or(left_instance_type, right_instance_type);
    TNode<Word32T> xored_instance_types =
        Word32Xor(left_instance_type, right_instance_type);

    // Check if both strings have the same encoding and both are sequential.
    GotoIf(IsSetWord32(xored_instance_types, kStringEncodingMask), &runtime);
    GotoIf(IsSetWord32(ored_instance_types, kStringRepresentationMask), &slow);

    TNode<IntPtrT> word_left_length = Signed(ChangeUint32ToWord(left_length));
    TNode<IntPtrT> word_right_length = Signed(ChangeUint32ToWord(right_length));

    Label two_byte(this);
    GotoIf(Word32Equal(Word32And(ored_instance_types,
                                 Int32Constant(kStringEncodingMask)),
                       Int32Constant(kTwoByteStringTag)),
           &two_byte);
    // One-byte sequential string case
    result = AllocateSeqOneByteString(new_length);
    CopyStringCharacters(var_left.value(), result.value(), IntPtrConstant(0),
                         IntPtrConstant(0), word_left_length,
                         String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING);
    CopyStringCharacters(var_right.value(), result.value(), IntPtrConstant(0),
                         word_left_length, word_right_length,
                         String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING);
    Goto(&done_native);

    BIND(&two_byte);
    {
      // Two-byte sequential string case
      result = AllocateSeqTwoByteString(new_length);
      CopyStringCharacters(var_left.value(), result.value(), IntPtrConstant(0),
                           IntPtrConstant(0), word_left_length,
                           String::TWO_BYTE_ENCODING,
                           String::TWO_BYTE_ENCODING);
      CopyStringCharacters(var_right.value(), result.value(), IntPtrConstant(0),
                           word_left_length, word_right_length,
                           String::TWO_BYTE_ENCODING,
                           String::TWO_BYTE_ENCODING);
      Goto(&done_native);
    }

    BIND(&slow);
    {
      // Try to unwrap indirect strings, restart the above attempt on success.
      MaybeDerefIndirectStrings(&var_left, left_instance_type, &var_right,
                                right_instance_type, &non_cons);
      Goto(&runtime);
    }
  }
  BIND(&runtime);
  {
    result = CAST(CallRuntime(Runtime::kStringAdd, context, left, right));
    Goto(&done);
  }

  BIND(&done_native);
  {
    IncrementCounter(counters->string_add_native(), 1);
    Goto(&done);
  }

  BIND(&done);
  return result.value();
}

void StringBuiltinsAssembler::BranchIfCanDerefIndirectString(
    TNode<String> string, TNode<Int32T> instance_type, Label* can_deref,
    Label* cannot_deref) {
  TNode<Int32T> representation =
      Word32And(instance_type, Int32Constant(kStringRepresentationMask));
  GotoIf(Word32Equal(representation, Int32Constant(kThinStringTag)), can_deref);
  GotoIf(Word32NotEqual(representation, Int32Constant(kConsStringTag)),
         cannot_deref);
  // Cons string.
  TNode<String> rhs =
      LoadObjectField<String>(string, ConsString::kSecondOffset);
  GotoIf(IsEmptyString(rhs), can_deref);
  Goto(cannot_deref);
}

void StringBuiltinsAssembler::DerefIndirectString(TVariable<String>* var_string,
                                                  TNode<Int32T> instance_type) {
#ifdef DEBUG
  Label can_deref(this), cannot_deref(this);
  BranchIfCanDerefIndirectString(var_string->value(), instance_type, &can_deref,
                                 &cannot_deref);
  BIND(&cannot_deref);
  DebugBreak();  // Should be able to dereference string.
  Goto(&can_deref);
  BIND(&can_deref);
#endif  // DEBUG

  STATIC_ASSERT(static_cast<int>(ThinString::kActualOffset) ==
                static_cast<int>(ConsString::kFirstOffset));
  *var_string =
      LoadObjectField<String>(var_string->value(), ThinString::kActualOffset);
}

void StringBuiltinsAssembler::MaybeDerefIndirectString(
    TVariable<String>* var_string, TNode<Int32T> instance_type,
    Label* did_deref, Label* cannot_deref) {
  Label deref(this);
  BranchIfCanDerefIndirectString(var_string->value(), instance_type, &deref,
                                 cannot_deref);

  BIND(&deref);
  {
    DerefIndirectString(var_string, instance_type);
    Goto(did_deref);
  }
}

void StringBuiltinsAssembler::MaybeDerefIndirectStrings(
    TVariable<String>* var_left, TNode<Int32T> left_instance_type,
    TVariable<String>* var_right, TNode<Int32T> right_instance_type,
    Label* did_something) {
  Label did_nothing_left(this), did_something_left(this),
      didnt_do_anything(this);
  MaybeDerefIndirectString(var_left, left_instance_type, &did_something_left,
                           &did_nothing_left);

  BIND(&did_something_left);
  {
    MaybeDerefIndirectString(var_right, right_instance_type, did_something,
                             did_something);
  }

  BIND(&did_nothing_left);
  {
    MaybeDerefIndirectString(var_right, right_instance_type, did_something,
                             &didnt_do_anything);
  }

  BIND(&didnt_do_anything);
  // Fall through if neither string was an indirect string.
}

TNode<String> StringBuiltinsAssembler::DerefIndirectString(
    TNode<String> string, TNode<Int32T> instance_type, Label* cannot_deref) {
  Label deref(this);
  BranchIfCanDerefIndirectString(string, instance_type, &deref, cannot_deref);
  BIND(&deref);
  STATIC_ASSERT(static_cast<int>(ThinString::kActualOffset) ==
                static_cast<int>(ConsString::kFirstOffset));
  return LoadObjectField<String>(string, ThinString::kActualOffset);
}

TF_BUILTIN(StringAdd_CheckNone, StringBuiltinsAssembler) {
  auto left = Parameter<String>(Descriptor::kLeft);
  auto right = Parameter<String>(Descriptor::kRight);
  TNode<ContextOrEmptyContext> context =
      UncheckedParameter<ContextOrEmptyContext>(Descriptor::kContext);
  CSA_ASSERT(this, IsZeroOrContext(context));
  Return(StringAdd(context, left, right));
}

TF_BUILTIN(SubString, StringBuiltinsAssembler) {
  auto string = Parameter<String>(Descriptor::kString);
  auto from = Parameter<Smi>(Descriptor::kFrom);
  auto to = Parameter<Smi>(Descriptor::kTo);
  Return(SubString(string, SmiUntag(from), SmiUntag(to)));
}

void StringBuiltinsAssembler::GenerateStringRelationalComparison(
    TNode<String> left, TNode<String> right, Operation op) {
  TVARIABLE(String, var_left, left);
  TVARIABLE(String, var_right, right);

  Label if_less(this), if_equal(this), if_greater(this);
  Label restart(this, {&var_left, &var_right});
  Goto(&restart);
  BIND(&restart);

  TNode<String> lhs = var_left.value();
  TNode<String> rhs = var_right.value();
  // Fast check to see if {lhs} and {rhs} refer to the same String object.
  GotoIf(TaggedEqual(lhs, rhs), &if_equal);

  // Load instance types of {lhs} and {rhs}.
  TNode<Uint16T> lhs_instance_type = LoadInstanceType(lhs);
  TNode<Uint16T> rhs_instance_type = LoadInstanceType(rhs);

  // Combine the instance types into a single 16-bit value, so we can check
  // both of them at once.
  TNode<Int32T> both_instance_types = Word32Or(
      lhs_instance_type, Word32Shl(rhs_instance_type, Int32Constant(8)));

  // Check that both {lhs} and {rhs} are flat one-byte strings.
  int const kBothSeqOneByteStringMask =
      kStringEncodingMask | kStringRepresentationMask |
      ((kStringEncodingMask | kStringRepresentationMask) << 8);
  int const kBothSeqOneByteStringTag =
      kOneByteStringTag | kSeqStringTag |
      ((kOneByteStringTag | kSeqStringTag) << 8);
  Label if_bothonebyteseqstrings(this), if_notbothonebyteseqstrings(this);
  Branch(Word32Equal(Word32And(both_instance_types,
                               Int32Constant(kBothSeqOneByteStringMask)),
                     Int32Constant(kBothSeqOneByteStringTag)),
         &if_bothonebyteseqstrings, &if_notbothonebyteseqstrings);

  BIND(&if_bothonebyteseqstrings);
  {
    // Load the length of {lhs} and {rhs}.
    TNode<IntPtrT> lhs_length = LoadStringLengthAsWord(lhs);
    TNode<IntPtrT> rhs_length = LoadStringLengthAsWord(rhs);

    // Determine the minimum length.
    TNode<IntPtrT> length = IntPtrMin(lhs_length, rhs_length);

    // Compute the effective offset of the first character.
    TNode<IntPtrT> begin =
        IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag);

    // Compute the first offset after the string from the length.
    TNode<IntPtrT> end = IntPtrAdd(begin, length);

    // Loop over the {lhs} and {rhs} strings to see if they are equal.
    TVARIABLE(IntPtrT, var_offset, begin);
    Label loop(this, &var_offset);
    Goto(&loop);
    BIND(&loop);
    {
      // Check if {offset} equals {end}.
      Label if_done(this), if_notdone(this);
      Branch(WordEqual(var_offset.value(), end), &if_done, &if_notdone);

      BIND(&if_notdone);
      {
        // Load the next characters from {lhs} and {rhs}.
        TNode<Uint8T> lhs_value = Load<Uint8T>(lhs, var_offset.value());
        TNode<Uint8T> rhs_value = Load<Uint8T>(rhs, var_offset.value());

        // Check if the characters match.
        Label if_valueissame(this), if_valueisnotsame(this);
        Branch(Word32Equal(lhs_value, rhs_value), &if_valueissame,
               &if_valueisnotsame);

        BIND(&if_valueissame);
        {
          // Advance to next character.
          var_offset = IntPtrAdd(var_offset.value(), IntPtrConstant(1));
        }
        Goto(&loop);

        BIND(&if_valueisnotsame);
        Branch(Uint32LessThan(lhs_value, rhs_value), &if_less, &if_greater);
      }

      BIND(&if_done);
      {
        // All characters up to the min length are equal, decide based on
        // string length.
        GotoIf(IntPtrEqual(lhs_length, rhs_length), &if_equal);
        Branch(IntPtrLessThan(lhs_length, rhs_length), &if_less, &if_greater);
      }
    }
  }

  BIND(&if_notbothonebyteseqstrings);
  {
    // Try to unwrap indirect strings, restart the above attempt on success.
    MaybeDerefIndirectStrings(&var_left, lhs_instance_type, &var_right,
                              rhs_instance_type, &restart);
    // TODO(bmeurer): Add support for two byte string relational comparisons.
    switch (op) {
      case Operation::kLessThan:
        TailCallRuntime(Runtime::kStringLessThan, NoContextConstant(), lhs,
                        rhs);
        break;
      case Operation::kLessThanOrEqual:
        TailCallRuntime(Runtime::kStringLessThanOrEqual, NoContextConstant(),
                        lhs, rhs);
        break;
      case Operation::kGreaterThan:
        TailCallRuntime(Runtime::kStringGreaterThan, NoContextConstant(), lhs,
                        rhs);
        break;
      case Operation::kGreaterThanOrEqual:
        TailCallRuntime(Runtime::kStringGreaterThanOrEqual, NoContextConstant(),
                        lhs, rhs);
        break;
      default:
        UNREACHABLE();
    }
  }

  BIND(&if_less);
  switch (op) {
    case Operation::kLessThan:
    case Operation::kLessThanOrEqual:
      Return(TrueConstant());
      break;

    case Operation::kGreaterThan:
    case Operation::kGreaterThanOrEqual:
      Return(FalseConstant());
      break;
    default:
      UNREACHABLE();
  }

  BIND(&if_equal);
  switch (op) {
    case Operation::kLessThan:
    case Operation::kGreaterThan:
      Return(FalseConstant());
      break;

    case Operation::kLessThanOrEqual:
    case Operation::kGreaterThanOrEqual:
      Return(TrueConstant());
      break;
    default:
      UNREACHABLE();
  }

  BIND(&if_greater);
  switch (op) {
    case Operation::kLessThan:
    case Operation::kLessThanOrEqual:
      Return(FalseConstant());
      break;

    case Operation::kGreaterThan:
    case Operation::kGreaterThanOrEqual:
      Return(TrueConstant());
      break;
    default:
      UNREACHABLE();
  }
}

TF_BUILTIN(StringEqual, StringBuiltinsAssembler) {
  auto left = Parameter<String>(Descriptor::kLeft);
  auto right = Parameter<String>(Descriptor::kRight);
  GenerateStringEqual(left, right);
}

TF_BUILTIN(StringLessThan, StringBuiltinsAssembler) {
  auto left = Parameter<String>(Descriptor::kLeft);
  auto right = Parameter<String>(Descriptor::kRight);
  GenerateStringRelationalComparison(left, right, Operation::kLessThan);
}

TF_BUILTIN(StringLessThanOrEqual, StringBuiltinsAssembler) {
  auto left = Parameter<String>(Descriptor::kLeft);
  auto right = Parameter<String>(Descriptor::kRight);
  GenerateStringRelationalComparison(left, right, Operation::kLessThanOrEqual);
}

TF_BUILTIN(StringGreaterThan, StringBuiltinsAssembler) {
  auto left = Parameter<String>(Descriptor::kLeft);
  auto right = Parameter<String>(Descriptor::kRight);
  GenerateStringRelationalComparison(left, right, Operation::kGreaterThan);
}

TF_BUILTIN(StringGreaterThanOrEqual, StringBuiltinsAssembler) {
  auto left = Parameter<String>(Descriptor::kLeft);
  auto right = Parameter<String>(Descriptor::kRight);
  GenerateStringRelationalComparison(left, right,
                                     Operation::kGreaterThanOrEqual);
}

TF_BUILTIN(StringCodePointAt, StringBuiltinsAssembler) {
  auto receiver = Parameter<String>(Descriptor::kReceiver);
  auto position = UncheckedParameter<IntPtrT>(Descriptor::kPosition);

  // TODO(sigurds) Figure out if passing length as argument pays off.
  TNode<IntPtrT> length = LoadStringLengthAsWord(receiver);
  // Load the character code at the {position} from the {receiver}.
  TNode<Int32T> code =
      LoadSurrogatePairAt(receiver, length, position, UnicodeEncoding::UTF32);
  // And return it as TaggedSigned value.
  // TODO(turbofan): Allow builtins to return values untagged.
  TNode<Smi> result = SmiFromInt32(code);
  Return(result);
}

TF_BUILTIN(StringFromCodePointAt, StringBuiltinsAssembler) {
  auto receiver = Parameter<String>(Descriptor::kReceiver);
  auto position = UncheckedParameter<IntPtrT>(Descriptor::kPosition);

  // TODO(sigurds) Figure out if passing length as argument pays off.
  TNode<IntPtrT> length = LoadStringLengthAsWord(receiver);
  // Load the character code at the {position} from the {receiver}.
  TNode<Int32T> code =
      LoadSurrogatePairAt(receiver, length, position, UnicodeEncoding::UTF16);
  // Create a String from the UTF16 encoded code point
  TNode<String> result = StringFromSingleUTF16EncodedCodePoint(code);
  Return(result);
}

// -----------------------------------------------------------------------------
// ES6 section 21.1 String Objects

// ES6 #sec-string.fromcharcode
TF_BUILTIN(StringFromCharCode, StringBuiltinsAssembler) {
  // TODO(ishell): use constants from Descriptor once the JSFunction linkage
  // arguments are reordered.
  auto argc = UncheckedParameter<Int32T>(Descriptor::kJSActualArgumentsCount);
  auto context = Parameter<Context>(Descriptor::kContext);

  CodeStubArguments arguments(this, argc);
  TNode<Uint32T> unsigned_argc =
      Unsigned(TruncateIntPtrToInt32(arguments.GetLength()));
  // Check if we have exactly one argument (plus the implicit receiver), i.e.
  // if the parent frame is not an arguments adaptor frame.
  Label if_oneargument(this), if_notoneargument(this);
  Branch(IntPtrEqual(arguments.GetLength(), IntPtrConstant(1)), &if_oneargument,
         &if_notoneargument);

  BIND(&if_oneargument);
  {
    // Single argument case, perform fast single character string cache lookup
    // for one-byte code units, or fall back to creating a single character
    // string on the fly otherwise.
    TNode<Object> code = arguments.AtIndex(0);
    TNode<Word32T> code32 = TruncateTaggedToWord32(context, code);
    TNode<Int32T> code16 =
        Signed(Word32And(code32, Int32Constant(String::kMaxUtf16CodeUnit)));
    TNode<String> result = StringFromSingleCharCode(code16);
    arguments.PopAndReturn(result);
  }

  TNode<Word32T> code16;
  BIND(&if_notoneargument);
  {
    Label two_byte(this);
    // Assume that the resulting string contains only one-byte characters.
    TNode<String> one_byte_result = AllocateSeqOneByteString(unsigned_argc);

    TVARIABLE(IntPtrT, var_max_index, IntPtrConstant(0));

    // Iterate over the incoming arguments, converting them to 8-bit character
    // codes. Stop if any of the conversions generates a code that doesn't fit
    // in 8 bits.
    CodeStubAssembler::VariableList vars({&var_max_index}, zone());
    arguments.ForEach(vars, [&](TNode<Object> arg) {
      TNode<Word32T> code32 = TruncateTaggedToWord32(context, arg);
      code16 = Word32And(code32, Int32Constant(String::kMaxUtf16CodeUnit));

      GotoIf(
          Int32GreaterThan(code16, Int32Constant(String::kMaxOneByteCharCode)),
          &two_byte);

      // The {code16} fits into the SeqOneByteString {one_byte_result}.
      TNode<IntPtrT> offset = ElementOffsetFromIndex(
          var_max_index.value(), UINT8_ELEMENTS,
          SeqOneByteString::kHeaderSize - kHeapObjectTag);
      StoreNoWriteBarrier(MachineRepresentation::kWord8, one_byte_result,
                          offset, code16);
      var_max_index = IntPtrAdd(var_max_index.value(), IntPtrConstant(1));
    });
    arguments.PopAndReturn(one_byte_result);

    BIND(&two_byte);

    // At least one of the characters in the string requires a 16-bit
    // representation.  Allocate a SeqTwoByteString to hold the resulting
    // string.
    TNode<String> two_byte_result = AllocateSeqTwoByteString(unsigned_argc);

    // Copy the characters that have already been put in the 8-bit string into
    // their corresponding positions in the new 16-bit string.
    TNode<IntPtrT> zero = IntPtrConstant(0);
    CopyStringCharacters(one_byte_result, two_byte_result, zero, zero,
                         var_max_index.value(), String::ONE_BYTE_ENCODING,
                         String::TWO_BYTE_ENCODING);

    // Write the character that caused the 8-bit to 16-bit fault.
    TNode<IntPtrT> max_index_offset =
        ElementOffsetFromIndex(var_max_index.value(), UINT16_ELEMENTS,
                               SeqTwoByteString::kHeaderSize - kHeapObjectTag);
    StoreNoWriteBarrier(MachineRepresentation::kWord16, two_byte_result,
                        max_index_offset, code16);
    var_max_index = IntPtrAdd(var_max_index.value(), IntPtrConstant(1));

    // Resume copying the passed-in arguments from the same place where the
    // 8-bit copy stopped, but this time copying over all of the characters
    // using a 16-bit representation.
    arguments.ForEach(
        vars,
        [&](TNode<Object> arg) {
          TNode<Word32T> code32 = TruncateTaggedToWord32(context, arg);
          TNode<Word32T> code16 =
              Word32And(code32, Int32Constant(String::kMaxUtf16CodeUnit));

          TNode<IntPtrT> offset = ElementOffsetFromIndex(
              var_max_index.value(), UINT16_ELEMENTS,
              SeqTwoByteString::kHeaderSize - kHeapObjectTag);
          StoreNoWriteBarrier(MachineRepresentation::kWord16, two_byte_result,
                              offset, code16);
          var_max_index = IntPtrAdd(var_max_index.value(), IntPtrConstant(1));
        },
        var_max_index.value());

    arguments.PopAndReturn(two_byte_result);
  }
}

void StringBuiltinsAssembler::MaybeCallFunctionAtSymbol(
    const TNode<Context> context, const TNode<Object> object,
    const TNode<Object> maybe_string, Handle<Symbol> symbol,
    DescriptorIndexNameValue additional_property_to_check,
    const NodeFunction0& regexp_call, const NodeFunction1& generic_call) {
  Label out(this);
  Label get_property_lookup(this);

  // Smis have to go through the GetProperty lookup in case Number.prototype or
  // Object.prototype was modified.
  GotoIf(TaggedIsSmi(object), &get_property_lookup);

  // Take the fast path for RegExps.
  // There's two conditions: {object} needs to be a fast regexp, and
  // {maybe_string} must be a string (we can't call ToString on the fast path
  // since it may mutate {object}).
  {
    Label stub_call(this), slow_lookup(this);

    TNode<HeapObject> heap_object = CAST(object);

    GotoIf(TaggedIsSmi(maybe_string), &slow_lookup);
    GotoIfNot(IsString(CAST(maybe_string)), &slow_lookup);

    // Note we don't run a full (= permissive) check here, because passing the
    // check implies calling the fast variants of target builtins, which assume
    // we've already made their appropriate fast path checks. This is not the
    // case though; e.g.: some of the target builtins access flag getters.
    // TODO(jgruber): Handle slow flag accesses on the fast path and make this
    // permissive.
    RegExpBuiltinsAssembler regexp_asm(state());
    regexp_asm.BranchIfFastRegExp(
        context, heap_object, LoadMap(heap_object),
        PrototypeCheckAssembler::kCheckPrototypePropertyConstness,
        additional_property_to_check, &stub_call, &slow_lookup);

    BIND(&stub_call);
    // TODO(jgruber): Add a no-JS scope once it exists.
    regexp_call();

    BIND(&slow_lookup);
    // Special case null and undefined to skip the property lookup.
    Branch(IsNullOrUndefined(heap_object), &out, &get_property_lookup);
  }

  // Fall back to a slow lookup of {heap_object[symbol]}.
  //
  // The spec uses GetMethod({heap_object}, {symbol}), which has a few quirks:
  // * null values are turned into undefined, and
  // * an exception is thrown if the value is not undefined, null, or callable.
  // We handle the former by jumping to {out} for null values as well, while
  // the latter is already handled by the Call({maybe_func}) operation.

  BIND(&get_property_lookup);
  const TNode<Object> maybe_func = GetProperty(context, object, symbol);
  GotoIf(IsUndefined(maybe_func), &out);
  GotoIf(IsNull(maybe_func), &out);

  // Attempt to call the function.
  generic_call(maybe_func);

  BIND(&out);
}

const TNode<Smi> StringBuiltinsAssembler::IndexOfDollarChar(
    const TNode<Context> context, const TNode<String> string) {
  const TNode<String> dollar_string = HeapConstant(
      isolate()->factory()->LookupSingleCharacterStringFromCode('$'));
  const TNode<Smi> dollar_ix =
      CAST(CallBuiltin(Builtins::kStringIndexOf, context, string, dollar_string,
                       SmiConstant(0)));
  return dollar_ix;
}

TNode<String> StringBuiltinsAssembler::GetSubstitution(
    TNode<Context> context, TNode<String> subject_string,
    TNode<Smi> match_start_index, TNode<Smi> match_end_index,
    TNode<String> replace_string) {
  CSA_ASSERT(this, TaggedIsPositiveSmi(match_start_index));
  CSA_ASSERT(this, TaggedIsPositiveSmi(match_end_index));

  TVARIABLE(String, var_result, replace_string);
  Label runtime(this), out(this);

  // In this primitive implementation we simply look for the next '$' char in
  // {replace_string}. If it doesn't exist, we can simply return
  // {replace_string} itself. If it does, then we delegate to
  // String::GetSubstitution, passing in the index of the first '$' to avoid
  // repeated scanning work.
  // TODO(jgruber): Possibly extend this in the future to handle more complex
  // cases without runtime calls.

  const TNode<Smi> dollar_index = IndexOfDollarChar(context, replace_string);
  Branch(SmiIsNegative(dollar_index), &out, &runtime);

  BIND(&runtime);
  {
    CSA_ASSERT(this, TaggedIsPositiveSmi(dollar_index));

    const TNode<Object> matched =
        CallBuiltin(Builtins::kStringSubstring, context, subject_string,
                    SmiUntag(match_start_index), SmiUntag(match_end_index));
    const TNode<String> replacement_string = CAST(
        CallRuntime(Runtime::kGetSubstitution, context, matched, subject_string,
                    match_start_index, replace_string, dollar_index));
    var_result = replacement_string;

    Goto(&out);
  }

  BIND(&out);
  return var_result.value();
}

// ES6 #sec-string.prototype.replace
TF_BUILTIN(StringPrototypeReplace, StringBuiltinsAssembler) {
  Label out(this);

  auto receiver = Parameter<Object>(Descriptor::kReceiver);
  const auto search = Parameter<Object>(Descriptor::kSearch);
  const auto replace = Parameter<Object>(Descriptor::kReplace);
  auto context = Parameter<Context>(Descriptor::kContext);

  const TNode<Smi> smi_zero = SmiConstant(0);

  RequireObjectCoercible(context, receiver, "String.prototype.replace");

  // Redirect to replacer method if {search[@@replace]} is not undefined.

  MaybeCallFunctionAtSymbol(
      context, search, receiver, isolate()->factory()->replace_symbol(),
      DescriptorIndexNameValue{JSRegExp::kSymbolReplaceFunctionDescriptorIndex,
                               RootIndex::kreplace_symbol,
                               Context::REGEXP_REPLACE_FUNCTION_INDEX},
      [=]() {
        Return(CallBuiltin(Builtins::kRegExpReplace, context, search, receiver,
                           replace));
      },
      [=](TNode<Object> fn) {
        Return(Call(context, fn, search, receiver, replace));
      });

  // Convert {receiver} and {search} to strings.

  const TNode<String> subject_string = ToString_Inline(context, receiver);
  const TNode<String> search_string = ToString_Inline(context, search);

  const TNode<IntPtrT> subject_length = LoadStringLengthAsWord(subject_string);
  const TNode<IntPtrT> search_length = LoadStringLengthAsWord(search_string);

  // Fast-path single-char {search}, long cons {receiver}, and simple string
  // {replace}.
  {
    Label next(this);

    GotoIfNot(WordEqual(search_length, IntPtrConstant(1)), &next);
    GotoIfNot(IntPtrGreaterThan(subject_length, IntPtrConstant(0xFF)), &next);
    GotoIf(TaggedIsSmi(replace), &next);
    GotoIfNot(IsString(CAST(replace)), &next);

    TNode<String> replace_string = CAST(replace);
    const TNode<Uint16T> subject_instance_type =
        LoadInstanceType(subject_string);
    GotoIfNot(IsConsStringInstanceType(subject_instance_type), &next);

    GotoIf(TaggedIsPositiveSmi(IndexOfDollarChar(context, replace_string)),
           &next);

    // Searching by traversing a cons string tree and replace with cons of
    // slices works only when the replaced string is a single character, being
    // replaced by a simple string and only pays off for long strings.
    // TODO(jgruber): Reevaluate if this is still beneficial.
    // TODO(jgruber): TailCallRuntime when it correctly handles adapter frames.
    Return(CallRuntime(Runtime::kStringReplaceOneCharWithString, context,
                       subject_string, search_string, replace_string));

    BIND(&next);
  }

  // TODO(jgruber): Extend StringIndexOf to handle two-byte strings and
  // longer substrings - we can handle up to 8 chars (one-byte) / 4 chars
  // (2-byte).

  const TNode<Smi> match_start_index =
      CAST(CallBuiltin(Builtins::kStringIndexOf, context, subject_string,
                       search_string, smi_zero));

  // Early exit if no match found.
  {
    Label next(this), return_subject(this);

    GotoIfNot(SmiIsNegative(match_start_index), &next);

    // The spec requires to perform ToString(replace) if the {replace} is not
    // callable even if we are going to exit here.
    // Since ToString() being applied to Smi does not have side effects for
    // numbers we can skip it.
    GotoIf(TaggedIsSmi(replace), &return_subject);
    GotoIf(IsCallableMap(LoadMap(CAST(replace))), &return_subject);

    // TODO(jgruber): Could introduce ToStringSideeffectsStub which only
    // performs observable parts of ToString.
    ToString_Inline(context, replace);
    Goto(&return_subject);

    BIND(&return_subject);
    Return(subject_string);

    BIND(&next);
  }

  const TNode<Smi> match_end_index =
      SmiAdd(match_start_index, SmiFromIntPtr(search_length));

  TVARIABLE(String, var_result, EmptyStringConstant());

  // Compute the prefix.
  {
    Label next(this);

    GotoIf(SmiEqual(match_start_index, smi_zero), &next);
    const TNode<String> prefix =
        CAST(CallBuiltin(Builtins::kStringSubstring, context, subject_string,
                         IntPtrConstant(0), SmiUntag(match_start_index)));
    var_result = prefix;

    Goto(&next);
    BIND(&next);
  }

  // Compute the string to replace with.

  Label if_iscallablereplace(this), if_notcallablereplace(this);
  GotoIf(TaggedIsSmi(replace), &if_notcallablereplace);
  Branch(IsCallableMap(LoadMap(CAST(replace))), &if_iscallablereplace,
         &if_notcallablereplace);

  BIND(&if_iscallablereplace);
  {
    const TNode<Object> replacement =
        Call(context, replace, UndefinedConstant(), search_string,
             match_start_index, subject_string);
    const TNode<String> replacement_string =
        ToString_Inline(context, replacement);
    var_result = CAST(CallBuiltin(Builtins::kStringAdd_CheckNone, context,
                                  var_result.value(), replacement_string));
    Goto(&out);
  }

  BIND(&if_notcallablereplace);
  {
    const TNode<String> replace_string = ToString_Inline(context, replace);
    const TNode<Object> replacement =
        GetSubstitution(context, subject_string, match_start_index,
                        match_end_index, replace_string);
    var_result = CAST(CallBuiltin(Builtins::kStringAdd_CheckNone, context,
                                  var_result.value(), replacement));
    Goto(&out);
  }

  BIND(&out);
  {
    const TNode<Object> suffix =
        CallBuiltin(Builtins::kStringSubstring, context, subject_string,
                    SmiUntag(match_end_index), subject_length);
    const TNode<Object> result = CallBuiltin(
        Builtins::kStringAdd_CheckNone, context, var_result.value(), suffix);
    Return(result);
  }
}

// ES #sec-string.prototype.matchAll
TF_BUILTIN(StringPrototypeMatchAll, StringBuiltinsAssembler) {
  char const* method_name = "String.prototype.matchAll";

  auto context = Parameter<Context>(Descriptor::kContext);
  auto maybe_regexp = Parameter<Object>(Descriptor::kRegexp);
  auto receiver = Parameter<Object>(Descriptor::kReceiver);
  TNode<NativeContext> native_context = LoadNativeContext(context);

  // 1. Let O be ? RequireObjectCoercible(this value).
  RequireObjectCoercible(context, receiver, method_name);

  RegExpMatchAllAssembler regexp_asm(state());
  {
    Label fast(this), slow(this, Label::kDeferred),
        throw_exception(this, Label::kDeferred),
        throw_flags_exception(this, Label::kDeferred), next(this);

    // 2. If regexp is neither undefined nor null, then
    //   a. Let isRegExp be ? IsRegExp(regexp).
    //   b. If isRegExp is true, then
    //     i. Let flags be ? Get(regexp, "flags").
    //    ii. Perform ? RequireObjectCoercible(flags).
    //   iii. If ? ToString(flags) does not contain "g", throw a
    //        TypeError exception.
    GotoIf(TaggedIsSmi(maybe_regexp), &next);
    TNode<HeapObject> heap_maybe_regexp = CAST(maybe_regexp);
    regexp_asm.BranchIfFastRegExp_Strict(context, heap_maybe_regexp, &fast,
                                         &slow);

    BIND(&fast);
    {
      TNode<BoolT> is_global = regexp_asm.FlagGetter(context, heap_maybe_regexp,
                                                     JSRegExp::kGlobal, true);
      Branch(is_global, &next, &throw_exception);
    }

    BIND(&slow);
    {
      GotoIfNot(regexp_asm.IsRegExp(native_context, heap_maybe_regexp), &next);

      TNode<Object> flags = GetProperty(context, heap_maybe_regexp,
                                        isolate()->factory()->flags_string());
      // TODO(syg): Implement a RequireObjectCoercible with more flexible error
      // messages.
      GotoIf(IsNullOrUndefined(flags), &throw_flags_exception);

      TNode<String> flags_string = ToString_Inline(context, flags);
      TNode<String> global_char_string = StringConstant("g");
      TNode<Smi> global_ix =
          CAST(CallBuiltin(Builtins::kStringIndexOf, context, flags_string,
                           global_char_string, SmiConstant(0)));
      Branch(SmiEqual(global_ix, SmiConstant(-1)), &throw_exception, &next);
    }

    BIND(&throw_exception);
    ThrowTypeError(context, MessageTemplate::kRegExpGlobalInvokedOnNonGlobal,
                   method_name);

    BIND(&throw_flags_exception);
    ThrowTypeError(context,
                   MessageTemplate::kStringMatchAllNullOrUndefinedFlags);

    BIND(&next);
  }
  //   a. Let matcher be ? GetMethod(regexp, @@matchAll).
  //   b. If matcher is not undefined, then
  //     i. Return ? Call(matcher, regexp, « O »).
  auto if_regexp_call = [&] {
    // MaybeCallFunctionAtSymbol guarantees fast path is chosen only if
    // maybe_regexp is a fast regexp and receiver is a string.
    TNode<String> s = CAST(receiver);

    Return(
        RegExpPrototypeMatchAllImpl(context, native_context, maybe_regexp, s));
  };
  auto if_generic_call = [=](TNode<Object> fn) {
    Return(Call(context, fn, maybe_regexp, receiver));
  };
  MaybeCallFunctionAtSymbol(
      context, maybe_regexp, receiver, isolate()->factory()->match_all_symbol(),
      DescriptorIndexNameValue{JSRegExp::kSymbolMatchAllFunctionDescriptorIndex,
                               RootIndex::kmatch_all_symbol,
                               Context::REGEXP_MATCH_ALL_FUNCTION_INDEX},
      if_regexp_call, if_generic_call);

  // 3. Let S be ? ToString(O).
  TNode<String> s = ToString_Inline(context, receiver);

  // 4. Let rx be ? RegExpCreate(R, "g").
  TNode<Object> rx = regexp_asm.RegExpCreate(context, native_context,
                                             maybe_regexp, StringConstant("g"));

  // 5. Return ? Invoke(rx, @@matchAll, « S »).
  TNode<Object> match_all_func =
      GetProperty(context, rx, isolate()->factory()->match_all_symbol());
  Return(Call(context, match_all_func, rx, s));
}

TNode<JSArray> StringBuiltinsAssembler::StringToArray(
    TNode<NativeContext> context, TNode<String> subject_string,
    TNode<Smi> subject_length, TNode<Number> limit_number) {
  CSA_ASSERT(this, SmiGreaterThan(subject_length, SmiConstant(0)));

  Label done(this), call_runtime(this, Label::kDeferred),
      fill_thehole_and_call_runtime(this, Label::kDeferred);
  TVARIABLE(JSArray, result_array);

  TNode<Uint16T> instance_type = LoadInstanceType(subject_string);
  GotoIfNot(IsOneByteStringInstanceType(instance_type), &call_runtime);

  // Try to use cached one byte characters.
  {
    TNode<Smi> length_smi =
        Select<Smi>(TaggedIsSmi(limit_number),
                    [=] { return SmiMin(CAST(limit_number), subject_length); },
                    [=] { return subject_length; });
    TNode<IntPtrT> length = SmiToIntPtr(length_smi);

    ToDirectStringAssembler to_direct(state(), subject_string);
    to_direct.TryToDirect(&call_runtime);

    // The extracted direct string may be two-byte even though the wrapping
    // string is one-byte.
    GotoIfNot(IsOneByteStringInstanceType(to_direct.instance_type()),
              &call_runtime);

    TNode<FixedArray> elements = CAST(AllocateFixedArray(
        PACKED_ELEMENTS, length, AllocationFlag::kAllowLargeObjectAllocation));
    // Don't allocate anything while {string_data} is live!
    TNode<RawPtrT> string_data =
        to_direct.PointerToData(&fill_thehole_and_call_runtime);
    TNode<IntPtrT> string_data_offset = to_direct.offset();
    TNode<FixedArray> cache = SingleCharacterStringCacheConstant();

    BuildFastLoop<IntPtrT>(
        IntPtrConstant(0), length,
        [&](TNode<IntPtrT> index) {
          // TODO(jkummerow): Implement a CSA version of
          // DisallowGarbageCollection and use that to guard
          // ToDirectStringAssembler.PointerToData().
          CSA_ASSERT(this, WordEqual(to_direct.PointerToData(&call_runtime),
                                     string_data));
          TNode<Int32T> char_code =
              UncheckedCast<Int32T>(Load(MachineType::Uint8(), string_data,
                                         IntPtrAdd(index, string_data_offset)));
          TNode<UintPtrT> code_index = ChangeUint32ToWord(char_code);
          TNode<Object> entry = LoadFixedArrayElement(cache, code_index);

          // If we cannot find a char in the cache, fill the hole for the fixed
          // array, and call runtime.
          GotoIf(IsUndefined(entry), &fill_thehole_and_call_runtime);

          StoreFixedArrayElement(elements, index, entry);
        },
        1, IndexAdvanceMode::kPost);

    TNode<Map> array_map = LoadJSArrayElementsMap(PACKED_ELEMENTS, context);
    result_array = AllocateJSArray(array_map, elements, length_smi);
    Goto(&done);

    BIND(&fill_thehole_and_call_runtime);
    {
      FillFixedArrayWithValue(PACKED_ELEMENTS, elements, IntPtrConstant(0),
                              length, RootIndex::kTheHoleValue);
      Goto(&call_runtime);
    }
  }

  BIND(&call_runtime);
  {
    result_array = CAST(CallRuntime(Runtime::kStringToArray, context,
                                    subject_string, limit_number));
    Goto(&done);
  }

  BIND(&done);
  return result_array.value();
}

// ES6 section 21.1.3.19 String.prototype.split ( separator, limit )
TF_BUILTIN(StringPrototypeSplit, StringBuiltinsAssembler) {
  const int kSeparatorArg = 0;
  const int kLimitArg = 1;

  const TNode<IntPtrT> argc = ChangeInt32ToIntPtr(
      UncheckedParameter<Int32T>(Descriptor::kJSActualArgumentsCount));
  CodeStubArguments args(this, argc);

  TNode<Object> receiver = args.GetReceiver();
  const TNode<Object> separator = args.GetOptionalArgumentValue(kSeparatorArg);
  const TNode<Object> limit = args.GetOptionalArgumentValue(kLimitArg);
  auto context = Parameter<NativeContext>(Descriptor::kContext);

  TNode<Smi> smi_zero = SmiConstant(0);

  RequireObjectCoercible(context, receiver, "String.prototype.split");

  // Redirect to splitter method if {separator[@@split]} is not undefined.

  MaybeCallFunctionAtSymbol(
      context, separator, receiver, isolate()->factory()->split_symbol(),
      DescriptorIndexNameValue{JSRegExp::kSymbolSplitFunctionDescriptorIndex,
                               RootIndex::ksplit_symbol,
                               Context::REGEXP_SPLIT_FUNCTION_INDEX},
      [&]() {
        args.PopAndReturn(CallBuiltin(Builtins::kRegExpSplit, context,
                                      separator, receiver, limit));
      },
      [&](TNode<Object> fn) {
        args.PopAndReturn(Call(context, fn, separator, receiver, limit));
      });

  // String and integer conversions.

  TNode<String> subject_string = ToString_Inline(context, receiver);
  TNode<Number> limit_number = Select<Number>(
      IsUndefined(limit), [=] { return NumberConstant(kMaxUInt32); },
      [=] { return ToUint32(context, limit); });
  const TNode<String> separator_string = ToString_Inline(context, separator);

  Label return_empty_array(this);

  // Shortcut for {limit} == 0.
  GotoIf(TaggedEqual(limit_number, smi_zero), &return_empty_array);

  // ECMA-262 says that if {separator} is undefined, the result should
  // be an array of size 1 containing the entire string.
  {
    Label next(this);
    GotoIfNot(IsUndefined(separator), &next);

    const ElementsKind kind = PACKED_ELEMENTS;
    const TNode<NativeContext> native_context = LoadNativeContext(context);
    TNode<Map> array_map = LoadJSArrayElementsMap(kind, native_context);

    TNode<Smi> length = SmiConstant(1);
    TNode<IntPtrT> capacity = IntPtrConstant(1);
    TNode<JSArray> result = AllocateJSArray(kind, array_map, capacity, length);

    TNode<FixedArray> fixed_array = CAST(LoadElements(result));
    StoreFixedArrayElement(fixed_array, 0, subject_string);

    args.PopAndReturn(result);

    BIND(&next);
  }

  // If the separator string is empty then return the elements in the subject.
  {
    Label next(this);
    GotoIfNot(SmiEqual(LoadStringLengthAsSmi(separator_string), smi_zero),
              &next);

    TNode<Smi> subject_length = LoadStringLengthAsSmi(subject_string);
    GotoIf(SmiEqual(subject_length, smi_zero), &return_empty_array);

    args.PopAndReturn(
        StringToArray(context, subject_string, subject_length, limit_number));

    BIND(&next);
  }

  const TNode<Object> result =
      CallRuntime(Runtime::kStringSplit, context, subject_string,
                  separator_string, limit_number);
  args.PopAndReturn(result);

  BIND(&return_empty_array);
  {
    const ElementsKind kind = PACKED_ELEMENTS;
    const TNode<NativeContext> native_context = LoadNativeContext(context);
    TNode<Map> array_map = LoadJSArrayElementsMap(kind, native_context);

    TNode<Smi> length = smi_zero;
    TNode<IntPtrT> capacity = IntPtrConstant(0);
    TNode<JSArray> result = AllocateJSArray(kind, array_map, capacity, length);

    args.PopAndReturn(result);
  }
}

TF_BUILTIN(StringSubstring, StringBuiltinsAssembler) {
  auto string = Parameter<String>(Descriptor::kString);
  auto from = UncheckedParameter<IntPtrT>(Descriptor::kFrom);
  auto to = UncheckedParameter<IntPtrT>(Descriptor::kTo);

  Return(SubString(string, from, to));
}


// Return the |word32| codepoint at {index}. Supports SeqStrings and
// ExternalStrings.
// TODO(v8:9880): Use UintPtrT here.
TNode<Int32T> StringBuiltinsAssembler::LoadSurrogatePairAt(
    TNode<String> string, TNode<IntPtrT> length, TNode<IntPtrT> index,
    UnicodeEncoding encoding) {
  Label handle_surrogate_pair(this), return_result(this);
  TVARIABLE(Int32T, var_result);
  TVARIABLE(Int32T, var_trail);
  var_result = StringCharCodeAt(string, Unsigned(index));
  var_trail = Int32Constant(0);

  GotoIf(Word32NotEqual(Word32And(var_result.value(), Int32Constant(0xFC00)),
                        Int32Constant(0xD800)),
         &return_result);
  TNode<IntPtrT> next_index = IntPtrAdd(index, IntPtrConstant(1));

  GotoIfNot(IntPtrLessThan(next_index, length), &return_result);
  var_trail = StringCharCodeAt(string, Unsigned(next_index));
  Branch(Word32Equal(Word32And(var_trail.value(), Int32Constant(0xFC00)),
                     Int32Constant(0xDC00)),
         &handle_surrogate_pair, &return_result);

  BIND(&handle_surrogate_pair);
  {
    TNode<Int32T> lead = var_result.value();
    TNode<Int32T> trail = var_trail.value();

    // Check that this path is only taken if a surrogate pair is found
    CSA_SLOW_ASSERT(this,
                    Uint32GreaterThanOrEqual(lead, Int32Constant(0xD800)));
    CSA_SLOW_ASSERT(this, Uint32LessThan(lead, Int32Constant(0xDC00)));
    CSA_SLOW_ASSERT(this,
                    Uint32GreaterThanOrEqual(trail, Int32Constant(0xDC00)));
    CSA_SLOW_ASSERT(this, Uint32LessThan(trail, Int32Constant(0xE000)));

    switch (encoding) {
      case UnicodeEncoding::UTF16:
        var_result = Word32Or(
// Need to swap the order for big-endian platforms
#if V8_TARGET_BIG_ENDIAN
            Word32Shl(lead, Int32Constant(16)), trail);
#else
            Word32Shl(trail, Int32Constant(16)), lead);
#endif
        break;

      case UnicodeEncoding::UTF32: {
        // Convert UTF16 surrogate pair into |word32| code point, encoded as
        // UTF32.
        TNode<Int32T> surrogate_offset =
            Int32Constant(0x10000 - (0xD800 << 10) - 0xDC00);

        // (lead << 10) + trail + SURROGATE_OFFSET
        var_result = Int32Add(Word32Shl(lead, Int32Constant(10)),
                              Int32Add(trail, surrogate_offset));
        break;
      }
    }
    Goto(&return_result);
  }

  BIND(&return_result);
  return var_result.value();
}

void StringBuiltinsAssembler::BranchIfStringPrimitiveWithNoCustomIteration(
    TNode<Object> object, TNode<Context> context, Label* if_true,
    Label* if_false) {
  GotoIf(TaggedIsSmi(object), if_false);
  GotoIfNot(IsString(CAST(object)), if_false);

  // Check that the String iterator hasn't been modified in a way that would
  // affect iteration.
  TNode<PropertyCell> protector_cell = StringIteratorProtectorConstant();
  DCHECK(isolate()->heap()->string_iterator_protector().IsPropertyCell());
  Branch(
      TaggedEqual(LoadObjectField(protector_cell, PropertyCell::kValueOffset),
                  SmiConstant(Protectors::kProtectorValid)),
      if_true, if_false);
}

// Instantiate template due to shared library requirements.
template V8_EXPORT_PRIVATE void StringBuiltinsAssembler::CopyStringCharacters(
    TNode<String> from_string, TNode<String> to_string,
    TNode<IntPtrT> from_index, TNode<IntPtrT> to_index,
    TNode<IntPtrT> character_count, String::Encoding from_encoding,
    String::Encoding to_encoding);

template V8_EXPORT_PRIVATE void StringBuiltinsAssembler::CopyStringCharacters(
    TNode<RawPtrT> from_string, TNode<String> to_string,
    TNode<IntPtrT> from_index, TNode<IntPtrT> to_index,
    TNode<IntPtrT> character_count, String::Encoding from_encoding,
    String::Encoding to_encoding);

template <typename T>
void StringBuiltinsAssembler::CopyStringCharacters(
    TNode<T> from_string, TNode<String> to_string, TNode<IntPtrT> from_index,
    TNode<IntPtrT> to_index, TNode<IntPtrT> character_count,
    String::Encoding from_encoding, String::Encoding to_encoding) {
  // from_string could be either a String or a RawPtrT in the case we pass in
  // faked sequential strings when handling external subject strings.
  bool from_one_byte = from_encoding == String::ONE_BYTE_ENCODING;
  bool to_one_byte = to_encoding == String::ONE_BYTE_ENCODING;
  DCHECK_IMPLIES(to_one_byte, from_one_byte);
  Comment("CopyStringCharacters ",
          from_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING", " -> ",
          to_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING");

  ElementsKind from_kind = from_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS;
  ElementsKind to_kind = to_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS;
  STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
  int header_size = SeqOneByteString::kHeaderSize - kHeapObjectTag;
  TNode<IntPtrT> from_offset =
      ElementOffsetFromIndex(from_index, from_kind, header_size);
  TNode<IntPtrT> to_offset =
      ElementOffsetFromIndex(to_index, to_kind, header_size);
  TNode<IntPtrT> byte_count =
      ElementOffsetFromIndex(character_count, from_kind);
  TNode<IntPtrT> limit_offset = IntPtrAdd(from_offset, byte_count);

  // Prepare the fast loop
  MachineType type =
      from_one_byte ? MachineType::Uint8() : MachineType::Uint16();
  MachineRepresentation rep = to_one_byte ? MachineRepresentation::kWord8
                                          : MachineRepresentation::kWord16;
  int from_increment = 1 << ElementsKindToShiftSize(from_kind);
  int to_increment = 1 << ElementsKindToShiftSize(to_kind);

  TVARIABLE(IntPtrT, current_to_offset, to_offset);
  VariableList vars({&current_to_offset}, zone());
  int to_index_constant = 0, from_index_constant = 0;
  bool index_same = (from_encoding == to_encoding) &&
                    (from_index == to_index ||
                     (TryToInt32Constant(from_index, &from_index_constant) &&
                      TryToInt32Constant(to_index, &to_index_constant) &&
                      from_index_constant == to_index_constant));
  BuildFastLoop<IntPtrT>(
      vars, from_offset, limit_offset,
      [&](TNode<IntPtrT> offset) {
        StoreNoWriteBarrier(rep, to_string,
                            index_same ? offset : current_to_offset.value(),
                            Load(type, from_string, offset));
        if (!index_same) {
          Increment(&current_to_offset, to_increment);
        }
      },
      from_increment, IndexAdvanceMode::kPost);
}

// A wrapper around CopyStringCharacters which determines the correct string
// encoding, allocates a corresponding sequential string, and then copies the
// given character range using CopyStringCharacters.
// |from_string| must be a sequential string.
// 0 <= |from_index| <= |from_index| + |character_count| < from_string.length.
template <typename T>
TNode<String> StringBuiltinsAssembler::AllocAndCopyStringCharacters(
    TNode<T> from, TNode<Int32T> from_instance_type, TNode<IntPtrT> from_index,
    TNode<IntPtrT> character_count) {
  Label end(this), one_byte_sequential(this), two_byte_sequential(this);
  TVARIABLE(String, var_result);

  Branch(IsOneByteStringInstanceType(from_instance_type), &one_byte_sequential,
         &two_byte_sequential);

  // The subject string is a sequential one-byte string.
  BIND(&one_byte_sequential);
  {
    TNode<String> result = AllocateSeqOneByteString(
        Unsigned(TruncateIntPtrToInt32(character_count)));
    CopyStringCharacters<T>(from, result, from_index, IntPtrConstant(0),
                            character_count, String::ONE_BYTE_ENCODING,
                            String::ONE_BYTE_ENCODING);
    var_result = result;
    Goto(&end);
  }

  // The subject string is a sequential two-byte string.
  BIND(&two_byte_sequential);
  {
    TNode<String> result = AllocateSeqTwoByteString(
        Unsigned(TruncateIntPtrToInt32(character_count)));
    CopyStringCharacters<T>(from, result, from_index, IntPtrConstant(0),
                            character_count, String::TWO_BYTE_ENCODING,
                            String::TWO_BYTE_ENCODING);
    var_result = result;
    Goto(&end);
  }

  BIND(&end);
  return var_result.value();
}

// TODO(v8:9880): Use UintPtrT here.
TNode<String> StringBuiltinsAssembler::SubString(TNode<String> string,
                                                 TNode<IntPtrT> from,
                                                 TNode<IntPtrT> to) {
  TVARIABLE(String, var_result);
  ToDirectStringAssembler to_direct(state(), string);
  Label end(this), runtime(this);

  const TNode<IntPtrT> substr_length = IntPtrSub(to, from);
  const TNode<IntPtrT> string_length = LoadStringLengthAsWord(string);

  // Begin dispatching based on substring length.

  Label original_string_or_invalid_length(this);
  GotoIf(UintPtrGreaterThanOrEqual(substr_length, string_length),
         &original_string_or_invalid_length);

  // A real substring (substr_length < string_length).
  Label empty(this);
  GotoIf(IntPtrEqual(substr_length, IntPtrConstant(0)), &empty);

  Label single_char(this);
  GotoIf(IntPtrEqual(substr_length, IntPtrConstant(1)), &single_char);

  // Deal with different string types: update the index if necessary
  // and extract the underlying string.

  TNode<String> direct_string = to_direct.TryToDirect(&runtime);
  TNode<IntPtrT> offset = IntPtrAdd(from, to_direct.offset());
  const TNode<Int32T> instance_type = to_direct.instance_type();

  // The subject string can only be external or sequential string of either
  // encoding at this point.
  Label external_string(this);
  {
    if (FLAG_string_slices) {
      Label next(this);

      // Short slice.  Copy instead of slicing.
      GotoIf(IntPtrLessThan(substr_length,
                            IntPtrConstant(SlicedString::kMinLength)),
             &next);

      // Allocate new sliced string.

      Counters* counters = isolate()->counters();
      IncrementCounter(counters->sub_string_native(), 1);

      Label one_byte_slice(this), two_byte_slice(this);
      Branch(IsOneByteStringInstanceType(to_direct.instance_type()),
             &one_byte_slice, &two_byte_slice);

      BIND(&one_byte_slice);
      {
        var_result = AllocateSlicedOneByteString(
            Unsigned(TruncateIntPtrToInt32(substr_length)), direct_string,
            SmiTag(offset));
        Goto(&end);
      }

      BIND(&two_byte_slice);
      {
        var_result = AllocateSlicedTwoByteString(
            Unsigned(TruncateIntPtrToInt32(substr_length)), direct_string,
            SmiTag(offset));
        Goto(&end);
      }

      BIND(&next);
    }

    // The subject string can only be external or sequential string of either
    // encoding at this point.
    GotoIf(to_direct.is_external(), &external_string);

    var_result = AllocAndCopyStringCharacters(direct_string, instance_type,
                                              offset, substr_length);

    Counters* counters = isolate()->counters();
    IncrementCounter(counters->sub_string_native(), 1);

    Goto(&end);
  }

  // Handle external string.
  BIND(&external_string);
  {
    const TNode<RawPtrT> fake_sequential_string =
        to_direct.PointerToString(&runtime);

    var_result = AllocAndCopyStringCharacters(
        fake_sequential_string, instance_type, offset, substr_length);

    Counters* counters = isolate()->counters();
    IncrementCounter(counters->sub_string_native(), 1);

    Goto(&end);
  }

  BIND(&empty);
  {
    var_result = EmptyStringConstant();
    Goto(&end);
  }

  // Substrings of length 1 are generated through CharCodeAt and FromCharCode.
  BIND(&single_char);
  {
    TNode<Int32T> char_code = StringCharCodeAt(string, Unsigned(from));
    var_result = StringFromSingleCharCode(char_code);
    Goto(&end);
  }

  BIND(&original_string_or_invalid_length);
  {
    CSA_ASSERT(this, IntPtrEqual(substr_length, string_length));

    // Equal length - check if {from, to} == {0, str.length}.
    GotoIf(UintPtrGreaterThan(from, IntPtrConstant(0)), &runtime);

    // Return the original string (substr_length == string_length).

    Counters* counters = isolate()->counters();
    IncrementCounter(counters->sub_string_native(), 1);

    var_result = string;
    Goto(&end);
  }

  // Fall back to a runtime call.
  BIND(&runtime);
  {
    var_result =
        CAST(CallRuntime(Runtime::kStringSubstring, NoContextConstant(), string,
                         SmiTag(from), SmiTag(to)));
    Goto(&end);
  }

  BIND(&end);
  return var_result.value();
}

}  // namespace internal
}  // namespace v8